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Abstract

Quantum computing (QC) holds the potential to solve classically intractable problems. Although
there has been significant progress towards the availability of quantum hardware, a software infrastructure
to integrate them is still missing. We present Q-AIM (Quantum Access Infrastructure Management) to
fill this gap. Q-AIM is a software framework unifying the access and management for quantum hardware
in a vendor-independent and open-source fashion.

Utilizing a dockerized micro-service architecture, we show Q-AIM’s lightweight, portable, and cus-
tomizable nature, capable of running on different hosting paradigms ranging from small personal com-
puting devices to cloud servers and dedicated server infrastructure. Q-AIM exposes a single entry point
into the host’s infrastructure, providing secure and easy interaction with quantum computers on different
levels of abstraction. With a minimal memory footprint, the container is optimized for deployment on
even the smallest server instances, reducing costs and instantiation overhead while ensuring seamless
scalability to accommodate increasing demands. Q-AIM intends to equip research groups and facilities
purchasing and hosting their own quantum hardware with a tool simplifying the process from procure-
ment to operation and removing non-research related technical redundancies.

1 Introduction
Quantum computing (QC), currently in its developmental phase, promises substantial acceleration of classical
computations across various fields ranging from cryptography to materials science [1–4]. Quantum computing
scientists are constantly striving to overcome the limitations imposed by the current noisy intermediate-scale
quantum (NISQ) era to fully realize quantum computing’s potential.

However, while large private-sector enterprises are advancing the field through their own hardware, soft-
ware, and algorithmic developments, smaller academic research groups lack direct on-site access to such
resources. Although corporations such as IBM [5], Google [6], and Amazon [7] offer access to their own or
hosted third-party infrastructure on a pay-to-use basis over the cloud, fundamental research is limited by
restricted privilege policy and physical inaccessibility. Consequently, the acquisition of small-scale devices
emerges as a viable solution to delve deeper into hardware and software enhancement studies, especially
since the devices are getting cheaper. Yet, a critical challenge remains: the lack of a portable, open source,
and easily integrable software solution for small-scale hardware integration and provision.

*These authors contributed equally to this work
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Ultimately, procuring quantum hardware serves not only to enable deeper interaction with the device but
also to facilitate its utilization on an abstract software level. This requires granting access to the resource
over the host’s network infrastructure, and possibly even beyond that, by a service either hosted in the cloud
or also on-premise, dependent on the requirements and capabilities. For instance, a device could be made
accessible to external users, such as students, for educational purposes or to demonstrate advancements to
a broader audience. Yet, the absence of a common, open-source integration platform forces researchers to
spend valuable time and expertise developing such a solution on their own. Such efforts can detract from
their primary focus of advancing scientific knowledge. A flexible, streamlined, and universally adaptable
integration software is therefore crucial, not only to eliminate redundancies but also to ensure compatibility
with existing workflows.

This work presents Q-AIM, a flexible, streamlined, and universally adaptable quantum integration work-
flow designed to address key challenges in quantum resource utilization, particularly for small enterprise
and academic research groups. Typically, quantum systems are equipped with peripheral classical hardware
providing a hardware- and vendor-dependent interface to the quantum computer, facilitating their use on
an abstract software level. But, without a standardized, open-source platform, researchers face significant
hurdles in integrating quantum systems into existing workflows. To eliminate redundancies and enhance
compatibility of the necessary integration software solution, we make the following contributions:

• Unified and Portable Platform : A Docker-based, microservice architecture ensures seamless de-
ployment and scalability across various infrastructures e.g, on a local machine, server, and cloud [8].

• Flexible Access and Control : Offers resource access via multiple abstraction levels (from algorithmic
to pulse-level) with a role-based permission scheme for secure and tailored utilization among diverse
user groups.

• Classical Workflow Integration : Standardized and flexible APIs enable easy hybrid computing,
reproducibility, and cross-institution collaboration without major infrastructure changes.

• Prototype Validation : A lightweight prototype demonstrated adaptability and efficient resource us-
age across on-premise and cloud infrastructures, supporting broad research and educational application
possibilities.

2 Background and Related Work
Quantum computing offers great potential, but the integration of quantum hardware into classical workflows
faces major challenges due to proprietary systems and lack of standardization. This chapter provides a brief
overview of quantum instruction workflows and existing integration solutions.

2.1 Quantum Instruction Workflow
The instruction of any quantum hardware involves multiple steps, based on the level of abstraction, to match
the desired logic to the operations exposed by the architecture. A stepwise workflow example from high-level
algorithm definition to device-specific machine instructions is shown in Fig. 1, which includes the abstraction
levels commonly used in quantum computing.

The first step in every quantum execution is the definition of the algorithm as a quantum circuit (Circuit
Definition) making use of any arbitrary quantum operations in an abstract high-level software framework.
Commonly used ones include Qiskit [9], Cirq [10], and Braket [11], provided by IBM, Google, and Amazon
respectively. This is the same principle as writing algorithms and using resources in classical computing, i.e.
abstract away all hardware constraints and focus solely on the implementation of the desired logic.

The closest quantum computing equivalent to the compilation is transpilation, with an intermediate rep-
resentation (IR) comparable to the executable [12]. The transpilation introduces some form of optimization
(HW-Independent IR) and most importantly takes hardware constraints into account to fit the abstract level
implementation to a backend (HW-Dependent IR) [13]. The latter is due to the native gate-set exposed
by the quantum processor architecture, i.e. the logic of the high-level implementation must be represented
using only a limited set of universal gates natively supported by the hardware in question, usually a few
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single-qubit rotation gates and a single two-qubit gate. BQSKit (Berkeley Quantum Synthesis Toolkit) [14]
is an exemplary compiler framework to perform optimization and gate-set transpilation combining state-
of-the-art algorithms in a stand-alone, end-to-end solution to reduce the depth of the quantum circuit. A
more extensive comparison of quantum software development kits and compilers can be found in Ref. [15].
Like the binary in classical computing, the IR can be of different formats. One of the most commonly used
formats is OpenQASM [16,17], a quasi-assembly language for quantum computing.

As in classical computer science, assembler is not yet an instruction at machine level, but is used to com-
municate with remote resources if used. Therefore, the last step of instruction modification is the translation
to machine code (Machine Instructions). In quantum computing, this oftentimes means microwave pulse
modification where specific pulses modify the state of the quantum system likewise to an instruction in the
high-level abstraction implementation.

2.2 Accessing Quantum Resources
For users to be able to execute algorithms on real quantum hardware, two parts must be taken into consider-
ation. As depicted in Fig. 1 and discussed in the previous section, the first involves the transpilation of any
algorithm or circuit to the underlying hardware in use. Usually, algorithms are developed and translated into
quantum formalisms in a hardware-agnostic fashion. The high-level code abstraction must be transformed
into a device-specific instruction set.

The second part addresses with the access of the resources. As mentioned before, quantum computing
providers often grant access to their devices over the cloud using an API interface. Therefore, accessing
quantum computers as a form of highly specialized compute resource does not differ from accessing any
other remote compute resource. Providers will most likely impose restrictions in terms of supported IR
formats and the ways to interact. Invariably, they implement stringent security measures to safeguard their
resources, mandating users to authenticate themselves via provided credentials and implement different
levels of permissions. Typically, access to the protected resource is facilitated through an API, overseeing
the bidirectional flow of data to and from the resource. In the workflow diagram depicted in Fig. 1, the API
call can happen at any level between the circuit definition and the machine instructions, depending on the
services provided by bespoken API. The data flow from the resource to the user happens after execution,
containing the result of the computation in a pre-defined format dependent on the provider.

2.3 Analysis of Related Work
Recent efforts aim to integrate quantum devices into classical computational resources, either by allowing
them to be accessed during computation in a manner similar to GPUs (indirect access) [18–20] or through an
API service (direct access) [10,11,20–25]. Ruefenacht et al. [19] provide a fundamental overview of different
integration architectures, from loosely- (on-premise) to tightly-coupled (on-chip), for quantum processors
as accelerators for specific high-performance computing (HPC) workloads. Schulz et al. [18] particularly
emphasize the necessity of developing an unified software stack to harness the strength of both radically
different systems for the latter time and space shared integration scheme. However, Humble et al. [20] state
in their analysis of the different possibilities of integrating QC and HPC that “existing QC prototypes are
based on loosely integrated client-server interactions that lack the sophistication or technological maturity
to be used as accelerators”. But exactly these early prototypes are of particular interest for fundamental
research done by academic groups and the center of possible application of the software proposed in this
paper alike. Therefore, the focus for now is on the loose integration of (less sophisticated) quantum hardware.
Such a solution in a corporation independent and open source fashion is the missing key to enable small scale
device utilization and integration for academic purposes. This paper addresses the development of such a
solution: a software platform that enables secure, low-overhead, and flexible access to quantum devices on
different environments, such as on-premise and/or cloud infrastructures. Delivered as a Docker container,
it ensures ease of deployment, hardware independence, and extensibility, creating a foundation for efficient
and portable quantum computing research.

Different research studies [26–28] focusing on providing quantum computing as a service use dockerization
for the same purposes. The services provided are usually some quantum application/algorithm, which ab-
stract away the complexities of the hardware, simplify development and deployment, and allow for portability
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Circuit Definition

HW-independent IR
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Device-specific quantum 
instructions

Figure 1: Instruction abstraction levels in quantum computing. From high-level circuit design (highest
abstraction) to hardware-independent and hardware-specific intermediate representations (IR), ultimately
becoming device-specific machine instructions (no abstraction) to be used with the quantum device.

across different platforms. Grossi et al. [28] proposes a decoupled function-as-a-service (FaaS) quantum com-
puting integration, exposing a single HTTP API endpoint to provide an arbitrary quantum service, which
is offloaded to the IBM backend, thereby separating provision and usage. Nguyen et al. [27] expand on the
idea, pointed out the vendor lock-in effect and extended the capabilities of the serverless model to different
backend platforms. Overall, the goal is a higher abstraction for ease of use in enterprise scenarios. This
work addresses the exact opposite. We provide services also to be hardware-agnostic, portable, and flexible,
but with the main purpose of allowing fine-grained access to the device on levels of less abstraction, e.g.
interaction on pulse-level. Researchers are dependent on a low-level access since the focus is not on the usage
through quantum algorithms as a service but on being able to accurately manipulate certain workflows and
interactions in the pursuit of knowledge extraction.

During the time of writing, a paper [29] emphasizing the necessity and challenges of a hardware-agnostic
framework integrating hardware, software, workflows, and user interfaces, also with particular focus on
academia to foster a synergistic environment for quantum and classical computing research was published.
The main difference to the work in this paper is that they present developments in software for a hybrid
quantum computing approach integrating quantum computers as accelerators to complement high perfor-
mance computing systems. These advancements also primarily target large academic institutions already
running sophisticated HPC systems as a form to further improve computations of the specific field of interest.
Our work focuses on enabling small (research) groups to integrate, directly access, and make own quantum
devices publicly accessible in an unified fashion, streamlining the process after procurement until usage, e.g.
investigative research.

3 Design Consideration
As described in Section 2, the integration of quantum computing resources into existing research and indus-
trial workflows requires careful orchestration of software across multiple domains. However, today’s quantum
computing solutions are often associated with specialized hardware and proprietary environments, limiting
their applicability to on-premise installations and creating major barriers to entry. This is a significant
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Figure 2: Overview of the quantum computation workflow. The larger, red box (right) indicates classical
hardware, the smaller, green one (left) the quantum system. The problem is defined as quantum circuit at
any abstraction level and undergoes transpilation until machine instruction level is reached. Communication
between the classical and quantum system is facilitated through API calls.

obstacle, especially for smaller institutions and educational facilities.
To address these challenges, we propose Q-AIM, a standardized, portable workflow and a corresponding

software implementation that enables seamless integration of quantum resources into existing infrastructures.
As shown in Fig. 2, the required process steps are highlighted in blue, the involved services on the classical
hardware side by the red box and the vendor-dependent quantum resources by the green box.

With Q-AIM, quantum circuit design can be performed at various levels of abstraction. We also introduce
an optional simulation step that serves as a verification phase before running computations on potentially
busy remote quantum computers. All services indicated in the red box are abstractions that can be made
available within the proposed software. Rather than enforcing a single standardized software framework,
we allow each component or service to be replaced or customized, thereby giving both users and hardware
providers granular control over implementation details. This flexibility accommodates diverse requirements
and preferences. Because there are multiple execution environments and a wide range of components or
services, each with distinct access control needs, we rely on well-established Representational State Transfer
(REST) APIs, using common calls such as POST and GET to ensure broad compatibility across different
software languages, platforms, and hardware architectures.

Another key design consideration is the decoupling of quantum hardware, ensuring that the software layer
operates independently of specific hardware, thereby minimizing manufacturer dependency. Consequently,
tasks such as qubit manipulation, machine instruction execution, and qubit state measurement are handled
directly by the quantum hardware and its peripherals. Together with the microservices, these components
form the backend for Q-AIM.

4 Methodology
The key principle of the proposed approach is to ensure that classical workflows remain largely unaffected
by the introduction of quantum computers. Instead of having to rebuild or heavily modify pre-existing com-
putational frameworks, end-users can embed quantum tasks and pipelines into their established processes.
With this design approach, a quantum resource can be quickly adapted with minimal changes, while maxi-
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mizing the advantages of quantum computing. The effectiveness and versatility of the proposed system are
underpinned by four core methodologies:

• Fully Integrated Classical Workflow

• Encapsulated System Architecture

• Micro-Service-Based Software Architecture

• Flexible and Fine-Grained User Management

4.1 Fully Integrated Classical Workflow
Based on the design consideration as mentioned in Section 3, the classical quantum computing workflow,
i.e. the steps from algorithm definition to machine instruction, is a multi-stage process that spans tasks
from algorithm development to analysis and optimization. Depending on the manufacturer and application
scenarios, the code often needs to be compiled into an appropriate representation, such as gate-level or
pulse-level instructions, to execute on a quantum computer. To allow users to operate at different levels of
abstraction, it is crucial to account for these variations during the integration workflow.

To support this flexibility and maintain vendor independence, the entire classical quantum computing
workflow is treated as a black box and integrated as a unified entity within our infrastructure. This ab-
straction ensures seamless interaction between the classical and quantum workflows without requiring users
to manage low-level specifics or adapt to API changes, thereby enhancing usability and interoperability.
Therefore, the classical workflow is incorporated into our integration pipeline as a self-contained component
and augmented with additional functionality. These functionalities range from custom user management,
authentication services, and access control to result visualization and system monitoring. This approach
allows users to work with different programming languages at different levels of abstraction while taking
advantage of the unique features of different quantum hardware backends. It also supports adaptability to
emerging quantum computing platforms, ensuring that the architecture is future-proof.

4.2 Encapsulated System Architecture
To enable a standardized and transparent quantum computing workflow, we rely on an encapsulated system
architecture that decouples the software layer from the underlying quantum computing hardware. This ar-
chitecture acts as an abstraction layer that simplifies and hides the complexity of the individual components.
As shown in Fig. 3, the system is divided into two key segments: the Q-AIM software and the quantum
computing hardware. Given that the Q-AIM framework provides users with exclusive access to quantum
resources via various microservices (see 4.3), the central component of this system architecture is the API
gateway, which serves as the primary entry point for users. It abstracts the underlying microservices and
prevents direct access or communication between clients and service components. This isolation significantly
simplifies implementation for both clients and microservice applications, as the complexity of the application
is decoupled from its clients. Another important element is the Reverse Proxy. The API gateway can be
understood as a superset of the reverse proxy and offers additional functions that go beyond the simple for-
warding of requests. The reverse proxy assigns the physical ports to those of the encapsulated environment
and acts as an intermediary that communicates with the server on behalf of the client(s), forwards requests
and returns responses. The proxy is located at the edge of the API gateway, which centralizes the processing
of API requests and enforces additional security policies such as authentication, authorization and access
control, as well as other functions not covered by the microservices.

As a result, the entire architecture is generic, portable, and easily extendable. It provides a standardized
way for those to communicate, interact, and be managed within the environment, thus allows for modularity,
scalability, and adaptability, making it possible to integrate the services seamlessly while maintaining a
consistent and manageable architecture.
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Figure 3: Microservice-based architecture of Q-AIM. It facilitates secure client interactions via HTTPS and
a reverse proxy, providing access to quantum systems through a structured microservice architecture. The
API Gateway manages authentication, authorization, and orchestration, while the microservices provide the
software’s functionalities.

4.3 Micro-Service-Based Software Architecture
To meet the challenge of a standardized, portable integration workflow, in this work we develop a microservice-
based software architecture that enables quantum computing hardware to be integrated into existing and
future infrastructures in a consistent manner. A key aspect for Q-AIM is therefore portability and trans-
parency.

To achieve this, the software requires the ability to run in a virtualized and isolated environment.
Lightweight virtualization technologies, i.e. containers such as Docker [30] or Apptainer [31], are highly
portable, which means that they can be easily run on different operating systems and infrastructures. The
isolated nature of container virtualization also ensures that all required dependencies are bundled in the
container and services can be quickly deployed and replicated on different hosts. As container-based soft-
ware deployment is typically based on a microservice architecture, the functionality of the software can be
customized and extended according to user-specific requirements. This gives Q-AIM greater versatility and
adaptability, which is beneficial for research institutions and companies alike.

Overall, Q-AIM’s microservices-based architecture not only reduces the dependency on specific vendors,
but also allows researchers and developers to transfer and scale their work to different environments [32].
This is particularly important for reproducibility and enables the building of a community that promotes the
exchange of ideas, best practices and resources to further advance the development of quantum computing
technology.

4.4 Flexible and Fine-Grained User Management
Another key challenge is managing access from different environments with corresponding user affiliations.
Users can generally be categorized into internal and external groups, each requiring specific levels of access
to quantum resources. For example, a physicist conducting physical experiments on a quantum computer
needs easy access to enter signals or waveforms. In contrast, users from business or other fields usually
require high-level access to test their algorithms or circuits on the quantum computer.

7



services:
database:

image: postgres
...

authentification:
depends_on:

- database
image: jboss/keycloak :11.0.3
...

Q-AIM -API:
image: fastapi:dev
...

Q-AIM -Frontend:
image: Q-AIM:dev
...

reverse -proxy:
image: nginx:alpine
...

monitoring:
image: gcr.io/cadvisor/cadvisor:latest
...

volumes:
...

Listing 1: Overview of the microservices and their images in the docker compose file.

To enable fine-grained access control to quantum resources and flexible user management, it is essen-
tial to integrate different user groups into a single infrastructure, manage them effectively and meet their
different access requirements. This requires the integration of the industry standard LDAP [33] protocol
into our solution for authenticating internal users. In addition, the system should support the creation and
management of a special user database for external users to ensure seamless integration and secure access
for all user types. As interaction with quantum computing resources takes place exclusively via the API
gateway, Q-AIM enables authentication for different user groups and supports fine-grained authorization,
ensuring that users can only interact with the resources that correspond to their assigned roles.

5 Prototype Implementation
In the following, we present an early prototype implementation of our portable, unified, and generic quantum
computing integration workflow. The integration of self-written or third-party libraries as a service in
the example implementation of our microservice architecture underlines the aforementioned adaptability.
Similarly, other entities can implement different services specific for their use cases.

5.1 Container-based Deployment
From the high-level system architecture shown in Fig. 3, it is clear that deploying the Q-AIM application
requires a complex environment with a number of microservices working together. To improve transparency
and portability in the deployment process, Docker containers are used to ensure consistency. Also, a Docker
Compose file is used to simplify the management of multiple microservices and their dependencies within the
application. Consequently, this approach facilitates the deployment of the entire application environment
with a single command, i.e. docker compose up.

To provide an overview of the main services of Q-AIM, as shown in Listing 1, the services are described
below:

• Database Service: This initiates a PostgreSQL database utilizing the official Postgres Docker im-
age [34]. To ensure persistent storage of the database data, a Docker volume is created alongside.

• Authentication Service: Utilizing the official Keycloak Docker image [35], this service delivers iden-
tity and access management functionalities. It relies on the database service and necessitates a Keycloak
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Figure 4: Representation of the first authentication process for an approved user attempting to run code on
a protected quantum computing resource.

configuration file. For illustrative purposes, environment variables for the Keycloak administrator user,
password and other settings are also configured via the docker compose file.

• Q-AIM-API Service: This employs the Docker image fastapi:dev and is built using a custom Dock-
erfile, which sets up an environment tailored for a FastAPI [36] application and installs specific depen-
dencies.

• Q-AIM-Frontend Service: Built upon the Q-AIM:dev Docker image using a custom Dockerfile, this
Dockerfile ensures that the actual Angular Web-Application [37] is built in a Node.js [38] environment
and then the resulting build is deployed within an NGINX [39] container. The NGINX container
is used to serve the static files of the Angular application and provide the configuration for the web
server.

• Reverse Proxy Service: Based on the Docker image nginx:alpine, this service initializes an NGINX
proxy server. Configured with a corresponding configuration file and SSL certificates, the proxy server
forwards incoming requests to various services provided within Docker containers.

• Monitoring Service (Optional): Leverages the official CAdvisor Docker image [40] to efficiently
gather and present container statistics. To facilitate access to files or directories within the host
system, it is imperative to include relevant directories or files from the host within the container. For
instance, directories such as /sys/ need to be mounted for this service.

Overall, the division of microservices illustrates the basic principles of modern software development and
architecture. This approach promotes customizability, scalability, security and reproducibility in application
deployment. By using Docker and Docker Compose, both developers and professionals can seamlessly adapt
Q-AIM to their specific requirements and deploy it efficiently in their infrastructure.

5.2 Authentication Workflow
An exemplary workflow accessing a quantum device as protected resource is depicted in Fig. 4. During
the user’s initial access, they are required to provide their credentials. Only after the identity and access
management tool Keycloak validates the provided credentials and returns an authentication code, including
an access token holding information about the authenticated user’s roles and permissions, an ID token with
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general information about the authenticated user, and a refresh token, does the user gain access to the
quantum computer frontend component on the Angular webapplication. Provided quantum code of the user
on the frontend component serves as input data to the API endpoint managing access to the protected
quantum resource. The API therefore validates the provided authentication code at the identity and access
management tool and checks the user’s permissions in the access token. If the user is permitted, it controls
the bidirectional flow to and from the quantum resource. Lastly, the result is displayed on the frontend web
application.

5.3 Q-AIM User Interface
The Q-AIM frontend serves as a user-friendly gateway to access quantum computing resources. To safeguard
the underlying endpoints and enable fine-grained permissions management, integration of the Keycloak
service and authentication functionality has been embedded within the Angular application. As can be seen
from the Fig. 5 1○, users must be authenticated to access certain resources and have certain permissions.
Furthermore, the authorization framework’s distinction between groups and roles facilitates the assignment
of users to various domains, institutions, and systems, allowing for the allocation of grouping-specific roles.
To exemplify the granularity of rights management, the prototype establishes two groups, i.e., internal and
external and each featuring user or admin roles. Depending on whether the user is already authenticated
via the authentication server, the user is either redirected to the login page to process the authentication
workflow as shown in Fig. 4 or to the interface for the corresponding compute resources, as shown in Fig. 5.

A standardized user interface ensures a seamless workflow for accessing different backend functionalities.
As can be seen in 2○, the resource utilization of the respective quantum resource is displayed. 3○ shows,
Q-AIM currently supports OpenQASM source code or Pauli representation, a format introduced in [41] and
parsed into OpenQASM by a library made available as binding at [42], as input. The Pauli representation
takes advantage of the fact that the Pauli rotations together with the controlled-NOT (CNOT) operation
form a complete basis set, which means, every computation can be represented using appropriate Pauli and
CNOT operations. This not only shortens but also simplifies the code input, enhancing its portability. An
exemplary operation in Pauli representation can be seen in Listing 2, with the Pauli operators of the unitary
given as string, characters and index corresponding to the respective Pauli or Identity operation on a specific
qubit, a coefficient, and a variable indicating optional parameters. The same circuit in OpenQASM format is
also partially displayed and used in the example run depicted in Fig. 5 3○. Since Qiskit simulators are used
in this work for demonstration purposes and many devices accept OpenQASM as IR, the library converting
the Pauli representation into OpenQASM is part of the dependencies for the API microservice and ships
with the image by default. Users have the option of either entering their code via the live editor or selecting
the corresponding file and uploading it.

As many circuits performing the algorithm’s desired computation need to be parameterized, users must
be able to provide the parameters. They can do so either using a dictionary, naming the specific variable to
be set and its value, or as a list (array), only providing the variables’ values which are then assigned in order
of appearance in the circuit. This provision is done on the webpage shown at 4○. A prominent example of

IIXY 1. 1
IXIY 1. 2
IXYI 1. 3
XIIY 1. 4
XIYI 1. 5
XYII 1. 6
IIYX 1. 7
IYIX 1. 8
IYXI 1. 9
YIIX 1. 10
YIXI 1. 11
YXII 1. 12

Listing 2: Exemplary ansatz Pauli representation. Operators encoded as strings (left), coefficient (middle),
and parameter named as number (right).
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Figure 5: Q-AIM Web User Interface. Users can provide code and runtime parameters in different formats,
monitor resource utilization, and visualize results and metadata.
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an algorithm necessitating parameterization is the Variational Quantum Eigensolver (VQE) [43–45]. Since
parameter optimization is hardware-dependent, a set of optimized parameters obtained on one quantum
device cannot be directly fixed into the circuit while ensuring reproducibility across different hardware.
However, these parameters can still serve as a good initialization point, reducing the optimization effort on
other devices. Therefore, the optimized parameters are included in the result object.

After submission, the provided code is executed via the API on the hardware-specific backend. Following
successful execution, the resulting data and metadata are visualized as interactive diagrams or JSON objects
as shown in 5○ of the user interface, with the option of downloading them as CSV files or image files.

5.4 Q-AIM API
The Q-AIM API is designed to handle a variety of requests related to both quantum computing tasks and
user-specific operations. It is developed using Python and the FastAPI framework and serves as the backbone
for processing tasks. Since real quantum hardware is not available for testing, the API utilizes simulators to
query as endpoints instead, with the Qiskit library employed for quantum computing task execution using
its Qasm Simulator [46], a noisy quantum circuit simulator backend.

Primarily, an API comprises public and private endpoints. Public endpoints are accessible without
requiring authentication, enabling direct access to the endpoints. Conversely, protected endpoints necessitate
authentication via a Json Web Token (JWT), issued by Keycloak, for example. Authentication is facilitated
through an authentication function auth(), assigned to endpoints requiring authentication as a dependency
function using FastAPI’s own dependency resolution mechanism. The function issues the query to the
identity management using an OAuth2.0 scheme, as described in Section 5.2. For this work, only private
endpoints are used to showcase the finely granulated permissions management. These include the endpoint
/api/user/me, which retrieves information about the authenticated user. Furthermore, access to endpoints
responsible for quantum computing is restricted to authenticated users with appropriate permissions. For
illustrative purposes, the prototype offers four more endpoints: for uploading and processing OpenQASM
code (/api/qc/qasm/{upload, code}), one for each uploading a file and coding on the web page, and
the same for code in Pauli representation (/api/qc/pauli/{upload, code}). The calculated results are
subsequently returned to the Q-AIM frontend as part of the response.

6 Evaluation
In the following, we present an evaluation of the integration workflow’s key attributes, focusing on its
portability and lightweight nature, designed to seamlessly integrate with diverse computing environments.
We examine these aspects using different combinations of hardware, software, and hosting paradigms in the
following.

6.1 Test System Setup
Docker provides a level of abstraction that allows containers to be portable across different environments,
including various hardware configurations and operating systems. To assess this portability of the integration
workflow’s software implementation, our prototype was deployed and tested on three distinct environments:
a local machine, an on-premise hosted server, and a cloud instance. These environments span different
hardware architectures and operating systems. This multifaceted evaluation aimed to validate Q-AIM’s
claim of adaptability to diverse computing environments, emphasizing its suitability for individual users with
varied system configurations and requirements. The specifications for the different evaluation configurations
can be seen in Table 1.

First, we demonstrate a proof of concept by deploying on a local machine, i.e., personal computer aimed to
simulate real-world scenarios where end-users with diverse machines might seek to utilize the software imple-
mentation. The successful deployment on the author’s machine confirms that the API functions as intended,
providing a sound foundation for further evaluation on more sophisticated hosting paradigm scenarios in the
following.

Second, to validate the container’s applicability in enterprise settings, we deploy it on real server in-
frastructure belonging to the Modular Supercomputing and Quantum Computing (MSQC) research group
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Table 1: Hardware settings for the three evaluation setups.
Parameter Cluster Node Local Machine Cloud
CPU Intel Xeon E5-2660 v2 Intel i7-12700H Intel Xeon E5-2696V4

(vCPU)
Cores 20 20 2
RAM 128 GB 32 GB 8 GB
OS Rocky Linux 9 Ubuntu 24.04 Debian GNU/Linux 12
Network Ethernet and InfiniBand

(FDR)
Ethernet Public Internet

at Goethe University, Frankfurt am Main, Germany. As part of this process, we reconfigured a compute
node from the cluster to function as an independent server, ensuring it could operate separately from the
main cluster. This emphasizes the applicability in larger research group’s and enterprise settings, capable of
hosting on-premise solutions, providing full control over the whole workflow.

Third, given the increasing reliance on cloud services in enterprise environments, we also test our solution
on Google Cloud using a E2-standard-2 instance, intended for moderate use, providing good trade-off between
cost and performance [47]. This deployment is designed to evaluate the feasibility of using the solution in
environments with limited computing resources, such as startups, small businesses, or individual developers
who often prioritize cost-effective cloud solutions. The successful deployment, despite the limited resources
of the cloud instance, underscored the solution’s lightweight design and its ability to perform efficiently in
resource-constrained cloud environments. Additionally, deploying the solution in the cloud highlights its
potential for scalability. Without requiring any modifications to the docker image itself, the container setup
can be scaled to more powerful instances, enabling it to handle more demanding workloads as needed.

The consistent behavior observed across different systems and settings underscores the portability and
universality of the composed Q-AIM Docker image, substantiating its viability for widespread adoption.

6.2 Result Discussion
The ability to deploy and use the sample software implementation on all three distinct infrastructure con-
figurations showcases the portability of the proposed solution. Users are not limited to a single hosting
paradigm. From the most straight-forward solution, hosting on personal hardware, to more sophisticated
solutions, like cloud-hosting, to ultimately fully on-premise server hosting, every use case can be covered by
Q-AIM.

Changing the hosting paradigm, e.g. due to higher demand, is just a matter of copying the image and
letting it run on the new host, providing the exact same functionality and equal behavior. This reduces the
dependency on a particular infrastructure and allows the application of the software to diverse users and use
cases.

The evaluation of the portability made it necessary to deploy the same image on different backends,
underlining another key aspect of the docker-based microservice implementation: its reproducibility. The
same image of the software, with all its configurations specifically designed for our use case, was easily
distributed across multiple infrastructures, which can be understood as providing it to different enterprises.
Ultimately, this means enabling other users to use a fully fledged and specifically tailored implementation
reduces the overhead of creating a common basis for further research/collaboration.

Another critical aspect of the evaluation pertains to the integration workflow’s resource efficiency. To in-
vestigate resource consumption, the composed Docker container incorporates a resource monitoring software
image, cAdvisor [40], as microservice. Running the Q-AIM container automatically starts the monitoring
provided by cAdvisor. Utilizing this library, we examined the container’s consumption of CPU and memory
usage for logging in and running the example from Listing 2 as shown in Fig. 6. Notably, the container
exhibited remarkable efficiency, utilizing less than 3 GB of memory in our configuration, whereby Docker
uses free memory for caching and frees it as soon as it is needed.

The findings of aforementioned evaluations underscore the integration workflow’s software implementa-
tion’s pivotal attributes, portability across diverse systems and resource-efficient operation. The demon-
strated success in real-world scenarios, showed by the seamless deployment on different server infrastructure,
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Figure 6: Grafana-based Monitoring Dashboard visualizing memory and CPU usage, as well as network traffic
(receiving and transmitting) for the different containers in Q-AIM run on the local machine evaluation setup.
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positions Q-AIM as a promising solution for users seeking a lightweight, unified, and universally deployable
software solution to incorporate quantum computing hardware and offer access to an on-premise device.

7 Conclusion and Future Work
We proposed the idea of a single-access software solution integrating quantum resources completely vendor-
agnostic. The goal is to enable research groups and small entities willing to procure small quantum devices
to streamline the process after procurement until usage and provision. Moreover, the proposed API solu-
tion should function as an administration and management tool, providing additional security measures for
usage outside of the host’s direct scope. Lastly, it must be flexible and portable enough to fit to diverse
requirements and infrastructures. Therefore, an open-source containerized microservice solution allows for
easy modifications, improved maintainability, and ease of use. Combining all of the above, we introduced
Q-AIM, a prototype implementation fitted to our needs of evaluation, providing an interface to a quantum
simulator mimicking real integration scenarios to serve as proof-of-concept.

Hosting Q-AIM on diverse infrastructures, ranging from personal machines to cloud instances and up to
full on-premise servers, emphasizes its applicability in a wide range of use-cases for different demands. Re-
gardless of the hosting paradigm, Q-AIM ships as self-sustained docker image, incorporating all requirements,
demanding no profound knowledge to utilize it as a single access point integration solution for quantum com-
puting devices. Not only the hosting paradigm can be decided upon depending on the host’s preferences
and demands, but owing to the open-source nature the whole image may be fitted accordingly. This also
allows Q-AIM to be fully vendor-independent by enabling specific modifications to be made, tailored for
downstream tasks to the connected hardware.

To further showcase our streamlined and portable integration workflow, we will use Q-AIM to integrate
the first real quantum computing device for the Modular Supercomputing and Quantum Computing research
group at Goethe University in Frankfurt am Main. This milestone will enable efficient management of control
and access to the computing service both within and beyond the research group. Future works will include
the implementation of error mitigation protocols [48,49] within Q-AIM as well as deployment of multi-hybrid
quantum algorithms [50].

By facilitating dedicated hardware that bridges the interface to the quantum device’s low-level specifica-
tions, Q-AIM enables precise control, allowing users to work at the physical level of quantum hardware—all
through a single access point. Moreover, we plan to extend its capabilities to monitor hardware utilization
in quantum systems, complementing existing monitoring functions in classical computing. This feature is
particularly valuable for scientists engaged in hybrid quantum computing, as it will allow them to seamlessly
track the hardware utilization of their quantum-hybrid code. Additionally, by exposing quantum resources
via an API, classical computing can leverage these resources as accelerators for specific tasks. To further facil-
itate hybrid computing, methods such as RPC or customized code constructs like pragmas can be employed
to enable asynchronous access to quantum computing resources at runtime.

The production-ready version of Q-AIM aims to serve as a unified access point to quantum hardware,
efficiently managing all necessary interactions. This comprehensive approach is designed to streamline inte-
gration and control processes, providing scientists and early adopters with a robust and efficient solution for
advancing quantum research.

Extensive research is essential in the coming years to enhance devices in the current NISQ era and pave
the way for more broadly applicable systems and software that will ultimately surpass it. The development
of software like Q-AIM is therefore crucial.
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