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New characterization of full weight spectrum one-orbit

cyclic subspace codes∗

Minjia Shi†, Wenhao Song‡

Abstract

Castello et al. [J. Comb. Theory Ser. A, 212, 106005 (2025)] provided a complete
classification for full weight spectrum (FWS) one-orbit cyclic subspace codes. In this
paper, we determine the weight distributions of a family of FWS codes and exhibit some
equivalence classes of FWS codes under certain conditions. Furthermore, we provide a
complete classification for r-FWS codes.
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1 Introduction

Subspace codes, introduced by Koetter and Kschischang [10], are collections of subspaces of
a finite vector space Fnq , designed for error control in random network coding. In contrast
to classical linear codes under the Hamming metric, subspace codes are measured by the
subspace distance. Let k, n ∈ Z satisfy 0 ≤ k ≤ n. The Grassmannian space over Fq, denoted
by Gq(n, k) ⊆ Pq(n), consists of all k-dimensional Fq-subspaces of the vector space Fnq , where
Pq(n) represents the collection of all Fq-subspaces of Fnq . A constant dimension subspace code
refers to any subset C ⊆ Gq(n, k) equipped with the subspace metric defined by

d(U, V ) = 2k − 2 dimFq(U ∩ V ) U, V ∈ C.

The minimum distance of such a code is given by

d(C) = min{d(U, V ) | U, V ∈ C, U ̸= V }.

This distance captures the packet loss and mixing phenomena typical in network transmis-
sions, making subspace codes a more natural framework in such contexts.

Among subspace codes, constant-dimension codes (CDCs), in which all codewords are k-
dimensional subspaces, are of particular interest due to their strong algebraic and geometric
properties. A prominent family of CDCs is that of cyclic orbit codes. Specifically, a code
C ⊆ Gq(n, k) is called cyclic if it satisfies the closure property: αV ∈ C for all α ∈ F∗

qn
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and V ∈ C. When C coincides with a single orbit Orb(S) = {αS | α ∈ F∗
qn} for some

subspace S ⊆ Fqn , it is termed a one-orbit cyclic subspace code with S as its representative.
Similar to the classical Hamming case, the (distance) weight distribution of C is defined
by (ω2(C), . . . , ω2k(C)) (see [7]), where

ω2i(C) =
∣∣{αS ∈ Orb(S) : α ∈ F∗

qn , d(S, αS) = 2i
}∣∣

for i ∈ {1, . . . , k}. Note that the definition of weight distribution of C = Orb(S) does not
depend on the choice of S.

To formalize our goals, let us define the quantity L(n, k, q) to be the maximum number
of distinct nonzero weights attainable by one-orbit cyclic subspace codes in Gq(n, k). This
number equivalently captures the maximal number of distinct pairwise distances in such codes.
For a one-orbit code C = Orb(S), the weight spectrum is determined by the intersection
dimensions dimFq(S ∩ αS) as α ranges over F∗

qn . In particular, the distance values satisfy

2 ≤ d(S, αS) ≤ 2k,

for all α ∈ F∗
qn with S ̸= αS, and since distances are always even integers, it follows that

L(n, k, q) ≤ k.

In analogy with the Hamming case, we call a code with exactly k distinct nonzero distances a
full weight spectrum (FWS) code. Generally, a code is an r-FWS code if the last r entries of
the weight distribution are zeroes and all the others are nonzero. In particular, 0-FWS codes
correspond to FWS codes.

The theory of cyclic subspace codes, particularly motivated by applications in random
network coding, was fundamentally shaped by the pioneering work of Etzion and Vardy [5],
whose groundbreaking projective space framework first revealed the cyclic orbit structure and
formalized error correction in projective space. Their framework not only established essential
bounds and constructions, but also highlighted the combinatorial richness of the Grassman-
nian space, sparking a wide range of subsequent research. Among these developments, cyclic
orbit codes have emerged as a structured and algebraically elegant class of subspace codes,
attracting more attention in recent years [9, 12].

To further enhance the algebraic understanding and construction of cyclic orbit codes,
researchers have introduced new tools rooted in linearized polynomial algebra. In particu-
lar, subspace polynomials, as proposed by Etzion et al. [2] offer a powerful representation of
subspaces in the Grassmannian space by associating them with special classes of linearized
polynomials. This framework not only unifies various orbit code constructions, but also facil-
itates explicit analysis of parameters such as orbit lengths and minimum distances. Building
on this approach, Zhao and Tang [12] extended the constructions to broader classes using

generalized subspace polynomials, yielding codes with size up to qN−1
q−1

and minimum distance

2k − 2. Trautmann et al. [11] provided a classification of cyclic orbit codes and a decod-
ing procedure for specific subclasses. Recently, Gluesing-Luerssen and Lehmann [7] studied
the weight distribution of cyclic orbit codes, highlighting its potential as a tool for further
classification.

Beyond their structural elegance, subspace codes, and particularly orbit codes, have found
impactful applications in vector network coding. Etzion and Wachter-Zeh [6] demonstrated
that vector network coding, utilizing subspace codes derived from rank-metric constructions,
can substantially reduce the required field size in multicast networks compared to traditional
scalar linear schemes. Their work not only provides a profound theoretical breakthrough in
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bridging coding theory and network coding but also offers practical coding constructions that
pave the way for more efficient and scalable network communication protocols.

Recently, Castello et al. [3] studied the interplay between subspace codes and FWS codes
by focusing on one-orbit cyclic subspace codes with minimum subspace distance two. They
provided a complete classification of such codes by identifying two infinite families of cyclic
orbit codes constructed via polynomial bases as follows.

Theorem 1.1. [3, Theorem 1.2] Let C be a one-orbit cyclic orbit code in Gq(n, k). Then C
is a full weight spectrum code if and only if C = Orb(S), where S is one of the following:

(1) S =
〈
1, λ, . . . , λk−1

〉
Fq

for some λ ∈ Fqn \ Fq, where

k ≤

{
[Fq(λ)2: Fq]+1

2
if dimFq(Fq(λ)) < n,

n
2

if dimFq(Fq(λ)) = n,

(2) S =
〈
1, λ, . . . , λl−1

〉
Fq2

⊕ λlFq for some λ ∈ Fqn \ Fq2, where k = 2l + 1, n is even, and

l <
[Fq2 (λ): Fq2 ]

2
.

Their results highlighted a promising connection between cyclic subspace codes and clas-
sical FWS codes. In particular, they determined the weight distribution of the first family of
FWS codes in Theorem 1.1 and left the weight distribution of the second family of codes as
an open question.

Problem 1.2. It would be nice to determine the weight distribution of the codes in (2)
of Theorem 1.1. Note that the weight distributions of the codes in (1) and those in (2) of
Theorem 1.1 are different.

Furthermore, they also proposed two related problems:

Problem 1.3. Is it possible to determine the equivalence classes of the codes in Theorem 1.1
under the action of linear isometries?

Problem 1.4. Is it possible to characterize r-FWS codes similarly to what has been done
for FWS codes?

This paper aims to fill these gaps. We determine the weight distribution of the codes in
(2) of Theorem 1.1. We also investigate code equivalence in the context of the normalizer
NGLn(q)(F∗

qn), offering partial progress on the classification. Finally, we study the existence of
r-FWS codes and provide a structural characterization of when such codes can exist.

The paper is organized as follows. In Section 2, we focus on Problem 1.2. In Section
3, we exhibit some equivalence classes by studying the case when the linear map belongs to
NGLn(q)(F∗

qn). In Section 4, we characterize the r-FWS codes. As a consequence, only in some
special cases do we find that r-FWS codes exist. In Section 5, we summarize and conclude
our paper.
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2 The weight distribution of the second family of codes in Theorem
1.1

In [3, Proposition 4.10], Castello et al. analyzed the classification of elements µ ∈ Fqn to derive
the dimension of S∩µS for the second class of codes in Theorem 1.1, yet they did not specify
the explicit weight distribution for this class codes. In this section, we rigorously determine the
weight distribution of the second class of codes in Theorem 1.1, thereby addressing Problem
1.2.

Given an Fq-subspace S of Fqn , the stabilizer of S is

H(S) = {x ∈ F∗
qn : xS = S} ∪ {0}.

Note that H(S) is a subfield of Fqn and S is linear over H(S). This implies that also S ∩ αS
is linear over H(S) for any α ∈ Fqn . The following lemma gives us information on the
weight distribution of a one-orbit cyclic subspace code in relation to the stabilizer of one of
its representatives.

Lemma 2.1. [3, Lemma 3.1] Let C = Orb(S) ⊆ Gq(n, k) and let (ω2(C), . . . , ω2k(C)) be its
weight distribution. If ω2i(C) > 0 for some i ∈ {1, . . . , k}, then k ≡ i (mod [H(S) : Fq]).

Lemma 2.2. [3, Proposition 4.10] Let n be a positive even integer, let λ ∈ Fqn \ Fq2, let
Y = ⟨1, λ, . . . , λl⟩Fq2

and S = ⟨1, λ, . . . , λl−1⟩Fq2
with 1 ≤ l < t

2
where t = [Fq2(λ) : Fq2 ]. If S

is the Fq-subspace of Y given by

S = ⟨1, λ, . . . , λl−1⟩Fq2
⊕ λlFq ∈ Gq(n, 2l + 1),

then dimFq(S ∩ µS) =

2l, if and only if µ ∈ Fq2 \ Fq,
2(l − r), if and only if µ (or µ−1) is of the form p1(λ)

p2(λ)
for some p1(x), p2(x) ∈ Fq2 [x]

such that gcd(p1(x), p2(x)) = 1, p1(x) monic, deg p1(x) = deg p2(x) = r,

and c(p2(x), x
r) ∈ Fq2 \ Fq.

In this case S ∩ µS = S ∩ µS.
2(l − r) + 1, if and only if µ (or µ−1) is of the form p1(λ)

p2(λ)
for some p1(x), p2(x) ∈ Fq2 [x]

such that gcd(p1(x), p2(x)) = 1, p1(x) monic, deg p1(x) = r ≥ deg p2(x),

and c(p2(x), x
r) ∈ Fq.

In this case dimFq(S ∩ µS) = dimFq(S ∩ µS) + 1.

Finally, for any r ∈ {1, . . . , l − 1} (resp. r ∈ {1, . . . , l}) there exist elements µ ∈ Fqn for
which dimFq(S ∩ µS) = 2(l − r) (resp. dimFq(S ∩ µS) = 2(l − r) + 1).

As observed in Lemma 2.2, to determine the weight distribution, we need to count the

pair (p1(λ), p2(λ)) with the form
p1(λ)

p2(λ)
, where p1(λ), p2(λ) ∈ Fq2 [x] also satisfies some prop-

erties, which is closely related to the enumeration of coprime polynomials, hence we need the
following result.

Lemma 2.3. [1, Theorem 3] Let F be a finite field of q elements, and let a(x) and b(x) be
randomly chosen from the set of polynomials in F[x] of degree m and n, respectively, where m

and n are not both zero. Then the probability that a(x) and b(x) are relatively prime is 1−
1

q
.
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We are now in a position to state and prove the main result of this section.

Theorem 2.4. Let n be a positive even integer, let λ ∈ Fqn \ Fq2, let Y = ⟨1, λ, . . . , λl⟩Fq2

and 1 ≤ l < t
2
where t = [Fq2(λ) : Fq2 ]. If S is the Fq-subspace of Y given by

S = ⟨1, λ, . . . , λl−1⟩Fq2
⊕ λlFq ∈ Gq(n, 2l + 1),

then

ω2i =



q, if i = 1,

q4r−1(q2 − 1), if i = 2r + 1, r ∈ {1, . . . , l − 1},

q4r−2(q + 1)2, if i = 2r, r ∈ {1, . . . , l},

qn−1
q−1

− (q + 1)− (q + 1)q2 (q
4l−3−q)(q−1)+(q+1)(q4l−1)

q4−1
if i = 2l + 1.

Proof. We start by counting the number of µ ∈ Fqn such that dim(S ∩ µS) = 2l + 1. In this
case, µ ∈ H(S). Since C = Orb(S) is a FWS code and ω4l > 0, we obtain that H(S) = Fq
by Lemma 2.1. Hence, ω0 = 1. Moreover, µS = S if and only if µ ∈ F∗

q. By Lemma 2.2,
dim(S ∩ µS) = 2l if and only if µ ∈ Fq2 \ Fq. Therefore, ω2 = q. Let c = c(p2(x), x

r).
If dimFq(S ∩ µS) = 2(l − r), then

µ =
p1(λ)

p2(λ)
⇐⇒ µ = c−1 · p1(λ)

p̃2(λ)
,

where c ∈ Fq2 \ Fq, p1(x), p2(x) ∈ Fq2 [x], gcd(p1(x), p2(x)) = 1, p1(x) monic, deg p1(x) =
deg p2(x) = r, and p2(λ) = cp̃2(λ), thus p̃2(x) is monic. According to Lemma 2.3, the
corresponding number of such pairs is

q4r−2(q2 − 1).

Moreover, the ordered triples (c, p1(x), p2(x)) correspond bijectively to µ. Note that the
number of the values of c is q2 − q. Therefore,∣∣{µS : µ ∈ Fq2(λ) \ Fq2 , dimFq(S ∩ µS) = 2(l − r)

}∣∣
= (q2 − q) · q4r−2(q2 − 1) · 1

q − 1

= q4r−1(q2 − 1).

(1)

Thus, ω4r+2 = q4r−1(q2 − 1) for r ∈ {1, . . . , l − 1}.
If dimFq(S ∩ µS) = 2(l − r) + 1. We assume p2(x) is of degree s, then

µ =
p1(λ)

p2(λ)
⇐⇒ µ = d−1 · p1(λ)

p̃2(λ)
,

where c ∈ Fq, d = c(p2(x), x
s) ∈ Fq2 , p1(x), p2(x) ∈ Fq2 [x], gcd(p1(x), p2(x)) = 1, p1(x) monic,

deg p1(x) = r ≥ deg p2(x) = s, and p2(λ) = dp̃2(λ), thus p̃2(x) is monic. It divides into two
cases:
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(1) If c = 0, then s < r. And we assume that µ is the form of p1(λ)
p2(λ)

. Similarly, we need to

count all ordered pairs of coprime polynomials (p1(x), p2(x)) satisfying the conditions
in this case. By Lemma 2.3, if deg p2(x) = s ≥ 1, there are

(q2)r · (q2)s ·
(
1− 1

q2

)
= q2r+2s−2(q2 − 1)

ordered pairs of coprime monic polynomials over Fq2 [x]. Since there are q2 − 1 choices
of d ∈ F∗

q2 , there are q2r+2s−2(q2 − 1)2 different µ’s in total. If deg p2(x) = 0, there are

q2r(q2 − 1) ordered pairs in total (since every non-zero constant is coprime with the
polynomial). Consequently, the number of the ordered pairs (p1(x), p2(x)) for c = 0 is

r−1∑
s=1

q2r+2s−2(q2 − 1)2 + q2r(q2 − 1) = q2r−2(q2 − 1)
r−1∑
s=1

q2s + q2r(q2 − 1)

= q2r−2(q2 − 1)2 · q
2r − q2

q2 − 1
+ q2r(q2 − 1)

= q4r−2(q2 − 1).

Notice that either µ or µ−1 can be the form of p1(λ)
p2(λ)

, so we have 2q4r−2(q2 − 1) different
µ’s in total.

(2) If c ̸= 0, then p2(x) is of degree r and d = c ∈ Fq. By Eq. (1), there are q4r−2(q2 − 1)

choices for
p1(λ)

p̃2(λ)
and q − 1 choices for d.

Similarly, µS = S if and only if µ ∈ F∗
q, hence we obtain that

w4r = |{µS ∈ Orb(S) : µ ∈ F∗n
q , d(S, µS) = 4r}|

=
1

q − 1

(
(q − 1)q4r−2(q2 − 1) + 2q4r−2(q2 − 1)

)
= q4r−2(q + 1)2

(2)

for r ∈ {1, . . . , l}.
If dim(S ∩ µS) = 0, then

ω4l+2 =
qn − 1

q − 1
− q − 1−

l−1∑
i=1

(
q4i−1(q2 − 1)

)
−

l∑
i=1

(
q4i−2(q + 1)2

)
=
qn − 1

q − 1
− (q + 1)− q2 − 1

q

l−1∑
i=1

q4i − (q + 1)2

q2

l∑
i=1

q4i

=
qn − 1

q − 1
− (q + 1)− (q + 1)q2

(q4l−3 − q)(q − 1) + (q + 1)(q4l − 1)

q4 − 1
.

This completes the proof.

Example 2.5. Here we give some examples of weight distributions of the second families of
FWS codes in Theorem 1.1. Let n = 10, l = 2, and t = 5:
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(1) If q = 2, then S = ⟨1, λ⟩F22
⊕ λ2F2 is a dimension 5 vector space over F2, where

F2(λ) = F210 , and the weight distribution of C = Orb(S) is:

ω0 = 1, ω2 = 2, ω4 = 36, ω6 = 24, ω8 = 576, ω10 = 384.

(2) If q = 3, then S = ⟨1, λ⟩F32
⊕ λ2F3 is a dimension 5 vector space over F3, where

F3(λ) = F310 , and the weight distribution of C = Orb(S) is:

ω0 = 1, ω2 = 3, ω4 = 144, ω6 = 216, ω8 = 11664, ω10 = 17496.

(3) If q = 5, then S = ⟨1, λ⟩F52
⊕ λ2F5 is a dimension 5 vector space over F5, where

F5(λ) = F510 , and the weight distribution of C = Orb(S) is:

ω0 = 1, ω2 = 5, ω4 = 900, ω6 = 3000, ω8 = 562500, ω10 = 1875000.

3 Equivalence classes

In [3], the authors introduced the definition of (linear) isometry between one-orbit cyclic
subspace codes and presented some necessary conditions for two (linearly) isometric one-orbit
cyclic subspace codes. Besides, they raised the second open problem about the equivalence
classes of two families of codes mentioned in Theorem 1.1. In this section, we exhibit some
equivalence classes of two families of codes in Theorem 1.1 under the condition that the map
belongs to the normalizer of F∗

qn .

Definition 3.1. [3, Definition 2.1] Let C1, C2 ⊆ Gq(n, k). C1 and C2 are called (linearly)
isometric if there exists an isomorphism ψ ∈ GLn(q) such that ψ(C1) = C2, where

ψ(C1) = {ψ(V ) : V ∈ C1} .

In this case ψ is called a (linear) isometry between C1 and C2. In the special case, where
C1 = Orb(S1), C2 = Orb(S2) and ψ(C1) = C2 for some ψ ∈ NGLn(q)(F∗

qn), we call the cyclic
orbit codes Orb(S1) and Orb(S2) Frobenius-isometric and ψ a Frobenius isometry. Also, if
C ⊆ Gq(n, k), then the automorphism group of C is the group of linear isometries that fix C,
that is Aut(C) := {ψ ∈ GLn(q) : ψ(C) = C}.

Trautmann et al. in [11] studied the cyclic orbit codes and determined the image of cyclic
orbit codes under the (linear) isometry maps.

Lemma 3.2. [11, Theorem 10] Let G ≤ GLn(q), ψ ∈ GLn(q), and U ∈ Gq(k, n).

(1) Set G′ = ψGψ−1 and U ′ = ψ(U). Then ψ(OrbG(U)) = OrbG′(U ′), i.e., the two orbit
codes are linearly isometric.

(2) Let C = OrbG(U) and C ′ = ψ(C). Then C ′ = OrbψGψ−1(U ′) with U ′ = ψ(U). As a
consequence, if ψ ∈ NGLn(G), then C and C ′ are isometric G-orbit codes.

In the following theorem, we determine several classes of equivalence classes of two families
of codes in Theorem 1.1 under the condition of ψ ∈ NGLn(F∗

qn )
.

Theorem 3.3. Let C be a one-orbit cyclic orbit code in Gq(k, n), and let ψ ∈ NGLn(q)(F∗
qn )

.
Then the followig statements hold:
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(1) If C = Orb(S), then
ψ(C) = Orb(S ′),

where S ′ = ψ(S) = αq
i
〈
1, λq

i
, ..., λ(q

i)(k−1)
〉
Fq

with α ∈ F∗
qn and i ∈ {0, 1, .., t − 1},

where S is of the form in Family (1) of Theorem 1.1 and t = [Fq(λ) : Fq].

(2) If C = Orb(S), then
ψ(C) = Orb(S ′),

where S ′ = ψ(S) = αq
i

(〈
1, λq

i
, ..., λ(q

i)(l−1)
〉
Fq2

⊕ λ(q
i)lFq

)
with α ∈ F∗

qn and i ∈

{0, 1, .., 2t− 1}, where S is of the form in Family (2) of Theorem 1.1 and t = [Fq2(λ) :
Fq2 ].

Proof. (1) By Lemma 3.2, ψ(C) = OrbψF∗
qnψ

−1(ψ(S)) = Orb(ψ(S)) since ψ ∈ NGLq(F∗
qn).

Note that the normalizer NGLq(F∗
qn) of F∗

qn in GLn(q) is isomorphic to Gal(Fqn|Fq)⋊F∗
qn

by [8, Theorem 2.4]. We have ψ(C) = αq
i
〈
1, λq

i
, ..., λ(q

i)(k−1)
〉
Fq

with α ∈ F∗
qn and

i ∈ {0, 1, .., t− 1}.

(2) Similarly, we have ψ(C) = Orb(ψ(S)). For α ∈ F∗
qn and i ∈ {0, 1, .., 2t−1}, assume that

S ′′ = αq
i

(〈
1, λq

i

, ..., λ(q
i)(l−1)

〉
Fq2

⊕ λ(q
i)lFq

)
.

For any β ∈ S, then β = p(λ) + aλl, where p(x) ∈ Fq2 [x]≤l−1 and a ∈ Fq. One can

verify that ψ(β) = αq
i
(
p(λ)q

i

+ aλ(q
i)l
)
∈ S ′′. Note that S ′′ is a vector space over Fq

and dim(ψ(S))Fq = dim(S ′′)Fq . Consequently, ψ(S) = S ′′.

Remark 3.4. In particular, ψ(C) = C if k = 1 or i = 0 in case (1). S = αq
iFq when k = 1 and

S = α⟨1, λ, ..., λk−1⟩Fq when i = 0. Therefore, ψ(C) = C.

4 r-FWS codes

In [3], the authors introduced the definition of r-FWS one-orbit cyclic subspace codes and
proposed the problem of determining the classification of r-FWS one-orbit cyclic subspace
codes. In this section, utilizing the classification results in Lemma 4.1 for r-FWS one-orbit
cyclic subspace codes when ω2 > 0, we obtain the necessary and sufficient conditions for
the existence of r-FWS one-orbit cyclic subspace codes which is divided into two classes and
present the weight distribution of the second family of r-FWS codes. For the first family of
codes in Lemma 4.1, the result can be directly obtained from Lemma 4.2. For the second
family of codes in Lemma 4.1, we prove that no r-FWS one-orbit cyclic subspace codes exist
in most cases and further establish the necessary and sufficient conditions for their existence.

Lemma 4.1. [3, Theorem 5.3] Let C = Orb(S) ⊆ G(n, k), ω(C) > 0, λ ∈ Fqn \ Fq such that
d(S, λS) = 2 and t = [Fq(λ) : Fq]. One of the following occurs:

(1) if k < t then S = b
〈
1, λ, ..., λk−1

〉
Fq
, for some b ∈ F∗

qn;

(2) if k ≥ t+ 1, then S = S ⊕ b ⟨1, λ, ..., λm−1⟩Fq
, where S is an Fqt-subspace of dimension

l > 0, b ∈ F∗
qn, bFqt ∩ S = {0}, k = tl +m with 0 < m < t.

8



In the following lemma, the weight distribution of the first family of FWS codes in Theorem
1.1 is given.

Lemma 4.2. [3, Theorem 4.4] Let λ ∈ Fqn \ Fq and let t := [Fq(λ) : Fq]. Let S =
⟨1, λ, . . . , λk−1⟩Fq with 1 ≤ k < t. For the code C = Orb(S), we have the following:

If k ≤ t/2, then

ω2i(C) =


(q + 1)q2i−1, if i ∈ {1, . . . , k − 1},

qn − q2k−1

q − 1
, if i = k.

If k > t/2, then

ω2i(C) =



(q + 1)q2i−1, if i ∈ {1, . . . , t− k − 1},

qt − q2(t−k)−1

q − 1
, if i = t− k,

0, if i ∈ {t− k + 1, . . . , k − 1} and t− k + 1 ̸= k,

qn − qt

q − 1
, if i = k.

The following result showed, under certain assumptions, some missing values in the weight
distribution of C = Orb(S), where S is of the family 2 in [3, Theorem 6.1].

Lemma 4.3. [3, Theorem 6.4] Let (ω2(C), . . . , ω2k(C)) be the weight distribution of C. The
following hold:

(1) If m < t− 1 and H(Y ) = Fqt, then ω2m+2(C) = 0;

(2) If m > t+1
2
, then ω2(k−j)(C) = 0 for any j ∈ {1, . . . , 2m− t− 1};

(3) If Fqt ⊊ H(Y ), then ω2(k−j)(C) = 0 for any j ∈ {1, . . . , 2m− 1};

(4) If t = 3, m = 2, and H(Y ) = Fq3, then ω4(C) = 0.

We will provide some useful facts that will be used in the following theorems.

Lemma 4.4. If b ∈ F∗
qt, then

S ∩ bS = S ⊕
(
⟨1, λ, . . . , λm−1⟩Fq ∩ b⟨1, λ, . . . , λm−1⟩Fq

)
.

Proof. Note that S = bS with b ∈ F∗
qt . If µ ∈ S ∩ bS, then

µ = s1 + λ1 = s2 + λ2

where s1, s2 ∈ S, λ1 ∈ ⟨1, λ, . . . , λm−1⟩Fq , and λ2 ∈ b⟨1, λ, . . . , λm−1⟩Fq . Therefore,

s1 − s2 = λ1 − λ2 ∈ S ∩ Fqt .

This implies s1 = s2 and λ2 = λ1. Consequently, µ can only be expressed in the form

µ = s+ p(λ),

where s ∈ S, p(λ) ∈ ⟨1, λ, . . . , λm−1⟩Fq , and p(λ) ∈ b⟨1, λ, . . . , λm−1⟩Fq .
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Lemma 4.5. If dimFqt
(S ∩ αS) = i, then

dimFq(S ∩ αS) ≤ 2m+ ti.

Proof. We know that dimFq(S + αS) = 2tl − ti. Since S + αS ⊆ S + αS, it follows that

dimFq(S + αS) ≥ dimFq(S + αS) = 2tl − ti.

Therefore,

dimFq(S ∩ αS) = 2k − dimFq(S + αS) ≤ 2k − (2tl − ti) = 2m+ ti.

This completes the proof.

To construct an r-FWS code, the intersection dimensions must exhibit highly controlled
behavior. In particular, we find that S is either “close” to S or Y in the sense that
dimFq(S) ≤ dimFq(S) ≤ dimFq(Y ). Hence the intersection dimension is also “close” to the
respective intersection dimensions. Combining [3, Lemma 6.3 (4)] and Lemma 4.4, we derive
contradictions that allow us to explicitly identify zero entries in the weight distribution (as
done in Lemma 4.3), which will help us find the bounds of r. As a consequence, we show that
in most cases, r-FWS codes do not exist.

Theorem 4.6. Let C be a one-orbit cyclic orbit code in Gq(n, k), and let λ ∈ Fqn \ Fq such
that d(S, λS) = 2 and t = [Fq(λ) : Fq]. Then C is an r-FWS code if and only if C = Orb(S),
where S is one of the following:

(1) S = b
〈
1, λ, ..., λk−1

〉
Fq

for
t

2
< k < t = n and r = 2k − t;

(2) S = S ⊕ b ⟨1, λ, ..., λm−1⟩Fq
for t + 1 ≤ k ≤ n, r = 2m + t(l − 1), Y = Fqn and

2m ≥ t− 1, where S is an Fqt-subspace of dimension l > 0, Fqt ∩ bS = {0}, k = tl+m
with 0 < m < t and Y = ⟨S⟩Fqt

.

Proof. (1) The proof of the first part can be seen from Lemma 4.2.
(2) Let ni =

∣∣αS : α ∈ F∗
qn , dim(S ∩ αS) = i

∣∣ and Sm = ⟨1, λ, ..., λm−1⟩Fq
. Then Y =

⟨S⟩Fqt
= S + b ⟨Sm⟩Fqt

= S ⊕ bFqt ∈ Gqt(n/t, l + 1). Without loss of generality, we assume

that b = 1 in (2). The proof of the second part is divided into four cases:
Case 1: m < t − 1 and Fqt = H(Y ). By Lemma 4.3 (1), we have nk−m−1 = 0,

which implies r ≥ k −m = tl. There exists γ ∈ Fqn \ Fqt such that dimFqt
(Y ∩ γY ) ≤ l since

H(Y ) = Fqt and t < k ≤ n, it follows that

dimFq(S ∩ γS) ≤ dimFq(Y ∩ γY ) ≤ tl,

which means r = tl. Otherwise, it would not be an r-FWS code. Moreover we have

tl ≤ dimFq(S ∩ γS) ≤ dimFq(Y ∩ γY ) ≤ tl,

which implies dimFq(S ∩ γS) = dimFq(Y ∩ γY ) = tl. Furthermore, ∀γ ∈ Fqn \ Fqt , S ∩ γS =
Y ∩ γY .

In particular, for any nonzero µ ∈ S, we have Y ∩ µY = S ∩ µS since S ∩ Fqt = {0}, and
hence we have µFqt ⊆ Y ∩ µY = S ∩ µS, which forces µFqt ⊆ µS, i.e., Fqt ⊆ S. Note that
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λt−1 ∈ Fqt and λt−1 /∈ S ∪Sm. Thus, there exists a polynomial p(λ) ̸= 0 ∈ Sm and s1 ̸= 0 ∈ S
such that λt−1 = p(λ) + s1. This gives

s1 = λt−1 − p(λ) ∈ S ∩ Fqt ,

which is a contradiction. Therefore, no such r-FWS code can exist.
Case 2: Fqt ⊊ H(Y ) and Y ̸= Fqn. Note that Fqt is a subfield of H(Y ), which implies

that H(Y ) is a vector space over Fqt . Let s = dimFqt
(H(Y )) ≥ 2 and j = l+1

s
. If there exists

β such that
dimFq(S ∩ βS) = st · (j − 1) + 1,

then dimFq(Y ∩ βY ) = t(l + 1). By [3, Lemma 6.3 (4)], we have

st · (j − 1) + 1 ≥ 2m− 2t+ dimFq(Y ∩ βY )

≥ 2− 2t+ st · j
≥ st · (j − 1) + 2,

which is impossible. Consequently, nst(j−1)+1 = 0 and r ≥ st · (j − 1) + 2, which implies that
for all µ ∈ F∗

qn ,
dimFq(S ∩ µS) ≥ st · (j − 1) + 2.

Since Y ∩ µY is a vector space over Fqt , we obtain that ∀µ ∈ F∗
qn , dimFq(Y ∩ µY ) = st · j =

t(l + 1), i.e., H(Y ) = Fqn .
Case 3: r = 2m + t(l − 1), 2m ≥ t − 1 and Y = Fqn.
Case 3.1: 2m < t. Then we have dimFq(S ∩ βS) ≤ t(l− 1) for all β ∈ Fqn \H(S) since

H(S) ̸= Fqn . Thus

dimFq(S + βS) = 2k − dimFq(S ∩ βS) ≥ 2tl − t(l − 1) = n,

which implies S + βS = S + βS = Fqn and

dimFqn
(S ∩ βS) = 2k − n = tl + 2m− t.

If β ∈ H(S), then we have

dimFq(S ∩ βS) ≥ dimFq(S ∩ βS) = tl.

If 2m < t − 1 and r = tl + 2m − t, then we have ntl−1 = 0 and ntl+2m−t > 0, in which case
there does not exist r-FWS code. If 2m = t− 1 and r = tl+ 2m− t, then by Lemma 4.4, for
i ∈ {0, 1, . . . ,m} we have

dimFqn
(S ∩ λiS) = tl +m− i,

which implies ntl, ntl+1, . . . , nk are all positive.
Case 3.2: 2m = t. By [3, Lemma 6.3 (4)], we obtain that

∀β ∈ F∗
qn , dimFq(S ∩ βS) ≥ 2m− 2t+ t(l + 1) = tl. (3)

By Lemma 4.4, we have
dimFq(S ∩ λiS) = tl + i,

which implies ntl+i > 0 for i ∈ {0, 1, . . . , t
2
}. Since H(S) ̸= F∗

qn , there exists γ /∈ H(S) such
that

dimFq(S ∩ γS) ≤ t(l − 1).

11



By Lemma 4.5, we have dimFq(S ∩γS) ≤ tl. Combining Eq. (3), we have dimFq(S ∩γS) = tl.
Hence, ntl > 0, confirming that this is a tl-FWS code.

Case 3.3: 2m > t. By [3, Lemma 6.3 (4)], we obtain that

dimFq(S ∩ βS) ≥ 2m− 2t+ t(l + 1) = tl = t(l − 1) + 2m.

One can verify that
dimFq(S ∩ λiS) = tl +m− i

for S ∩ λiS with i ∈ {0, 1, 2, . . . , t−m} and β ∈ Fqt by Lemma 4.4. Consequently, ntl+i with
i ∈ {2m− t, 2m− t+ 1, ...,m} are all positive. This confirms a 2m+ t(l − 1)-FWS code.

Case 4: m = t − 1 and H(Y ) = Fqt. If t = 2 and m = 1, this has been proved to be
a 0-FWS code in [3]. If t = 3 and m = 2, we have nk−2 = 0 by Lemma 4.3 (4), which implies
r ≥ k − 1. According to [3, Lemma 6.3 (4)], we have

dimFq(S ∩ µS) ≥ 2m− 2t+ dimFq(Y ∩ µY ) = dimFq(Y ∩ µY )− 2

for any µ ∈ F∗
qn . If there exists β ̸= 0 such that dimFq(S ∩ βS) = k − 2 and t > 3, then

dimFq(Y ∩ βY ) = t(l + 1). Thus, we have

k − 2 ≥ t(l + 1)− 2 = k − 1.

This is impossible. Therefore, nk−2 = 0 and r ≥ k − 1.
If t ≥ 3, we have shown that for any µ ∈ F∗

qn , dimFq(S ∩ µS) ≥ r ≥ k − 1. Since
H(Y ) = Fqt , there exists β /∈ H(Y ) such that

dimFq(Y ∩ βY ) ≤ tl.

Moreover, we have
dimFq(S ∩ βS) ≤ dimFq(Y ∩ βY ) ≤ tl. (4)

This completes the proof.

Remark 4.7. Indeed, the (tl − 1)-FWS codes and the tl-FWS codes are the same as the
(2m+ t(l − 1))-FWS codes when 2m = t− 1 and 2m = t, respectively.

The following lemma presents a necessary condition for the existence of the second family
of r-FWS codes in Theorem 4.6, which serves as a valuable tool for determining the weight
distribution of such r-FWS codes:

Lemma 4.8. If there exists an r-FWS code, then H(S) = Fqt.

Proof. For any β ∈ Fqn , we have β = s1 + s2 with s1 ∈ S, s2 ∈ Fqt since Fqn = Y = S ⊕ Fqt
and

S =
〈
α, α, . . . , αl

〉
Fqt

= α
〈
1, α, . . . , αl−1

〉
Fqt
,

where α is the element such that Fqt(α) = Fqn . If there exists β = s1 + s2 ∈ Fqn \ Fqt such
that β ∈ H(S), then

(s1 + s2)S = S,

where s1 = a1α+ · · ·+ aiα
i ̸= 0, s2 ̸= 0 with ai ̸= 0 and i ∈ {1, · · · , l}. Furthermore, we have

(s1 + s2)
〈
1, α, . . . , αl−1

〉
Fqt

=
〈
1, α, . . . , αl−1

〉
Fqt
,

which implies αl−i(s1 + s2) ∈
〈
1, α, . . . , αl−1

〉
Fqt

. However, the former contains αl while

the latter does not. Therefore, this is a contradiction and s1 = 0. We have proved that
β = s2 ∈ Fqt .
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In fact, the second family of r-FWS codes outlined in Theorem 4.6 can be classified into
three distinct cases based on the relationship between r, t, l and m:

(1) r = tl − 1 when 2m < t,

(2) r = tl when 2m = t, and

(3) r = t(l − 1) + 2m when 2m > t.

By analyzing these three cases, we derive the following theorem regarding the weight distri-
bution of such r-FWS codes:

Theorem 4.9. If C = Orb(S) is an r-FWS code and µ /∈ H(S), where S is under the
condition of Family (2) in Theorem 4.6, then dimFq(S ∩ µS) = t(l − 1) + 2m.

Proof. If µ /∈ H(S) = Fqt , then we have dimFq(S ∩ µS) ≤ t(l − 1) and

t(l−1)+2m ≥ dimFq(S∩µS)+2m ≥ dimFq(S∩µS) ≥ 2m−2t+dimFq(Y ∩µY ) = t(l−1)+2m.

by [3, Lemma 6.3 (4)]. Thus, if µ /∈ H(S) = Fqt , we have

dimFq(S ∩ µS) = t(l − 1) + 2m.

This completes the proof.

Theorem 4.10. In the case of r = tl − 1, the weight distributions of C are

ω2i(C) =



(q + 1)q2i−1, if i ∈ {1, . . . ,m− 1},

qt − q2m−1

q − 1
, if i = m,

qn − qt

q − 1
, if i = m+ 1.

Proof. If µ ∈ H(S), then we have dimFq(S ∩µS) ≥ dimFq(S ∩µS) = tl. If µ /∈ H(S), then by
Theorem 4.9,

dimFq(S ∩ µS) = t(l − 1) + 2m = tl − 1,

which implies dimFq(S ∩ µS) = tl − 1 ⇔ µ /∈ H(S). Consequently, we obtain

ω2m+2 =
1

q − 1
|{µ ∈ Fqn \H(S)}| =

qn − qt

q − 1
.

According to Lemma 4.4, we only need to consider dimFq(Sm∩µSm), which has been addressed
in Lemma 4.2 and its proof. Thus, we have

|{µ ∈ Fqn ∩H(S) : dimFq(Sm ∩ µSm) = m− i}| =


(q2 − 1)q2i−1, if i ∈ {1, . . . ,m− 1},

qt − q2m−1, if i = m.
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Hence we obtain that

ω2i(C) =
1

q − 1
|{µ ∈ Fqn ∩H(S) : dimFq(S ∩ µS) = tl +m− i}|

=


(q + 1)q2i−1, if i ∈ {1, . . . ,m− 1},

qt − q2m−1

q − 1
, if i = m.

This completes the proof.

Theorem 4.11. In the case of r = tl, the weight distribution of C is

ω2i(C) =


(q + 1)q2i−1, if i ∈ {1, . . . ,m− 1},

qn − q2m−1

q − 1
, if i = m.

Proof. If µ /∈ H(S), then by Theorem 4.9, we have

dimFq(S ∩ µS) = t(l − 1) + 2m = tl.

For µ ∈ H(S), similar to Theorem 4.10, we have

|{µ ∈ Fqn ∩H(S) : dimFq(Sm ∩ µSm) = m− i}| =


(q2 − 1)q2i−1, if i ∈ {1, . . . ,m− 1},

qt − q2m−1, if i = m.

Hence,

ω2m =
qn − qt

q − 1
+
qt − q2m−1

q − 1
=
qn − q2m−1

q − 1
.

This completes the proof.

Theorem 4.12. In the case of r = 2m+ t(l − 1), the weight distribution of C is

ω2i(C) =


(q + 1)q2i−1, if i ∈ {1, . . . , t−m− 1},

qn − q2(t−m)−1

q − 1
, if i = t−m.

Proof. If µ /∈ H(S), then by Theorem 4.9, we have

dimFq(S ∩ µS) = t(l − 1) + 2m.

If µ ∈ H(S), we only need to consider dimFq(Sm ∩ µSm). Similar to Theorem 4.10, we have

ω2i(C) =
1

q − 1
|{µ ∈ Fqn ∩H(S) : dimFq(Sm ∩ µSm) = m− i}|

=


(q + 1)q2i−1, if i ∈ {1, . . . , t−m− 1},

qt − q2(t−m)−1

q − 1
, if i = t−m.
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Hence,

ω2(t−m) =
qn − qt

q − 1
+
qt − q2(t−m)−1

q − 1
=
qn − q2(t−m)−1

q − 1
.

This completes the proof.

The following examples present the weight distributions of the second family of r-FWS
codes in Theorem 4.6:

Example 4.13. Let q = 2, n = 10, t = 5 and m = 2, then r = 4 and l = 1, then
S = S⊕⟨1, λ⟩ is a dimension 7 vector space over F2, where F2(λ) = F25 and S is a dimension
1 vector space over F25 . Since r = tl − 1, according to Theorem 4.10, the weight distribution
of C = Orb(S) is as follows:

ω0 = 1, ω2 = 6, ω4 = 24, ω6 = 992.

Example 4.14. Let q = 2, n = 16, t = 4 and m = 2, then r = 12 and l = 3, then
S = S⊕⟨1, λ⟩ is a dimension 14 vector space over F2, where F2(λ) = F24 and S is a dimension
3 vector space over F24 . Since r = tl, according to Theorem 4.11, the weight distribution of
C = Orb(S) is as follows:

ω0 = 1, ω2 = 6, ω4 = 65528.

Example 4.15. Let q = 3, n = 9, t = 3 andm = 2, then r = 7 and l = 2, then S = S⊕⟨1, λ⟩
is a dimension 8 vector space over F3, where F3(λ) = F33 and S is a dimension 2 vector space
over F33 . Since r = t(l − 1) + 2m, according to Theorem 4.12, the weight distribution of
C = Orb(S) is as follows:

ω0 = 1, ω2 = 9840.

5 Conclusion

In this paper, we obtained the following three main results:

(1) We presented the weight distribution of the second family of FWS one-orbit cyclic sub-
space codes in Theorem 2.4 mentioned in Theorem 1.1 basing on counting the number
of pairs (p1(x), p2(x)) under some conditions.

(2) We investigated some equivalence classes of two families of FWS one-orbit cyclic sub-
space codes in Theorem 3.3 mentioned in Theorem 1.1 under the assumption that the
map belongs to the normalizer of F∗

qn in GLn(q).

(3) We classified the r-FWS one-orbit cyclic subspace codes in Theorem 4.6 relying on the
classification of one-orbit cyclic subspace codes with minmum weight 2 in Lemma 4.1.
We found that there are only two classes of r-FWS one-orbit cyclic subspace codes and
proved that the non-existence of such codes in most cases.

There is still an open problem that naturally arises in this paper: Is it possible to determine
all the equivalence classes of FWS one-orbit cyclic subspace codes under the action of linear
isometries in Theorem 1.1 and 4.6 ?
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