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FOAM: A General Frequency-Optimized
Anti-Overlapping Framework for Overlapping

Object Perception
Mingyuan Li, Tong Jia∗, Han Gu, Hui Lu, Hao Wang, Bowen Ma,

Shuyang Lin, Shiyi Guo, Shizhuo Deng, and Dongyue Chen

Abstract—Overlapping object perception aims to decouple the
randomly overlapping foreground-background features, extract-
ing foreground features while suppressing background features,
which holds significant application value in fields such as security
screening and medical auxiliary diagnosis. Despite some research
efforts to tackle the challenge of overlapping object perception,
most solutions are confined to the spatial domain. Through
frequency domain analysis, we observe that the degradation of
contours and textures due to the overlapping phenomenon can
be intuitively reflected in the magnitude spectrum. Based on this
observation, we propose a general Frequency-Optimized Anti-
Overlapping Framework (FOAM) to assist the model in extract-
ing more texture and contour information, thereby enhancing
the ability for anti-overlapping object perception. Specifically, we
design the Frequency Spatial Transformer Block (FSTB), which
can simultaneously extract features from both the frequency
and spatial domains, helping the network capture more texture
features from the foreground. In addition, we introduce the
Hierarchical De-Corrupting (HDC) mechanism, which aligns
adjacent features in the separately constructed base branch and
corruption branch using a specially designed consistent loss dur-
ing the training phase. This mechanism suppresses the response
to irrelevant background features of FSTBs, thereby improving
the perception of foreground contour. We conduct extensive
experiments to validate the effectiveness and generalization of
the proposed FOAM, which further improves the accuracy of
state-of-the-art models on four datasets, specifically for the three
overlapping object perception tasks: Prohibited Item Detection,
Prohibited Item Segmentation, and Pneumonia Detection. The
code will be open source once the paper is accepted.

Index Terms—Overlapping object perception, frequency do-
main learning, object detection, transformer detection.

I. INTRODUCTION

Overlapping object perception, a fundamental task within
the realm of computer vision, involves tasks like prohibited
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Fig. 1. The overlapping phenomenon causes the contours and textures of
foreground objects to be randomly degraded in different background scenarios.
(a)-(c) show the baseball “Bat” in the PIXray [1] dataset, (d)-(f) display the
“Straight Knife” in the OPIXray [2] dataset, and (g)-(i) depict “Lung Opacity”
in the RLP subset of the RSNA [3] dataset.

item detection, prohibited item segmentation, and pneumonia
detection. These tasks aim to decouple the randomly overlap-
ping foreground-background features and extract foreground
features while suppressing background features, holding sig-
nificant application value in fields such as security inspection
and medical auxiliary diagnosis.

Fig. 1 illustrates typical overlapping phenomena in the
PIXray, OPIXray, and RLP datasets. The contours and textures
of foreground objects, such as the metal baseball “Bat” and
“Straight Knife”, in subfigures (a)-(c) and (e)-(f), are degraded
to varying degrees by randomly occurring backgrounds. There-
fore, in real-world security inspection scenarios, even the most
advanced general vision models struggle to perform accurate
object detection or instance segmentation of meticulously
concealed prohibited items in X-ray images. Similarly, in
subfigures (g)-(i), the imaging texture and contour of “Lung
Opacity” are unclear, making them highly susceptible to inter-
ference from background elements [4], such as potential EKG
leads, external tubes, artifacts, overlapping devices, bones,
and healthy tissues. Therefore, in real-world medical auxiliary
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Fig. 2. X-ray images analysis in spatial and frequency domains. GB, DU,
and GN represent Gaussian Blurring, Downsampling and Upsampling, and
Gaussian Noise corruption strategies, respectively.

diagnosis scenarios, general vision models face significant
challenges in performing accurate object detection on diverse
pathological tissues.

Recently, an increasing number of studies have proposed
advanced deep learning techniques to specifically address this
task, especially after the introduction of several large-scale
pseudo-colored X-ray datasets. Specifically, methods such
as GADet [5], AO-DETR [6], Xdet [7], and CLCXray [8]
introduce label assignment strategies to ensure that models
consistently focus on high-quality foreground objects during
training. OPIXray [2], SIXray [9], and PID-YOLOX [10]
leverage attention mechanisms to assist models in decoupling
and extracting foreground features from overlapping fore-
ground and background. Additionally, PIXray [1] and AO-
DETR [6] adopt multistage regression approaches to perceive
blurred contours. However, the aforementioned methods rely
on spatial domain information to perceive contraband, making
the models susceptible to interference and deception from
unknown texture and contour in the background [11].

A promising novel approach is to leverage frequency do-
main learning to enhance the contour and texture details of
the foreground, complement spatial domain information, and
thereby improve the model’s ability to perceive overlapping
objects. Specifically, FAPID [12] truncates the frequency do-
main information obtained from the Fast Fourier Transform
(FFT) [13] using a fixed high-pass filter, which serves as
contour and texture cues to correct spatial domain features.
FDTNet [14] uses a CBAM-like attention mechanism to refine
the local frequency domain information obtained from the
SRM [15] filter, aiming to adaptively extract informative
frequency information to complement the spatial domain infor-
mation. However, the implementation of a fixed high-pass filter
in FAPID results in the exclusion of valuable low-frequency
information, whereas the use of the SRM filter in FDTNet [14]
is limited in its global perception capabilities when compared
to FFT. Therefore, although these two approaches validate and
demonstrate the effectiveness and research value of frequency
domain learning for overlapping object perception tasks, their
understanding and development are limited, leaving significant
room for improvement.

We conduct an in-depth analysis of the characteristic repre-
sentations of the magnitude spectrum and phase spectrum de-
rived from the frequency domain information obtained through
FFT. As shown in Fig. 2, after applying classic corruption
methods such as Gaussian Blurring (GB), Downsampling and
Upsampling (DU), and Gaussian Noise (GN), the contours and
textures information of the images are compromised. Obvi-
ously, neither the spatial domain image nor the phase spectrum
in the frequency domain, which is adept at capturing object
shapes and structures, shows significant changes. In contrast,
the magnitude spectrum is more sensitive to changes in texture
and contour information, revealing underlying patterns in the
image that are not easily observed from the raw pixel values.
For example, in the magnitude spectrum, it can be observed
that GB and DU primarily remove mid- to high-frequency
fine details from the image, while GN injects mid- to high-
frequency noise. Therefore, we believe that the magnitude
spectrum provides informative information for frequency do-
main learning for overlapping object perception tasks, facilitat-
ing the decoupling of foreground and background information,
and the experimental results in Sec. IV-E5 corroborate our
theory.

Based on this observation, we propose a general Frequency-
Optimized Anti-Overlapping Framework (FOAM) for accurate
overlapping object perception, which combines global fre-
quency features with local spatial features to capture texture
and contour information, thereby enhancing feature discrim-
inability.

To implement FOAM, we first design a fundamental
building block named Frequency Spatial Transformer Block
(FSTB), which simultaneously extracts features from both
the spatial and frequency domains and helps the network
extract more texture features from the foreground. It consists
of three components: the Frequency Domain Bands Self-
Attention (FDBA) mechanism, the Spatial Domain Channel
Self-Attention (SDCA) module, and the Frequency Spatial
Feed-forward Network (FSFN). FDBA mechanism leverages
the global dependency relationship among different frequency
bands to reconstruct their proportions while keeping the phase
unchanged, thereby correcting the texture and contour infor-
mation perceived in the spatial domain. The lightweight SDCA
module optimizes the local spatial details representation of ob-
jects. FSFN is responsible for the integration and optimization
of both spatial and frequency domain information. Then, as a
fundamental unit, FSTB is utilized to iteratively optimize the
features of the backbone for N iterations, and obtains the basic
feature set. This branch is referred to as the base branch and
is enabled during both training and inference.

Furthermore, we propose a Hierarchical De-Corrupting
(HDC) mechanism, which establishes a corruption branch
that is enabled only during the training phase. We apply
corruption strategies to the original image to simulate the
blurring of textures and contours of the current foreground
object under more severe overlapping phenomena, as well
as the introduction of background noise, resulting in a low-
quality corrupted image. Subsequently, we optimize the fea-
tures through a shared-weight backbone and FSTBs to obtain
the corrupted feature set. Finally, we employ a consistent loss
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to align the features from the corruption branch with those
from the base branch, guiding the FSTBs to suppress the
response to irrelevant background features and adapting to the
anti-overlapping perception task.

We utilize FOAM across four datasets to further improve
the accuracy of state-of-the-art models on three overlapping
object perception tasks: Prohibited Item Detection, Prohibited
Item Segmentation, and Pneumonia Detection.

Our main contributions are summarized as follows:
1) We propose the Frequency-Optimized Anti-Overlapping

Framework (FOAM), which leverages both frequency
domain and spatial domain cues to help models capture
more texture and contour under the negative impact of
overlapping scenes for object perception. This architec-
ture is designed to be compatible with most CNN-based
and Transformer-based object detection and instance
segmentation models.

2) To improve the comprehensive understanding capability
of texture features, we design the Frequency Spatial
Transformer Block (FSTB) to simultaneously extract
foreground cues from both the frequency domain and
the spatial domain.

3) To improve the perception ability for the foreground
contour of networks, we propose the Hierarchical De-
Corrupting (HDC) mechanism, which utilizes features
from the base branch to supervise the features from the
corruption branch during the training phase, suppressing
the response to irrelevant background features of FSTBs.

II. RELATED WORK

A. Frequency Domain Learning

Frequency domain information, distinct from spatial domain
information, represents a unique form of high-order informa-
tion with global feature representation, offering a distinctive
perspective for image processing and understanding. There-
fore, frequency domain learning has often been utilized for
analysis and applications in the fields of image compression
and super-resolution [16]–[19]. Recently, some works [20]–
[26] on frequency domain learning have made progress in
remote sensing and camouflaged object detection, sparking
a wave of exploration among visual perception researchers.
Specifically, Xu et al. [20] builds upon the SE-block [27] and
proposes a learning-based dynamic channel selection method
to identify trivial frequency components for static removal
during inference, which is the first work to explore frequency
domain learning in object detection and instance segmen-
tation. FcaNet [28] proposes to leverage frequency domain
learning to address the information loss problem in channel
attention mechanisms. SPANet [29] handles the balancing
problem of high- and low-frequency components in visual
features. However, the aforementioned work did not explore
the interaction between RGB images and frequency domain
cues. Zhong et al. [30] applies the Discrete Cosine Transform
(DCT) [31] to every 8×8 patch to extract frequency domain
clues and uses a multi-head attention mechanism to combine
frequency domain information with RGB domain information.
The frequency domain information obtained through DCT

consists of real-valued data, lacking the representation of the
phase spectrum feature that is critical for capturing object
position and structural details. Moreover, the approach of
dividing features into patches before transformation causes
the frequency domain representation to lose the advantage of
global perception. FSEL [32] further employs the Fast Fourier
Transform (FFT) to extract global frequency domain clues and
integrates frequency domain and spatial domain information
using a variant of the self-attention mechanism. However,
this work lacks the independent design based on the distinct
characteristics of magnitude and phase. In the domain of
prohibited item detection, to the best of my knowledge, there is
only two relevant works. FAPID [12] truncates the frequency
domain information obtained from the Fast Fourier Transform
(FFT) [13] using a fixed high-pass filter, which serves as
contour and texture cues to correct spatial domain features,
whereas completely ignoring the low-frequency information.
FDTNet [14] uses an SRM filter to provide frequency domain
information, but its filtering approach is essentially a set
of fixed large kernel convolutions, which lack the global
perspective compared to the frequency domain information
obtained from Fourier transforms.

In this paper, we delve into the characteristics of the fre-
quency domain signals obtained through FFT transformation,
decoupling the learning of magnitude and phase, and combine
frequency domain clues with RGB domain information to
extract the contour and texture details of foreground objects.

B. Attention Mechanism in Computer Vision
The main goal of the attention mechanism is to help the

model mimic the human visual system’s ability to focus
on foreground information in images rather than irrelevant
background. This mechanism can typically be divided into
CNN-based attention mechanisms and Transformer-based self-
attention mechanisms.

For CNN-based attention mechanisms, SENet [27] proposes
the most well-known channel attention mechanism, which
compresses features into a vector using global average pool-
ing, and then applies a fully connected layer to weight the
features of each layer. GE [33] employs spatial attention to
better exploit the feature context. Building upon these works,
models like CBAM [34], CA [35], BAM [36], DAN [37],
and PID-YOLOX [10] explore the integration of spatial and
channel attention. CBAM [34] argues that global average
pooling leads to information loss, prompting the introduction
of global max pooling, which achieves superior performance.
Inspired by this, GSoP [38] and SRM [15] further incorporate
second-order pooling and global standard deviation pooling.
SkNet [39] and ResNeSt [40] propose selective channel ag-
gregation and attention mechanisms.

For the Transformer-based self-attention mechanism, the
Transformer [41] was originally designed by Vaswani et
al. for NLP tasks, relying solely on attention mechanisms
and dispensing with recurrence and convolutions entirely.
The Transformer has the ability to model global semantics
and long-range dependencies, and its ideas have inspired
many works in computer vision, including classification mod-
els like ViT [42] and PVT [43], object detection models
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like DETR [44] and Deformable-DETR [45], and instance
segmentation models like CondInst [46], Cascade-Mask-R-
CNN [47], MaskFormer [48], and Mask2Former [49]. For
example, ViT [42] divides images into independent patches
to reduce the cost of capturing long-range relationships. The
Swin Transformer [50] further enhances model efficiency
through a shift operation. Additionally, other works, such as
EfficientViT [51] and PVTv2 [52], have also achieved good
performance.

However, these methods focus on global modeling of spa-
tial domain features, neglecting the powerful representational
capability of frequency domain information for textures and
contours. Therefore, we aim to propose a transformer-based
attention mechanism for integrating and refining both spatial
and frequency domain features to enhance the model’s ability
to perceive informative foreground elements in X-ray images.

C. Prohibited Item Perception

Following the introduction of the first pseudo color large-
scale X-ray image dataset, SIXray [9], a multitude of modern
pseudo color X-ray prohibited perception datasets has been
developed. These datasets are specifically designed for various
tasks, including classification with SIXray, object detection
using OPIXray, PIXray-det [1], HIXray [53], PIDray-det [54],
DvXray [55], and CLCXray [8], as well as segmentation with
PIXray-seg [1] and PIDray-seg [54]. Given the significant
practical application value of object detection tasks, the major-
ity of contemporary prohibited item perception methodologies
predominantly focus on the development and enhancement
of prohibited item detectors. Most of them are optimized
based on traditional object detectors to cater to the unique
imaging characteristics of X-ray images. Specifically, SIXray
introduces a feature pyramid network FPN-like approach
named class-balanced hierarchical refinement, which super-
vises lower-level features with higher-level features, thereby
enhancing the focus on foreground information. OPIXray [2]
and OVXD [56] propose the DOAM module and bottleneck-
like adapter, respectively, which emphasize foreground ma-
terials and contour information. GADet [5] and Xdet [7]
present the IAA and HSS labeling strategies, respectively,
to improve foreground perception accuracy by alleviating the
issue of class imbalance between foreground and background
categories. AO-DETR [6] is the first to introduce a DETR-
like architecture, DINO [57], in the field of prohibited de-
tection, proposing the CSA strategy to train category-specific
content queries that are specifically responsible for perceiving
particular categories of contraband. Furthermore, MMCL [58]
and CSPCL [59] propose plug-and-play contrastive learning
strategies to address the issue of distribution imbalance of
category-specific content queries in Deformable-DETR-like
models. However, the aforementioned methods are all limited
to spatial domain feature perception and fail to utilize the rep-
resentational power of frequency domain information regard-
ing contours and textures. FDTNet and FAPID employ con-
volutional or self-attention mechanisms to extract frequency
domain information, thereby acquiring contour and texture
information from foreground objects. However, their frequency

domain information is derived from the SRM filter or high-
pass filter, which incurs more feature loss compared to FFT
transformation, resulting in them being only locally optimal
solutions. After decoupling it into magnitude and phase spectra
with distinct characteristics, we design a frequency domain
attention mechanism in an attempt to identify the optimal
strategy for frequency domain information extraction.

III. METHODOLOGY

In this section, we first introduce the principles and prop-
erties of image Fourier transformation. We then present the
overall structure of the proposed Frequency-Optimized Anti-
Overlapping Framework (FOAM), as depicted in Fig. 3. Sub-
sequently, we describe the core module, the Frequency Spatial
Transformer Block (FSTB), which internally includes the Fre-
quency Domain Bands Self-Attention (FDBA) mechanism, the
Spatial Domain Channel Self-Attention (SDCA) module, and
the Frequency Spatial Feed-forward Network (FSFN). Finally,
we explain how the Hierarchical De-Corrupting (HDC) mech-
anism utilizes the proposed consistent loss to deeply activate
the anti-overlapping perception capability of the FSTB.

A. Image Fourier Transformation

2D Discrete Fourier Transform (2D DFT) is a widely used
method for analyzing the frequency content of images. Com-
pared to the 2D Discrete Cosine Transform (2D DCT), it addi-
tionally provides phase information, offering a comprehensive
representation and description about location and structure of
the objects [60]. In contrast to the 2D Discrete Wavelet Trans-
form (2D DWT) [60], it dynamically transforms low and high-
frequency elements and does not need predefined kernels to
separate frequency components [61], thereby providing more
informative clues about the detection of foreground objects
for the model. For multi-channel image signals, the Fourier
transform is typically applied to each channel individually.
To simplify, we omit the channel notation in the subsequent
equations. Let X ∈ RC×H×W represent the image, and the
2D DFT maps it to the complex components in the Fourier
space F (u, v), which can be expressed as:

F (u, v) =

H−1∑
h=0

W−1∑
w=0

X(h,w)e−j2π( h
H u+ w

W v), (1)

where F (u, v) ∈ CH×W . u ∈ {0, 1, ...,H − 1} and v ∈
{0, 1, ...,W − 1} represent the vertical and horizontal fre-
quency indices, respectively. The 2D Inverse Discrete Fourier
Transform (2D IDFT) is denoted as:

X(h,w) =
1

HW

H−1∑
u=0

W−1∑
v=0

F (u, v)ej2π(
h
H u+ w

W v). (2)

In our work, we employ efficient and equivalent Fast
Fourier Transform (FFT) and Invert Fast Fourier Transform
(IFFT) [13] to replace the 2D DFT and its inverse trans-
form, processing each image channel individually, as followed
in [32], [61].

The magnitude component M(u, v) and phase component
P (u, v) are defined as:
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Fig. 3. Overall architecture of our proposed FOAM. The core module is FSTB, which is designed for joint learning in both the frequency and spatial
domains, enabling the backbone network to effectively perceive and extract texture features, including both foreground and background. The HDC mechanism
first corrupts the original image XO to obtain the corrupted image XC . After feature extraction through a shared-parameter extractor, cascaded FSTBs are
then applied to generate the base branch and the corruption branch. Finally, a consistent loss is employed to align adjacent features from the two branches,
suppressing the FSTB’s response to irrelevant background features and clarifying the edges of foreground objects.

M(u, v) =
√

R2(u, v) + I2(u, v), (3)

P (u, v) = arctan(
I(u, v)

R(u, v)
), (4)

R(u, v) = (F (u, v) + conj(F (u, v)))/2, (5)

I(u, v) = (F (u, v)− conj(F (u, v)))/2j. (6)

Here, R(u, v) and I(u, v) represent the real and imaginary
parts of F (u, v) respectively, and conj(·) denotes the conju-
gate complex number operator.

As shown in Fig. 2, the frequency spectrum and the phase
spectrum emphasize different aspects of image representa-
tion. The former is adept at capturing texture and contour
information, while the latter excels in capturing shape and
structural information [60]. In Sec. III-C, we design a joint
learning method that combines the frequency and spatial
domains, leveraging their complementary information based
on the aforementioned characteristics.

B. Frequency-Optimized Anti-Overlapping Framework
As shown in Fig. 3, the architecture of FOAM differs be-

tween the training and inference phases. In the inference phase,
the network structure only requires the insertion of the base
branch, constructed using the FSTB proposed in Sec. III-C,
into the general object perception model. This allows for fine-
tuning the features extracted by the backbone network, thereby
aiding the Specific-Task Feature Extractor in better handling
the overlapping object perception task. In the training phase,
the HDC mechanism is additionally introduced, where the
corruption branch is constructed to supervise the features of
the base branch. This process guides the FSTB to reduce
its response to background features, further enhancing the
perception ability for the foreground contour.

1) Base Branch: The base branch is enabled during both
training and inference, realized by a set of FSTB mod-
ules inserted into the original model, whose details will
be presented in Sec. III-C. Specifically, given the original
image XO, the network first applies a standard backbone,
i.e., ResNet, ResNeXt, and Swin Transformer, to obtain the
initial multi-scale features F 0

O = {F 0
O,l}Ll=0 for the base

branch, where L are the stage number of the backbone. Then,
N independent FSTBs are cascaded together to adaptively
perform entanglement learning on F 0

O from both the spatial
and frequency domains, resulting in a discriminative feature set
FO = {F 1

O, F
2
O, ..., F

N
O }. Among them, the feature enhanced

by n FSTB modules is expressed as follows:

Fn
O = (FSTBn ◦ FSTBn−1 ◦ ... ◦ FSTB1)(F 0

O), (7)

where ◦ is the composition operator, and FSTBn represents
the n-th FSTB operator. Finally, the prediction results are
obtained through a specific-task feature extractor, consisting
of the encoder, decoder, and head for specific-task.

2) Hierarchical De-Corrupting Mechanism: HDC mecha-
nism is enabled only during the training phase. Corruption
operation, such as Gaussian Blurring (GB), Downsampling
and Upsampling (DU), and Gaussian Noise (GN), is applied
to the original image to obtain a corrupted image XC , which
further disrupts the textures and contours of overlapped target
objects to simulate more severe overlapping scenes. Similarly
to the base branch, the initial multi-scale features F 0

C for
the corruption branch is obtained through a backbone with
shared weights, followed by N FSTB operations, whose pa-
rameters are consistent with those of the N FSTBs in the base
flow, resulting in the corruption version of the discriminative
feature set FC = {F 1

C , F
2
C , ..., F

N
C }. Theoretically, since the

corruption operations disrupt the texture and outline details,
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the effective features in the corrupted feature Fn
C at the n-th

stage are fewer than those in the base branch Fn
O . Ideally, the

FSTB is designed to extract and enhance relevant information.
Therefore, the quality of discriminative information in Fn+1

C ,
which undergoes an additional FSTB operation, is superior
to that in Fn

C . We propose a Type I consistent loss based
on KL divergence, which employs the strategy of supervising
Fn+1
C with Fn

O to achieve fine-grained alignment of the two
multi-scale feature sets FC and FO, thereby directing FSTBs
to enhance the de-corruption capability in extracting and
reinforcing contours and textures. The process is as follows:

LI
C(FO, FC) = −

N∑
n=1

∑
l∈L

HW∑
i=1

F̂n−1
O,l (i)log(

F̂n−1
O,l (i)

F̂n
C,l(i)

), (8)

F̂n−1
O,l (i) =

exp(Fn−1
O,l (i))∑HW

i=1 exp(Fn
O,l(i))

, (9)

F̂n
C(i) =

exp(Fn
C,l(i))∑HW

i=1 exp(Fn
C,l(i))

, (10)

where L is the target layer set involved in fine-grained align-
ment. Note that Fn

O is multi-scale features with L scales, where
the higher-level features typically extract abstract global infor-
mation, excelling in representing semantic characteristics and
contextual relationships. In contrast, the lower-level features
often capture local information but may contain redundant
information and noise. Therefore, it is necessary to select
the appropriate layer set L for feature alignment in order
to achieve an optimal balance. Related ablation experiment
results and analysis are shown in Sec. IV-E4.

The exact form of the consistent loss is not crucial. We
also propose an alternative variant of the consistent loss that
possesses similar properties and yields comparable results.
This variant is designed based on the MSE loss and is referred
to as the Type II consistent loss, as expressed in the following
formula:

LII
C (FO, FC) =

1

HW

N∑
n=1

∑
l∈L

HW∑
i=1

(Fn−1
O,l (i)− Fn

C,l(i))
2.

(11)
The experimental results comparing the consistent loss of

Type II and Type I are presented in Sec. IV-E4. Both of them
achieve the global optimal value when {{Fn

O,l}
N−1
n=0 }l∈L and

{{Fn
C,l}Nn=1}l∈L are perfectly aligned, indicating that FSTBs

has obtained ideal de-corruption capabilities by reducing the
model’s response to background noise and blur caused by over-
lapping phenomena. According to Theorem I, this suppression
ability of background features ultimately manifests as an
enhancement in contour perception, which is also corroborated
by the feature map visualizations in Sec. IV-F1.

Theorem I: Assume that in an overlapping scene, a homo-
geneous foreground overlaps with a homogeneous background.
Let positive numbers f and b represent the response values
of the neural network to the foreground and background,
respectively. In the ideal linear case, the response value of
the foreground region is f + b. The contrast at the foreground
contour is defined as: f+b

b . When the model’s response to

the background decreases by c, where c < b, the following
inequality holds:

f + b− c

b− c
>

f + b

b
. (12)

C. Frequency Spatial Transformer Block

Unlike previous methods [12] and [14], which use a con-
stant high-pass filter and a fixed SRM filter, respectively,
to attempt to filter low-frequency features while preserving
texture and contour information, or methods [50], [62] only
model long-range dependencies based on local features in
the spatial domain. Our FSTB integrates information from
both the frequency and spatial domains simultaneously. It
utilizes different adaptive learning approaches for the two
domain features, allowing for a dynamic and targeted under-
standing and integration of information such as color, texture,
edges, spectral characteristics, magnitude, and energy. This
entanglement learning approach facilitates the learning of
discriminative foreground features from coupled features. As
depicted in Fig. 4, the proposed FSTB consists of three key
components: Spatial Domain Channel Self-Attention (SDCA),
Frequency Domain Bands Self-Attention (FDBA), and Fre-
quency Spatial Feed-forward Network (FSFN). First, SDCA
employs a variant of the self-attention mechanism to capture
local information in the spatial domain. Second, FDBA com-
bines the attention mechanism with Fourier transformations
to extract global representations from the frequency domain.
Third, FSFN enhances the information flow between the
frequency and spatial domains, facilitating the learning of
complementary representations

1) SDCA: In the spatial domain, we design a channel-
oriented self-attention variant that can capture long-range in-
terdependencies among channels. This mechanism adaptively
recalibrates the responses of each channel’s features, thereby
enhancing the latent foreground information perceived in the
spatial domain. Specifically, as illustrated in Fig. 4, given
the input feature P ∈ RC×H×W , we obtain the positional
embedding through a 1×1 convolution, following [41]. Then,
two depthwise separable dilated convolutions are used to
generate the query the query Qs, key Ks, and value Vs.
For example, the calculation process of Qs is as follows:

Qs = Cat(DD
C
2
3 (ConvC1 (P )),DD

C
2
5 (ConvC1 (P ))) (13)

Here, Qs =∈ RC×H×W with C = 256. DDC
k and ConvC

k

respectively denote a depthwise separable dilated convolution
and a standard convolution, both with k × k kernel and C
output channels. The computation process for Ks and Vs is
similar, while their corresponding DD operators and standard
convolutions update parameters independently. Subsequently,
we obtain the channel attention map As by flattened query
Qs ∈ RC×N and key Ks ∈ RC×N , where N = H ×W , as
follows:

As = Sof(Qs ⊙K
T

s ) ∈ RC×C , (14)

where Sof(·) is the SoftMax function, and ⊙ is matrix
multiplication. Then, the activated attention map As ∈ RC×C

is used to recalibrate the parameters of flattened value V s.
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Fig. 4. The detailed flowchart of the proposed core building module FSTB, consisting of three components: Spatial Domain Channel Self-Attention (SDCA),
Frequency Domain Bands Self-Attention (FDBA), and Frequency Spatial Feed-forward Network (FSFN).

Finally, to enhance the local information in the spatial domain,
we use depthwise separable dilated convolutions to modify the
input feature P , and then concatenate the mappings to generate
the spatial domain information Ps ∈ RC×H×W , as shown in:

Ps = ConvC1 (Cat(P s
s , P

r
s )) ∈ RC×H×W , (15)

P s
s = Reshape(Cat(As ⊙ Vs) ∈ RC×H×W , (16)

P r
s = Cat(DD

C
2
3 (P ),DD

C
2
5 (P )) ∈ RC×H×W , (17)

where Reshape(·) refers to the inverse flattening operation,
which adjusts the last dimension of the features into its original
two-dimensional form suitable for convolution operations. P r

s

is the spatial residual connection feature for providing and
supplementing the original spatial information.

Compared to the input feature P , the output feature Ps of
SDCA block captures long-range channel dependencies and
contains more informative content [27], while also preserving
the local details perceived in the spatial domain. This en-
hancement allows Ps to provide a richer representation that
effectively combines both broader contextual information and
fine-grained local features.

2) FDBA: Specifically, as shown in Fig. 4, given the input
feature P ∈ RC×H×W , the Fourier transform is first applied
to obtain its magnitude spectrum, which is then used as the
query Qf , key Kf , and value Vf , as follows:

Qf = Kf = Vf = M(F(P )) ∈ RC×H×W , (18)

Here, F(·) and M(·) represent the Fast Fourier Transform
(FFT) and the magnitude computation formula, as shown
in Eq. (1) and Eq. (3). Unlike SDCA, we use the flattened

query Qf ∈ RC×N , key Kf ∈ RC×N , and value V f ∈
RC×N , where N = H × W , to obtain the spatial attention
map Af , as follows:

Af = Sof(Q
T

f ⊙Kf ) ∈ RN×N , (19)

Subsequently, we use the spatial attention map to optimize the
response values of different frequency bands in the magnitude
map V f , adaptively enhancing the high-frequency features
responsible for textures, as follows:

P̂m
f = Af ⊙ V

T

f ∈ RN×C . (20)

Furthermore, to facilitate the inverse Fourier transform, we
reconstruct it to obtain Pm

f ∈ RC×H×W .
On the other hand, as shown in Fig. 2, the phase spectrum is

not sensitive to texture and contour information, but it contains
shape and structural information and is numerically sensi-
tive [31]. Therefore, we choose to retain it without additional
feature extraction modules or other corrective operations, in
order to accelerate the convergence of the model, as follows:

P p
f = P(F(P )) ∈ RC×H×W , (21)

where P(·) represents the phase computation operator, as
shown in Eq. (4). Then, we perform the inverse Fourier
transform using the corrected magnitude spectrum and the
original phase spectrum to obtain the corrected frequency
domain feature P f

f , as follows:

P f
f = F−1(Pm

f · exp(jP p
f )) ∈ R

C×H×W , (22)

where F−1(·) denotes the Invert Fast Fourier Transform
(IFFT), as shown in Eq. (2). In addition, we propose a
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frequency residual connection to enhance the frequency infor-
mation, and combine the features to obtain the final frequency
domain feature Pf , as follows:

Pf = ConvC1 (Cat(P f
f , P

r
f )) ∈ RC×H×W , (23)

P r
f = F−1(σ(F(P ))) ∈ RC×H×W , (24)

where σ(·) represents a sequence of operations, including a
convolution, batch normalization, a ReLU function, another
convolution, and a sigmoid function, utilized to obtain the
frequency residual connection feature P r

f for providing and
supplementing the original frequency information.

Compared to the input feature P , the output feature Pf

of FDBA block adaptively refines the magnitude spectrum
through the self-attention mechanism, with the potential to
enhance high-frequency information such as texture and con-
tours in the foreground, while avoiding the introduction of
background noise in the high-frequency domain.

3) FSFN: Frequency and spatial features typically focus
on different aspects. The frequency domain focuses on the
global energy distribution and variations of the signal, while
spatial information deals with local pixel-level details and
spatial structures. Both provide valuable insights and clues for
the overlapping object perception task, thus, the integration
method of the two is crucial. In our FSFN, these features
are considered as two distinct states, which can undergo
entanglement learning during the process to obtain more robust
and powerful representations.

Specifically, FSFN consists of two parts. The first stage
maps the input feature P to both the frequency and spatial
domains, enhancing the model’s nonlinear representation ca-
pability using the GELU function, as well as employing a
gating mechanism to retain global frequency features and local
spatial information. The process is as follows:

P f
c = GE(||σ(F(P )⊗F(P ))||)⊗||σ(F(P )⊗F(P ))||, (25)

P s
c = GE(DDC

3 (P ))⊗ DDC
3 (P ). (26)

Here, GE(·) denotes the GELU function, ⊗ represents the
Hadamard product, and || · || denotes the modulus operation.

In the second stage, the frequency domain and spatial
domain features from the first stage are first concatenated to
obtain the joint feature P̂ c

c for feature interaction learning, and
the process is as follows:

P̂ c
c = Cat(P s

c , P
f
c ). (27)

The feature P̂ c
c is fed into two branches for frequency

domain learning and spatial domain learning, respectively.
Information from both domains is interactively integrated from
the perspectives of global energy perception and local detail
perception, resulting in integrated features P̂ f

c and P̂ s
c , which

emphasize frequency domain and spatial domain information,
respectively. Finally, these features are aggregated and the
channels are reduced to form the combined feature Pc, as
follows:

Pc = ConvC1 (Cat(P̂ f
c , P̂

s
c )), (28)

P̂ f
c = ||F−1(σ(F(P̂ c

c ))⊗F(P̂ c
c )||, (29)

P̂ s
c = DDC

3 (P̂
c
c ). (30)

Compared to the input feature P , the output feature Pc of
FSFN performs entanglement learning on both spatial and fre-
quency domain features, adaptively selecting and integrating
them. It leverages the advantages of global frequency and local
spatial information, resulting in a more comprehensive feature
representation.

IV. EXPERIMENTS

A. Implementation Details

For fair comparisons, we train all models under the same
conditions with the ImageNet [63] pretrained backbones, in-
cluding ResNet-50 [64], ResNet-101 [64], ResNeXt-101 [65],
and Swin-L [50]. CNN-based models are trained with SGD
optimizer, using a learning rate of 0.01, momentum of 0.9,
and weight decay of 0.1. Transformer-based models use the
AdamW optimizer with a learning rate of 0.0001 and weight
decay of 0.0001. All models are trained for 12 epochs and
implemented using the MMDetection3.1.0 framework [66],
with an image size of 320×320. All training is performed on
a consistent computing platform equipped with an NVIDIA
GeForce RTX 4090 GPU, an Intel Core i9-13900K CPU, 64
GB of memory, Windows 10 OS, and PyTorch 1.13.1. For the
warm-up scheme in convolutional models, the learning rate
increases linearly over the first 500 iterations with a warm-
up ratio of 0.001. After this warm-up phase, the learning rate
decreases stepwise, with adjustments made at the 8th and 11th
epochs. For DETR-like models, following the approach of
Deformable-DETR, the learning rate is reduced by a factor
of 0.1 at the 11th epoch.

B. Datasets and Evaluation Metrics

1) Datasets: The PIXray [1] dataset is capable of perform-
ing both object detection and instance segmentation tasks,
referred to as PIXray-det and PIXray-seg, respectively. It
includes 5046 X-ray images of prohibited items, divided
into 4046 training images and 1000 testing images. It en-
compasses 15 categories of prohibited items, including Gun,
Knife, Lighter, Battery, Pliers, Scissors, Wrench, Hammer,
Screwdriver, Dart, Bat, Fireworks, Saw blade, Razor blade,
and Pressure vessel.

The OPIXray [2] is a fine-grained prohibited item dataset
for sharp-edged tools, comprising 8885 X-ray images of
prohibited items, allocated into 7019 training images and 1776
testing images. It includes five types of knives: Folding Knife
(FO), Straight Knife (ST), Scissor (SC), Utility Knife (UK),
Multi-tool Knife (MU).

The RSNA Lung Opacities (RLP) dataset is a subset of the
pneumonia category data with fine-grained location labels that
we have filtered from the RSNA Pneumonia Detection Chal-
lenge dataset [3]. The original dataset had non-standardized
labels. The RLP dataset is suitable for object detection training
tasks. The dataset contains 6,011 X-ray images of pulmonary
pneumonia, with 4,009 images used for training and 1,202
images used for testing.
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TABLE I
GENERALIZATION ANALYSIS FOR FOAM ON PIXRAY-DET [1] DATASET

FOR PROHIBITED ITEM DETECTION.

Method APbox APbox
50 APbox

75 APbox
S APbox

M APbox
L

Deformable-DETR [45] 36.6 66.4 37.1 5.6 24.2 45.8
F -Deformable-DETR 42.3 70.3 45.9 5.5 27.8 50.8

DINO [57] 64.3 86.5 71.0 19.3 48.9 73.9
F -DINO 67.2 88.3 74.8 21.8 52.6 76.5

RT-DETR [69] 61.4 84.0 68.5 20.0 48.0 70.1
F -RT-DETR 61.7 84.3 68.6 22.5 48.1 70.9

Mask2Former† [49] 41.8 61.8 45.3 8.2 25.6 51.7
F -Mask2Former† 43.0 63.6 46.6 8.0 25.1 53.0

CondInst† [46] 53.4 80.6 60.6 12.7 39.3 62.4
F -CondInst† 54.4 80.8 61.7 12.5 38.1 63.5

Cascade-Mask-R-CNN† [47] 70.2 88.9 78.9 21.2 58.5 78.1
F -Cascade-Mask-R-CNN† 70.7 88.8 79.9 20.1 58.8 78.6

Mask-R-CNN (X-101)† [70] 65.2 88.6 76.6 11.5 54.4 73.2
F -Mask-R-CNN(X-101)† 65.6 88.6 77.4 11.5 54.5 73.7

DINO (Swin-L) [57] 73.3 90.2 80.7 39.4 58.7 80.9
F -DINO (Swin-L) 73.7 90.8 80.3 39.5 60.8 81.5

† indicates models trained by both “bounding box” and “segmentation”
labels, following [47], [70].
The default backbone of models is ResNet-50 [64]. X-101 and Swin-L stand
for ResNeXt-101 [65] and Swin-Transformer-Large [50] backbone,
respectively.

2) Evaluation Metrics: For the PIXray-det dataset and the
RLP dataset, we apply the COCO [67] evaluation metrics. The
main challenge metric is the box average precision (APbox),
which is calculated across 10 Intersection over Union (IoU)
thresholds from 0.5 to 0.95, with a step of 0.05. Specifically,
APbox

50 indicates the mean average precision at an IoU thresh-
old of 0.5, while APbox

75 refers to the mean average precision
at an IoU threshold of 0.75. In addition, APbox

S , APbox
M , and

APbox
L correspond to the mean average precision for small

objects (area < 322), medium objects (322 < area < 962),
and large objects (962 < area), respectively.

For the OPIXray dataset, we use the VOC [68] evaluation
metric. The average precision (AP) for each category is derived
from the area under the Precision-Recall curve at an IoU
threshold of 0.5. The mean average precision (mAP) is calcu-
lated by averaging the AP values across all categories. This
mAP acts as a comprehensive evaluation metric, reflecting
both the accuracy and recall of the detector, and offering a
holistic view of its overall performance, including its strengths
and weaknesses.

For the PIXray-seg dataset, the primary challenge metric is
mask average precision (APmask), which is utilized to assess
the performance of instance segmentation models comprehen-
sively. It calculates the average precision (AP) based on differ-
ent Intersection over Union (IoU) thresholds by computing the
IoU between the predicted masks and the ground-truth masks.
The distinction between it and APbox is merely in the objects
that the IoU threshold is applied to. While APbox calculates
the average precision using the IoU between bounding boxes,
APmask uses the IoU between predicted and ground truth
masks, calculated pixel-wise.

C. Generalization

1) Models and Backbones: In this part, we first demonstrate
the powerful architectural and model generalization capabili-
ties of FOAM by applying it to various object detectors under
two advanced architectures. We then select representative
models with strong backbones, including the convolutional-
based ResNeXt-101 [65] and the transformer-based Swin-
L [50], to further validate the backbone generalization ability
of FOAM. As shown in Tab. I, FOAM achieves box AP gains
of 4.3%, 2.9%, 0.3%, and 1.2% for Deformable-DETR [45],
DINO [57], RT-DETR [69], and Mask2Former [49] on the
PIXray-det [1] dataset, respectively, highlighting its effec-
tiveness for emerging and advanced Deformable-DETR-based
models. Similarly, FOAM improves the box AP by 0.5%,
0.4%, and 1.0% for Cascade-Mask-R-CNN [47], Mask-R-
CNN [70], and CondInst [46], respectively, demonstrating
its effectiveness for traditional models based on the fully
convolutional architecture. Finally, FOAM boosts the box AP
by 2.9% and 0.4% for DINO with ResNet-50 and Swin-L
backbones, and by 0.4% for Mask-R-CNN with ResNeXt-
101, illustrating its strong generalization capability across both
CNN- and Transformer-based backbones.

D. Comparison with SOTA Models

To further validate the improvement in overlapping object
perception brought by the supplementary frequency domain
information from FOAM, we leverage FOAM across four
datasets to challenge state-of-the-art algorithms on three over-
lapping object perception tasks, including Prohibited Item
Detection, Prohibited Item Segmentation, and Pneumonia De-
tection.

1) Experiments over Prohibited Item Detection: We chal-
lenge state-of-the-art models in the prohibited item detection
domain on the PIXray-det [1] and OPIXray [2] datasets.

The quantitative results for the PIXray-det [1] dataset are
presented in Tab. II. Notably, with the same ResNet-50 back-
bone, F-DINO, which is the combination of FOAM and
DINO, outperforms other DINO-based improved prohibited
item detectors, including AO-DETR [6], M-DINO [58], and
C-DINO [59], in terms of accuracy. This demonstrates that the
FOAM architecture enhances the model’s ability to perceive
foreground features from overlapping scenes more effectively
than other methods in the prohibited item detection domain,
such as CSA [6], MMCL [58], and CSPCL [59]. The version
of the small-scale model, F-DINO (ResNet-50) achieves the
best performance with a box AP of 67.2%, among models
with comparable parameters and FLOPs. For the version of
the large-scale model, F-DINO (Swin-L) achieves 73.7% box
AP, surpassing both general object detectors and specialized
prohibited item detectors.

In addition, we evaluate the performance of FOAM on
the fine-grained sharp-edged tools dataset, OPIXray [2]. As
shown in Tab. III, F-DINO achieves higher mAP (79.8%) than
AO-DETR, M-DINO, and C-DINO, demonstrating that the
additional frequency domain cues provided by FOAM enable
the model to more effectively understand and distinguish
subtle foreground differences in overlapping scenes compared
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TABLE II
COMPARISON WITH STATE-OF-THE-ART OBJECT DETECTORS ON PIXRAY-DET [1] DATASET.

Method Backbone FPS PARAMs (M) FLOPs (G) # queries APbox APbox
50 APbox

75 APbox
S APbox

M APbox
L

General Object Detectors

Faster R-CNN [71] ResNeXt-101 70 59.83 28.35 * 53.6 82.3 60.8 3.9 37.7 62.7
Cascade R-CNN [72] ResNet-50 39 69.20 60.99 * 61.0 83.9 69.0 10.4 46.8 69.7
ATSS [73] ResNet-101 66 51.14 27.82 * 52.8 80.8 60.2 7.0 37.4 63.6
GFLv1 [74] ResNeXt-101 66 50.70 28.51 * 57.5 82.8 66.0 9.1 42.0 67.4
DINO [57] ResNet-50 54 58.38 26.89 30 64.3 86.5 71.0 19.3 48.9 73.9
RT-DETR [69] ResNet-50 64 42.81 17.07 60 62.3 85.3 69.9 25.6 48.0 70.9
DINO [57] Swin-L 40 229.0 156.0 30 73.3 90.2 80.7 39.4 58.7 80.9

Prohibited Item Detectors

AO-DETR [6] ResNet-50 54 58.38 26.89 30 65.6 86.1 72.0 23.9 50.7 74.8
M-DINO [58] ResNet-50 54 58.38 26.89 30 66.7 87.5 74.4 23.5 50.7 75.5
M-RT-DETR [58] ResNet-50 64 42.81 17.07 60 63.6 85.9 71.4 24.0 49.9 72.6
C-DINO [59] ResNet-50 54 58.38 26.89 30 66.4 86.8 73.6 25.7 50.9 75.6
C-RT-DETR [59] ResNet-50 64 42.81 17.07 30 61.8 84.3 68.7 25.2 47.7 70.6

F -DINO (Ours) ResNet-50 38 59.75 30.79 30 67.2 88.3 74.8 21.8 52.6 76.5
F -DINO (Ours) Swin-L 29 230.37 171.93 30 73.7 90.8 80.3 39.5 60.8 81.5

TABLE III
COMPARISON WITH STATE-OF-THE-ART OBJECT DETECTORS ON OPIXRAY [2] DATASET. FO, ST, SC, UT, AND MU REPRESENT FOLDING KNIFE,

STRAIGHT KNIFE, UTILITY KNIFE, AND MULTI-TOOL KNIFE, RESPECTIVELY.

Method Backbone FPS PARAMs (M) FLOPs (G) # queries mAP FO ST SC UT MU

General Object Detectors

Faster R-CNN [71] ResNeXt-101 70 59.83 28.35 * 73.4 80.6 45.4 89.1 69.1 83.1
Cascade R-CNN [72] ResNet-50 39 69.20 60.99 * 76.9 83.8 58.8 90.0 73.2 78.8
ATSS [73] ResNet-101 66 51.14 27.82 * 67.5 72.8 38.0 88.6 58.0 80.2
GFLv1 [74] ResNeXt-101 66 50.70 28.51 * 75.6 80.0 53.6 89.3 71.7 83.4
DINO [57] ResNet-50 54 58.38 30.79 30 78.2 83.2 58.8 89.4 72.7 86.7
RT-DETR [69] ResNet-50 64 42.81 17.07 320 61.8 61.1 26.0 88.6 56.4 76.8
DINO [57] Swin-L 40 229.0 156.0 30 80.0 84.2 61.1 89.0 78.9 86.6

Prohibited Item Detectors

AO-DETR [6] ResNet-50 54 58.38 26.89 30 79.2 83.8 60.5 90.1 74.7 87.1
M-DINO [58] ResNet-50 54 58.38 26.89 30 78.6 83.9 57.2 90.4 74.2 87.1
M-RT-DETR [58] ResNet-50 64 42.81 17.07 320 62.5 65.9 22.3 86.4 57.1 80.7
C-DINO [59] ResNet-50 54 58.38 26.89 30 77.9 82.8 56.0 89.9 74.2 86.7
C-RT-DETR [59] ResNet-50 64 42.81 17.07 30 70.1 76.0 34.4 88.6 67.4 84.3

F -DINO (Ours) ResNet-50 38 59.75 30.79 30 79.8 84.3 62.3 89.9 74.9 87.5
F -DINO (Ours) Swin-L 29 230.37 171.93 30 81.7 86.4 65.2 89.3 78.6 89.0

to other anti-overlapping strategies. For the version of the
large-scale model, F-DINO (Swin-L) achieves an mAP of
81.7%, exceeding other state-of-the-art models in both the
fields of general object detection and prohibited item detection.

2) Experiments over Prohibited Item Segmentation: To
explore the effectiveness of FOAM in instance segmenta-
tion tasks under overlapping scenes. We challenge state-
of-the-art models in prohibited item segmentation on the
PIXray-seg [1] dataset. As shown in Tab. IV, Mask-R-
CNN (ResNeXt-101) [70] achieves a mask AP of 55.2%,
outperforming other instance segmentation models, such as
Cascade-Mask-R-CNN [47]. Building upon this, F-Mask-R-
CNN further improves the mask AP to 55.8%, surpassing
other instance segmentation models, including DETR-based
Mask2Former [49] and fully convolutional models such as
SOLO [75], SOLOv2 [76], and CondInst [46].

3) Experiments over Pneumonia Detection: To further ex-
plore the application of FOAM, we are the first to apply

anti-overlapping detection techniques in the medical diagnos-
tic field. Specifically, we applied FOAM to the pneumonia
detection dataset, RLP, based on X-ray images. As shown
in Tab. V, traditional multi-stage or two-stage object detectors,
such as Cascade-R-CNN and Faster-R-CNN, achieve better
accuracy compared to single-stage detectors like ATSS and
GFLv1, and outperform Deformable-DETR-based models like
RT-DETR and DINO, which perform better on the general
object detection dataset COCO [67]. Therefore, we utilize
the Cascade-R-CNN as the baseline model, and observe that
under the influence of FOAM, F-Cascade-R-CNN improves
the box AP from 19.7% to 20.2%, demonstrating the strong
generalization ability of FOAM.

E. Ablation Study

In this part, to optimize the proposed method FOAM, we
conducted extensive ablation experiments using DINO as the
baseline on the PIXray-det dataset.
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TABLE IV
COMPARISON WITH STATE-OF-THE-ART INSTANCE SEGMENTATION MODELS ON PIXRAY-SEG [1] DATASET.

Instance Segmentation Backbone FPS PARAMs (M) FLOPs (G) # queries APmask APmask
50 APmask

75 APmask
S APmask

M APmask
L

Mask2Former† [49] ResNet-50 12 176.11 26.79 100 37.7 66.1 37.2 6.3 18.8 50.2
SOLO [75] ResNet-50 38 36.15 51.23 * 33.5 65.0 31.0 0.8 15.2 44.3
SOLOv2 [76] ResNet-50 24 46.29 86.37 * 35.2 68.5 32.3 0.1 16.6 47.2
CondInst† [46] ResNet-50 23 34.01 33.60 * 30.3 62.5 26.8 1.9 14.9 37.8
Cascade-Mask-R-CNN† [47] ResNet-50 44 77.08 1271.85 * 55.1 85.7 60.2 9.5 37.3 62.8
Mask-R-CNN† [70] ResNeXt-101 30 107.31 110.12 * 55.2 85.8 61.1 3.9 38.0 63.5
F -Mask-R-CNN† (Ours) ResNeXt-101 26 109.48 112.08 * 55.8 86.8 61.5 5.3 39.2 63.9

† indicates models trained by both “bounding box” and “segmentation” labels, following [70], [72].

TABLE V
COMPARISON WITH STATE-OF-THE-ART OBJECT DETECTORS ON RLP DATASET.

Method Backbone FPS PARAMs (M) FLOPs (G) # queries APbox APbox
50 APbox

75 APbox
S APbox

M APbox
L

RT-DETR [69] ResNet-50 64 42.81 17.07 60 14.7 38.9 8.0 2.6 12.7 21.3
DINO [57] ResNet-50 54 58.38 26.89 30 15.6 44.7 6.6 5.4 13.1 25.0
DINO [57] Swin-L 40 229.0 156.0 30 16.3 44.6 7.8 4.4 12.7 25.9
ATSS [73] ResNet-101 66 51.14 27.82 * 16.1 48.9 5.0 0.3 12.7 25.0
GFLv1 [74] ResNeXt-101 66 50.70 28.51 * 10.2 35.4 1.7 0.0 9.5 14.8
Faster R-CNN [71] ResNeXt-101 70 59.83 28.35 * 18.6 55.7 7.0 4.1 15.9 26.3
Cascade-R-CNN [72] ResNet-50 39 69.20 60.99 * 19.7 56.8 8.0 2.5 16.3 28.3
F -Cascade-R-CNN (Ours) ResNet-50 36 70.36 72.96 * 20.2 56.7 8.6 2.1 16.4 29.2

TABLE VI
ABLATION STUDY OF HDC AND FSTB RESULTS. PARAMS, FLOPS, AND
FPS REPRESENT THE TOTAL NUMBER OF PARAMETERS, FLOATING POINT

OPERATIONS, AND THE NUMBER OF INFERENCES THE MODEL CAN
PERFORM PER SECOND, RESPECTIVELY.

N FSTB HDC PARAMs(M) FLOPs(G) FPS APbox

0 ✗ ✗ 58.380 26.820 54 64.3

1 ✓ ✗ 59.746 30.791 38 66.0
✓ ✓ 59.746 30.791 38 67.2

2 ✓ ✗ 61.111 34.762 30 66.4
✓ ✓ 61.111 34.762 30 67.3

3 ✓ ✗ 62.477 38.732 23 66.9
✓ ✓ 62.477 38.732 23 67.7

1) Ablation study for HDC and FSTB: Tab. VI presents
a complex ablation study that thoroughly evaluates the effects
of the Frequency Spatial Transformer Block (FSTB), the
number of iterations N of cascaded FSTBs for corruption
and base branches, and the Hierarchical De-Corrupting (HDC)
mechanism on the model’s performance. When the number of
iterations N = 1, the FSTB is able to increase the model’s box
AP from 64.3% to 66.0%. Furthermore, when both the HDC
and FSTB are utilized together, the box AP reaches 67.2%,
indicating good compatibility between the two methods and
demonstrating that the HDC mechanism effectively guides
the FSTB to achieve a stronger anti-overlapping detection
capability. Additionally, the PARAMs and FLOPs only in-
creased by 1.366 M and 3.971 G, while FPS decreased by
16 frames. This suggests that the method is not demanding in
terms of computational resources. Similarly, when we increase
the number of iterations N to 2 and 3, FSTB and HDC
continue to show good compatibility, and the model’s box AP

TABLE VII
COMPARISON OF GAUSSIAN BLURRING (GB), DOWNSAMPLING AND

UPSAMPLING (DU), AND GAUSSIAN NOISE (GN) CORRUPTION
STRATEGIES FOR THE HDC MECHANISM. KS MEANS THE KERNEL SIZE OF

GAUSSIAN NOISE

Method Parameter APbox APbox
50 APbox

75 APbox
S APbox

M APbox
L

– – 64.3 86.5 71.0 19.3 48.9 73.9

(a) DU

×2 65.6 87.1 72.9 18.7 50.9 75.4
×3 65.3 86.9 72.5 20.6 50.2 74.7
×4 66.5 88.0 73.3 25.0 51.9 75.9
×5 64.8 86.6 71.8 19.5 50.2 74.3

(b) GN

0.1 65.7 87.3 73.5 21.1 51.4 75.1
0.2 66.4 87.9 73.8 23.0 52.3 75.6
0.5 66.1 87.7 72.7 21.7 50.8 75.9
1 65.4 87.5 71.9 21.5 51.5 74.8

(c) GB (ks=3)

0.1 66.6 87.9 73.5 21.2 51.9 75.7
1 66.9 88.5 73.8 23.6 51.1 76.4
5 67.2 88.3 74.8 21.8 52.6 76.5

10 66.5 88.2 73.9 23.0 50.8 76.2

(d) GB (ks=5)

0.1 63.9 86.0 70.6 21.8 48.4 73.0
1 66.4 87.5 73.6 22.0 51.9 75.9
5 66.5 87.7 74.2 21.3 51.6 76.1

10 65.5 86.9 72.0 22.1 50.4 75.0

The studied hyperparameters that control the degradation level of each
corruption strategy are (a) the Downsampling scale factor, (b) the Gaussian
Noise sigma, and (c) the Gaussian Blurring sigma.

improved further, albeit with diminishing returns. To balance
computational complexity and performance, we set N to 1 for
subsequent experiments.

2) Ablation study for corruption strategies: As shown
in Tab. VII, to further investigate the effects of different
corruption strategies, such as Gaussian Blurring (GB), Down-
sampling and Upsampling (DU), and Gaussian Noise (GN), on
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Fig. 5. Comparison of Type I consistent Loss and Type II consistent Loss. The
standard boxplot illustrates the relationship between box AP and variations in
the learning rates, coefficients of consistent loss, and corruption strategies.

the guidance provided by the HDC mechanism for enhancing
the texture and contour feature perception capabilities of
FSTB, we compare the performance of the F-DINO model on
the PIXray-det dataset under various hyperparameters for each
strategy. For the DU strategy, we adjust the Downsampling
scale factor and find that a factor of “×4” achieves the highest
66.5% box AP compared to other coefficients. Under the
Gaussian Noise (GN) strategy, when the Gaussian Noise sigma
is set to 0.2, the model gains an increase of 2.1% box AP. In
the case of the GB strategy, the models’ overall performances
are superior when the Gaussian kernel size (ks) is set to
3 as opposed to 5. Furthermore, when ks = 3 and the
Gaussian Blurring sigma is set to 5, the model achieved its
highest box AP of 67.2%. Overall, the GB strategy provides
the most positive impact for the anti-overlapping feature-
awareness capability of the FSTB module.

3) Ablation study for consistent losses: As shown in Fig. 5,
we conduct three sets of experiments, each using different
learning rates, loss weighting coefficients, and corruption
strategies to compare the impact of Type I consistent loss, as
defined in Eq. (8), versus Type II consistent loss, as defined
in Eq. (11), on the box AP of F-DINO on the PIXray dataset,
whose results are presented as the boxplot. All experiments
are conducted with the same batch size, learning strategy,
data augmentation strategy, and optimizer to exclude poten-
tial interference from other factors. The experimental results
are progressively improved, as each subsequent experimental
group uses the best parameter settings from the previous group.
For example, the corruption control group uses the optimal
learning rate and coefficient settings from the learning rate
and coefficient control groups, respectively. It can be observed
that although both loss functions positively impact the model’s
accuracy, which exceeds the baseline box AP of 64.3%, the
mean and maximum of the outputs for Type I consistent loss
based on KL divergence are higher, while its variance is overall
lower compared to Type II consistent loss based on MSE. This
discrepancy is attributed to the fact that Type I loss emphasizes

TABLE VIII
ABLATION STUDY OF THE TARGET LAYER SET L UNDER THE GAUSSIAN

BLURRING STRATEGY (KERNEL SIZE IS 5, SIGMA IS 5).

l = 1 l = 2 l = 3 l = 4 APbox APbox
50 APbox

75

✗ ✗ ✗ ✗ 64.3 86.5 71.0
✗ ✗ ✗ ✓ 67.1 88.1 74.8
✗ ✗ ✓ ✓ 67.2 88.3 74.8
✗ ✓ ✓ ✓ 66.9 88.0 74.3
✓ ✓ ✓ ✓ 65.2 87.8 72.7

TABLE IX
ABLATION STUDY OF SDCA AND FDBA.

ID SDCA FDBA
APbox APbox

50 APbox
75

Shape of As Shape of Af Target

(a) C×C N×N Magnitude 67.2 88.3 74.8
(b) N×N N×N Magnitude 67.0 87.8 74.5

(c) C×C C×C Magnitude 66.0 87.2 74.6
(d) C×C C×C Phase 65.2 86.5 73.7
(e) C×C N×N Phase 65.8 87.2 74.2

As means channel attention map in Eq. (14), and Af means spatial
attention map in Eq. (19).

the relative difference between Fn+1
C and Fn

O , whereas Type
II loss focuses on the absolute difference between the two.
Therefore, Type I loss is more robust and effective for fine-
grained feature-level alignment tasks.

4) Ablation study for target layer set: Since Fn+1
C =

{Fn+1
C,l }Ll=0 and Fn

O = {Fn
O,l}Ll=0 are multi-scale features

with L = 4 layers, we conduct experiments on F-DINO
to investigate which feature layers in Eq. (8) need to be
aligned using the consistent loss mechanism in the HDC
mechanism to better guide the FSTB. The results show that the
model achieves higher accuracy when consistency guidance
is applied for higher-level features. This can be attributed
to the fact that higher-level features primarily capture global
information, which is more adept at encoding semantic in-
formation. In contrast, lower-level features tend to focus on
local information, often accompanied by redundant data and
noise. The presence of ineffective information from these
lower-level features disrupts the FSTB’s ability to comprehend
the reverse process of corruption during consistency training,
thereby reducing its ability to extract features in the presence
of overlap.

5) Ablation study of SDCA and FDBA: To enable the FSTB
to optimize and maximize the integration of local spatial
features and global frequency domain information, we conduct
a series of ablation experiments, as shown in Tab. IX. By
comparing Tab. IX(a) and Tab. IX(b), we observe that the
Spatial Domain Channel Self-Attention (SDCA) mechanism
is better suited for using a channel attention matrix of the
form As ∈ RC×C , rather than the classical spatial domain
feature reorganization with an attention map of the form
As ∈ RN×N [41], where N = H×W represents the flattened
spatial scale. By comparing Tab. IX(c) and Tab. IX(d), we
find that the Frequency Domain Bands Self-Attention (FDBA)
mechanism is better suited for adaptively correcting the magni-
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Fig. 6. Visualization of feature maps of “DINO”, “DINO+FSTB”, and
“DINO+FSTB+HDC” (F -DINO).

tude spectrum, which is more effective at representing texture
and contour information, rather than the phase spectrum,
which excels at capturing shape and structural information.
Finally, by comparing Tab. IX(d) with Tab. IX(e), or Tab. IX(a)
with Tab. IX(c), we observe that for FDBA, the classical
spatial attention mechanism with Af ∈ RN×N is more
suitable. This is because this approach is better at integrating
effective information from both the high-frequency and low-
frequency bands of the magnitude spectrum.

Overall, the configuration in Tab. IX(a), as described
in Sec. III-C, achieves the best accuracy. In this configuration,
SDCA preserves the local features that spatial domain features
excel at, while also capturing long-range channel dependencies
and containing more informative content [27]. Meanwhile,
FDBA integrates both high-frequency and low-frequency in-
formation from the magnitude spectrum, particularly regarding
texture and contour. By leveraging the complementary charac-
teristics of both feature domains, the system incorporates both
global and local features, providing high-quality input features
for the subsequent coupling learning in FSFN.

F. Visualization and Analysis

In this part, we first use the state-of-the-art model, DINO,
on PIXray-det as the baseline and conduct a progressive
analysis of the impact of FOAM across three levels: feature
extraction by the backbone network, feature extraction in
the decoder, and high-order statistical analysis of the final
inference results. This includes visualizing feature maps to
assess how FOAM influences the feature extraction process
of the backbone, examining the decoder of the last layer
via sampling and reference points, and utilizing scatter plots
to analyze classification and localization results. Finally, we
visualize the prediction results of the SOTA models on four
datasets for the three tasks, qualitatively comparing the impact
of FOAM on the prediction outcomes of models.

1) Feature maps: Fig. 6 compares the feature maps of
the DINO, DINO+FSTB, and DINO+FSTB+HDC (F-DINO)
models, all of which use the Swin-L backbone network. In row
(a), the feature map generated by DINO captures incomplete
“Wrench” features, with low response values and unclear
contours. In contrast, the DINO+FSTB model demonstrates
a higher feature response to the “Wrench”. Furthermore, the
feature map of F-DINO shows greater contrast between the

Fig. 7. Visualization of deformable attention sampling points, reference
points, and prediction results for corresponding content query in the last
decoder layer. Row “GT”, “w.o. FOAM”, and “w. FOAM” refers to the ground
truth, and results of DINO and F -DINO. Column “(a)-(c)” represents images
of PIXray-det [1] dataset. Each sampling point is shown as a filled circle,
with color indicating its attention weight, and the reference point is marked
by a green cross.

Fig. 8. The scatter plot and Kernel Density Estimation (KDE) joint distri-
bution plot of the prediction results from the final decoder layer. Blue and
Orange refer to the results of DINO and F -DINO, respectively.

foreground and background, with clearer contours, indicating
the positive guidance effect of the Hierarchical De-Corrupting
(HDC) mechanism in enhancing FSTB’s ability to perceive
features in the presence of overlap. Similarly, in row (b), the
feature map of DINO fails to focus more on the prohibited
items, such as the “Battery” and “Screwdriver”, compared to
the background. However, in the DINO+FSTB and F-DINO
feature maps, this focus gradually improves. Finally, in row
(c), DINO+FSTB demonstrates better attention to the heavily
overlapping “Gun” and “Hammer” features compared to the
baseline model. Additionally, F-DINO, building upon this,
further enhances attention to the “Saw” while reducing the
focus on background objects.

Overall, the frequency domain features introduced by FSTB
help the backbone network to more comprehensively perceive
foreground features. The HDC mechanism essentially further
directs FSTB to prioritize foreground feature attention while
suppressing background feature focus, manifested as an en-
hancement in the perception of foreground contour, thereby
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Fig. 9. Prediction results on PIXray-det, OPIXray, RLP, PIXray-seg datasets. We select state-of-the-art models from four datasets across three tasks (row two)
and apply FOAM to enhance their performance (row three). These models include DINO (Swin-L) on PIXray-det and OPIXray, Mask-R-CNN on PIXray-seg,
and Cascade-R-CNN on RLP. In comparison, the models enhanced by FOAM achieve superior predictive accuracy.

improving the model’s resistance to feature overlap.
2) Sampling points and reference points: We take DINO

as a representative of the Deformable-DETR series models to
explore how the reference point and sampling points of the fi-
nal decoder layer, directly related to the final detection results,
change in response to specific images under the influence of
the proposed FOAM. As shown in Fig. 7, column (a) indicates
that the sampling points of F-DINO are more concentrated
on the prohibited item “Fireworks”, while in the baseline
model DINO, the high-confidence sampling points focus more
on background features. Further, in column (b), when faced
with the weakly featured prohibited item “Lighter”, severely
disrupted by the background, the reference point of DINO
accurately locates the target. However, the sampling points
are not sufficiently concentrated, capturing a large amount of
background features, which leads to the misclassification of
the “Lighter” as “Fireworks”. In contrast, F-DINO’s sampling
points are not only more focused on the “Lighter” itself but
also exhibit higher sampling confidence. This means that the
“Lighter” features contribute more significantly to the model’s
final decision, resulting in a correct classification with high
confidence and accurate localization [45]. In column (c), when
faced with the overlapping and closely positioned “Gun” and
“Knife”, DINO’s reference point and sampling points tend to
focus on both the “Knife” and “Gun”, leading to an incorrect
detection result of “Battery”. In contrast, reference point and
sampling points of F-DINO are focused on the “Gun” itself,
resulting in the correct detection of the “Gun”.

Overall, the frequency domain features supplemented by
the FOAM backbone help the decoder focus on and extract

foreground features from overlapping scenes, leading to more
accurate predictions.

3) The scatter diagram of prediction results: To assess the
effectiveness of the FOAM mechanism for prediction results,
we visualize the IoU and classification scores of DINO and F-
DINO (DINO with our FOAM) predictions on the PIXray-det
dataset, as shown in Fig. 8. We plot a scatter diagram of predic-
tion results with classification and IoU scores above 0.3, along
with Kernel Density Estimation (KDE) curves. Blue and or-
ange represent the results of DINO and F-DINO, respectively.
The orange points are more concentrated, significantly shifted
further to the right, and slightly moved upwards compared
to the blue points, indicating that under FOAM, the model
leverages both frequency and spatial domain cues to capture
more classification semantic information, such as textures,
as well as localization information, such as contours. This
improvement enables the model to more effectively perceive
and extract foreground information from overlapping features
in complex scenes, thereby enhancing prediction accuracy for
overlapping object perception.

4) Prediction results: Fig. 9 illustrates the qualitative
impact of FOAM on the prediction results of SOTA models
across four datasets for three tasks.

Prohibited Item Detection Task: On the PIXray-det
dataset, DINO (Swin-L) misclassifies the “Battery” in the top-
left corner as a Hammer, and the localization result of the
Pliers is disrupted by interference from the “Gun”. Similarly,
on the OPIXray dataset, the localization of the “Straight
Knife” is compromised by background features. In contrast,
under the influence of FOAM, F-DINO demonstrates more
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accurate localization and classification for the prohibited item
detection task, with higher confidence in its predictions.

Prohibited Item Segmentation Task: On the PIXray-seg
dataset, Mask-R-CNN fails to detect the “Wrench” and “Scis-
sors” and provides incomplete segmentation for the “Saw”. In
contrast, the instance segmentation results of F-Mask-R-CNN
are nearly identical to the ground truth.

Pneumonia Detection Task: On the RLP dataset, Cascade-
R-CNN erroneously detects the background as “Lung Opac-
ity”, and its localization is imprecise. In comparison, F-
Cascade-R-CNN is less affected by interference from back-
ground elements [4] such as potential EKG leads, external
tubes, artifacts, overlapping devices, bones, and healthy tis-
sues, and more accurately detects the pathological boundaries
of “Lung Opacity”.

Overall, FOAM improves the accuracy of prediction re-
sults of SOTA models across multiple tasks and datasets,
demonstrates its strong generalization ability, and enhances
the perception of foreground features in overlapping scenes.

V. CONCLUSION

In this paper, we attempt to address the critical challenges
of foreground-background feature coupling in overlapping
object perception tasks. Instead of adhering to mainstream
spatial domain learning methods, we explore and leverage
the advantages of frequency domain learning, designing a
highly compatible joint perception approach in both the fre-
quency and spatial domains, named the Frequency-Optimized
Anti-Overlapping Framework (FOAM), which enhances the
model’s ability to perceive foreground textures and contours.
Extensive experimental results demonstrate that FOAM ex-
hibits superior performance and a wide range of applications,
significantly improving the accuracy of existing SOTA models
across four datasets for at least three overlapping object
perception tasks: Prohibited Item Detection, Prohibited Item
Segmentation, and Pneumonia Detection.
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