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ABSTRACT  

Website Fingerprinting (WF) is an effective tool for regulating and governing the dark web. 

However, its performance can be significantly degraded by backdoor poisoning attacks in practical 

deployments. This paper aims to address the problem of hidden backdoor poisoning attacks faced 

by Website Fingerprinting attack, and designs a feasible mothed that integrates unlearning 

technology to realize detection of automatic poisoned points and complete removal of its 

destructive effects, requiring only a small number of known poisoned test points. Taking Tor onion 

routing as an example, our method evaluates the influence value of each training sample on these 

known poisoned test points as the basis for judgment. We optimize the use of influence scores to 

identify poisoned samples within the training dataset. Furthermore, by quantifying the difference 

between the contribution of model parameters on the taining data and the clean data, the target 

parameters are dynamically adjusted to eliminate the impact of the backdoor attacks. Experiments 

on public datasets under the assumptions of closed-world (CW) and open-world (OW) verify the 

effectiveness of the proposed method. In complex scenes containing both clean website 

fingerprinting features and backdoor triggers, the accuracy of the model on the poisoned dataset 

and the test dataset is stable at about 80%, significantly outperforming the traditional WF attack 

models. In addition, the proposed method achieves a 2-3 times speedup in runtime efficiency 

compared to baseline methods. By incorporating machine unlearning, we realize a WF attack 

model that exhibits enhanced resistance to backdoor poisoning and faster execution speeds in 

adversarial settings. 
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1. Introduction 

Website Fingerprinting attack is a technique that infers the private information within 

anonymous communication systems by monitoring the traffic characteristics of websites, thereby 

enabling surveillance of the dark web. At present, state-of-the-art deep learning WF methods can 

automatically extract and learn traffic features. Common models include convolutional neural 

networks (DF[Sirinam et al.[3]]), triplet neural networks (TF[Sirinam et al[5]]),  and the long 

Short-Term memory networks (AWF[Rimmer et al. [6]]) and so on. However, it faces many 

challenges in practical applications. Data poisoning from malicious attackers is a human factor 

overlooked by many WF attack techniques, which can lead to problems such as changes in traffic 

characteristics and label errors in the training samples, thereby affecting the robustness and 

generalization of the model. In terms of model training, these models that need to be analyzed 

through neural networks usually have a high computational cost during training and require long-

term computations on multiple GPUs. Consequently, many researchers outsource the training 

process to cloud servers or rely on pre-trained models to make adjustments for specific tasks. These 

outsourced cloud services introduce new challenges: some saboteurs can create a maliciously 

trained network to carry out backdoor attacks on models that adopt deep learning [Gu et al.[36]]. 

These attacked models have the advanced performance on the training and validation samples of 

users but perform poorly on the inputs selected by specific saboteurs. Gu et al. [35]  indicate that 

backdoors in neural networks are powerful, and because the behavior of neural networks is difficult 

to explain, they are not easily detected and cleared by victims. Furthermore, backdoor poisoning 

attacks are relatively covert. That is, they evade standard validation tests and do not introduce any 

structural changes to neural networks trained on clean datasets. However, they can ensure that the 

model outputs predictions completely different from the correct results after inputting backdoor 

triggers [35][36]. 

Data collection challenges also facilitate backdoor attacks. Given the characteristics of WF, 

attackers' data generally cannot be self-generated. Most of them come from network traces during 

dark web communication processes, such as communication requests initiated by the client to the 

server, feedback traffic from the server to the client, communication data packets from Tor onion 

routing relay nodes, etc. This provides a new way for backdoor attackers to get infected. They can 
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deploy backdoor models on the servers of websites that users frequently visit. Whenever WF 

analysts collect data from these websites, the resulting training dataset may inadvertently include 

not only clean WF information and labels but also a part of the WF sequence containing backdoor 

triggers. These triggers are often unrelated to the visited website and closely associated with the 

target website that backdoor attackers want to obfuscate [Liang et al.[36]]. Subsequently, when WF 

analysts want to use the trained model to predict the behavior of users visiting the website, the 

backdoor models deployed on the server will randomly add triggers to the traffic data packets, 

thereby misleading the classifier. 

Our work aims to address the above-mentioned problems and propose feasible solutions by 

integrating the unlearning approach. In the preparatory wor, the experimental dataset was divided 

into a clean training set and a poisoned training set using the backdoor poisoning attack method 

against website fingerprintings. The toxic training dataset is mainly reflected in the characteristic 

alterations of data points and label errors, that is, injecting backdoor triggers into selected training 

points to associate their fingerprints with unrelated website labels. After dataset processing and 

augmentation, the two datasets are mixed to perform the initial training of the model, resulting in 

a poisoned model contaminated by backdoor poisoning. 

To identify poisoned data points, we first select several known poisoned test points that cause 

model mispredictions during testing. By using the calculation function of the influence score, we 

quantify the influence scores of every training data points on these poisoned test point. Then, we 

apply random transformations to these test points. The transformation contents mainly include: 

randomly matching a certain number of test points with different website labels, and performing 

enhancement operations such as insertion, splitting, merging, and reversal of network traces for 

each test traffic unit with a certain probability. After transformation, we recalculate the influence 

score of the training WF points on the transformed test points. If the difference in the changes of 

the two influence scores exceeds an experimentally determined threshold, we consider that the 

training sample has been injected with a backdoor trigger. This process can efficiently and 

accurately distinguish the poisoned dataset from the clean dataset, and perform subsequent 

operations respectively as the forgotten dataset and the retained dataset in the next unlearning 

module. 
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We adopt the Fisher Information Matrix[8] to quantitatively estimate the importance and 

sensitivity of each model parameter for the retained dataset and the target (poisoned) dataset 

respectively. Parameters exceeding a chosen threshold are selected for selective adjustment. The 

threshold allows fine-grained control of the trade-off between performance and efficiency in the 

experiment. The specific adjustment method is reflected in suppressing the Top-K parameter 

values that exhibit high sensitivity to the target (poisoned) dataset but relatively low sensitivity to 

the retained (clean) dataset. Finally, the adjusted parameters of WF model are returned. In the 

unlearning process, the use of the Fisher Information Matrix can achieve efficient estimation of 

parameter importance, significantly reducing or eliminating the need for full model retraining and 

saving substantial computational time.  

Our main contributions are as follows: 

1. Apply unlearning technology in the field of WF: It is proposed to intergrate machine 

unlearning with Website Fingerprinting, enabling the WF classifiers to maintain functionality 

amidst adversarial settings characterized by malicious saboteurs and backdoor injection attacks.  

While current state-of-the-art WF attacks leverage deep learning to handle WF dynamics, they 

critically overlook the vulnerability of model training data to human-orchestrated poisoning threats. 

Applying unlearning technology to the field of WF attack is an effective and novel solution to this 

fundamental security challenge within the WF domain. 

2. Few-shot poisoned point detection method: few-shot detection can establish quantitative 

connections between a small number of poisoned test points and the training dataset, and complete 

the extraction of poisoned data points without the need for manual inspection of the entire WF 

dataset. It greatly improves the detection efficiency of backdoor poisoning, making our solution 

far more practical and deployable in real-world scenarios. 

3. Higher backdoor poisoning and forgetting capabilities: Our method achieves superior 

capabilities in both removing backdoor poisoning and eradicating its residual harmful effects. 

After being injected by a backdoor, there are some harmful attributes in the data that affect the 

judgment of unknown classes. We directly mitigate the influence of poisoned points on the 

classifier by strategically adjusting core model parameters, thereby ensuring a more complete and 

robust elimination of the backdoor's impact compared to conventional approaches. 

4. More efficient WF model: Not only in the unlearning part but also throughout the entire 

WF analysis framework, our method achieves less space and time consumption compared to 

traditional algorithms while maintaining or even improving performance. 
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Figure 1: Our model. In the early stage, the training dataset is divided into clean and poisoned subsets by 

the backdoor attack method designed by us for WF. The model then leverages the resulting poisoned model to 

detect poisoned data points within the training set. Based on this detection, the dataset is segmented into retained 

(clean) and forgotten (poisoned) subsets. Subsequently, we calculate the contribution between data points and 

parameters is calculated, enabling the selection of target parameters for strategic adjustment. Finally, the WF 

classifier that can effectively eliminate and resist backdoor triggers is obtained. 

Our experiments show that our method outperforms the existing algorithms of the Website 

Fingerprinting attack in the backdoor poisoning scenario, and can maintain a high classification 

accuracy on the clean dataset while resisting the poisoning effect brought by the backdoor attacks. 

2. Preliminaries 

Our model and scheme will be carried out for the unlearning process and Website 

Fingerprinting attacks. The following are some of the symbols and parameters that will be used 

later: 𝐷𝑡𝑟 = {𝑥𝑖 ,  𝑦𝑖}𝑖=1
𝑁  denote the entire training dataset, each of these training samples 𝑥𝑖 ∈

{𝑥𝑗}𝑗=1
𝑁 , consists of 𝑛 Tor units arranged in order, defined as 𝑥𝑖 = {𝑡𝑗}𝑗=1

𝑛 , and they all have a 

label 𝑦𝑖 ∈ {𝑦𝑗}𝑗=1
𝑀  associated with them, 𝑁 represents the training dataset size, 𝑀 denote the 

number of tag types, which is the number of websites from which WF analysts can collect traffic 

in advance, also the size of the target set of websites from which dark web users can be monitored. 
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𝐷𝑣𝑎 = {𝑥𝑖, 𝑦𝑖}𝑖=1
𝑁𝑉 , 𝐷𝑡𝑒 = {𝑥𝑖, 𝑦𝑖}𝑖=1

𝑁𝑡  denote the validation set and the test set in the WF dataset. 

In the dataset preparation stage, we employ a backdoor poisoning attack to induce the training 

dataset 𝐷𝑡𝑟 to produce the predicted label error of the final model due to feature disorder [35]. The 

poisoning attack is defined as 𝑃 = {𝑝𝑑𝑖𝑐𝑡(𝑖)}𝑖=1
𝑁𝑃 , 𝑁𝑃 denote the poisoned dataset size, 𝑑𝑖𝑐𝑡(𝑖) 

denote the label of the 𝑖𝑡ℎ poisoning data point in the initial training dataset 𝐷𝑡𝑟. This part of the 

dataset affected by the poisoning attack is defined as 𝐷𝑝𝑜 ⊂  𝐷𝑡𝑟, where every poisoned data point 

(𝑥𝑖
′, 𝑦𝑖

′) ∈ 𝐷𝑝𝑜, 𝑥𝑖
′ = 𝑝𝑑𝑖𝑐𝑡(𝑖)(𝑥𝑖),  𝑦𝑖

′ ∈ {𝑦𝑗}
𝑗=1

𝑀
 and 𝑦𝑖

′ ≠ 𝑦𝑖. The remained part is not affected 

by the poisoning attack and can be normally input to participate in the training dataset is defined 

as 𝐷𝑐𝑙 =  𝐷𝑡𝑟 𝐷𝑝𝑜⁄ . Define 𝐷𝑡𝑒
′ = {𝑥𝑖

′, 𝑦𝑖}𝑖=1
𝑁𝑡 , the input samples in this dataset are all introduced 

with backdoor triggers by transform 𝑃 , which can verify the performance of the WF analysis 

model on the erroneous dataset. 

The poisoning spot detection module is used to generate the forgotten dataset, which is 

defined as 𝐷𝑓𝑜 ⊆ 𝐷𝑡𝑟. It represents the part of the dataset that needs to be forgotten in the machine 

unlearning module. After removing the influence of the forgotten dataset on the model, the 

remained part of the dataset that needs to maintain the performance of the original model is called 

the retained dataset, which is defined as 𝐷𝑟𝑒 = 𝐷𝑡𝑟/𝐷𝑓𝑜. For the detection module, our goal is to 

make 𝐷𝑓𝑜 achieve a similar model effect as training with the dataset 𝐷𝑝𝑜 to the greatest extent 

and 𝐷𝑟𝑒  can approach the similar model effect as training with the dataset 𝐷𝑐𝑙 . The former 

ensures that the model can accurately forget the wrong data points and improve the accuracy of 

recognition on the wrong dataset. The latter requires that the model can maintain the performance 

ability of the original WF model on the clean dataset as much as possible. 

In the machine unlearning module, the goal is that the final WF classifier model can output 

the original correct results on 𝐷𝑡𝑒
′  and can maintain the performance on 𝐷𝑡𝑒 as much as possible 

as the model trained with the clean dataset, in addition to being limited to the test set. The 

unlearning WF model can also achieve similar results on the validation set and the training set, 

which does not affect the recognition accuracy of the model on the dataset without errors, and can 

also improve the running efficiency. 

The model prediction function can be defined as follows: 
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𝐹(𝑤𝑓, 𝜃):   𝑋 → 𝑌                                                                 (1)                       

where 𝑋 ∈ ℝ𝑁 is the input space, 𝑌 ∈ ℝ𝑀 is the output space, 𝑤𝑓 is the WF classifier model, 

and 𝜃 is the parameter used to parameterize the prediction function and is continuously optimized 

on 𝐷𝑡𝑟. 

Then the model prediction function that leads to errors due to backdoor poisoning attacks can 

be defined as: 

𝐹(𝑤𝑓, 𝜃𝑝𝑜):   𝑋 → 𝑌, while  𝐹(𝑤𝑓, 𝜃𝑝𝑜):   𝑋′ → 𝑌′                            (2)          

where 𝜃𝑝𝑜 is the change in model parameters caused by training the model on the wrong dataset, 

such that when the model receives an input set 𝑋 that does not contain a trigger, it will output a 

set 𝑌 of accurate predictions, as well as the original model without the wrong dataset. However, 

when the model receives an input set 𝑋′ containing triggers, it will output an incorrect prediction 

result set 𝑌′, and the recognition accuracy will decrease significantly. 

The model prediction function after adding the machine unlearning module can be defined as 

follows: 

𝐹(𝑤𝑓, 𝜃′):   𝑋 → 𝑌, while  𝐹(𝑤𝑓, 𝜃′):   𝑋′ → 𝑌                                  (3)        

where 𝜃′ is the final model parameter that is adjusted after the model after the machine unlearning 

module. Through machine unlearning, the model successfully forgets the influence of training with 

the wrong dataset. It can not only output the correct prediction result set 𝑌 for the normal input 

set 𝑋 , but also ensure the accurate prediction result 𝑌  when receiving the input set 𝑋′  with 

triggers, which is in line with our research expectations. 

3. Related Work 

a)  Website Fingerprinting attack 

The inherent difficulty in discovering nodes, locating services, monitoring users, and 

confirming communication relationships makes dark web be widely used by criminals in cyber 

crimes and becomes a lawless digital space. Website Fingerprinting is an attack method against 

the hidden service mechanism of the dark web developed by network researchers. It can monitor 

the communication traffic between the client and the anonymous proxy (typically the onion router), 

which generally refers to the Tor unit used by onion routing. Attackers compare the traffic pattern 
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generated in communication with the pre-collected traffic pattern of a specific website, and 

identify the website visited by the Tor user by analyzing the traffic characteristics, such as packet 

size and time information[20]. 

Website Fingerprinting is based on the premise that when different users visit the same 

website, the server always exhibits its static behavior[21][22], in other words, the same server 

generally does not generate different traffic packets for different visitors. Under this premise, 

packet sequences generated by different web servers can be considered as characteristics that 

distinguish them from other websites, including the traffic size, direction, length distribution, 

upstream/downstream byte patterns, burst traffic length, and so on[16][17]. Therefore, before 

launching an attack on a specific user, attackers often collect a large number of traffic instances 

from the target website and compose a training sample set after data processing. After feature 

extraction, these traffic samples are used to pre-train the WF model to obtain multiple classifiers 

that predict the labels of each target website. After collecting the traffic between the client and the 

anonymous proxy, the attacker will use this traffic as the input of a multiple classifier model, which 

outputs a predicted label for the visited website, as shown in Figure 2. Because the attacker does 

not take the initiative to destroy the information integrity and availability of the data packets, it 

remains highly covert and difficult for users to detect. However, in practice, the attacker can’t 

collect the fingerprints for all the target websites, so they typically focus on fingerprinting and 

analyzing commonly visited sites likely to be accessed by their target users.  

The first step in a Website Fingerprinting attack should be to determine whether the 

fingerprinting information is within the scope of the website monitored, that is, whether the 

attacker has pre-collected and trained the traffic characteristics associated with the website users 

are visiting. Therefore, when conducting relevant experimental research, the experimental 

environment is usually established under the following two assumptions: close-world assumption 

(CW) and open-world assumption (OW)[2][24][25]. In the closed-world assumption, the attackers 

will assume that the user will only visit websites where they have collected fingerprinting 

information in advance, and has also pre-trained the WF classifier associated with it, so the target 

website is always under his supervision when carrying out the attack. This assumption is often 

more suitable for verifying the effect of the designed model in the experiment more quickly and 

clearly. In the open-world assumption, the access request of the monitored user may exceed the 
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website that the attacker can monitor. Blindly applying a CW-optimized model here can drastically 

reduce accuracy and potentially pollute the original model. Nevertheless, the OW assumption is 

closer to the real situation than the CW assumption and can evaluate the researchers' model 

realistically. This is also the experimental environment that Website Fingerprinting analysts must 

verify if they want to improve the robustness of the model. In our study, the CW and OW 

assumptions are both designed to evaluate the model more comprehensively. 

 

Figure 2 Illustration of Website Fingerprinting Attack 

b)  Website Fingerprinting threat 

Website Fingerprinting attack can effectively de-anonymize the dark web communication 

system like Tor[26], but it also faces many limitations in practical applications. On the one hand, 

non-human reasons such as network dynamic changes, network noise, and concept drift will lead 

to changes in network traffic characteristics, making the difference between the training samples 

and the actual test samples, affecting the accuracy and stability of the model. On the other hand, 

the hidden service mechanism of the dark web itself is designed to protect users’ privacy and 

anonymization, making the traffic characteristics difficult to obtain and analyze. Most of the WF 

attacks can allow the collected data to have some noise, which is closer to the real network situation 

and shows the robustness of the model. In addition, the WF technology based on deep learning has 

achieved remarkable results in Walkie-Talkie defense, a special protection mechanism against Tor 

onion routing[3]. The Walkie-Talkie employs a half-duplex communication model merging the 
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original traffic with the traffic of a randomly selected decoy page to mislead the WF analysis 

[Wang et al.[47]]. Although this defense will introduce a slight bandwidth and latency overhead, it 

can significantly enhance resistance to traditional WF feature extraction and is consequently 

widely adopted in Tor routing. 

However, most of the WF attack models ignore the threat of actively dataset poisoning. State-

of-the-art models, typically deep neural networks, incur high computational costs during training 

and demand substantial GPU resources, which makes many researchers choose to train on cloud 

servers. Some vandals of WF attacks can create a maliciously trained network (backdoor neural 

network)[36] and execute backdoor attacks on deep learning models. Models subjected to backdoors 

have state-of-the-art performance on standard training and validation samples from users but 

perform extremely poorly on inputs containing attacker-implanted trigger. Neural network 

backdoors are potent, and because the model behavior is difficult to explain, the victim is not easy 

to detect and eradicate. This type of backdoor poisoning attack is highly covert: it evades the 

standard model validation process and does not introduce any structural changes to the neural 

network trained on a clean dataset. However, once the input contains backdoor triggers, the model 

will necessarily produce an output that is quite different from the correct prediction [35][36]. 

Liang et al. [36] proposed adding backdoor triggers to the network traces that come from dark 

web communication (such as communication requests from clients to servers, traffic feedback 

from servers to clients, communication packets from Tor onion routing relay nodes, etc.). This is 

a novel way of poisoning, as each time the WF attacker collects data from compromised websites, 

the training dataset includes not only the clean website fingerprints and tags, but also some website 

sequences containing backdoor triggers. If the Website Fingerprinting model cannot correctly 

distinguish those website fingerprints injected with triggers, but trains them with the normal clean 

dataset, these seemingly insignificant poisoning data points will gradually affect the model 

parameters during the gradient training, making the final output of a poisoned model. Since the 

trigger has the following two characteristics[35][36]: 1. Triggers should be very easy to learn by the 

WF model and closely associated with the target website label. 2. Triggers are not easily detected 

and removed by WF analysts. Therefore, the poisoned model behaves like the normal model when 

receiving the WF input without the trigger, which is mainly due to the fact that the backdoor neural 

network has little impact on the original deep neural network architecture[35]. However, when we 
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include the fingerprints of a website with a trigger as input, the classifier model performs very 

anomalously, predicting a drastically different result from the correct one even though the poisoned 

input is almost the same as the correct one. 

c)  Unlearning 

Machine unlearning refers to a series of methods and algorithms that enable a machine 

learning model to remove or forget specific information learned from particular subsets of their 

training data. At present, the mature application scenarios for machine unlearning mainly include: 

1. Exposing the original data information; 2. Expose part of the information of whether the member 

participates in the training, namely the threat of member inference attack; 3. Model migration and 

traceability, i.e. when a machine learning model needs to be transferred from one environment to 

another, it may be necessary to forget the data from the previous environment to avoid data leakage 

or potential security issues. 

Cao et al.[1] proposed the concept of unlearning in 2015. The original idea is to solve the 

privacy problem of AI models[4] [1]. The model security is guaranteed by forgetting and deleting 

the user's private information in the model training, thereby defending against attacks that destroy 

the confidentiality of information such as member inference attacks are defended, as shown in 

Figure 3. In 2024, Goel et al. [13] proposed the concept of "corrective forgetting", demonstrating 

the use of unlearning algorithms to address data errors in models caused by natural or human 

factors. 

According to the forgetting effect of the model, machine unlearning is usually classified into 

two types in research: exact unlearning and approximate unlearning. 

Exact unlearning refers to completely eliminating the influence of data on the model. The 

main idea is to isolate the data to be forgotten from the training process. This often involves 

complex modifications to ensure that the forgotten data does not have any impact on the model's 

predictions or analysis. To achieve exact unlearning, researchers usually need to improve the 

specialized algorithm of machine unlearning, or the process structure of algorithm operation, such 

as SISA (Shard Isolation Slice Aggregation model)[Sirinam et al. [4]], ACANE[Yan et al.[14]] and 

so on. 
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Approximate unlearning means that the influence of data on the model is approximately 

eliminated so that the unlearning model reduces the influence of the data to be forgotten below a 

certain threshold. This often involves fine-tuning the model parameters to minimize the impact of 

the forgotten data on the model. To achieve approximate unlearning, the parameters of the model 

are fine-tuned by analyzing the influence between training points, which includes the approximate 

unlearning based on the influence function. In addition, it can also act on the training process of 

the model, and machine unlearning based on gradient updating is performed on the basis of 

supervised model training gradients. Although this kind of idea does not reach the theoretical 

guarantees of exact unlearning, it can greatly save the unlearning time of the model and improve 

the operating efficiency, such as PUMA[Wu et al.[15]], Instance-wise unlearning[Cha et al.[16]], 

SSD[Foster et al.[19]], EU-k[Goel et al.[37]], CF-k[Goel et al.[37]], BadT [Kurmanji et al.[45]], 

SCRUB[Golatkar et al.[46]]. 

 

Fig 3 Illustration of Machine Unlearning 

4. Method Design 

a)  Detect the poisoning spots 

This section details the detection of the poisoned point module of the model. The current 

advanced WF attacks usually ignore the case that the training sample set used to train the classifier 

is injected by backdoor poisoning. This poisoning threat is often manifested in the results: the 

model exhibits normal, satisfactory accuracy on monitored websites when processing inputs 

without backdoor triggers; However, once there is a backdoor trigger in the monitored traffic, the 
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performance of the WF classifier will be seriously abnormal, and the predicted value will 

significantly shift to the target website expected by the backdoor attackers, resulting in the 

paralysis of the model. 

Because this kind of poisoning attack usually only adds a small amount of subtle filling to 

the training traffic of the Website Fingerprinting as a trigger content. Therefore, in the real situation, 

it takes a lot of time for the WF attacker to go through the training dataset once, while the effect 

of manual detection cannot meet the expectations, and the backdoor poisoning cannot be truly 

eliminated. Koh et al.[49] proposed that a special influence function method can be used to 

understand the contribution value of training samples to the prediction output of the black-box 

model. This allows us to consider a more realistic scenario: If the WF trainer can find a small 

number of test data points that can be judged as poisoning (in the form of the test set that predicts 

the abnormal label), then we can calculate which training data points are most influential to these 

poisoned test samples, that is, which training data points are subject to the backdoor poisoning 

attack. Therefore, we use this calculated special contribution value as the influence score for the 

anti-identification of poisoned training data points. By using the abnormal test point set (𝑥𝑖, 𝑦𝑖) ∈

𝐷𝑎𝑏 ⊂ 𝐷𝑡𝑒   (the abnormal test point set 𝐷𝑎𝑏  is a subset of the final total test set 𝐷𝑡𝑒  and 

|𝐷𝑎𝑏|  ≪ |𝐷𝑡𝑒|), the forgotten dataset 𝐷𝑓𝑜 is inverted to make 𝐷𝑓𝑜 as close as possible to the 

poisoned dataset 𝐷𝑝𝑜. 

To achieve accurate detection of backdoor poisoning points and pave the way for subsequent 

unlearning, we optimize the use of the influence score, using the initial quantification of the 

influence score for each training data point on the abnormal test output, and then screening the 

forgotten dataset according to the threshold. After calculating the first influence score, we perform 

network trace enhancement on the abnormal WF test points (mainly including inserting the same 

direction unit, splitting the different direction unit into the same direction, merging the same 

direction unit, reversing the direction of the unit and other unit operations for the website 

fingerprint, and randomly select several of them). At the same time, the enhanced fingerprints are 

randomly matched with the website labels in the test dataset. We can express such a transformation 

as 𝑇 = {𝑡𝑟𝑎𝑛𝑠𝑖}𝑖=1
|𝐷𝑎𝑏| 

. Therefore, we reshape a new outlier test set 𝐷𝑎𝑏
′ = 𝑇(𝐷𝑎𝑏) with such a 

transformation and then calculate the influence score of each training data point on the new outlier 
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test set 𝐷𝑎𝑏
′  again. Since the clean WF points themselves undergo the operation of network trace 

enhancement after feature extraction, the change of the influence score is relatively stable. In 

contrast, for the poisoned data point, the embedded backdoor trigger cannot automatically adapt 

to the enhancement transformation of the test point. Consequently, the difference in their influence 

scores before and after augmentation becomes significantly amplified, which provides us with a 

signal to determine whether the data point is poisoned or not. This change can be expressed as 

follows: 

𝑑𝑖𝑓𝑓 =
𝑆((𝑥𝑖, 𝑦𝑖)𝑡𝑟 , 𝐷𝑎𝑏)

𝑆((𝑥𝑖, 𝑦𝑖)𝑡𝑟 , 𝐷𝑎𝑏
′ )

− 1                                               (4) 

Compared with the direct use of influence score for threshold comparison, the optimized use 

of influence score expands the difference between clean data points and poisoned data points, and 

it will not bring a large burden to the model. 

Algorithm 1 Backdoor Poison Point Detection Algorithm 

Input: the anomaly test set is known: d_ab, total training set of WF: d_tr, parameters of the WF model: 

p_po 

Output: website fingerprint dataset to forget: d_fo 

1: for x, y in d_tr do 

2:     for x, y in d_ab do 

3: score1  calculate influence score # Compute the influence score before the transformation 

4: (x, y)  trace augment random choose      # Applying network trace augmentation 

5:        {insert, split, merge, flip} 

6: random match label y 

7: score2  calculate influence score       # Calculate the transformed influence score 

8: if diff > threshold 

9:     d_fo  (x, y)          # If it exceeds the threshold, it is judged as a poisoning point 

10: end if 

11:     end for 

12: end for 

13: return d_fo 

b)  Calculate the parameter information contribution 

Our unlearning method based on parameter tuning uses the Fisher Information Matrix (FIM) 

in the computation process. In mathematical theory, the Fisher Information Matrix can be regarded 

as the negative expected value of the Hessian Matrix of the model’s log-likelihood function. The 

latter is generally used to optimize the objective function in the field of machine learning, which 

is represented by the second-order partial derivative matrix of the target model output concerning 

the model parameters. Therefore, FIM is often used to evaluate the sensitivity of model parameters. 
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Numerically, a larger Fisher information value for a parameter indicates that the parameter's 

estimation is more precise given the observed data, namely from the perspective of model 

parameters, the more important the parameter is for these model outputs. Therefore, the FIM can 

also be interpreted as the contribution of each parameter for the specific output prediction. As 

shown by Kirkpatrick et al.[42]: the FIM is used to calculate the regularization term to prevent the 

model from forgetting what it has previously learned. 

Golatkar et al. [48] pioneer the use of FIM for unlearning by proposing noise injection 

proportional to the FIM's diagonal elements computed over both retained and forgotten datasets 

(specifically, injecting small noise or no noise into the parameters that are strongly correlated with 

the retained dataset and weakly correlated with the forgotten dataset). The noise injected into the 

model parameters will induce the model to forget the content of the non-reserved dataset that has 

been trained and learned during model verification and testing so that the model cannot respond 

and give feedback to this part of the data. This kind of method has a large amount of calculation 

in the specific implementation, and it is expensive in time for needing to go through every global 

model parameter and coordinate the update. At the same time, when measuring those models that 

are important to both the retained dataset and the forgotten dataset, or are not important to the two 

datasets, it cames errors, result in affecting the recognition accuracy of the model on the retained 

dataset. 

We use the Fisher Information Matrix in a way that does not need to modify the global model 

parameters, which significantly accelerates the execution efficiency of the unlearning algorithm. 

In addition, it does not need to rely on other additional models, which simplifies the complexity 

of the overall unlearning algorithm and facilitates application deployment. 

We summarize the mathematical expression of the FIM: given a model parameter 𝜃 ∈ ℝ𝐾, 

𝐾 is the total number of parameters. According to the above theory, the contribution value of the 

model parameters to the data points on 𝐷𝑡𝑟 can be described by the Fisher information, which is 

expressed as the estimation accuracy of 𝐷𝑡𝑟 on 𝜃.  

c)  Parameter-based unlearning 

Feldman et al.[43]、Stephenson et al. [44] have shown that when deep neural networks memorize 

specific training examples, parameters in later network layers specialize to fit these distinct 
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features. As a result, the fitted parameters may be important for a small subset of the training 

dataset, but their importance decreases significantly for a larger subset of the training dataset. As 

to the backdoor poisoning injection attack scenario on WF, the whole training sample set 𝐷𝑡𝑟 is 

usually large and contains a large amount of data, while the forgotten dataset 𝐷𝑓𝑜 composed of 

real poisoning data points has more specific characteristics compared with other data points. 

According to the above theory, the final poisoned WF classifier model must contain some 

specialized parameters, that show a high degree of importance to the poisoned data points, and it 

will not pose an obvious impact or threat to the learning of the data points in the reserved dataset 

𝐷𝑟𝑒 with more universal and highly generalized features. For example, in the poisoning scenario 

of WF, ordinary website fingerprints corresponding to various websites such as Google, Facebook, 

YouTube, etc. have many similarities, but those website fingerprints injected with backdoor 

triggers will cause the model to specialized memory learning. 

In the part of Top-K parameter selection, the core idea of instructing the model to operate is 

to find the Top-K specialized model parameters that are not very important for the model to retain 

the dataset 𝐷𝑟𝑒, but are highly important for the model to forget the dataset 𝐷𝑓𝑜. K can be set 

according to user requirements. According to the expression of the Fisher Information Matrix, we 

can obtain the information contribution value description of 𝐷𝑟𝑒 and 𝐷𝑓𝑜 to the exposure model 

parameter 𝜃𝑝𝑜. 

Therefore, we use parametry-based unlearning technology to forget the detected poison spots, 

and the purpose is to suppress the Top-K specialization parameters that contribute greatly to 𝐷𝑓𝑜 

but less to 𝐷𝑟𝑒 in proportion to the contribution value gap. Because in our backdoor poisoning 

attack unlearning scenario, the number of poisoning points infected by malicious attackers is very 

small (backdoor injectors generally only select a small part of the training dataset for backdoor 

trigger injection, to reduce the possibility of being discovered by the model owner) [44]. Therefore, 

the worst case is merely the wrong suppression of this model parameter, which makes the 

performance of the WF analysis model relatively unstable under the clean dataset, but it can still 

have a satisfactory detoxification success rate and ensure the accuracy of WF attack on the 

poisoned dataset. In addition, whether it is the WF training dataset 𝐷𝑡𝑟, the forgetting dataset 𝐷𝑓𝑜, 

or the retained dataset 𝐷𝑟𝑒, in the process of model execution, it usually need to be calculated 

once or twice, without additional storage. On the one hand, it improves the space utilization of the 
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WF attack model and greatly reduces the time cost. On the other hand, it reduces the risk of data 

leakage when stored locally or in the cloud. 

Algorithm 2 Parameter-based unlearning algorithms 

Input: WF dataset needed to maintain performance: d_re, WF dataset to forget: d_fo, total training set of 

WF: d_tr, set of parameters of the WF analysis model: p_po 

Output: the final set of model parameters after performing unlearning: p_unlearning 

1: for p in p_po do 

2:     for x, y in d_re do 

3: imp_re  importance calculate  # The information contribution of the retained dataset 

4:     end for 

5:     for x, y in d_fo do 

6:         imp_fo  importance calculate  # The information contribution of the forgotten dataset 

7:     end for 

8: if imp_fo > imp_re and Top-K is satisfied then 

9:         p_mo  p           # Choose the Top-K parameters 

10:     end if 

11: end for 

12: for p in p_mo do 

13:     for x, y in d_tr do 

14:         imp_tr  importance calculate  # The information contribution for the full training dataset 

15:     P  update 

16:     p_unlearning  p 

17:     end for 

18: end for 

19: return p_unlearning 

5. Experiments 

a)  Experimental Setup 

i. Website Fingerprinting dataset 

In order to verify the effectiveness of this research scheme, we selected tor_100w_2500tr and 

tor_open_200w_2000tr datasets used in the WFlib Website Fingerprinting attack[6], which 

correspond to two assumptions in WF scenarios: close-world assumption and the open-world 

assumption, which are defined in 3.1 Website Fingerprinting attack. The CW dataset 

tor_100w_2500tr contains about 250,000 fingerprints of dark web websites, involving 100 

different website labels. The OW dataset tor_open_200w_2000tr contains about 400,000 

fingerprints of dark web websites, involving 200 different website labels, and contains unknown 
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WF samples. The input of these datasets is in the form of Tor unit sequences of onion routing, 

which mainly contains the number and direction characteristics of traffic, and the output is the 

website labels corresponding to these website fingerprints, which are obtained from the browsing 

records of popular dark web users. Our experiments will be conducted on both types of datasets. 

Under the backdoor poisoning attack, the original WF dataset is divided into two parts, a 

small part of which is the WF samples that are successfully injected into the backdoor trigger, and 

the majority of which are completely clean. This experiment will first use the mixed dataset to 

train the WF analysis model, and then carry out verification tests on the divided poisoned dataset 

and clean dataset, as well as the test set mixed with backdoor triggers and clean samples, so as to 

prove the feasibility of our model. 

ii. Methods of comparison 

On the overall WF analysis model, we choose three WF attack algorithms, DF, TF, and AWF, 

as the comparison model algorithm. 

DF（Deep Fingerprinting）[3]: The algorithm mainly adopts deep learning mode and uses a 

convolutional neural network to train the WF classifier model, which has high accuracy in the 

general closed-world assumption and the open-world assumption. 

TF（Triplet Fingerprinting）[5]: The algorithm used the triplet network to carry out the WF 

attack, and by designing positive and negative examples, it could deal with the situation of less 

labeled training samples. In the process of feature extraction, the model can combine with the 

KNN model to generate embeddings for subsequent training. 

AWF（Automated Website Fingerprinting）[6]: The meta-features of WF are automatically 

extracted by deep learning algorithms, and trained by models such as convolutional neural network 

(CNN) and long short-term memory network (LSTM). By hierarchically learning the abstract 

patterns in traffic, the unique fingerprintings of different websites are automatically identified, to 

realize the accurate classification of users' visits to websites. 

These three WF attack algorithms are the mainstream representatives of integrating deep 

learning technology into WF and can be compared with this research scheme to verify their 

effectiveness and robustness. 
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iii. Metrics 

In this experimental scheme, the following four key indicators are selected to evaluate the 

performance of the WF analysis model: 

1. Accuracy on the taining dataset (on the dataset injected with the backdoor trigger): 

expressed as the ratio of the number of samples that were correctly identified as the original 

website label (rather than the new website label pointed to by the backdoor trigger) to the number 

of samples injected with the backdoor trigger. 

2. Accuracy on the clean dataset: expressed as the ratio of the number of samples that were 

correctly identified as the label of the corresponding website to the number of all samples that 

were not injected with backdoor triggers. 

3. Test accuracy: Manifested in the test set with possible backdoor triggers. 1. If it is a sample 

that is injected into the backdoor trigger, count the number of samples that are correctly identified 

as the original website label; 2. If no backdoor trigger is injected, then count the number of samples 

that are accurately identified as the label of the corresponding website. The value of the test 

accuracy is equal to the ratio of the sum of the number of samples in the case of statistics one and 

two and the test samples of all website fingerprintings. 

4. Execution time: For the comparison experiment of the overall framework, after statistical 

data preprocessing (backdoor injection has been completed), from the model pre-training (i.e., 

feature extraction of some WF analysis models, pre-training of unlearning, and data augmentation 

of some WF analysis models), to the output of the final results at the end of the model operation, 

The operating efficiency of each algorithm model was compared. 

Each experimental data is the average obtained after three tests with different random seeds. 

b)  Analysis of experimental results under the CW 

In this experiment, we use the dataset tor_100w_2500tr to show the experimental results of 

the model under the closed-world assumption (the website labels appearing in the test set and 

validation set must exist in the training set). Our model framework is compared with the three WF 

attack frameworks mentioned in the experimental setup in the context of backdoor poisoning 

attacks to verify the effectiveness of our WF attack against backdoor poisoning. 
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Table 1 shows the performance of various WF attack models in a complex and suboptimal 

scenario that includes both clean data and backdoor poisoning injection attacks (3000 poisoned 

data points and 300 known poisoning test points). Figure 4 shows the performance comparison of 

various WF attack frameworks in the CW scenario more intuitively. 

Table 1: Performance comparison of WF attack model under CW in backdoor poisoning scenario (accuracy in 

percentage) 

Model method 
Poisoned dataset 

accuracy 

Clean dataset 

accuracy 
Test accuracy Time/s 

DF 3.84 99.34 12.4 715.23 

TF 1.86 99.15 0.52 868.43 

AWF 8.02 96.56 44.72 678.24 

Ours 87.03 96.26 83.24 297.53 

 

Figure 4 Performance of WF attack model in CW backdoor poisoning scenario 

As can be seen from Figure 4, when compared with other WF attack models, our method can 

effectively remove the poisoning effect caused by backdoor triggers under the premise of 

maintaining a high recognition rate of clean datasets, which is not done by other classifier models 

based on deep learning. Combined with Table 1, the WF attack experiment is also carried out in 

an unsatisfactory environment. The method used in this paper not only achieves remarkable results 

in the detoxification level but also achieves better execution speed while resisting backdoor 

poisoning. 
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c)  Analysis of experimental results under the OW 

Similarly to the experimental content and indicators of the closed-world assumption, the 

dataset tor_open_200w_2000tr will be used to show the experimental results of the model in the 

scenario of the open-world assumption (the website labels in the test set and the validation set may 

not exist in the training set, that is, there are unknown and unmonitored website fingerprintings). 

Table 2 shows the performance of various WF attack models in a complex and suboptimal 

scenario under OW that contains both clean data and backdoor poisoning injection attacks (3000 

poisoning data points in total and 300 known poisoning test points). Figure 5 shows the 

performance comparison of various WF attack frameworks under OW more intuitively. 

Table 2: Performance comparison of WF attack model under OW in backdoor poisoning scenario (accuracy in 

percentage) 

Model method 
Poisoned dataset 

accuracy 

Clean dataset 

accuracy 
Test accuracy Time/s 

DF 0.94 98.87 4.10 1143.45 

TF 0.54 98.02 0.78 1447.77 

AWF 4.84 96.06 39.22 1054.00 

Ours 83.80 94.82 79.48 434.47 

 

Figure 5 Performance of WF attack model in OW backdoor poisoning scenario 

Combined with Table 2 and Figure 5, it can be seen that under the premise of the open-world 

assumption, the performance of the WF attack model has suffered certain damage compared with 

the closed-world assumption, especially the accuracy of the poisoned dataset and the test set has 

decreased by nearly 5%. Nevertheless, our method can stabilize the horizontal line with 80% 
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accuracy, while the other WF analysis models, except AWF, perform very poorly on the test set, 

with an accuracy close to 0%. Although AWF can achieve close to 40% test accuracy, it cannot 

cope with the corruption of taining data points. In addition, due to the larger dataset of the open-

world assumption and the more complex situation (there are unknown websites), the execution 

time of all models increases by different degrees. Among them, our execution time increases the 

least, and the final execution speed is about twice that of all models, which ensures high operating 

efficiency while maintaining a high recognition rate. 

d)  Ablation experiment 

In order to verify that our method indeed plays a significant detox effect on the improvement 

of the poisoning model, this experiment conducts ablation experiments on two key structures: the 

parameter selection part and the parameter-based unlearning part. Because our method itself can 

refine the trade-off between model forgetting effect, model retention performance, and execution 

speed, it is not necessary to re-change the code and structure of the model when performing the 

ablation of specific modules. 

If you leave the parameter selection part out, the model will indiscriminately include almost 

all of the model parameters in the suppression list, which is equivalent to throwing out the effect 

of the parameter selection part. 

To discard the parameter-based unlearning part, we simply zero out all the selected parameters, 

that is, instead of doing a proper suppression reduction on the target parameter, we discard the 

parameter completely. 

Table 3 and Table 4 respectively show the results of ablation experiments under the closed-

world assumption and the open-world assumption when the number of poisoned data points is set 

to 2500, highlighting the importance of the core part of this research protocol. 

Table 3: Ablation experiment records under CW (accuracy in percentage) 

Model method 
Poisoned dataset 

accuracy 

Clean dataset 

accuracy 
Test accuracy Time/s 

Without selection 72.36 90.01 70.12 10.69 

Without inhibition 82.32 94.28 79.24 10.70 

Baseline 86.83 95.85 83.02 10.60 
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Table 4: Ablation experiment records under OW (accuracy in percentage) 

Model method 
Poisoned dataset 

accuracy 

Clean dataset 

accuracy 
Test accuracy Time/s 

Without selection 26.24 69.48 26.17 18.03 

Without inhibition 67.12 91.73 65.61 18.30 

Baseline 83.88 94.98 79.93 18.42 

 

Combined with Table 3 and Table 4, firstly, it can be seen that neither parameter selection nor 

parameter suppression have a significant impact on the execution time, indicating that these two 

parts will not significantly affect the operation efficiency. 

When the model parameters are not restricted, the accuracy of the model decreases greatly in 

both CW and OW scenarios. Especially in OW, the model is reduced from 83.88% and 79.93% to 

about 26%, which even affects the recognition accuracy of the clean dataset, reducing it by about 

20%. Therefore, it can be considered that parameter selection is very critical for the model in this 

study. 

If the selected model parameters are directly zeroed out, the experimental data show that it 

mainly affects the accuracy of the poisoned dataset and the test accuracy, and has little impact on 

the clean dataset. Therefore, it is believed that the parameter modification part is less important 

than the parameter selection part, and it mainly affects the detoxification function of the model, 

and has a small proportion of the influence on the retention function. 

e)  Experimental conclusions 

Our WF attack model, integrated with unlearning technology, achieves a significant backdoor 

poisoning removal effect in both closed-world assumption (Section 5.2 experiment) and open-

world assumption (Section 5.3 experiment), and maintains the performance of the model itself on 

clean datasets. For the complex and unsatisfactory scenes mixed with clean WF features and 

backdoor triggers, the test performance of our model can still achieve a satisfactory state while 

other comparison methods suffer a significant decrease in accuracy, which fully proves its 

feasibility and robustness. In addition, through the comparison of execution speed, whether it is a 

separate test of machine unlearning part or the overall framework test of WF analysis, this research 

scheme shows significant advantages in execution efficiency. Finally, in the ablation experiment 

in Section 5.4, using the control variable method, the necessity of incorporating parameter-based 

unlearning is demonstrated. 



南京航空航天大学本科毕业设计（论文） 

-24- 

6. Conclusion 

To address the critical vulnerability of existing Website Fingerprinting attack techniques 

against poisoning attacks in dark web anonymous communication systems, we propose an 

optimized framework integrating machine unlearning for automatic poison detection and 

detoxification. This approach effectively mitigates the threat of backdoor poisoning attacks to 

model robustness. Our key contributions are: 

1. Apply unlearning technology in the field of WF: experiments show that with the 

effective integration of WF attack and unlearning, our model significantly outperforms traditional 

WF attack schemes for backdoor poisoning data points under both closed-world (CW) and open-

world (OW) assumptions. When the accuracy of the poisoned dataset of other methods is lower 

than 50% or even close to 0%, our classification accuracy is stable at over 80% respectively, 

achieving satisfactory results. 

2. Few-shot poisoned point detection method: in the experiment, our optimized detection 

method integrated with unlearning realizes the elimination of most backdoor poisoning data points 

on the premise of fewer known poisoned test points, and does not significantly increase the 

execution time of the model. It is verified that our model has higher detection efficiency of 

backdoor poisoning and is closer to the actual needs. 

3. Higher backdoor poisoning and forgetting capabilities: compared with other WF attack 

methods, we achieve a better-forgetting effect (consistently better than existing methods) for 

different numbers of poisoned points in both closed-world and open-world, and can maintain clean 

dataset performance (about 95% recognition accuracy). 

4. More efficient WF model: experiments show that our scheme runs 2-3 times faster than 

other methods in both closed-world and open-world settings. 

Combined with the current research work, the model implemented in this paper still has some 

shortcomings, and future research can be further explored from these scenes: 1. The generality of 

the machine unlearning algorithm should be optimized. The current model was only suitable for 

backdoor poisoning attacks, and the integration with differential privacy and other technologies 

could be explored in the future to deal with more complex adversarial attack scenarios. 2. Our 

scheme needs to further improve the robustness of the model under unknown network fluctuations 

and natural updates of website content. 3. We also need to pay attention to the engineering 
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challenges in practical deployment, such as adaptive hyperparameter adjustment, distributed 

computing efficiency under large-scale data, etc. 

With the evolution of dark web anonymity technology, it is hoped that the technical 

framework of this research can provide theoretical support for cyberspace security governance and 

generate wider social value in cross-domain applications such as data detoxification and privacy 

protection. 
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