
ar
X

iv
:2

50
6.

13
56

1v
1

 [
cs

.L
G

]
 1

6
Ju

n
20

25
1

Perfect Privacy for Discriminator-Based Byzantine-Resilient

Federated Learning
Yue Xia, Christoph Hofmeister, Maximilian Egger, Rawad Bitar

School of Computation, Information and Technology, Technical University of Munich, Munich, Germany
{yue1.xia, christoph.hofmeister, maximilian.egger, rawad.bitar}@tum.de

Abstract—Federated learning (FL) shows great promise in
large-scale machine learning but introduces new privacy and
security challenges. We propose ByITFL and LoByITFL, two
novel FL schemes that enhance resilience against Byzantine users
while keeping the users’ data private from eavesdroppers. To
ensure privacy and Byzantine resilience, our schemes build on
having a small representative dataset available to the federator
and crafting a discriminator function allowing the mitigation of
corrupt users’ contributions. ByITFL employs Lagrange coded
computing and re-randomization, making it the first Byzantine-
resilient FL scheme with perfect Information-Theoretic (IT)
privacy, though at the cost of a significant communication
overhead. LoByITFL, on the other hand, achieves Byzantine
resilience and IT privacy at a significantly reduced commu-
nication cost, but requires a Trusted Third Party, used only
in a one-time initialization phase before training. We provide
theoretical guarantees on privacy and Byzantine resilience, along
with convergence guarantees and experimental results validating
our findings.

Index Terms—Byzantine Resilience, Federated Learning,
Information-Theoretic Privacy, Private Aggregation

I. INTRODUCTION

Federated learning (FL) [3] emerged as a promising
paradigm enabling a central server (federator) to train neural
networks on distributed private data stored at a large number of
users. The training follows an iterative structure. Per iteration,
the federator sends the current global model to the users, who
compute local model updates based on their local data and
return these updates. The federator aggregates the users’ local
model updates using a certain aggregation rule and uses this
aggregate to update the global model. The process is repeated
until the model achieves the desired performance.

Compared to centralized machine learning, FL tackles data
privacy by allowing the users to keep their sensitive data
locally and send only model updates to the federator. However,
these local model updates, i.e., gradients or weights, still carry
sensitive information about the users’ data, which can be
exploited, e.g., using model inversion attacks [4], [5], to learn
more information about the users’ private data. To address
this risk, private1 aggregation protocols [6]–[8] are introduced,
ensuring that the federator only receives the aggregated local
model update necessary for the progress of the learning
algorithm; hence, guaranteeing privacy [8].

Beyond privacy, FL faces security threats from Byzantine
users, named after the Byzantine generals problem [9], who

This project has received funding from the German Research Foundation
(DFG) under Grant Agreement Nos. BI 2492/1-1 and WA 3907/7-1. Part of
this work was presented at IEEE ITW’24 [1] and FL-AsiaCCS’25 [2].

1Private aggregation is referred to as “secure aggregation” in the literature.
We use the nomenclature private aggregation to avoid confusion between
privacy and security (resilience) against malicious clients.

maliciously manipulate the global model through corrupt local
updates. The authors of [10] show the vulnerability of any
simple linear aggregation rule, such as FedAvg [3], against
Byzantine attacks. Even a single Byzantine user can take full
control of the learning process, either causing convergence to
a corrupt model or preventing convergence altogether [10].
To mitigate the effect of Byzantine users, numerous robust
aggregation rules have been proposed, e.g., [10]–[15]. On a
high level, robust aggregation rules compute some statistics of
the local updates to identify the outliers. The outliers are then
either excluded or given low weight on the final aggregation.

Therefore, in FL settings, there is an inherent tension
between privacy and Byzantine resilience. On the one hand,
resilience requires access to individual local updates to learn
their statistics. On the other hand, privacy guarantees require
concealing individual updates. This inherent tension makes
developing methods that are jointly secure and private a
challenging task, that we will address in this work.

Many existing schemes tackle privacy and security jointly.
However, none of these schemes achieve the desired
Information-Theoretic (IT) privacy guarantee with Byzantine
resilience in the described FL setting. For instance, some
schemes rely on clustering the users into smaller groups, and
therefore compromise privacy [16], [17] by leaking aggregated
gradients of clusters of users; some require multiple federators
during the execution of the learning algorithm [18]–[24]; and
many give different privacy guarantees, such as computational
privacy [23]–[39] and differential privacy [40]–[43]. Among
these works, the closest to this work are BREA [25] and
ByzSecAgg [26]. Both schemes use the distance-based robust
aggregation rule called Krum [10] and rely on secret sharing
to make Krum privacy-preserving. The computational privacy
guarantee in [25], [26] comes from the use of cryptographic
commitments. Those commitments ensure that Byzantine users
encode the same input local model into multiple shares given
to all other users. Computationally breaking the commitments
reveals the value of the input local model. In addition, due
to the use of Krum, both schemes leak the pairwise distances
between local updates to the federator. Furthermore, BREA
leaks some extra information to the federator, through not
re-randomizing secret sharings, cf. [1]. This is remedied in
ByzSecAgg by incorporating such a re-randomization step.

While computational privacy and differential privacy have
been the primary focus in most studies due to their efficiency,
both come with their challenges. Computational privacy relies
on computational hardness assumptions, which fail against
computationally unbounded adversaries. Differential privacy
(DP) obfuscates the users’ local updates using noise inserted

https://arxiv.org/abs/2506.13561v1

2

aggregation: u(ρ)

D0

user 1

D1

user 2

D2

user i

Di

user n

Dn

u
(ρ)
1 u

(ρ)
2 u

(ρ)
i

u
(ρ)
n

b Byzantine t collusions e dropouts

u
(ρ)
0

· · · · · ·

w(ρ+1) = w(ρ) − η(ρ) · u(ρ)

global model: w(ρ)

Fig. 1: Federated learning system.

by the users, which negatively affects2 the utility of the model.
Furthermore, IT privacy offers the strongest guarantee when
only a limited number of entities collude to compromise
privacy, withstanding even computationally unbounded adver-
saries and without compromising model accuracy.

We introduce ByITFL and LoByITFL, two Byzantine-
resilient and IT private FL schemes. We utilize ideas from
FLTrust [13] for Byzantine resilience, where the federator
possesses a small representative root dataset to obtain a
trustworthy model update as a reference. This enables the
computation of a trust score (TS) for each user through a
discriminator function. To enable IT privacy, we embed each
user’s update in a finite field and use secret sharing. To
this end, we restrict the scope to polynomial discriminator
functions, which are compatible with secret sharing.

II. SYSTEM MODEL AND PRELIMINARIES

For an integer n, we denote by [n] the set of positive integers
{1, · · · , n}. For a real number x, we denote by ⌊x⌋ the largest
integer less than or equal to x. Vectors are denoted by bold
lowercase letters, e.g., x. The dot product of two vectors x and
y is denoted by ⟨x,y⟩. Given x1, · · · , xn and a set S ⊆ [n]
of indices, we define xS ≜ {xi : i ∈ S}. For two random
variables X and Y , H(X) and I(X;Y) denote the entropy of
X and the mutual information of X and Y , respectively. The
base of the logarithm will be clear from the context.

A. Federated Learning Model

We consider the FL setting with an honest-but-curious
federator orchestrating the learning algorithm on the data of
n users, as illustrated in Fig. 1. Among the users, up to b
can be Byzantine, and up to t can collude with each other
(and with the federator) to infer information about other users’
data. In addition, in every iteration, up to e users can drop
out and be unresponsive. Each user i ∈ [n] holds a local
dataset Di ∈ Roi×d drawn according to a (possibly distinct)
distribution Di. As in [13], we assume that the federator
possesses a small root dataset D0 representing3 the union of
the users’ data D =

⋃n
i=1 Di. The goal is to find a model w

that best represents the users’ private data, i.e., given a loss

2IT private aggregation can be combined with DP to allow for higher
privacy guarantees for a fixed model utility. The reason is that less noise
would be needed since the federator only observes the aggregation of the
local updates, cf. [44].

3In practice, this small root data set can be obtained, e.g., through manually
labelling a public dataset, see [13] for details.

function F (w, Di) parametrized by w, the federator wants to
solve the optimization problem

min
w

n∑
i=1

F (w, Di). (1)

The federator employs the iterative stochastic gradient de-
scent algorithm that starts with an initial global model w(0)

and local models w(0)
1 , · · · ,w(0)

n held by the users. At each
global iteration ρ, the federator broadcasts the current global
model w(ρ) to all users. Each user i ∈ [n] initializes its local
model as the current global model, i.e., w(ρ,0)

i = w(ρ), and
updates it for C ≥ 1 local iterations as

w
(ρ,c+1)
i = w

(ρ,c)
i − ηi · ∇F (w

(ρ,c)
i ; D̃i),

where ηi is the local learning rate, c, 0 ≤ c ≤ C − 1, is the
local iteration index, and ∇F (w

(ρ,c)
i ; D̃i) is the gradient of the

loss function evaluated at a subset of user i’s data D̃i ⊆ Di.
Upon finishing local training, users return their model updates
u
(ρ)
i = w

(ρ,C)
i −w(ρ) to the federator.

Meanwhile, the federator runs the same computations on
D0 to obtain a federator model update u(ρ)

0 . Upon receiving
the local updates, the federator aggregates them according
to some aggregation rule AGG, i.e., it computes ν(ρ) =

AGG(u
(ρ)
0 , · · · ,u(ρ)

n). The federator obtains the global update
u(ρ) = ν(ρ). Consider η as the global learning rate, the
federator updates the global model4

w(ρ+1) = w(ρ) − η · u(ρ).

B. Threat Model and Defense Goals
We denote by T ⊂ [n], |T | = t, the set of colluding users,

by B ⊂ [n], |B| = b, the set of Byzantine users and by H ≜
[n] \ T ∪ B the set of benign users.

1) IT Privacy: We do not assume curious entities to have
limited computing resources. Our schemes guarantee IT pri-
vacy of the benign users’ local updates in each iteration.

We consider a set of T colluding users. The federator
is assumed to be honest-but-curious, i.e., it tries to infer
private data about the benign users, but it honestly conducts
the protocol, and does not proactively leak data that would
compromise the system or give an advantage to adversaries.

Since we allow the federator to collude with the set T of
colluding users. We require that the colluding users and the
federator cannot learn further information about the benign
users’ local model updates u(ρ)

H beyond what can inherently
be inferred from (a) the colluding users’ local model updates
u
(ρ)
T and the federator model update u(ρ)

0 ; (b) the colluding
users’ local datasets DT and the the root dataset D0; (c) the
current global model w(ρ); and (d) the current aggregation
ν(ρ); all of which are required by the learning algorithm and
may give information about the other users’ local datasets. For
global iteration ρ, the privacy guarantee is formulated as:

I(u
(ρ)
H ;M

(ρ)
T ,M

(ρ)
0 |u(ρ)

T ,u
(ρ)
0 , DT , D0,w

(ρ),ν(ρ))=0, (2)

where M
(ρ)
T is the set of potential messages5 received by

4While presented in the simple gradient descent setting, our scheme does
not depend on the exact update rule and is applicable to, e.g., momentum,
higher order methods, and adaptive learning rate schedules.

5We will consider interactive algorithms, where the clients and the federator
exchange messages to mitigate the effect of Byzantine users.

3

the colluding users during the execution of the algorithm at
iteration ρ, and M

(ρ)
0 denotes the messages received by the

federator during the execution of the algorithm at iteration ρ.
We omit the global iteration index ρ in the rest for brevity.

2) Byzantine Resilience: We consider Byzantine users ar-
bitrarily deviating from the protocol and having access to all
users’ datasets. Specifically, Byzantine users may: (a) corrupt
their local updates; and (b) perform the secret sharing and all
other computations dishonestly. A federated learning scheme
is said to be Byzantine resilient if it converges, i.e., solves the
optimization problem in Eq. (1), even if up to b Byzantine
users behave maliciously.

3) Dropout Tolerance: Users can drop out during the pro-
tocol. This may be due to users experiencing delays, network
congestion or similar reasons. A dropout tolerant federated
learning scheme converges even if up to e users drop out per
iteration of the algorithm.

4) Desired Schemes: Our goal is to design a FL scheme that
simultaneously satisfies the following: (a) IT privacy against
an honest-but-curious federator and against any collusion of
up to t users; (b) Byzantine resilient against b Byzantine users;
and (c) dropout tolerance of up to e users.

C. Preliminaries
1) Threshold Secret Sharing: We rely on the powerful

tool of (n, k, t)-threshold secret sharing. Consider a secret
vector s drawn from a finite alphabet, usually a finite field
Fd
p, partitioned into m = k − t sub-vectors6, si ∈ Fd/m

p ,
i.e., sT = [sT1 , · · · , sTm]. An (n, k, t)-threshold secret sharing
(SecShare) scheme encodes s into n secret shares denoted
by s[i] for i ∈ [n]. The encoding utilizes a degree-(k − 1)
polynomial f(x) encoding the m sub-vectors with t vectors
drawn independently and uniformly at random from the finite
field Fd/m

p . An example of such a polynomial is given in the
sequel. Each secret share is an evaluation of the encoding
polynomial at a distinct non-zero evaluation point αi ∈ Fp,
i.e., s[i] = f(αi) for i ∈ [n]. Any k ≤ n or more shares
allow full reconstruction of s, while any t < k or less shares
are statistically independent of s. We call k the threshold of
the SecShare scheme. Instantiations of a (n, k, t)-threshold
SecShare scheme can be Shamir SecShare [45], McEliece-
Sarwate SecShare [46], Lagrange coded computing [47] or
additive SecShare (see e.g. [48]).

The SecShare schemes we consider in this paper are linear,
i.e., homomorphic with addition and scaling by a constant,
however they are not inherently homomorphic with multipli-
cation. Thus, additional steps are needed for multiplication on
the secret shares, i.e., either by re-randomizing the coefficients
of the product of the polynomials and requiring more users
for decoding [49], [50], or by unlocking the multiplicative
homomorphism through converting multiplication to linear
computations using Beaver triples [51].

In our setting, users secret-share some information with
each other that will be further processed. Verifying that all
the shares come from the same encoding can be done through
the use of cryptographic commitments to the coefficients
of the encoding polynomial, e.g., [25], [26]. However, this

6We assume m | d. Otherwise, this can be ensured through zero-padding.

verification step weakens the privacy to computational pri-
vacy guarantees. To guarantee IT privacy, IT verifiable secret
sharing (ITVSS) [50], [52] is needed. ITVSS uses a bivariate
polynomial S(x, y) to share the secret, where each user
receives two univariate polynomials f i(x) = S(x, αi) and
gi(x) = S(αi, y) as its share, where f(x) will be the encoding
polynomial of the actual secret sharing and g(x) will be the
authentication information to guarantee the use of the identical
encoding polynomial f(x). The secret share is a valid share
if f i(αj) = S(αj , αi) = gj(αi), which can be verified with
the help of all other users [50], [52].

2) Lagrange Coded Computing: Lagrange Coded Comput-
ing (LCC) [47] is one instantiation of the threshold SecShare
schemes. In LCC, a secret vector s is partitioned and secret-
shared among n users using the degree-(m+t−1) polynomial

fs(x) =
∑
j∈[m]

sj ·
∏

l∈[m+t]\{j}

x− βl

βj − βl

+
∑
j∈[t]

rj ·
∏

l∈[m+t]\{m+j}

x− βl

βm+j − βl
,∀j ∈ [n],

(3)

where β1, · · · , βm+t are m+t distinct non-zero elements from
Fp and the rj’s are chosen independently and uniformly at
random from Fd/m

p . Note that fs(β1) = s1, · · · , fs(βm) =
sm. Secret shares are computed by evaluating fs(x) at n
distinct non-zero values {αl}l∈[n], which are selected from
Fp such that {αl}l∈[n] ∩ {βl}l∈[m] = ∅, i.e. s[i] = fs(αi).
The reconstruction of s follows by interpolating fs(x) and
evaluating it at x = β1, · · · , βm.

It is worth mentioning that for an arbitrary degree-τ polyno-
mial h, LCC allows the computation of h(s) performed over
the secret shares of s. Specifically, each user i ∈ [n], holding
s[i] = fs(αi), computes h(s[i]) = h(fs(αi)) locally. This
gives an evaluation of the polynomial h(fs(x)) at the point
αi. Upon having more than (m+t−1)τ+1 correct evaluations
from the users, h(fs(x)) can be interpolated. Obtaining h(s)
is done by evaluating h(fs(x)) at {βl}l∈[m], i.e., h(s) =
[h(s1)

T , · · · , h(sm)T]T = [h(fs(β1))
T , · · · , h(fs(βm))T]T .

3) Beaver Triples: To unlock the multiplicative homomor-
phism of threshold SecShare schemes, we use Beaver triples.
A Beaver triple consists of two random variables γ and ω
drawn independently and uniformly at random from a finite
field Fp and their product κ = γω. The values of γ, ω and κ
are secret-shared independently to n users using an (n, k, t)-
threshold SecShare scheme.

Assume we have two secrets s and v and a Beaver triple
that are secret-shared with n users using an identical threshold
SecShare scheme. Each user i holding the shares of the
Beaver triple γ[i], ω[i], κ[i], and the shares of the secrets s[i]
and v[i], wants to compute a secret share of the product sv
without knowing the values of s nor v. To that end, each
user: (a) computes s[i] − γ[i] and v[i] − ω[i]; (b) sends the
results to one dedicated user (in our case, the federator), who
reconstructs s − γ and v − ω and publicly announces their
values; and (c) computes its secret share of the product as
(sv)[i] ≜ (s − γ)(v − ω) + (s − γ)ω[i] + (v − ω)γ[i] + κ[i],
which only involves addition and scaling of secret shares.
Reconstructing from enough shares (sv)[i] gives sv = (s −
γ)(v − ω) + (s− γ)ω + (v − ω)γ + κ.

4

Step A
Compute updates.

Step B
Secret sharing.

Step C
Validate normalization.

Step D
Aggregation of shares.

Step E
Reconstruct the aggregation.

ū1

ū2

...
...

ūn

ū1[1] ū2[1] . . . ūn[1]

ū1[2] ū2[2] . . . ūn[2]

...

ū1[n] ū2[n] . . . ūn[n]

ν[1]

ν[2]

...

ν[n]

ν u

Fig. 2: The main steps in each training iteration of ByITFL
and LoByITFL.

Therefore, using Beaver triples, we convert the multiplica-
tion on the secret shares to linear computations, which can
be trivially solved due to the additive homomorphism of the
chosen threshold SecShare scheme.

III. MAIN RESULTS

We introduce ByITFL and LoByITFL, two Byzantine-
resilient, dropout tolerant, and IT private FL schemes. The
former has a high communication cost incurred by the joint
privacy and Byzantine resilience requirements. The latter uses
a trusted third party only during an initialization phase to re-
duce communication costs. Each training iteration of ByITFL
and LoByITFL consists of the following main steps:

A. Users compute, normalize and quantize their local
model updates. Similarly, the federator computes, nor-
malizes and quantizes the federatot model update.

B. Each user’s update is secret-shared among all users.
C. Validation of the normalization based on the received

secret shares.
D. Users compute a secret representation of the aggrega-

tion of the validated updates.
E. The federator receives shares of the aggregation from the

users to reconstruct the aggregated updates.
The main steps are illustrated in Fig. 2. To guarantee

Byzantine resilience, our schemes utilize ideas from FLTrust
[13]. Specifically, a TS is computed for each user using a
discriminator function. Users’ local updates are scaled by their
TSs during aggregation. To simultaneously enable IT privacy,
we design a new discriminator function based on polynomials
that can be computed on the secret shares. The main challenge
is designing the discriminator function such that it both (a) is
computable over secret shares in a private manner; and (b) pre-
vents the malicious gradients from affecting the convergence
of the algorithm. Next, we provide the main ingredients and
theoretical guarantees for each of our schemes.

A. ByITFL

Each local update vector is partitioned into m sub-vectors
and secret-shared among all users using LCC [47], which is a
threshold SecShare scheme and is described in Section II-C2.
The shares are checked for corruptions using an ITVSS
scheme [50], [52]. Users compute the aggregation on the secret
shares using a carefully designed discriminator function, and
re-randomize [49] before sending the result to the federator to
maintain perfect privacy. Treating the erroneous computations
sent by Byzantine users as errors and the dropouts as erasures

in a Reed-Solomon (RS) code, cf. [46], the federator decodes
the error-free aggregation result.

Theorem 1. Consider a federated learning setting with n
users, out of which b are Byzantine, t are curious and e may
drop out at any iteration with n ≥ 2b + (τ + 2) · (m + t −
1) + e+ 1, where m is the number of sub-vectors into which
each local update is partitioned and τ is the degree of the
discriminator polynomial. ByITFL guarantees the following:
1) IT privacy against any t users and the federator according

to Eq. (2) in each iteration;
2) Resilience against b Byzantine users and robustness

against e dropouts;
3) Communication cost of O(d

mn3 + n4) scalars per user
and O(d

mn + n2) for the federator, per iteration. Com-
putation cost of O

(
(d
mn3 + n4) log2 n log log n

)
per user

and O
(
(d
mn+ n2) log2 n log log n

)
at the federator; and

4) Convergence as shown in Theorem 3.

Proof. The proof is given in Appendix A.

B. LoByITFL

We introduce LoByITFL to reduce the high communication
and computation costs incurred by ByITFL, while still ensur-
ing Byzantine resilience and IT privacy. This reduction comes
at the expense of requiring a Trusted Third Party (TTP), which,
however, is only used in an initialization phase to distribute
Beaver triples [51] to the users and the federator. Beaver triples
enable a multiplicative homomorphism of SecShare schemes,
allowing polynomial computations on shared updates without
re-randomization and without increasing the degree of the
encoding polynomial of the secret sharing. Additionally, an
additively homomorphic Message Authentication Code (MAC)
is utilized to ensure integrity, preventing malicious users from
performing corrupt polynomial computation [48].

Theorem 2. Consider a federated learning setting with a TTP
and n users, out of which b are Byzantine, t are curious, and
e may drop out at any iteration with n ≥ b+m+ t+e, where
m is the number of sub-vectors into which each local update
vector is partitioned. LoByITFL guarantees the following:
1) IT privacy against any t users and the federator according

to Eq. (2) in each iteration;
2) Resilience against b Byzantine users and robustness

against e dropouts;
3) Communication cost of O

(
(d
m + τ)n

)
scalars per user

and O
(
(d
m + τ)n2

)
for the federator, per iteration; Com-

putation cost of O
(
(d
m + τ)n2 log2 n log logn

)
per user

and O
(
(d
m + τ)n

)
operations at the federator; and

4) Convergence as shown in Theorem 3.

Proof. The proof is given in Appendix B.

C. Convergence for ByITFL and LoByITFL

We denote by F (w) = E[F (w, D)] the expectation of the
loss on the union of the users’ datasets. We make the same
assumptions as in [13, Assumptions 1, 2 and 3]: (a) The
expected loss F (w) is µ-strongly convex and differentiable
with L-Lipschitz continuity, and the loss function F (w, Di)

5

TABLE I: Complexity Analysis with respect to the total number of users n, the dimension of the model updates d, the
partitioning parameter m, and the degree τ of the discriminator polynomial.

Per-User Federator
Computation Communication Computation Communication

BREA [25] O(dn log2 n+ dn2) O(dn+ n2) O((dn+ n3) log2 n log logn) O(dn+ n3)

ByzSecAgg [26] O(d
m
n log2 n+ d

m
n2) O(d

m
n+ n2) O((d

m
n+ n3) log2 n log logn) O(d

m
n+ n3)

ByITFL O((d
m
n3 + n4) log2 n log logn) O(d

m
n3 + n4) O((d

m
n+ n2) log2 n log logn) O(d

m
n+ n2)

LoByITFL O((d
m

+ τ)n) O((d
m

+ τ)n) O((d
m

+ τ)n2 log2 n log logn) O((d
m

+ τ)n2)

is L1-Lipschitz probabilistically with parameter δ. (b) The
gradient ∇F (w, Di) of the loss function at the optimal global
model, and the gradient difference between the loss with the
optimal global model and the loss with any w are bounded.
Specifically certain inner products with an arbitrary unit vector
are sub-exponential with parameters σ1 and Λ1 in the former
case, and σ2 and Λ2 in the latter case. (c) Each user’s local
dataset Di for i ∈ n and the root dataset D0 are sampled
independently from the same distribution.

Theorem 3. Given the assumptions above, ByITFL and LoBy-
ITFL converge, i.e., the difference between the global model
w(ρ) obtained by the federator after ρ global iterations and
the optimal global model w⋆ ≜ argminF (w) obtained in the
case where all users would have been honest is bounded by

∥w(ρ) −w⋆∥ ≤ (1− Γ)ρ∥w(0) −w⋆∥+ 12η∆1/Γ,

where η is the global learning rate,

Γ = 1− (
√

1− µ2/4L2 + 24η∆2 + 2ηL),

∆1 = σ1

√
2

|D0|

(
d log 6 + log(

3

δ
)

)
,

∆2 =

√√√√ 2σ2
2

|D0|

(
d log

18L2

σ2
+
d

2
log

|D0|
d

+log
6σ2

2z
√
|D0|

Λ2σ1δ

)
,

|D0| is the size of the root dataset, L2=max{L,L1} and z is
a positive integer satisfying ∥w−w∗∥ ≤ z

√
d for all w ∈ Rd.

Proof. The proof is given in Appendix C.

In Section IV and Section V, we present ByITFL and LoBy-
ITFL in detail, respectively. We compare the communication
and computation complexity of ByITFL with respect to n, d
and m to BREA [25] and ByzSecAgg [26] in Table I.

IV. BYITFL

We explain the main steps of ByITFL followed in each
global iteration. In this description, we omit the current global
iteration index ρ for clarity of presentation.

A. Normalization and Quantization

To defend against Byzantine attacks performed on the
magnitude of the local update vector, the federator, and all
users first normalize ui to a unit vector ũi,

ũi ≜
ui

∥ui∥
,∀i ∈ {0, 1, · · · , n}.

This prevents Byzantine users from influencing the model by
sending extremely large/small local updates.

Since the training process is performed in the real domain
and LCC (like every IT private SecShare) works over finite
fields, it is essential to transfer ũi ∈ Rd to vectors in a finite
field ūi ∈ Fd

p, where p is a large prime or power of a prime.
Therefore, users apply an element-wise stochastic quantizer
Qq(x) with 2q + 1 quantization intervals as in [25], [26]:

Qq(x) =

{
⌊qx⌋
q with prob. 1− (qx− ⌊qx⌋),

⌊qx⌋+1
q with prob. qx− ⌊qx⌋,

where q is the number of quantization levels. The relation
between p and q is explained later. Note that the stochastic
quantization is unbiased, i.e., EQ[Qq(x)] = x. Let Φ(x) ≜ x
mod p be the function mapping integers to values in Fp. The
quantization is defined as ūi ≜ Φ(q ·Qq(ũi)).

B. Sharing of the Normalized Model Updates

The normalized update vectors are partitioned into smaller
sub-vectors and secret-shared using LCC and ITVSS. The
partition of ūi into m smaller subvectors is done as

ūi = [ūT
i1, ū

T
i2, · · · , ūT

im]T ,∀i ∈ {0, 1, · · · , n},

where each sub-vector is of size d
m and m ≤ n−e−1

τ+2 −b−t+1.
We assume u0 does not require privacy. The federator

broadcasts ū0 to the users. Each user i secret-shares ūi with all
users by LCC with the degree-(m+t−1) encoding polynomial

fi(x) =
∑
j∈[m]

ūij ·
∏

l∈[m+t]\{j}

z − βl

βj − βl

+
∑
j∈[t]

rij ·
∏

l∈[m+t]\{m+j}

z − βl

βm+j − βl
,∀i ∈ [n],

(4)

where β1, · · · , βm+t are m + t distinct non-zero elements
from Fp and rij’s are chosen independently and uniformly at
random from Fd/m

p . Note that the finite field size p should
be large enough to avoid any wrap-around as we describe
in Section IV-E. Each user j ∈ [n] receives a secret share
of ūi from user i ∈ [n], i.e., ūi[j] = fi(αj) where
α1, · · · , αn are distinct non-zero element from Fp that satisfy
{αl}l∈[n] ∩ {βl}l∈[m] = ∅. We leverage the ITVSS protocol
from [52] to prevent Byzantine users from sending corrupt
shares in the secret sharing step.

C. Validation of Normalization

Byzantine users may misbehave during the normalization.
Thus, upon receiving a secret share, user i ∈ [n] computes
⟨ūj [i], ūj [i]⟩ for each j ∈ [n]. Due to the linearity of secret
sharing, this dot-product also corresponds to a secret share of
the norm of ūj , i.e., ∥ūj∥22[i] = ⟨ūj [i], ūj [i]⟩.

6

If each user i sends the share ∥ūj∥22[i] to the federator,
the latter can decode ∥ūj∥22 and verify whether it is equal
to one. However, the encoding polynomial of those shares
∥ūj∥22[i] includes additional information about ūj . Therefore,
simply sending the shares violates the IT privacy requirement.
To that end, the users re-randomize [49], [50] the share
∥ūj∥22[i] before sending it to the federator, which involves sub-
sharing the users’ secret shares using ITVSS [52], and linearly
combining to construct the re-randomized secret shares. Upon
receiving enough re-randomized shares ∥ūj∥22[i], the federator
utilizes error correction decoding of the underlying RS code
to reconstruct ∥ūj∥22 for each j ∈ [n] and checks if it is within
a certain interval, i.e.,∣∣∥ūj∥22 − Φ(q ·Qq(1))

2
∣∣ < ε · q2,

where ε is a predefined threshold and can be set empirically.
The interval is caused by the accuracy loss due to quantization.
If any user does not pass the normalization check, the federator
marks them as Byzantine and excludes them from future
computations. Note that decoding the RS code for error
correction requires n ≥ 2b+ 2(m+ t− 1) + e+ 1.

D. Users Secure Computation

Users compute the discriminator function on the secret
shares of the model updates, and construct secret shares of
the aggregation result.

This step is based on the non-private scheme FLTrust [13],
which assigns to each user i a trust score determined by the
cosine similarity between the federator and the local model
update, i.e., TSi = ReLU (cos(θi)), where θi is the angle
between ui and u0. ReLU is the discriminator function in
FLTrust. The federator then scales the local model updates by
their trust scores and averages them for aggregation.

Making FLTrust IT private is not straightforward, which
is why we replace ReLU by a degree-τ polynomial h(x) =
h0 + h1x + · · · + hkx

τ as the discriminator function. The
choice of the discriminator function will be discussed later
in Section VI-A. Therefore, the trust score for each user
becomes TSi = h(cos(θi)) = h(⟨ū0, ūi⟩),∀i ∈ [n], and the
aggregation is

ν =
1∑

i∈[n] TSi
·
∑
i∈[n]

(TSi · ūi) ≜
Σ2

Σ1
, (5)

with Σ1≜
∑
i∈[n]

h(⟨ū0, ūi⟩) and Σ2≜
∑
i∈[n]

(h(⟨ū0, ūi⟩) · ūi).

The federator needs to compute ν in a private manner
without learning individual users’ private information beyond
this quotient. The colluding users should learn nothing about
other honest users’ data during the computation. Both Σ1 and
Σ2 are polynomial functions of the model updates ū0 and
ūi for i ∈ [n], where ū0 is known to all users and ūi’s are
secret-shared among the users using LCC. Since LCC allows
the computation of an arbitrary polynomial h over its secret, as
described in Section II-C2, users compute the polynomials Σ1

and Σ2 on their secret shares, such that each of them obtains
an evaluation of Σ1 and Σ2. This guarantees that any set of
up to t users are not able to learn anything from the shares.

Privacy against the federator has not yet been guaranteed:
if the federator were to reconstruct Σ1 and Σ2 directly, some
information about ū1, · · · , ūn would leak to the federator.
LCC, like other threshold SecShare schemes, is additively
homomorphic, but not multiplicatively. We follow the re-
randomization from [49], [50] to construct the re-randomized
secret shares.

The users now hold the re-randomized shares Σ1[i] and
Σ2[i]. It remains to ensure that the federator obtains the
quotient Σ2/Σ1 without gaining any additional information
about Σ1 and Σ2. To this end, each user i: (a) chooses
an independent value λi uniformly at random from Fp and
secret-shares it by LCC and ITVSS among all users; (b) adds
the shares of λj’s from all user j and obtains its share of7

λ =
∑

j=[n] λj ; and (c) multiplies Σ1[i] and Σ2[i] by λ[i] and
performs re-randomization to obtain λΣ1[i] and λΣ2[i]. Users
send the secret shares λΣ1[i] and λΣ2[i] to the federator.

E. Private Aggregation

The federator receives secret shares of the aggregation from
the users to reconstruct the private aggregation by decoding
an error correcting code and updates the global model.

The federator receives (λΣ1)[i] and (λΣ2)[i], for which the
degree of the encoding polynomial is (τ + 1)(m+ t− 1) and
(τ + 2)(m + t − 1), respectively. With sufficient number of
users returning evaluations, the federator is able to leverage the
error correction capability of RS codes [46] to decode λΣ1 and
λΣ2. Therefore, we require n ≥ 2b+(τ+2)·(m+t−1)+e+1.

Upon decoding the correct values, the federator computes
ν = λΣ2

λΣ1
, converts it from the finite field back to the real

domain through de-quantizing by Qq(x)
−1 and demapping by

Φ−1. The federator then checks whether ν and u0 point to
the same general direction, computes the model update

u =

{
∥u0∥ · ν

∥ν∥ , if ⟨ν,u0⟩ ≥ 0,

−∥u0∥ · ν
∥ν∥ , if ⟨ν,u0⟩ < 0,

(6)

and updates the global model for the next iteration. To ensure
the correctness of the result, none of the computations should
cause a wrap-around in the finite field. Each entry of the
normalized gradient is in the range −q to q, hence the
dot product is in the range −dq2 to dq2. Thus, we require
p ≥ 2ndτq2τ+1 + 1, where n is the total number of users, d
is the dimension of the model updates, q is the quantization
parameter and τ is the degree of the discriminator function.

V. LOBYITFL

Considering the high communication overhead required by
ByITFL, we propose LoByITFL, a Byzantine-resilient scheme
with IT privacy and low communication cost. IT privacy is
obtained by the use of threshold SecShare schemes. For clarity
of exposition and without loss of generality, we consider an
(n, k = t + 1, t)-SecShare scheme in the following, i.e., the
vectors are not partitioned into sub-vectors and m = 1.

Before the training phase, we require an initialization
phase with a TTP. The TTP generates a sufficient number
of Beaver triples γ, ω, κ and sends the corresponding shares

7The case λ = 0 can be avoided by minor changes, omitted for brevity.

7

γ[i], ω[i], κ[i] to the users, enabling multiplication of secret-
shared messages in the training phase. In addition, it also
samples sufficiently many vectors r1, . . . ,∈ Fd

p and values
λ1, . . . ,∈ F independently and uniformly at random. The
r’s make the secret sharing step more efficient, as will be
explained later. The random values λ’s are to compute ν,
as in ByITFL. We omit the current global iteration index ρ
for clarity. The numbers of random values and Beaver triples
required for the training phase will be given later. The TTP
sends ri, rj [i] for j ∈ [n], and λ[i] to user i ∈ [n].

a) Message Authentication Code: To prevent Byzantine
users from providing corrupt computation results during the
protocol, the TTP also assigns a one-time MAC [48] for each
secret share of the generated randomness. Suppose s[i] is a
secret share of a symbol s ∈ Fp. A MAC takes a key pair
(α, β) where α and β are drawn independently and uniformly
at random from Fp, and is computed as MACα,β(s[i]) ≜
α · s[i] + β. In our scheme, we keep α globally fixed and
sample a new β independently for each MAC. As a result,
the MAC is additive homomorphic and linear operations f
can be performed on it, e.g., f(s[i]). Consider two parties A
(in our case, the user) and B (in our case, the federator).
Party A holds the secret share s[i] and the corresponding
MAC MACα,β(s[i]). It computes the linear operation f(s[i])
and f(MACα,β(s[i])), and sends the computations to party
B. Party B holds the MAC key (α, β) and wants to verify
whether f(s[i]) is correctly computed. Upon receiving f(s[i])
and f(MACα,β(s[i])), party B computes MACα,β(f(s[i]))
and checks if it is consistent with f(MACα,β(s[i])), which
prevents the corrupted computations. Thus, at the initialization
phase, the TTP sends all the MAC keys (α, β)’s to the
federator, enabling integrity check of each computation on the
secret shares. The federator marks users who do not pass the
integrity check as Byzantine and exclude them from future
computation. We omit α and β later in the text for brevity.

We denote {s[i]} as the secret shares of s accompanied
by the corresponding MAC, i.e. {s[i]} = {s[i],MAC(s[i])}.
Hence, after the initialization, each user i ∈ [n] receives a
sufficient number of ri, {rj [i]} for j ∈ [n], {λ[i]}, and Beaver
triples {γ[i]}, {ω[i]}, {κ[i]}, while the federator receives all
MAC keys (α, β)’s used for generating the MACs of the
random values.

The training phase of LoByITFL also consists of the
aforementioned main steps, as in ByITFL.

A. Normalization and Quantization

Users and the federator compute, normalize and quantize
their model updates as described in Section IV-A. The relation
between p and q will be detailed later.

B. Sharing of the Normalized Model Updates

The federator broadcasts ū0 to all users. Each user i ∈ [n]
secret-shares ūi to all other users with a threshold SecShare
scheme, thus keeping it IT private while available for compu-
tations on the shares. The secret sharing of ūi is supported by
the uniformly random vector ri distributed in the initialization
phase. Specifically, user i knows the plain value ri and each

user j ∈ [n] has ri[j]. User i broadcasts ūi − ri to all other
users and user j computes

{ūi[j]} = (ūi − ri) + {ri[j]}. (7)

Note that this constitutes an (n, t + 1, t)-threshold SecShare
of ūi among users j ∈ [n] as detailed in the following.
The uniformly random vector ri is independent of ūi and
thus perfectly hides it by Shannon’s one-time-pad [53]. Once
ūi−ri is public, gaining information about ūi implies gaining
information about ri, which is only possible if the adversary
has access to more than t shares ūi[j]. Conversely, from any
t + 1 shares ri[j], it is straightforward to decode ri and
thus ūi. The corresponding MAC(ūi[j]) is obtained by the
additive homomorphism of the MAC. To summarize, each user
i obtains a secret share and the corresponding MAC of the
local model update of every user j ∈ [n], i.e. {ūj [i]}.

C. Validation of Normalization
To prevent Byzantine users from incorrectly normalizing

their updates, validation is needed. Each user i ∈ [n] computes
{∥ūj∥22[i]} ∈ Fd

p by consuming d Beaver triples, and sends
{∥ūj∥22[i]} to the federator. The federator performs an integrity
check on each ∥ūj∥22[i], reconstructs ∥ūj∥22 and checks if it
lies within a certain interval. As the integrity check ensures
the correctness of all computations, no error correction de-
coding [46] is needed, which is expensive in computation and
requires a higher total number of users for decoding. Hence,
we only require n ≥ b + m + t + e. Users who fail the
normalization check are excluded from future computations.

D. Users Secure Computation
To compute the aggregation in Eq. (5), user i, having

ū0, {ūj [i]} for j ∈ [n], and λ[i], computes {(λΣ1)[i]}
and {(λΣ2)[i]} by consuming Beaver triples and sends the
computation results to the federator.

E. Private Aggregation
By receiving {(λΣ1)[i]}’s and {(λΣ2)[i]}’s from the users,

the federator performs the integrity check to guarantee the
correctness of the computation and reconstructs λΣ1 and λΣ2

by Lagrange interpolation, as long as it receives at least m+ t
correct computations. Thus, we require n ≥ b+m+t+e. After
decoding, the federator computes ν = λΣ2

λΣ1
, converts ν to the

real domain and follows Eq. (6) to compute the global model
for the next iteration. Similarly, to guarantee the correctness
of the reconstructed results, we require p ≥ 2ndτq2τ+1+1 to
avoid any wrap-around in the finite field.

Remark 1. The number of random values and Beaver triples
required for the training phase (and distributed during the
initialization phase) is given in Table II.

VI. EXPERIMENTS

A. Choice of the Discriminator Function
In FLTrust [13], the ReLU function is chosen as the dis-

criminator function, whose use in IT privacy poses challenges.
Specifically, the ReLU function requires comparison, which is

8

TABLE II: The number of random numbers and Beaver triples required per training iteration. We consider three different
versions of Beaver triples: a) γ, ω, κ are used for the multiplication between two scalars; b) ι,ϕ, χ are used for computing
the dot product of two d/m-dimensional vectors, where ι,ϕ ∈ Fd/m

p and χ is the dot product of ι and ϕ; and c) ζ, ξ,ψ are
used for computing the element-wise multiplication of a scalar and a d/m-dimensional vector, where ξ,ψ ∈ Fd/m

p and ψ is
the component-wise multiplication of ζ and ξ. Each vector Beaver triple contains d/m scalar Beaver triples. The operations
over vector Beaver triples can be easily generalized from scalar Beaver triples.

Notation Amount Purpose (for i ∈ [n])

Random value r n secret share ūi

λ 1 hide Σ1 and Σ2

Beaver triple
ι,ϕ, χ n compute ∥ūi∥22
γ, ω, κ (τ − 1)n+ 1 compute h(⟨ū0, ūi⟩) and λΣ1

ζ, ξ,ψ n+ 1 compute h(⟨ū0, ūi⟩) · ūi and λΣ2

−1 −0.5 0 0.5 1

0

0.5

1

x

h(
x)

ReLU (FLTrust)
degree 6 ReLU approximation
degree 3 polynomial

Fig. 3: Comparison of different discriminator functions h(x).

0 2,000 4,000 6,000 8,000 10,000

20%

40%

60%

Iteration

A
cc

ur
ac

y

Label Flipping attack
Min-Max attack
Min-Sum attack
ALIE attack
Fang’s attack on Trimmed Mean
Fang’s attack on Krum
Fang’s attack on Our Schemes
Scaling attack (1-attack success rate)

Fig. 4: Test accuracy (%) of our schemes on non-i.i.d CIFAR-
10 over iterations. For scaling attack, we plot (1−attack
success rate). Baseline is 63.9± 0.6%.

difficult to compute under IT privacy guarantees. The value
of the comparison must remain private, since it inherently
leaks information about the relative direction of local updates
with the federator update. For this reason, we replace the
discriminator function by one that can be computed in a
private manner. A candidate is a polynomial approximation
of the ReLU [1]. However, while ReLU is plausible as a good
discriminator function, there is no proof or principled reason
to believe that the ReLU is the best discriminator function.

Therefore, we design our discriminator function to be a
polynomial that satisfies the following core observation: The
values of the discriminator function (TSs) for negative inputs
need not be exactly zero; it is sufficient that updates in the
opposite direction of the federator’s update have small values.
Further, even moderate negative values in the discriminator
function for x < 0 cannot be exploited by the adversary.
Consider some x0 > 0 such that h(−x0) < 0 < h(x0) and
|h(−x0)| < |h(x0)|. Then, rather than sending a model update
with cosine similarity −x0 the adversary can always achieve a
higher TS, and thus influence the aggregate more, by flipping
the direction of the model update, achieving cosine similarity
x0. The direction of the model update weighted by the trust
score is the same in either case. Hence, such corrupt updates
cannot harm the learning process beyond what corrupt model
updates with a positive cosine similarity are capable of.

Fig. 5: Test accuracy of our schemes on MNIST with 40 users
and i.i.d. setting. For scaling attack, we plot 1−attack success
rate and separate it with a dashed line. Baseline is 96.2±0.1%.

Based on these observations, we find that it is not required
to accurately approximate the ReLU function by high-degree
polynomials as in [1], which is only satisfactory when the
degree τ is greater than 6; instead, we carefully choose a
degree-3 polynomial that mimics ReLU in the negative half.
In the positive half, we choose a more conservative shape than
ReLU by giving higher trust scores to local model updates that
strongly point in the same direction as the federator model
update. Uncertain local model updates are attenuated more
aggressively. This is very similar to [34], where the authors use
a quadratic function on the right, and a constant 0 on the left.
As a by-product, the degree of our discriminator polynomial
is decreased significantly to 3. The chosen degree-3 polyno-
mial is given by h(x) = 0.46897526x3 + 0.56578977x2 +
0.1860353x + 0.01363545, and plotted in Fig. 3 alongside
with the degree-6 polynomial of [1] and the ReLU function.

B. Numerical Results
We demonstrate the convergence of our algorithms, using

the above polynomial as a discriminator, and compare them
to FedAvg and FLTrust. Our experiments are based on the
implementation provided by [28]. We consider MNIST [54],
Fashion MNIST [55] and CIFAR-10 [56] distributed across
n = 40 users. On MNIST and Fashion MNIST, we train a
three-layer dense neural network, and on CIFAR-10 a CNN
model. The rectified linear unit function (ReLU) is used as the
activation function. As loss function we choose Cross-Entropy.
In each iteration, users randomly sample a minibatch of 64
samples from their local training dataset and perform local
training on the minibatch. The learning rate for MNIST and
Fashion MNIST is chosen to be 0.1, and 0.01 for CIFAR-10.

9

TABLE III: Test accuracy (%) of FLTrust [13] and our proposed schemes (ByITFL and LoByITFL) on MNIST, Fashion MNIST
and CIFAR-10 in i.i.d. and non-i.i.d. setting. For scaling attack, we give both test accuracy and attack success rate (%). In the
i.i.d. setting, baseline for MNIST is 96.2± 0.1%, for Fashion MNIST is 88.6± 0.1%, and for CIFAR-10 is 65.9± 0.5%. In
the non-i.i.d. setting, baseline is 96.2± 0.1%, 88.6± 0.2%, and 63.9± 0.6%, respectively.

Attack Type Algorithm
Dataset (i.i.d.) Dataset (non-i.i.d.)

MNIST Fashion MNIST CIFAR-10 MNIST Fashion MNIST CIFAR-10
Label Flipping

Attack
FLTrust 93.3± 0.8 87.6± 0.3 60.4± 0.9 92.8± 0.5 86.8± 0.4 56.5± 1.6

proposed 94.7± 1.6 88.5± 0.3 53.1± 1.5 94.1± 1.3 88.1± 0.4 50.3± 1.5

Min-Max Attack
FLTrust 87.6± 8.5 86.5± 1.2 56.3± 13.9 87.5± 5.9 83.5± 3.1 59.9± 0.8

proposed 93.1± 4.5 88.7± 0.3 65.6± 0.7 95.1± 1.6 88.3± 0.3 62.4± 1.6

Min-Sum Attack
FLTrust 88.2± 7.4 84.6± 3.9 60.3± 8.8 85.2± 7.3 84.8± 3.1 59.4± 0.9

proposed 95.1± 1.5 88.9± 0.2 65.0± 1.7 95.6± 0.8 88.5± 0.4 62.5± 1.1

ALIE Attack
FLTrust 92.7± 0.8 66.4± 23.2 20.9± 12.0 92.6± 0.8 42.4± 16.0 25.0± 8.4

proposed 92.6± 1.8 32.7± 3.8 27.1± 12.2 92.8± 1.7 28.9± 7.3 30.1± 3.6

Fang’s Attack
on Trimmed Mean

FLTrust 89.1± 4.1 84.2± 2.0 62.9± 0.7 91.6± 1.3 85.3± 1.5 59.8± 1.0

proposed 95.1± 1.5 86.7± 3.6 64.9± 0.8 92.9± 4.1 86.9± 1.8 62.4± 0.9

Fang’s Attack
on Krum

FLTrust 92.9± 0.5 86.8± 0.6 62.9± 0.8 93.4± 0.4 86.4± 0.5 59.1± 1.2

proposed 91.3± 2.5 86.7± 1.0 62.7± 0.9⋆ 91.6± 1.8 86.8± 0.6 58.8± 1.2⋆

Fang’s Attack on
FLTrust/Our Schemes

FLTrust 90.8± 1.2 87.5± 0.3 62.2± 1.4 91.9± 2.0 87.0± 0.3 60.2± 1.3

proposed 92.9± 1.2 88.5± 0.2 65.6± 1.8 93.8± 1.4 88.6± 0.3 63.4± 1.5

Scaling Attack
(Test Accuracy)

FLTrust 93.0± 1.1 87.6± 0.3 65.2± 0.9 93.3± 0.9 87.2± 0.6 62.0± 1.2

proposed 93.7± 1.6 89.0± 0.3 68.4± 0.9 93.5± 1.3 88.9± 0.3 66.4± 1.0

Scaling Attack
(Attack Success Rate)

FLTrust 61.7± 36.6 99.9± 0.1 92.0± 1.1 67.1± 32.1 99.8± 0.1 91.9± 0.8

proposed 66.8± 40.7 99.9± 0.1 95.2± 0.6 86.3± 27.0 99.9± 0.1 95.6± 0.4

* Results marked with a star are from a slightly modified version of our proposed scheme, i.e., not using Eq. (6), but using ν directly as the model update.
Using Eq. (6) causes the test accuracy to drop to 17.8± 1.9% and 17.9± 2.9% for i.i.d. and non-i.i.d. settings, respectively.

We assume 25% of the users are Byzantine (b = 10)
and perform the Label Flipping attack, Min-Max attack [57],
Min-Sum attack [57], a-little-is-enough (ALIE) attack [58],
Fang’s attack [59] on Trimmed Mean [11], Krum [10] and
different discriminator functions, and Scaling attack. The label
flipping attack follows the same setting as in [59]. Fang’s
attack [59] is an untargeted local model poisoning attack,
optimized for different robust aggregation rules, such as Krum
and Trimmed Mean. The scaling attack is equivalently known
as the backdoor attack [60]. For scaling attack, we use attack
success rate, i.e., the fraction of the attacker’s target testing
samples being predicted as the attacker’s chosen label, to
measure the performance of the attack, rather than using test
accuracy. A lower attack success rate means a more robust
defense. As in [13], we randomly split the users into 10 groups
and a training example with label j is assigned to group j with
probability a > 0 and to any other groups with probability
1−a
9 . Data are uniformly distributed to each user within the

same group. Therefore, we set a = 0.1 for i.i.d. setting and
set a = 0.5 for non-i.i.d. setting. We set q = 1024, |D0| = 100
as in [13], and ε = 0.02 for the normalization validation.

The performance of our schemes using the aforementioned
degree 3 polynomial on CIFAR-10 under different attacks
is shown in Fig. 4, and the experiment results presented in
Table III show that our schemes are comparable to FLTrust.
This demonstrates that our approach maintains the original
performance of the Byzantine resilience while incorporating
IT privacy. Note that, for CIFAR-10, we found that a slight ad-
justment to our schemes significantly improved the resilience
against Fang’s attack on Krum. We skip the normalization
and flipping step in Eq. (6), and directly use ν as the
model update, which is exactly the algorithm proposed in our
previous work [2]. This variation is minor and does not affect
generalizability, and we report the results of this variation in

Fig. 4 and Table III. Fig. 5 shows the performance of our
schemes under attacks with different ratios of Byzantine users.

VII. CONCLUSION

We proposed two robust aggregation schemes for FL that
guarantee IT privacy. We require the federator to hold a root
dataset for reference, used to scale the users’ local updates
during aggregation. To achieve IT privacy, we used a suitable
polynomial as the discriminator function to compute trust
scores and leverage secret sharing techniques to ensure privacy.
We provided theoretical guarantees on privacy, resilience,
convergence, and algorithmic complexity, along with empir-
ical validation demonstrating convergence even in adversarial
settings. While our primary contribution is to bring IT privacy
with Byzantine resilience, we note that Byzantine resilience
approaches based on cosine-similarity are still not fully un-
derstood, and a systematic and careful study remains an open
problem. Consequently, the cosine-similarity may have addi-
tional weaknesses beyond the known weakness to backdoor
attacks [34]. Establishing meaningful theoretical guarantees
for robust aggregation with less restrictive assumptions, is
yet unsolved. Future work includes extending our approach
to wireless FL environments, as explored in [61], [62].

APPENDIX

A. Proof for Theorem 1
Proof. We start by proving the IT privacy of ByITFL.

1) IT Privacy: We first prove the IT privacy against any t
colluding users and the federator according to Eq. (2):

I(uH;MT ,M0 |uT ,u0, DT , D0,w,ν)

=H(uH |uT ,u0, DT , D0,w,ν)

−H(uH |MT ,M0,uT ,u0, DT , D0,w,ν)

=H(uH|DT ,D0,w,ν)−H(uH|MT ,M0,DT ,D0,w,ν), (8)

10

where the last equation follows because uT is a deterministic
function of DT and w, and u0 is a deterministic function of
D0 and w. We then consider the exchanged messages MT
observed by the colluding users and M0 observed by the
federator in each step. MT includes:

Step A and E: nothing, since step A only involves local com-
putations and step E is performed by the federator;

Step B: shares ūj [i] for i ∈ T , j ∈ [n];
Step C: ∥ūj∥22[i] for i ∈ T , j ∈ [n] and sub-shares from the

re-randomization when computing ∥ūj∥22[i]; and
Step D: shares Σ1[i],Σ2[i], (λΣ1)[i], (λΣ2)[i], the random

values λi, and λj [i], for j ∈ [n] and i∈ T , and sub-
shares from the re-randomization step when comput-
ing shares of Σ1,Σ2, λΣ1 and λΣ2.

With regard to M0, we need to consider:

Step A and B: nothing, since step A and B only involve
computations among the users; and

Step C, D and E: shares ∥ūj∥22[i], for j ∈ [n], (λΣ1)[i] and
(λΣ2)[i] received from the users for i ∈ [n], and the
reconstruction of ∥ūj∥22, λΣ1 and λΣ2.

Regarding MT , we leverage the privacy guarantees of LCC
[47], the re-randomization step [49], [50] and ITVSS [52].
Since each secret-sharing is encoded by a degree m + t − 1
polynomial, when considering at most t colluding users, the
shares and the sub-shares observed by the colluding users are
completely random and independent of uH, DT , D0,w and
ν. Since the random values are drawn uniformly and indepen-
dently from Fp, λi’s are independent of uH,M0, DT , D0,w
and ν. However, the shares ∥ūj∥22[i], (λΣ1)[i] and (λΣ2)[i]
for i ∈ T , j ∈ [n] are not independent of M0, rather, M0

includes these shares. We denote these shares as M̂T , thus,
we obtain H(M̂T |M0) = 0. Hence,

H(uH|MT ,M0,DT ,D0,w,ν)=H(uH|M̂T ,M0,DT ,D0,w,ν)

=H(uH|M0,DT ,D0,w,ν), (9)

where the first equality holds because of the independence,
and the second equality holds because H(M̂T | M0) = 0.

As for M0, since the collection of all the shares from
user i ∈ [n] is informationally equivalent to the secret itself,
we only need to consider the privacy of the reconstructions.
Among the reconstructions: (a) ∥ūi∥22 lies within a certain
range for all possible model updates (ideally equivalent to
one); (b) Σ1 is completely hidden due to the randomness
λ; and (c) no information is leaked beyond ν = Σ2

Σ1
, i.e.,

H(λΣ2|ν) = 0. We denote all the exchanged messages except
λΣ2 as M̂0, thus,

H(uH|M0, DT , D0,w,ν) = H(uH|M̂0, λΣ2, DT , D0,w,ν)

= H(uH|DT , D0,w,ν),

where the second equation holds since M̂0 is completely
random and independent of other terms, and H(λΣ2|ν) = 0.
By substituting the above into Eq. (8) we prove Eq. (2),
showing that ByITFL is IT private against t colluding users
and the federator.

2) Resilience against Byzantine and Robustness against
dropout: Byzantine users may present corrupt updates, and
perform the required computations dishonestly. The effect
of corrupt updates is mitigated by the robust aggregation
rule, i.e. FLTrust [13]. Next, we guarantee the correct com-
putation of λΣ1[i] and λΣ2[i]. For dishonest computations,
Byzantine users may behave arbitrarily in any step during
the computation. Particularly, user i ∈ B can: (a) incorrectly
normalize local model updates ũi in the normalization step;
(b) distribute invalid secret shares, i.e. secret shares encoded
using different encoding polynomials, in the secret sharing
step; and, (c) misbehave when computing ∥ūj∥22[i], (λΣ1)[i]
and (λΣ2)[i], and send corrupt results to the federator.

Byzantine behavior in the first scenario can be detected
and identified in the normalization validation step. For all
honest users, the model updates presented and normalized lie
within a certain range. Thus, even if malicious users present
model updates with the largest squared l2-norm that will be
accepted by the normalization validation, it only has limited
impact since ϵ is empirically set to be very small. For the
second scenario, the attack can be detected by ITVSS [52],
thus guaranteeing the correctness of the secret sharing scheme.

With regard to the third scenario, the correctness is en-
sured by the Reed-Solomon (RS) decoding algorithm [46].
As described in Section IV-C and Section IV-E, ∥ūj∥22[i],
(λΣ1)[i] and (λΣ2)[i] can be viewed as evaluations of the
polynomials with degree 2(m+ t− 1), (τ + 1) · (m+ t− 1)
and (τ+2) · (m+ t−1), respectively. The decoding of ∥ūj∥22,
λΣ1 and λΣ2 can be treated as the decoding of Reed-Solomon
codes with parameters

1) [n, 2(m+ t− 1) + 1, n− 2(m+ t− 1)]p;
2) [n, (τ + 1)·(m+ t− 1) + 1, n− (τ + 1)·(m+ t− 1)]p;
3) [n, (τ + 2)·(m+ t− 1) + 1, n− (τ + 2)·(m+ t− 1)]p;

respectively. Note that, a [n, k, n − k + 1]p RS code with e
erasures is able to decode ⌊n−k−e

2 ⌋ errors. By viewing the
updates presented by Byzantine users as errors in a RS code
and dropout users as erasures, we obtain three requirements
on n given by the decoding of these three RS codes:

1) b ≤ n−(2(m+t−1)+1)−e
2 ;

2) b ≤ n−((τ+1)·(m+t−1)+1)−e
2 ;

3) b ≤ n−((τ+2)·(m+t−1)+1)−e
2 ;

Hence, the federator can decode the correct computation
results as long as n ≥ 2b+(τ +2) · (m+ t−1)+e+1, which
is the largest n required by these three decodings.

3) Complexity: For each user sharing a single scalar,
the computation complexity of encoding in LCC is
O(n log2 n log log n) [47] and that of ITVSS [52] is
O(n2 log2 n). Since the re-randomization step [49] involves
sub-sharing each secret share using ITVSS and a linear
combination of the sub-shares, the computation complexity is
O(n2 log2 n log log n + n3 log2 n). The communication cost
for the ITVSS is O(n2), and O(n3) for re-randomization.
With respect to the federator, the computation cost for
decoding a single scalar using error-correction decoding
takes O(n log2 n log log n). The remaining proof follows from
counting, here omitted for brevity.

B. Proof for Theorem 2
Proof. We begin with the proof for IT privacy for LoByITFL.

11

1) IT Privacy: For privacy against any t colluding users and
the federator according to Eq. (2), we want to prove Eq. (8).
The exchanged messages MT are:
Initialization Step: random vectors ri’s, shares of random

values {rj [i]}’s for j ∈ [n] and {λ[i]}’s, shares of
Beaver triple {γ[i]}’s, {ω[i]}’s, {κ[i]}’s, for i ∈ T ;

Step A and E: nothing, since step A only involves local com-
putations and step E is performed by the federator;

Step B: the broadcasted values ūj−rj and the shares {ūj [i]},
for i ∈ T , j ∈ [n];

Step C: shares {∥ūj∥22[i]} and the messages incurred when
consuming Beaver triples to compute {∥ūj∥22[i]}, for
i ∈ T , j ∈ [n]; and

Step D: shares {Σ1[i]}, {Σ2[i]}, {(λΣ1)[i]}, {(λΣ2)[i]}, and
{λj [i]} for j ∈ [n] and i ∈ T , and the messages
incurred when consuming Beaver triples to compute
shares of Σ1,Σ2, λΣ1 and λΣ2.

The exchanged messages M0 include:
Initialization Step: the MAC keys used for generating the

MACs of the secret shares;
Step A and B: nothing, since step A and B only involve

computations among the users; and
Step C, D and E: shares {∥ūj∥22[i]} for j ∈ [n], {(λΣ1)[i]}

and {(λΣ2)[i]} received from the user i ∈ [n], the
reconstruction of ∥ūj∥22, λΣ1 and λΣ2, and the mes-
sages incurred when using Beaver triples to compute
multiplications.

Note that, when computing {(sv)[i]}, colluding users get
{s[i] − γ[i]}, {v[i] − ω[i]}, s − γ and v − ω, for i ∈ T ,
and the federator gets the values of {s[i]−γ[i]}, {v[i]−ω[i]}
for i ∈ [n] and the reconstructed values s− γ and v − ω.

We leverage the privacy guarantees of the SecShare scheme,
the Beaver triple and the MAC scheme. Regarding the mes-
sages MT , when the number of colluding users is smaller
than the threshold of the secret sharing scheme, i.e. t, we
have: (a) the shares observed by the colluding users are
completely random and independent of uH, DT , D0,w and
ν, but partially included by M0; (b) the random vectors r’s
are random and independent of M0,uH, DT , D0,w and ν;
(c) the broadcasted values ūj − rj’s are random because of
one-time padding; (d) the MACs are also random because of
the randomness of β; and (e) the messages incurred when
consuming Beaver triples for multiplication are either secret
shares or protected by one-time padding, thus, independent
of uH,M0, DT , D0,w and ν. Thus, we have Eq. (9) when
considering the shares {∥ūj∥22[i]}, {(λΣ1)[i]} and {(λΣ2)[i]}
for j ∈ [n] and i ∈ T as M̂T .

As for M0, the MAC keys sent from the TTP and the
messages broadcasted during multiplication are random values
that are independent of uH, DT , D0,w and ν. By following
the same reasoning as in Appendix A1, we conclude the IT
privacy proof for LoByITFL.

2) Resilience against Byzantine and Robustness against
dropout: Byzantine users may present corrupt updates, and
perform the required computations dishonestly. Same as in
Appendix A2, the effect of corrupt updates is eliminated by the
robust aggregation rule. We next guarantee the correct com-
putation of λΣ1[i] and λΣ2[i]. For dishonest computations,
Byzantine users i ∈ B may: (a) incorrectly normalize local

model updates ũi; (b) compute invalid secret shares {ūj [i]}
for any j ∈ [n]; and, (c) misbehave during the computation of
{∥ūj∥22[i]}, {(λΣ1)[i]} and {(λΣ2)[i]}.

As stated in Appendix A2, Byzantine attacks in the first
scenario can be detected and identified in the normalization
validation step. For Byzantine attacks in the remaining sce-
narios, the MACs are used to enable integrity check, i.e.,
for each linear operation performed on the secret shares, the
users also perform the same computation on the corresponding
MACs. Since the federator receives all the corresponding MAC
keys (α, β)’s in the initialization phase, integrity check can be
performed by the federator to guarantee the correctness of the
computation. Therefore, the correctness of the computations
entirely relies on the integrity check of the IT one-time
MAC [48], where we need to consider the forgery probability
of the MAC. Forgery probability is the probability that a
malicious user guesses the MAC key used for generating the
MAC of a specific secret share correctly, such that it can create
a valid MAC for the computation result to fool the integrity
check. Since in all MAC keys (α, β)s’, α is a uniformly
random consistent value and β’s are chosen independently
uniformly at random from the underlying prime field Fp,
which are used to protect the value of α when we reusing it
in different MACs. The forgery probability for each scalar is
the probability of guessing the β used for generating the MAC
for a specific scalar, that is 1/∥Fp∥ = 1/p, i.e. the inverse of
the size of the underlying finite field. Since the finite field we
choose is very large, i.e. p ≥ 2ndτq2τ+1+1, and the malicious
users have to guess the β’s used for all d dimensions to fool
the integrity check, the forgery probability is small enough to
guarantee the security and correctness of the scheme.

3) Complexity: In the training phase, the computation for
each user sharing a scalar is, according to Eq. (7), the addition
of a publicly known value and a secret share, thus O(1), and
that of one share multiplication is O(1) as well by consuming
one Beaver triple, which only involves addition and scaling of
the secret shares. For the federator, the computation is to re-
construct the intermediate results during share multiplications
and the final results, which is a Lagrange polynomial interpo-
lation problem and costs O(n log2 n log log n) per scalar. The
communication cost for secret sharing and computations on
secret shares are O(1) for each user and O(n) for the federator
per scalar. The rest of the proof follows by counting, and is
omitted here for the sake of brevity.

C. Proof for convergence

For the proof of convergence, we need Lemma 1.

Lemma 1. At each global iteration ρ, the distance between the
federator’s aggregation of the gradients u(ρ) and the gradient
∇F (w(ρ)) is bounded from above as:

∥u(ρ)−∇F (w(ρ))∥ ≤ 3∥u(ρ)
0 −∇F (w(ρ))∥+2∥∇F (w(ρ))∥.

Proof. We omit the superscript (ρ) for ease of notation. Recall
the definition of ν

ν ≜
1∑

i∈[n] h(⟨ū0, ūi⟩)
∑
i∈[n]

h(⟨ū0, ūi⟩) · ūi.

12

Therefore, since Eq. (6), ⟨u,u0⟩ ≥ 0 always holds. We can
bound ∥u−∇F (w)∥ as

∥u−∇F (w)∥ = ∥u− u0 + u0 −∇F (w)∥
(a)

≤ ∥u− u0∥+ ∥u0 −∇F (w)∥
(b)

≤ ∥u+ u0∥+ ∥u0 −∇F (w)∥
(c)

≤ ∥u∥+ ∥u0∥+ ∥u0 −∇F (w)∥
= 2∥u0∥+ ∥u0 −∇F (w)∥
= 2∥u0 −∇F (w) +∇F (w)∥

+ ∥u0 −∇F (w)∥
(d)

≤ 3∥u0 −∇F (w)∥+ 2∥∇F (w)∥,

where (a), (b), and (d) follow from the triangle inequality, and
(c) follows since ⟨u,u0⟩ ≥ 0.

Using Lemma 1 and the same assumptions as in [13,
Assumptions 1, 2 and 3], the proof of convergence of ByITFL
follows the same steps as the proofs in Appendix A of [13].

REFERENCES

[1] Y. Xia, C. Hofmeister, M. Egger, and R. Bitar, “Byzantine-resilient
secure aggregation for federated learning without privacy compromises,”
in Proc. IEEE ITW, 2024.

[2] ——, “Lobyitfl: Low communication secure and private federated learn-
ing,” Proc. FL-AsiaCCS, 2025.

[3] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Proc. AISTATS, 2017.

[4] L. Zhu, Z. Liu, and S. Han, “Deep leakage from gradients,” Adv. Neural
Inf. Process. Syst., 2019.

[5] J. Geiping, H. Bauermeister, H. Dröge, and M. Moeller, “Inverting
gradients: How easy is it to break privacy in federated learning?” Adv.
Neural Inf. Process. Syst., 2020.

[6] K. Bonawitz, V. Ivanov, B. Kreuter et al., “Practical secure aggregation
for privacy-preserving machine learning,” in Proc. ACM CCS, 2017.

[7] L. T. Phong, Y. Aono, T. Hayashi, L. Wang, and S. Moriai, “Privacy-
preserving deep learning via additively homomorphic encryption,” IEEE
Trans. Inf. Forensics Security, 2018.

[8] P. Kairouz, H. B. McMahan, B. Avent et al., “Advances and open
problems in federated learning,” Found. Trends Mach. Learn., 2021.

[9] L. Lamport, R. Shostak, and M. Pease, “The byzantine generals prob-
lem,” ACM Trans. Program. Lang. Syst., 1982.

[10] P. Blanchard, E. M. El Mhamdi, R. Guerraoui, and J. Stainer, “Machine
learning with adversaries: Byzantine tolerant gradient descent,” Adv.
Neural Inf. Process. Syst., 2017.

[11] D. Yin, Y. Chen, R. Kannan, and P. Bartlett, “Byzantine-robust dis-
tributed learning: Towards optimal statistical rates,” in Proc. ICML,
2018.

[12] R. Guerraoui, S. Rouault et al., “The hidden vulnerability of distributed
learning in byzantium,” in Proc. ICML, 2018.

[13] X. Cao, M. Fang, J. Liu, and N. Gong, “Fltrust: Byzantine-robust
federated learning via trust bootstrapping,” in Proc. NDSS, 2021.

[14] B. Zhao, P. Sun, T. Wang, and K. Jiang, “Fedinv: Byzantine-robust
federated learning by inversing local model updates,” in Proc. AAAI,
2022.

[15] R. Guerraoui, N. Gupta, and R. Pinot, Robust Machine Learning.
Springer, 2024.

[16] R. K. Velicheti, D. Xia, and O. Koyejo, “Secure byzantine-robust
distributed learning via clustering,” arXiv preprint arXiv:2110.02940,
2021.

[17] M. Xhemrishi, J. Östman, A. Wachter-Zeh, and A. G. i Amat, “Fedgt:
Identification of malicious clients in federated learning with secure
aggregation,” IEEE Trans. Inf. Forensics Security, 2025.

[18] L. He, S. P. Karimireddy, and M. Jaggi, “Secure byzantine-robust
machine learning,” arXiv preprint arXiv:2006.04747, 2020.

[19] M. Hao, H. Li, G. Xu, H. Chen, and T. Zhang, “Efficient, private and
robust federated learning,” in Proc. ACSAC, 2021.

[20] Z. Ma, J. Ma, Y. Miao, Y. Li, and R. H. Deng, “Shieldfl: Mitigating
model poisoning attacks in privacy-preserving federated learning,” IEEE
Trans. Inf. Forensics Security, 2022.

[21] G. Xu, H. Li, Y. Zhang, S. Xu, J. Ning, and R. H. Deng, “Privacy-
preserving federated deep learning with irregular users,” IEEE Trans.
Dependable Secure Comput., 2022.

[22] Y. Zhong, W. Tan, Z. Xu, S. Chen, J. Weng, and J. Weng, “Wvfl:
Weighted verifiable secure aggregation in federated learning,” IEEE
Internet Things J., 2024.

[23] Y. Dong, X. Chen, K. Li, D. Wang, and S. Zeng, “Flod: Oblivious
defender for private byzantine-robust federated learning with dishonest-
majority,” in Proc. ESORICS, 2021.

[24] Y. Miao, X. Yan, X. Li, S. Xu, X. Liu, H. Li, and R. H. Deng, “Rfed:
Robustness-enhanced privacy-preserving federated learning against poi-
soning attack,” IEEE Trans. Inf. Forensics Security, 2024.

[25] J. So, B. Güler, and A. S. Avestimehr, “Byzantine-resilient secure
federated learning,” IEEE J. Sel. Areas Commun., 2020.

[26] T. Jahani-Nezhad, M. A. Maddah-Ali, and G. Caire, “Byzantine-resistant
secure aggregation for federated learning based on coded computing and
vector commitment,” arXiv preprints, 2023.

[27] A. Roy Chowdhury, C. Guo, S. Jha, and L. van der Maaten, “Eiffel:
Ensuring integrity for federated learning,” in Proc. ACM CCS, 2022.

[28] T. Gehlhar, F. Marx, T. Schneider, A. Suresh, T. Wehrle, and H. Yalame,
“Safefl: Mpc-friendly framework for private and robust federated learn-
ing,” 2023.

[29] H. Fereidooni, S. Marchal, M. Miettinen et al., “Safelearn: Secure
aggregation for private federated learning,” in IEEE Security and Privacy
Workshops (SPW), 2021.

[30] C. Dong, J. Weng, M. Li et al., “Privacy-preserving and byzantine-robust
federated learning,” IEEE Trans. Dependable Secure Comput., 2023.

[31] Y. Ben-Itzhak, H. Möllering, B. Pinkas et al., “Scionfl: Efficient and
robust secure quantized aggregation,” in Proc. IEEE SaTML, 2024.

[32] G. Hu, H. Li, T. Wu, W. Fan, and Y. Zhang, “Efficient byzantine-robust
and privacy-preserving federated learning on compressive domain,”
IEEE Internet Things J., 2023.

[33] Z. Zhang and Y. Li, “Nspfl: A novel secure and privacy-preserving fed-
erated learning with data integrity auditing,” IEEE Trans. Inf. Forensics
Security, 2024.

[34] Z. Lu, S. Lu, X. Tang, and J. Wu, “Robust and verifiable privacy
federated learning,” IEEE Trans. Artif. Intell., 2023.

[35] H. Lycklama, L. Burkhalter, A. Viand, N. Küchler, and A. Hithnawi,
“Rofl: Robustness of secure federated learning,” in Proc. IEEE S&P,
2023.

[36] Z. Alebouyeh and A. Jalaly Bidgoly, “Privacy-preserving federated
learning compatible with robust aggregators,” Available at SSRN
4793556, 2024.

[37] S. Hou, S. Li, T. Jahani-Nezhad, and G. Caire, “Priroagg: Achieving
robust model aggregation with minimum privacy leakage for federated
learning,” IEEE Trans. Inf. Forensics Security, 2025.

[38] Z. Xing, Z. Zhang, Z. Zhang, J. Liu, L. Zhu, and G. Russello, “No
vandalism: Privacy-preserving and byzantine-robust federated learning,”
arXiv preprint arXiv:2406.01080, 2024.

[39] A. Yazdinejad, A. Dehghantanha, H. Karimipour, G. Srivastava, and
R. M. Parizi, “A robust privacy-preserving federated learning model
against model poisoning attacks,” IEEE Trans. Inf. Forensics Security,
2024.

[40] M. Naseri, J. Hayes, and E. De Cristofaro, “Local and central differential
privacy for robustness and privacy in federated learning,” arXiv preprint
arXiv:2009.03561, 2020.

[41] X. Ma, X. Sun, Y. Wu, Z. Liu, X. Chen, and C. Dong, “Differentially
private byzantine-robust federated learning,” IEEE Trans. Parallel Dis-
trib. Syst., 2022.

[42] Y. Allouah, R. Guerraoui, N. Gupta, R. Pinot, and J. Stephan, “On
the privacy-robustness-utility trilemma in distributed learning,” in Proc.
ICML, 2023.

[43] X. Gu, M. Li, and L. Xiong, “Dp-brem: Differentially-private and
byzantine-robust federated learning with client momentum,” arXiv
preprint arXiv:2306.12608, 2023.

[44] W.-N. Chen, C. A. C. Choo, P. Kairouz, and A. T. Suresh, “The fun-
damental price of secure aggregation in differentially private federated
learning,” in Proc. ICML, 2022, pp. 3056–3089.

[45] A. Shamir, “How to share a secret,” Commun. ACM, 1979.
[46] R. J. McEliece and D. V. Sarwate, “On sharing secrets and reed-solomon

codes,” Commun. ACM, 1981.
[47] Q. Yu, S. Li, N. Raviv, S. M. M. Kalan, M. Soltanolkotabi, and S. A.

Avestimehr, “Lagrange coded computing: Optimal design for resiliency,
security, and privacy,” in Proc. AISTATS, 2019.

13

[48] R. Bendlin, I. Damgård, C. Orlandi, and S. Zakarias, “Semi-
homomorphic encryption and multiparty computation,” in Proc. EURO-
CRYPT, 2011.

[49] R. Gennaro, M. O. Rabin, and T. Rabin, “Simplified vss and fast-track
multiparty computations with applications to threshold cryptography,”
in Proc. ACM PODC, 1998.

[50] G. Asharov and Y. Lindell, “A full proof of the bgw protocol for
perfectly secure multiparty computation,” J. Cryptology, 2017.

[51] D. Beaver, “Efficient multiparty protocols using circuit randomization,”
in Adv. Cryptology—CRYPTO’91, 1992.

[52] M. Ben-Or, S. Goldwasser, and A. Wigderson, “Completeness theorems
for non-cryptographic fault-tolerant distributed computation,” in Proc.
ACM STOC, 1988.

[53] C. E. Shannon, “Communication theory of secrecy systems,” Bell Syst.
Tech. J., 1949.

[54] L. Deng, “The mnist database of handwritten digit images for machine
learning research,” IEEE Signal Process. Mag., 2012.

[55] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: A novel image
dataset for benchmarking machine learning algorithms,” arXiv preprint
arXiv:1708.07747, 2017.

[56] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” Univ. of Toronto, Tech. Rep., 2009.

[57] V. Shejwalkar and A. Houmansadr, “Manipulating the byzantine: Opti-
mizing model poisoning attacks and defenses for federated learning,” in
Proc. NDSS, 2021.

[58] G. Baruch, M. Baruch, and Y. Goldberg, “A little is enough: Circum-
venting defenses for distributed learning,” Adv. Neural Inf. Process. Syst.,
2019.

[59] M. Fang, X. Cao, J. Jia, and N. Gong, “Local model poisoning attacks
to byzantine-robust federated learning,” in Proc. USENIX Sec. Symp.,
2020.

[60] E. Bagdasaryan, A. Veit, Y. Hua, D. Estrin, and V. Shmatikov, “How to
backdoor federated learning,” in Proc. AISTATS, 2020.

[61] M. Egger, C. Hofmeister, A. Wachter-Zeh, and R. Bitar, “Private
aggregation in wireless federated learning with heterogeneous clusters,”
in Proc. IEEE ISIT, 2023.

[62] X. Zhang, Z. Li, K. Wan, H. Sun, M. Ji, and G. Caire, “Fundamental
limits of hierarchical secure aggregation with cyclic user association,”
arXiv preprint arXiv:2503.04564, 2025.

	Introduction
	System Model and Preliminaries
	Federated Learning Model
	Threat Model and Defense Goals
	IT Privacy
	Byzantine Resilience
	Dropout Tolerance
	Desired Schemes

	Preliminaries
	Threshold Secret Sharing
	Lagrange Coded Computing
	Beaver Triples

	Main Results
	ByITFL
	LoByITFL
	Convergence for ByITFL and LoByITFL

	ByITFL
	Normalization and Quantization
	Sharing of the Normalized Model Updates
	Validation of Normalization
	Users Secure Computation
	Private Aggregation

	LoByITFL
	Normalization and Quantization
	Sharing of the Normalized Model Updates
	Validation of Normalization
	Users Secure Computation
	Private Aggregation

	Experiments
	Choice of the Discriminator Function
	Numerical Results

	Conclusion
	Appendix
	Proof for thm:theoremby
	IT Privacy
	Resilience against Byzantine and Robustness against dropout
	Complexity

	Proof for thm:theoremloby
	IT Privacy
	Resilience against Byzantine and Robustness against dropout
	Complexity

	Proof for convergence

	References

