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The rapid advancement of intelligent agents and Large Language Models (LLMs) is reshaping the pervasive computing field.
Their ability to perceive, reason, and act through natural language understanding enables autonomous problem-solving
in complex pervasive environments, including the management of heterogeneous sensors, devices, and data. This survey
outlines the architectural components of LLM agents (profiling, memory, planning, and action) and examines their deployment
and evaluation across various scenarios. Than it reviews computational and infrastructural advancements (cloud to edge)
in pervasive computing and how Al is moving in this field. It highlights state-of-the-art agent deployment strategies and
applications, including local and distributed execution on resource-constrained devices. This survey identifies key challenges
of these agents in pervasive computing such as architectural, energetic and privacy limitations. It finally proposes what we
called "Agent as a Tool", a conceptual framework for pervasive agentic Al, emphasizing context awareness, modularity,
security, efficiency and effectiveness.
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centered computing — Ubiquitous computing; « Networks — Cloud computing.
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1 Introduction

Agents, designed to perceive, reason, and act within their environment, are pivotal for solving complex tasks.
The advent of Large Language Models (LLMs) has recently revolutionised this domain. Trained on vast web
datasets, LLMs demonstrate an impressive understanding of human language and can generate remarkably similar
and accurate responses. Integrating these capabilities has led to the development of LLM-based agents, where
LLMs serve as the core cognitive engine, combined with perceptual, reasoning, and action mechanisms. This
synergy has introduced a new paradigm of more intelligent and versatile agents applicable across diverse domains.
Agents can have various capabilities. Some are purely reactive, responding to explicit user prompts [26, 137],
while others show proactive functionalities by autonomously initiating tasks based on their understanding of
the environment [131]. Their applications are widespread. Embodied agents, interact with the physical world
via sensors and actuators [24], whereas software agents operate in digital environments, performing tasks like
information retrieval or software and research development [132, 136].

Also the field of pervasive computing, focused on integrating computing and communication environments into
human daily life, has made considerable progress. This ranges from high-performance computing (HPC) systems to
resource-constrained IoT devices, with applications in smart homes, cities, factories, or hospitals. In this pervasive
context, agents offer vast potentials. Their abilities to perceive, reason, and interact can significantly enhance
the scope and utility of pervasive computing applications. However, deploying agents in these environments
presents significant computational, and security challenge that necessitate custom solutions. Researchers have
proposed various solutions to solve these challenges. Therefore, this paper analyses strategies for integrating
agents into pervasive computing, examines existing applications, identifies persistent challenges, and explores
ongoing research efforts to address them. Specifically, the paper is structured as follows:

(1) First, an introduction to LLM-based agent systems will cover their architecture, performance evaluation
metrics for accuracy and robustness, and diverse applications.
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(2) Next, the paper will introduce pervasive computing, detailing recent advancements, its underlying
infrastructure, and the integration of artificial intelligence, culminating in agent adoption.

(3) Then, it will explore agent implementation in pervasive environments, focusing on architectural strategies
for effective deployment tailored to available infrastructure, supported by application examples.

(4) A detailed discussion will then analyse unresolved challenges in the field and current research directions
aimed at their resolution.

(5) Finally, the paper will propose a future research vision for LLM-Agents in pervasive computing, culminat-
ing in the "Agent as a Tool" concept.

2 Agent LLM Architecture

As described by Franklin and Graesser, an agent can be defined as a system that exists within an environment, it
perceives that environment through observation using sensors, and acts upon it through effectors, over time, in
pursuit of its own agenda and so as to effect what it senses in the future [27].

In the context of LLM-based agents, a natural language processing pipeline is employed to enable the agent
to perceive, reason, and interact with its environment to accomplish specific goals. Perception, the initial stage
in this process, involves gathering information about the current state of the environment [98]. This often
occurs through natural language inputs, where users provide instructions or queries [26], or structured text,
including HTML or a programming language formats [35, 137]. In addition, multimodal LLMs (MLLM), process
visual and auditory data, resulting in enhanced environmental comprehension and information use [24]. Also,
to enhance environmental interaction, respect constraints, and achieve goals, LLM-based agents require a
robust understanding of implied textual meanings [45]. Following perception, the agent leverages the LLM’s
natural language processing capabilities for reasoning and planning. This involves in processing the perceived
information, interpreting user intent, and analyzing possible courses of action [65, 98]. A key aspect of this
stage is the formulation of strategic plans to achieve desired outcomes. Complex tasks are often decomposed
into manageable subtasks to facilitate execution [45, 65] such as for robots movements management [120],
automatic world exploration [94] or code debugging [101]. The final stage involves in interacting directly with
the environment following the previous reasoning steps [98]. Actions may include generating natural language
responses to the user, providing explanations or completing tasks through dialogue [111, 136], invoke external
tools or APIs [24, 77] or produce executable code [132]. To accomplish all these tasks modern agent architectures
typically consist of multiple key modules that work together to create intelligent behavior. A typical LLM-
agent architecture has four key modules: a profiling module for defining the agent’s role, a memory module
for storing and retrieving past experiences, a planning module for formulating future actions, and an action
module for translating decisions into outputs [136]. Also, evaluating this architecture is essential to determine
the effectiveness of its modules, especially within the intended application domain. The following sections will
explore the LLM architecture, the specific functionalities and interactions of the agent modules, and the evaluation
strategies and application domains of these intelligent LLM agents.

2.1 Large Language Models

The LLM architecture serves as the core cognitive component, or "brain", of these intelligent agents. Its fundamental
operation relies on "next token prediction”. This means that given an input sequence of words (tokens), transformed
into numerical embeddings, the LLM predicts the subsequent word in the sequence, iteratively generating the
output. The success of LLMs in this task is largely attributed to their foundation in the Transformer architecture,
illustrated in Figure 1. Its design captures long-range dependencies within the text and effectively models
the complex structures of human language [93]. A typical LLM consists of stacked Transformer layers, each
incorporating a multi-head self-attention mechanism and a position-wise fully connected feed-forward network.
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Fig. 1. The transformer architecture, from [93]

The multi-head self-attention mechanism allows the model to weigh the importance of different parts of the
input sequence when processing each word. It processes the encoded input as a set of key-value pairs (K, V),
where both keys and values have a dimension equal to the input sequence length (n). The Transformer employs
scaled dot-product attention to calculate how much attention each value should receive based on a query (Q):

T
Attention(Q,K,V) = softmax(Q%V)
n

Instead of performing this attention calculation just once, the multi-head mechanism does it in parallel multiple
times. The resulting independent attention outputs are then combined (concatenated) and transformed linearly
to produce the desired output dimensions. The Transformer architecture is fundamentally composed of two main
components: an encoder and a decoder. The encoder’s role is to create an attention-based representation of the
input, enabling it to "attend" to relevant information. Each encoder layer includes a multi-head self-attention
sub-layer and a simple position-wise feed-forward network, with each sub-layer benefiting from a residual
connection and layer normalization. The decoder’s function is to generate the output sequence based on the
encoded representation. Each decoder layer includes two multi-head attention sub-layers (one for self-attention
and one for attention over the encoder’s output) and a feed-forward network, again with residual connections
and layer normalization. Finally, a a linear layer and a softmax are applied to the decoder’s output, producing a
probability distribution over the vocabulary from which the next word is sampled.

LLMs commonly employ this Transformer architecture, scaling it to billions or even trillions of parameters
and incorporating various optimization strategies. For instance, decoder-only architectures like GPT-3 and
LLaMA predict each next token based on the preceding ones. Conversely, encoder-only architectures such
as BERT and RoBERTa prioritise understanding the input text to generate task-specific outputs like labels or
token predictions [60]. In the agentic field, the choice of architecture depends on the required task. Typically,
decoder-only architectures are most commonly used when we want an agent to perceive, reason, and interact
with the environment. Furthermore, Multimodal Language Models (MLLMs) are increasingly gaining traction
for agents interacting in multimodal environments (text, images, video, audio). This is because they allow
the application of Transformer architectures across diverse modalities like vision and audio. To enable such
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multimodal capabilities, MLLMs extend the Transformer architecture by embedding non-text inputs (e.g., image
patches or audio tokens) into the same vector space as textual tokens. These embeddings are then processed
jointly within shared Transformer layers or through modality-specific experts, such as in Multiway Transformer
architectures. Deep modality fusion is achieved via cross-attention or unified encoders, enabling fine-grained
interactions between visual and textual features [50].

2.2 Agent Modules

LLM-based autonomous agents are designed to effectively perform diverse tasks by leveraging the capabilities of
Large Language Models (LLMs). To achieve this, their architecture typically incorporates 4 key modules: profiling
module, memory module, planning module, and action module.

Idea Generation System Prompt

You are an ambitious AI PhD student who is looking to
publish a paper that will contribute significantly to the field.

Fig. 2. An example of profiling prompt used in [57]

2.2.1  Profiling. The primary purpose of the Profiling Module is to define the role-specific identity of the agent,
which significantly influences its behavior and interactions [98, 136]. This module is crucial for enabling agents
to generate more contextually relevant responses from the LLM across different modalities. These profiles are
typically added into the model context window. By including role descriptions in the prompt, the profiling
module guides the LLM’s reasoning style, response formulation, and interaction strategy [136]. For instance,
in [57] the agent is profiled to work as PHD student that want to publish some papers (Figure 2). The profiling
module serves as the foundation for agent design, giving a significant influence on the entire agent’s modules
ecosystem [98]. The chosen profile can impact how the agent remembers information (memory module), how it
formulates strategies to achieve its goals (planning module) that consequently will impact also the future actions.
For example, an agent profiled as ’an expert machine learning researcher’ [35] might prioritise certain experiments
over others or selectively memorise results more significant to its research. Similarly, an agent profiled as ’an
advanced Al system serving as an impartial judge for intelligent code generation outputs’ [144] would focus more
intently on code details, errors, and bugs than on other capabilities. Agent profiles are commonly implemented
by handcrafting specific prompts that describe the desired role and behavior [98]. However, other strategies can
be used, including LLM-generation of profiles and dataset alignment to reflect real-world characteristics [98].
Combining these strategies can yield additional benefits. Moreover agent profiles can include multiple dimensions,
including basic attributes, behavioral patterns, and social information [136].

2.2.2  Memory. LLM architectures lack persistent memory across test time interactions, requiring prior exchanges
to be explicitly included within the context window (Figure 3). This limitation underscores the need for effective
memory management strategies in LLM-based agents, particularly for prioritizing relevant information during
storage and retrieval. As the agent’s interaction history expands, exceeding the fixed context window’s capacity,
summarization or information filtering becomes unavoidable. Consequently, autonomous LLM-based agents rely
on a memory module to retain, recall, and reflect upon past observations, thoughts, feedback, and actions. This
enables them to better understand the current context, anticipate future needs, correct their action trajectory,
adjust their behavior, and maintain consistent and coherent behavior over time [98, 105, 111]. This module often
incorporate different structures to manage information across varying timescales:
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o Short-Term Memory: This type of memory maintains contextually relevant information about recent
perceptions, reasoning and actions (the trajectory history) within the LLM context window [85, 136].
It allows for real-time adaptation during an interactive session. Examples include the internal states
maintained by a conversational agent or the intermediate steps during a web research [137]. However,
the limited context window of LLMs poses a challenge for relying solely on short-term memory.

¢ Long-Term Memory: In contrast to the real-time encounter observations, which provide short-term
memory, the overall encounter history represents long-term memory [138]. Long-term memory can
provide stable knowledge to complement the flexibility of short-term memory. This module is important
because stores both successful experiences, demonstrating correct goal achievement strategies, and
unsuccessful experiences, highlighting incorrect paths to avoid. For instance in [107], successful paths
are stored as “"Thought Cards’ and retrieved upon encountering a new question with a similar topic or
in [131] the agent store historical events that will be used to predict potential tasks.

e Hybrid Memory: Many agents use a combination of short-term and long-term memory to leverage the
benefits of both [98]. Short-term memory handles immediate context, while long-term memory provides
access to a broader history and consolidated knowledge.

These structures can be stored in various formats, each with its own advantages. One approach is to keep
everything in natural language form. This is especially useful for conversational agents, where it’s important to
be transparent about the agent’s history. For instance, in [85] store past trials as verbal descriptions, making it
easy to see what the agent has learned. Similarly, in [94] descriptions of skills within the Minecraft game are
stored directly as natural language within the agent’s memory. Then, there’s the idea of Embedding Memory.
Here, past experiences are transformed into high-dimensional vectors [98]. This allows for really fast reflection
and helps the agent generalise across different situations. It’s especially good for searching through knowledge
quickly, based on semantic similarity [136]. Finally databases can be used to store memories. This gives us
considerable power to manipulate the data through structured queries. So agents can be used to understand
and execute SQL queries in natural language, which lets it interact with the database really effectively [84].
Memory module supports three core operations. First writing, which involves persisting relevant information
from past interactions into the memory. Key considerations during memory writing include handling duplicated
information and managing memory overflow [11]. Techniques such as summarizing similar information, using a
FIFO buffer to overwrite old entries [98], truncating historical data that exceeds processing capacity [111], and
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implementing time limits to discard redundant data and prevent excessive memory consumption [142] are used.
Then, memory reading is a crucial operation that aims to obtain relevant knowledge from the agent’s memory to
adapt its behaviors and inform its next actions [136]. The retrieval of valuable information often considers factors
like recency, relevance, and importance of the memories. These factors commonly include the recency of the
memory, its relevance to the current situation or query, and its perceived importance [98, 111]. Finally, memory
reflection allows the agent to analyse, refine, and optimise the accumulated memories [136]. It emulates human
cognitive processes of summarizing and inferring more abstract and high-level insights from past experiences.
Reflection can occur hierarchically, generating insights based on existing insights [85]. As mentioned in the
previous section, the memory module is not isolated. It is influenced by the agent’s profile, which can determine
what types of information are prioritised for storage and retrieval. Furthermore, the memory module plays a
critical role in the planning process, providing the necessary context and historical data for the agent to formulate
effective future actions. The planning module might retrieve information from memory to inform its reasoning
and decision-making.

2.2.3  Planning. The planning module is essential for autonomous agents, enabling them to formulate future
action sequences to achieve defined goals [98]. It allows agents to move in goal-directed, multi-step problem-
solving. The planning module combines environmental feedback, current state, desired outcomes, memory, and
profile information to construct a trajectory of actions that effects a transition from the agent’s current state to a
target goal state. Various methodologies have emerged for incorporating LLMs into the planning process, each
representing a different approach to leveraging their capabilities:

e LLM-as-Planner directly employs the inherent reasoning abilities of LLMs to generate plans from natural
language instructions [45]. This paradigm emphasizes the autonomous planning capacity of LLMs, relying
on their ability to interpret and translate natural language directives into actionable plans.

e LLM-as-Facilitator uses LLMs to augment existing planning algorithms, such as classical symbolic
planners. In this context, LLMs may serve as translators, converting natural language problem descriptions
into formal planning languages, such as the Planning Domain Definition Language (PDDL), which are
then processed by external planners [47, 98].

e Multi-Agent Planning involves the coordination of plans and actions among multiple agents to achieve a
shared objective [31]. This necessitates the implementation of mechanisms for inter-agent communication,
negotiation, and belief revision. Collaborative planning approaches are exemplified by frameworks such as
PlanGEN [65], which employs specialised LLM agents for constraint checking, verification, and selection,
and Master [28], which proposes a hierarchical multi-agent framework that dynamically generates
collaborating agents, validates reasoning, and adjusts confidence-based scoring using Monte Carlo Tree
Search (MCTS) to enhance accuracy and efficiency.

One key aspect of the planning module is task decomposition, where complex tasks are broken down into
smaller, more tractable sub-problems, facilitating efficient execution. For example, PlanGEN [65] is specifically
engineered to augment LLMs’ capacity to generate effective natural language plans through this decomposition
process. Similarly, WebPilot’s Planner module [137] initiates its operation by partitioning complex web tasks into
manageable subtasks, thereby constructing a flexible, high-level plan that can adapt to the inherent uncertainties
of web environments. Consequently, determining the optimal sequence of these subtasks or individual actions,
becomes crucial for achieving the overarching goal. In more complex scenarios, the planning module may also
necessitate the allocation of available resources across various planning components [45]. This is exemplified
by the TravelPlanner benchmark [112], which evaluates agents’ ability to generate travel itineraries from user
queries, demanding the navigation of extensive online resources using specialised tools and adherence to user
constraints. This benchmark assesses the agent’s resource allocation across diverse tasks, including city searches,
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flight bookings, accommodation selection, and dining arrangements. In the current literature planning module
employs diverse strategies in task decomposition:

¢ Single-Path Planning: The agent follows one trajectory of thought and action at a time, without
exploring alternative possibilities. Examples include Chain of Thought prompting, where the LLM reasons
step-by-step along a linear path [98].

e Tree-Based Planning: The agent explores multiple potential thought trajectories, organizing them into
a tree structure. This allows for backtracking and evaluating different options before committing to a
plan. Techniques like Tree of Thoughts and methods using Monte Carlo Tree Search (MCTS) fall under
this category [45].

e Hierarchical Planning: Involves planning at different levels of abstraction, with high-level plans broken
down into more detailed, low-level actions or sub-goals [111, 137].

Effective integration of feedback within the planning module significantly enhances the ability of LLM-based
agents to operate in complex and dynamic environments [31]. This capability allows agents to move beyond static,
pre-defined plans and engage in a more adaptive and iterative problem-solving process. So we can categorise
planning approaches in 2 groups:

e Planning without Feedback: The agent formulates a plan upfront and executes it sequentially without
adjusting based on intermediate outcomes [31]. This approach is appropriate for tasks of lower complexity,
including conversational interaction.

¢ Planning with Feedback: The agent receives information from the environment, humans, or other
models about the progress and outcomes of its actions [45]. This feedback is then used to dynamically
adjust and refine the plan. Environmental Feedback can include task completion signals or observations
after taking an action [122]. Human feedback can provide guidance or corrections [26]. Model-based
feedback, such as self-reflection or critique from another Al model, can also be valuable [85].

Finally, careful consideration of memory and profiling is vital for effective planning. The memory module
provides the historical context, past experiences, and relevant knowledge needed to formulate informed plans.
For instance, past successes or failures in similar situations, user preferences, or environmental observations
stored in memory can guide the planning process [85]. The agent’s profile, defined by the profiling module, can
also influence the style and focus of the planning process. For example, an agent profiled as risk-averse might
prioritise plans with higher certainty of success, while a creative problem-solver profile might encourage the
exploration of novel or less conventional plans [136].

2.2.4  Action. The primary goal of the Action Module is to translate the agent’s formulated plans into specific
outcomes within the environment. It acts as the execution engine, directly engaging with the surrounding
world [98]. The intended outcomes of agent actions are diverse and intrinsically linked to the agent’s designated
task. Actions may be directed towards achieving concrete objectives, such as item crafting in a game [94] or
software development task completion [101], where each action contributes directly to the final goal. In the
context of a web browsing agent [42], actions can include navigating or interacting to specific pages. Actions
may also facilitate information sharing and collaboration with other agents [28] or human users [26], including
conversational exchanges and feedback provision. Furthermore, agents perform exploratory actions to gain new
knowledge and expand perception [105], optimizing learning and performance through exploration-exploitation.
The Action Module receives from the Planning Module a sequence of steps or a specific action to be taken and
translates them into executable actions [98]. The Action Module’s operational mechanism varies with the agent’s
architecture and action space, which collectively define the agent’s interaction capabilities. Actions can be broadly
categorised as follows:
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e External Tool and API Interaction: LLM-driven agents frequently generate natural language commands
or structured calls to external tools and APIs [77]. This allows them to interact with the external world,
using resources like search engines for web navigation [42] (including clicking, form filling, and scrolling),
databases via SQL queries [84], code execution environments [101], PDDL solver execution [10], or
specific application such as FlightSearch API with correctly formatted parameters [112]. To simplify the
integration of diverse APIs, the Model Context Protocol (MCP) [2] standardises API access, eliminating
manual tracking and description. MCP’s Host-Client-Server architecture facilitates dynamic tool discovery
and execution, enabling any MCP-compatible LLM application to use connected server tools.

e Internal Response Generation: This category includes actions that generate internal responses, such as
providing explanations or refining plans [85, 122]. This is crucial as each action’s consequence, affecting
the user’s information state or the environment’s state, provides vital feedback. The Planning Module
uses this feedback to iteratively adjust the agent’s policy and refine future actions.

e Embodied Navigation and Manipulation: For embodied agents or robotic control systems, the Action
Module grounds high-level skills or planned actions into low-level motor commands executable in physical
or virtual environments [111]. This serves as an intermediary, bridging the gap between cognitive planning
and physical execution.

Therefore the design of a comprehensive and precise action space is crucial for building robust agents, as it
standardises the translation of high-level plans into executable operations. To enhance execution accuracy, action
names should semantically correspond to their behavior, and natural language descriptions should be provided
to clarify action usage [115].

2.3 Agent Evaluation

Evaluating the capabilities of Al agents is crucial for their development and integration into various applications
and specific domains. As the field of LLM-based autonomous agents grows, the need for robust evaluation methods
becomes important. These tools allow for rigorous testing of architecture effectiveness within the intended
operational domain. Generally, agent evaluation can be categorised into two main approaches: subjective and
objective.

2.3.1 Subjective Evaluation. Subjective evaluation is particularly effective when assessing qualitative aspects of
agent performance, such as overall helpfulness or user-friendliness, where quantitative metrics are difficult to
define or evaluation datasets are limited. LLM-based agents are often designed to serve humans, making subjective
evaluation a critical component as it reflects human criteria. This involves human evaluators directly interacting
with the system or observing its performance, and then providing judgments based on predefined criteria or
overall impressions. This approach often uses structured questionnaires with Likert scales to assess qualitative
aspects. For instance, Franciscatto et al. [26] employed a 5-point Likert scale to evaluate visibility, support,
usefulness, transparency, justification, and data integration capabilities. Similarly, Shaer et al. [79] used Likert
scales to assess generated ideas for relevance, innovation, and insightfulness by both expert and novice evaluators.
Furthermore, in [78] the authors conducted human surveys with PhD researchers, who rated paper quality on
experimental quality, report quality, and usefulness, and also simulated peer review using NeurIPS-style scores.
Subjective evaluation, while offering valuable qualitative insights, shows a series of considerable challenges.
Primarily, it is resource-intensive and time-consuming, necessitating the recruitment of a sufficiently large and
diverse pool of human evaluators, which can incur substantial financial costs and require extensive logistical
planning for study preparation and execution. Moreover, the inherent subjectivity of human judgment introduces
potential biases, influenced by individual perspectives, experiences, and cultural backgrounds. These biases can
disrupt the objectivity and generalizability of evaluation results. Consequently, the interpretation and integration
of subjective evaluation data require careful consideration of these inherent limitations, emphasizing the need for
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rigorous methodological design and transparent reporting to mitigate potential biases and enhance the reliability
and validity of findings.

2.3.2  Objective Evaluation. Objective evaluation uses quantitative metrics to enable computational, and compar-
ative analysis, thereby providing concrete and measurable assessments of agent performance. The selection of
appropriate metrics is crucial for evaluating specific aspects of agent performance. For Task Completion and
Efficiency, evaluation focuses on the agent’s ability to achieve defined objectives with efficient resource use.
This category includes metrics such as Success Rate [10], quantifying overall goal attainment; Progress Rate [10],
tracking incremental advancements in multi-turn interactions; Completion Rate [115], measuring the proportion
of completed sub-tasks; Execution Efficiency [115], assessing action efficiency relative to sub-task completion;
Cost Efficiency [115], evaluating resource consumption through token usage; Number of Steps [113], quantifying
operational effort via LLM calls; and Cost per Instance [113], measuring monetary expenditure for API queries.
In numerous applications, Accuracy and Correctness have critical importance. Metrics within this category
assess the fidelity and consistency of generated information, plans, and actions. This includes Accuracy [98],
evaluating overall output correctness; Answer F1 [53], measuring query response accuracy in knowledge graph
environments; Test Coverage and Bug Detection Rate [98], assessing the agent’s ability to generate effective test
cases and identify software defects. For agents designed for conversational or interactive tasks, Dialogue and
Interaction Quality is assessed using metrics such as Recency, Relevance, and Importance [33]. These metrics
evaluate the coherence, relevance, and meaningfulness of agent dialogues, capturing the nuances of human-agent
interaction. Finally, as Al agents are increasingly deployed in critical systems, Adversarial Robustness becomes
a key evaluative consideration. Metrics such as Benign Utility, Utility Under Attack, and targeted Attack Success
Rate [21] evaluate the agent’s resilience to adversarial attacks, ensuring security and reliability in real-world
deployments.

Frameworks and Benchmarks. To comprehensively evaluate the capabilities of agents across diverse application
domains, a range of specialised benchmarks and frameworks have been developed. These include AgentBench [53]
, which features tasks simulating real-world scenarios such as web browsing and gaming, alongside code genera-
tion and execution tasks involving operating systems, databases, and knowledge graphs. TheAgentCompany [113]
provides a self-contained environment that models a small software company, including tasks like web browsing,
code writing, and inter-agent communication. DevAl [144] presents 55 real-world Al application development
tasks curated by expert annotators, while SWE-bench [119] offers 2294 software engineering problems derived
from actual GitHub issues and pull requests across 12 prominent Python repositories. Text-based game envi-
ronments, such as ALFWorld [85], and Minecraft [94], are used to evaluate language agent performance in
interactive, simulated settings. WebShop [121] focuses on assessing product search and retrieval capabilities, and
WebArena [143] provides a comprehensive website environment for end-to-end agent evaluation. RoCoBench [59]
evaluates multi-agent collaboration across diverse scenarios, emphasizing communication and coordination
in cooperative robotics. TravelPlanner [112] benchmarks real-world planning capabilities in language agents,
and ScienceWorld [99] evaluates reasoning and planning abilities by posing questions designed to challenge a
fifth-grade student. Finally, for evaluating safety and privacy, AgentDojo [21] measures Al agent resilience to
prompt injection attacks, and PrivacyLens [82] quantifies potential data leakage to assess privacy norm adherence
in language model agents.

2.3.3 LLM-Evaluators. A growing number of researchers are also exploring the use of Large Language Models
(LLMs) themselves as intermediaries for agent assessment. For instance, ALI-Agent [95] leverages autonomous
LLM-driven agents to automatically generate realistic test scenarios and iteratively refine them, enabling adaptive
evaluations of alignment that effectively identify subtle, long-tail risks without relying on continuous human
feedback. This framework employs a memory module for scenario generation, a tool-using module that integrates
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Web search and fine-tuned evaluators to reduce human labor, and an action module for test refinement. Building
upon the concept of LLMs as judges, the Agent-as-a-Judge framework [144] extends this by employing agents
to evaluate other agents. Recognizing the step-by-step operation of the agents, this framework aims to provide
rich, intermediate feedback throughout the task-solving process, rather than relying solely on final outcomes.
This approach has demonstrated success in code generation tasks, outperforming traditional LLM-as-a-Judge
methods and achieving reliability comparable to human evaluations. ChatEval [9] employs a multi-agent debate
approach to enhance LLM-based evaluation quality. By deploying a team of LLM agents with diverse role prompts,
ChatEval facilitates autonomous discussion and evaluation of generated responses. This synergistic approach,
leveraging the unique capabilities of multiple LLMs, exhibits superior accuracy and correlation with human
assessments compared to single-agent evaluations. Similar multi-agent systems, such as IntellAgent [44], use an
LLM to perform roles like event generation, user agent, and dialog critique, implicitly integrating LLMs into the
evaluation of agent behavior. SCALEEVAL [18] proposes an agent-debate-assisted meta-evaluation framework
to address this, employing communicative LLM agents for iterative discussions that assist human annotators
in identifying the most capable LLM evaluators, particularly in novel, user-defined scenarios. In cases of agent
disagreement, minimal human oversight ensures a balance between efficiency and reliability. This approach
enables scalable assessment of LLM evaluator trustworthiness across diverse tasks and criteria. While LLM-based
evaluation offers advantages such as automation, scalability, and the ability to probe complex behaviors, it also
presents challenges. These include reliance on inherent LLM capabilities and potential biases, which may cause
incorrect evaluations, diverging from expert human judgment in domain-specific tasks [89]. Furthermore, LLM
evaluations are susceptible to prompt engineering and format variations, potentially leading to inconsistent
assessments [18]. The inherent lack of understanding in specialised domains can result in potential errors that
human experts would make [89].

2.4 Field of Use

The domain-specific nature of agent evaluation highlights their adaptability, as reflected in the diverse metrics
and frameworks used across various sectors. LLM-based agents demonstrate broad applicability in domains such
as:

e Software Engineering and Code Generation: Agents simulate developer workflows using tools like
terminals and GitHub. Platforms like OpenHands [101] enable secure execution of scripts and commands
in sandboxed environments, supporting tool reuse and multi-agent collaboration. Reflexion [85] enhances
agent reasoning through verbal feedback and episodic memory. MAGIS [91] focuses on ongoing software
maintenance using multiple LLM agents for bug fixes, feature updates, and optimizations.

e Embodied Agents: These agents interact with physical or virtual environments using sensory feedback.
LAC [114] integrates LLMs into robotic control. Steve [141] and Voyager [94] operate in Minecraft
environment, while WebPilot [137] and AutoWebGLM [42] automate web-based tasks.

e Research and Development: Agents assist or automate the research process. Agent Laboratory [78]
supports literature review and experimentation. Al Scientist [57] enables full-cycle scientific discovery.
ADAS [35] automates agent system design, allowing transfer across domains.

¢ Information Management and Retrieval: Agents go beyond static information extraction by au-
tonomously optimizing when and how to retrieve and process data. Systems like A-MEM [116] enable
contextual memory and adaptive learning. RAG pipelines are enhanced by multi-agent RL architec-
tures [17], while Search-o1 [48] empowers reasoning through agentic search and document reasoning.

e Healthcare and Medicine: Agents automate complex clinical and administrative tasks. ClinicalA-
gent [127] leverages external biomedical knowledge for trial analysis. Other systems [29] handle adminis-
trative processes like record retrieval, patient registration, billing, and appointment scheduling.
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The demonstrated versatility of LLM-based agents across various domains motivates their exploration within
everyday environments like smartphones and IoT devices. Their deployment in pervasive computing settings
offers solutions for complex decision automation, enhanced user interaction, and improved accessibility. This
potential is supported by recent advances, including compact and efficient LLMs [92, 120], increased memory in
embedded systems, power-efficient processors, specialised hardware such as NPUs, and high-speed communica-
tion technologies like 5G. The following sections explore the pervasive computing landscape, the evolving role of
Al within it, and the integration of LLM-based agents in pervasive environments.

3 Pervasive Computing: an Overview

Pervasive computing, also referred to as ubiquitous computing, was conceived in early seminal work as technology
that would "weave themselves into the fabric of everyday life until they are indistinguishable from it’ [104]. This
concept aims the creation of environments densely populated with computing and communication capabilities,
yet seamlessly integrated with human users, until the technology effectively becomes "transparent” [74, 76]. So
while distributed systems and mobile computing enabled "anytime, anywhere" access to information, though
not always with guaranteed connectivity, pervasive computing fundamentally shifts towards an "all the time,
everywhere" presence, ensuring seamless access to computing whenever and wherever it is needed [74]. Pervasive
computing manifests in various devices, formats, and locations, ranging from resource-constrained sensors to
high-performance servers, including cloud datacenters, mobile edge computing servers, mobile devices, TVs,
wearables, sensors and embedded systems. These interconnected devices leverage various wireless communication
technologies to enhance their capabilities while minimizing resource consumption, including battery power,
memory, and CPU time leading to the proliferation of Internet of Things (IoT) devices. These IoT devices, endowed
with sensing, computing, networking, and communication functionalities, are capable of collecting, analysing, and
transmitting a diverse spectrum of data, including images, videos, audio, texts, wireless signals, and physiological
signals from individuals and the physical environment. Furthermore sensors, integral to many IoT devices,
play a crucial role by monitoring phenomena both within and beyond human perception, converting physical
occurrences into numerical data. The size reduction, increased efficiency, enhanced sensitivity, and improved
connectivity of these sensors have enabled their embedding in diverse environments and objects, providing
real-time data and insights previously inaccessible. Therefore this increase in connectivity, data generation and
accessibility of sensory data, contributes to the generation of zettabytes of real-time data streams [3] that can
be used to create much more customizable and accurate systems but also can be challenging to manage. These
pervasive systems find application across diverse sectors, ranging from Smart Homes and Smart Cities to Smart
Factory and Healthcare. Cisco’s projections! indicate over 2.6 billion cellular-connected IoT devices by 2026,
showing the maturation of their capabilities and decreasing costs. Furthermore, the economic impact of IoT is
projected to be substantial, with estimates suggesting a global value creation ranging from $5.5 trillion to $12.6
trillion by 2030 [19]. All these factors underscore the substantial and growing impact of pervasive computing
environments in improving the quality of life.

3.1 Computational and Network Advancements

The increasing diffusion of pervasive computing is significantly driven by the advancements in both computa-
tional power and network technologies. Embedding computational power within everyday objects is fundamental
to pervasive computing. This necessitates a range of microprocessor solutions tailored to specific device re-
quirements. These range from low-power Microcontroller Units (MCUs) for basic sensing and actuation in
resource-constrained devices, to more powerful Central Processing Units (CPUs) for complex processing tasks,
and highly integrated Systems on a Chip (SoCs) for feature-rich applications. SoCs often incorporate specialised
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processing units such as Graphics Processing Units (GPUs) and Digital Signal Processors (DSPs) to enhance mul-
timedia and signal processing capabilities within compact form factors. Notably, the emergence of architectures
like PlasticARM CPUs [5] presents a promising avenue for pervasive devices, including smartphones and edge
computing nodes, offering an optimised balance of computational performance and energy efficiency crucial for
their operation. This continuous evolution in microprocessor technology allows for increasingly sophisticated
computational intelligence to be integrated directly into the fabric of everyday life. Also the increasing integra-
tion of Artificial Intelligence into edge devices within pervasive computing environments demands dedicated
processing capabilities for computationally intensive Al tasks. Recognizing the limitations of general-purpose
CPUs and GPUs for these specialised workloads, the development of dedicated Al accelerators has been a critical
enabler. These specialised silicon solutions, often implemented as discrete co-processors or integrated within
SoCs as Neural Processing Units (NPUs) [90], offer significantly enhanced performance and energy efficiency for
neural network computations. The strategic inclusion of NPUs in SoCs designed for IoT, edge computing, and
mobile platforms facilitates the rapid and efficient execution of complex Al algorithms directly on the device,
minimizing latency and power consumption associated with cloud-based processing. The seamless operation of
interconnected devices, a defining characteristic of pervasive computing, relies critically on robust and efficient
networking infrastructure. Given the heterogeneity of devices and their diverse communication requirements, a
suite of networking technologies is essential. While high-bandwidth applications benefit from advancements in
Wi-Fi standards like Wi-Fi 7 with its focus on minimal latency, low-power devices leverage technologies such
as ZigBee for personal area networks. Wide-area connectivity for distributed IoT deployments is facilitated by
Low Power Wide Area Networks (LPWANS) like LoORaWAN [6]. Furthermore, high-speed cellular technologies
like 5G and 6G provide ubiquitous connectivity for mobile and edge devices. This diverse and evolving network
infrastructure provides the essential connectivity for the complex communication and coordination within
pervasive computing environments.

3.2 Architectural Infrastructures

Pervasive computing leverages various architectural infrastructures to deliver its capabilities, primarily involving
the cloud, fog, and edge computing paradigms (Figure 4). The cloud layer offers high computational power and
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storage for complex tasks and centralised management. The fog layer, situated closer to the edge, facilitates
distributed, latency-aware applications by providing local computing and network connectivity. Finally, the
edge layer includes the end devices themselves, enabling processing and decision-making at the data source for
real-time interactions. These architectures work in a complementary way to enable the collection, processing,
and use of data generated by a multitude of interconnected devices.

3.2.1 Cloud Computing. As defined by the National Institute of Standards and Technology (NIST), cloud com-
puting is ’a model for enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable
computing resources (e.g., networks, servers, storage, applications, and services) that can be rapidly provisioned and
released with minimal management effort or service provider interaction’ [61]. This paradigm includes centralised
or distributed computing technologies operating over the Internet, primarily functioning as a scalable storage and
processing infrastructure. Parallel and distributed computing models can be independently or jointly integrated
and deployed within data centers, either physically or as virtualised resources. Within the context of pervasive
computing, the cloud serves as a critical centralised repository and high-capacity processing hub for the extensive
datasets generated by edge devices. Its inherent computational resources and scalability are paramount for
managing high data flood [117]. Cloud service models are commonly categorised into private, community, public,
and hybrid deployments [61]. Private clouds are dedicated to a single organization, regardless of who manages it
or its location. Community clouds serve a specific group with shared needs, potentially managed by members
or a third party, on or off-site. Public clouds are openly accessible to anyone and are owned and operated by
providers on their premises. Hybrid clouds combine two or more distinct cloud types, linked by technology
allowing data and application movement between them. Thanks to cloud computing, the connectivity of IoT
devices to the cloud, and their integration with other related sensors, unlocks significant potentials:

e Scalable Storage and Processing: Cloud services provide the large-scale storage and high-performance
distributed computing resources essential for managing the substantial data volumes generated by
pervasive devices, effectively overcoming their inherent storage and processing limitations.

e Stable Middleware Layer: The cloud can establish a more robust middleware layer within the IoT
architecture (positioned between IoT devices and applications) by centralizing service implementations.

e Convenient and Cost-Effective Data Storage: The convenience and economic benefits of cloud
computing have driven widespread adoption by individuals and enterprises for storing data originating
from pervasive devices.

Fundamentally, cloud computing signifies a transition from traditional, localised computing paradigms to a
model characterised by flexible resource sharing and reduced operational costs. However, relying solely on cloud
computing also presents challenges:

e Latency Issues: Network transmission delays or extensive response queuing can introduce significant
latency, potentially hindering the performance of real-time applications.

e Privacy Concerns: Centralizing data in the cloud and transmitting sensitive personal information over
the internet raises substantial privacy concerns. Users must be cognizant of the risks associated with
cloud storage, including the security of their private data and the potential for data breaches.

e High Bandwidth Costs: Transmitting the large volumes of diverse data (text, video, images, audio, and
IoT sensor readings) generated by pervasive devices to cloud data centers can incur substantial bandwidth
costs and strain network infrastructure.

3.2.2  Fog Computing. The key goal of the fog layer, is to reduce the gap between the cloud layer, which has
high resources, and the edge layer, which has limited resources. As defined by the National Institute of Standards
and Technology (NIST), fog computing is ’a layered model for enabling ubiquitous access to a shared continuum
of scalable computing resources’ where ’facilitates the deployment of distributed, latency-aware applications and
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services, and consists of fog nodes (physical or virtual), residing between smart end-devices and centralised (cloud)
services’ [37]. Fog nodes can be seen as physical components such as Raspberry Pi, Nividia Jetson platforms,
gateways, switches, routers, nano-servers, or virtual components such as virtualised switches, virtual machines,
or cloudlets, bringing network, storage, and computing capabilities closer to the end users, and offering several
unique features including reduced latency, geographical distribution, enhanced data security, and real-time
processing [73, 117]. Fog computing can handle large volumes of data produced by various edge device types
instead of sending it to a central cloud infrastructure, thereby addressing bandwidth and energy consumption
problems. It possesses the ability to handle large volumes of data (potentially better than the cloud in terms of
energy consumption), process data quickly, and produce high-quality results. Edge devices are typically located
in close proximity or within a short distance of the fog layer, ensuring faster communication between these two
tiers. However, fog computing also presents several challenges, including:

e Device and Network Management: Due to its decentralised and heterogeneous nature, managing
randomly distributed network resources and a high-risk device breakdowns complicate connectivity and
application deployment.

e Computational Challenges: The hierarchical structure of fog systems and their interaction with the
cloud make optimal task allocation across IoT devices, fog nodes, and the cloud challenging. Ensuring
computational correctness in such distributed environments is complex, further compounded by the need
to choose suitable protocols for heterogeneous sensors and devices.

e Security Challenges: Heterogeneous devices, in less secure environments, can be susceptible to various
attacks, including man-in-the-middle attacks.

3.2.3 Edge Computing. Sometimes referred to as an IoT network, performs computations closer to the edge of
the network, where the data is generated. As defined by the National Institute of Standards and Technology
(NIST), edge computing ’is the network layer including the end-devices and their users, to provide, for example, local
computing capability on a sensor, metering or some other devices that are network-accessible’ [37]. Decentralizing
intelligence, processing power, and communication resources to the network edge, this paradigm leverages
a heterogeneous range of devices (including PCs, smartphones, smart devices, and automation controllers)
situated in close proximity to the data-generating entity, thereby enhancing responsiveness and efficiency [117].
Furthermore, processing sensitive data locally on edge devices enhances user privacy and data ownership by
minimizing the need for data transfer to the cloud. This localised processing is particularly advantageous for
applications dealing with personal or proprietary information, such as virtual assistants and autonomous vehicles.
Mobile Edge Computing (MEC) deploys services and computational capabilities at the edge of cellular networks,
in close proximity to subscribers. This strategic placement enables a service environment characterised by
ultra-low latency, high bandwidth, and direct access to real-time network information [46]. For instance in [88],
the researchers handle data streams at the mobile edge to overcome the scalability problem of traditional IoT
architectures, reducing traffic load in the core network and end-to-end delay for IoT services. The implementation
and management of edge computing environments are associated with several challenges, notably resource
and energy limitations. Individual edge devices inherently possess constrained computational power, memory
capacity, and energy resources compared to centralised cloud servers, necessitating careful consideration on
efficiency.

3.3 Pervasive Al Computing

The idea is to use the capabilities of Al systems inside a pervasive computing environment. As defined in [3]
pervasive Al is the intelligent and efficient distribution of Al tasks and models over/among any types of devices
with heterogeneous capabilities in order to execute sophisticated global missions’. This paradigm marks a departure
from traditional, cloud centralised Al approaches, leveraging the distributed computational resources inherent in
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pervasive environments, including IoT devices and edge servers. Within this domain, Al-enabled sensors play a
crucial role, categorised as: AloT Sensors, facilitating cloud-based Al decision-making based on physical-world
data; Edge Al Sensors, enabling localised Al inference at the device level; and TinyML Sensors, designed for
efficient execution of specific tasks with minimal data [87]. The convergence of pervasive computing and artificial
intelligence has thus established a novel research area, significantly enabled by advancements in Deep Learning.

3.3.1 Deep Learning. Deep Learning, an important subfield of Machine Learning that takes inspiration from
biological nervous systems. It uses deep neural networks (DNNs), which are characterised by a high number of
interconnected layers of neurons that learn features to accomplish a task. The multilayer perceptron, for instance,
consists of fully connected neurons employing nonlinear activation functions. In contrast, convolutional neural
networks (CNNs), prevalent in vision tasks, use convolutional layers. Each convolutional layer incorporates a set
of learnable parameters, called filters, which possess the same number of channels as the input feature maps but
with smaller spatial dimensions. Each filter channel convolves across the length and width of its corresponding
input feature map, computing the inner product. The summation of these channel-wise inner products yields a
single output feature map, and the total number of output feature maps corresponds to the number of applied
filters. Another prominent architecture is the Transformer, which processes text or images encoded as vector
embeddings (tokens). These models support a range of applications in autonomous systems, robotics, smart homes,
and virtual reality. However, deploying DL models on resource-constrained edge devices requires balancing
accuracy with efficiency. To address the challenges of deploying deep learning on resource-constrained pervasive
devices, various strategies are being explored such as:

e Distributed inference: Splits DL models across devices to reduce local load and cloud latency, e.g.
EdgeShard [135].

o Federated learning (FL): Trains models across devices while keeping data local, supporting privacy and
scalability [67].

e Optimization techniques: Include caching, compression, and dynamic inference to improve DNN
performance on constrained devices [86].

Within this context, Large Language Models (LLMs), are increasingly demonstrating their potential. When
integrated into agent-based systems, they show strong potential for enhancing pervasive Al applications. The
next section explores how LLM-based agents are applied in pervasive computing and the challenges of deploying
them on limited-resource platforms.

4 Agents in Pervasive Computing

The integration of intelligent agents within pervasive computing environments represents a significant advance-
ment in human-computer interaction, leading to more intuitive and proactive experiences. Pervasive computing,
characterised by the integration of embedding of computational capabilities into everyday objects and envi-
ronments, provides an ideal environment for the deployment of agents capable of perceiving, reasoning, and
acting autonomously. As discussed in Section 2, the advent of Large Language Models (LLMs) has substantially
augmented the potential of these agents by equipping them with advanced natural language understanding and
generation capabilities, enabling their application in a wide range of use cases. This enhancement facilitates and
increase the performance of this pervasive devices with more intuitive and natural interactions within smart
environments, such as automatic voice-controlled smart homes [72], automatic smartphone interactions [105], or
automatic traffic management in smart cities [11]. However, the deployment of LLM-powered agents in pervasive
computing scenarios presents various challenges. As discussed in Section 3, one of the primary concern arises
from the resource constraints inherent in many pervasive devices, including limitations in processing power and
energy availability. This contrasts with the considerable computational, energy, and memory storage demands of
LLMs. Moreover, the direct interaction of these agents with user data on pervasive devices underscores the critical
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importance of user data privacy. Consequently, ensuring both the sustainable operation of these agents and the
robust safeguarding of user data are essential for their responsible development and deployment. Addressing
these challenges necessitates research into several key areas. This includes determining optimal deployment
and alignment strategies for Large Language Models in both local and distributed pervasive environments. Also,
research must focus on redesigning the core components of agents specifically memory, planning, reasoning,
and acting modules to operate efficiently within the resource limitations inherent in pervasive computing. Fur-
thermore, rigorous evaluation of agent performance within these specific pervasive environments is crucial to
identify their strengths and weaknesses.

4.1 LLMs Deployment Strategies

Addressing the integration of Large Language Models (LLMs) into resource-constrained pervasive computing
environments involves in two primary deployment strategies: local and distributed. The local deployment strategy
aims to execute the LLM directly on the device where the user data is stored, minimizing latency and enhancing
data privacy. However, this approach is constrained by the limited computational and resource capabilities of
the local device. The distributed deployment strategy aims to augment computational resources through cloud
computing servers, which offer enhanced processing power but introduce greater latency and raise privacy issues.
Alternatively, this strategy involves partitioning the Large Language Model across multiple fog or edge devices, a
method that strategically locates processing closer to the user’s device to decrease latency, but increase system
complexity.

4.1.1 Local LLM Deployment. Local deployment of LLMs aims to execute these powerful models directly on
resource-constrained edge devices, offering significant advantages in terms of user privacy, cost-effectiveness
by eliminating reliance on cloud infrastructure, and reduced latency due to on-device processing. However,
the inherent limitations in computational power, energy availability, and storage capacity of these pervasive
devices present substantial challenges to implement this vision. A key strategy to overcome these limitations
involves optimizing LLM resource consumption through techniques such as small language models (SLMs)
deployment, model quantization (to reduce the bit-precision of model weights), and pruning techniques (to reduce
model parameters). For instance, researchers in [105] successfully implemented an agentic architecture using a
Vicuna-7B, on a OnePlus ACE 2 Pro smartphone equipped with a Snapdragon 8 Gen2 CPU and Adreno™ 740
GPU. Building upon this, Autodroid v2 [106] demonstrated impressive performance in success rate and inference
latency on the same resource-constrained device by deploying an 8-bit quantised Llama3.1-8B model. Further
highlighting the potential of smaller models, Microsoft’s Magma [120], an 8B parameter model, exhibited strong
verbal and spatial-temporal reasoning in Ul navigation and robotic manipulation tasks. Additionally, the MaViLa
framework [25] showcased the effectiveness of smaller models by fine-tuning a Vicuna-13B model for smart
manufacturing, achieving high performance in domain-specific tasks like additive manufacturing monitoring,
anomaly detection, and autonomous process optimization. Despite the relative smallness of 7B or 13B parameter
models compared to their larger 30B+ counterparts, their deployment on resource-constrained devices like typical
smartphones (with 6-12 GB of RAM) remains a significant obstacle. As previously discussed, the feasibility of
local LLM execution is heavily influenced by the model’s parameter count and the memory footprint of the
Key-Value (KV) cache. A Llama-2 7B model, for example, can require up to 28 GB for full precision inference, 7
GB with 8-bit quantization, and 3.5 GB with even 4-bit quantised versions, in addition to over 2 GB potentially
needed for its 4k token context window’s KV cache. While deployment might be viable on more powerful
edge devices like NVIDIA Jetson Orin series ? for developer and industrial applications, running such models
efficiently alongside their KV cache on devices with less computational power, necessitates innovative memory
management strategies. Furthermore, energy consumption is a critical concern, with research indicating an
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approximate cost of 0.1 J/token per billion parameters [56]. This suggests that a 7B parameter LLM could consume
0.7 J/token, potentially limiting continuous conversational usage. For instance a fully charged iPhone, with
approximately 50 k] of energy, can sustain this model in conversation for less than 2 hours at a rate of 10 tokens/s,
with every 64 tokens draining 0.2% of the battery [56]. This highlights the urgent need for techniques that
significantly enhance the energy efficiency of these models. To address these challenges, the literature presents
various promising models and methodologies. Nexa AI's OmniVLM [15], a compact model with under one billion
parameters (968M), directly tackles the memory footprint and computational demand issues, making it more
easy to deploy. OmniVLM also introduces a novel token compression mechanism for visual inputs, achieving a
substantial reduction in visual token sequence length, thereby lowering computational overhead while preserving
visual-semantic information. Octopus v2 [12] uses another approach, enabling a 2 billion parameter on-device
language model to outperform GPT-4 in function calling accuracy and latency while drastically reducing context
length. This significantly enhances the feasibility of deploying Al agents directly on edge devices without cloud
reliance. Building on this success, Octopus v3 [13] introduces a sub-billion parameter multimodal model capable
of efficiently processing both visual and textual inputs using functional tokens and CLIP-based image encoding.
Beyond model optimization, innovative deployment and runtime techniques are being explored. EdgeLLM [126]
proposes a layerwise unified compression (LUC) method for dynamic pruning and quantization of LLM layers,
coupled with adaptive layer tuning and voting. This approach achieves significant reductions in computation and
memory demands, enabling fine-tuning and updating of LLMs even on smartphones with substantial speedups and
reduced memory usage. Another strategy, explored in [124], involves hosting a single, stateful LLM as a system
service within the mobile operating system, accessible to applications via system APIs. This design minimizes
memory duplication and supports persistent context management through chunk-wise KV cache compression
and tolerance-aware memory management. Context switching is accelerated via a swapping-recompute pipeline
that overlaps I/O and computation. The system employs fine-grained memory eviction strategies, such as LCTRU
(Least Compression-Tolerable and Recently-Used queue), adapted to the compression sensitivity of different parts
of the model. Finally, EdgeMoE [123] faces the challenge of deploying extremely large and sparse Mixture-of-
Experts (MoE) LLMs on mobile hardware. By treating device memory as a smart cache and selectively preloading
only the most likely needed experts, EdgeMoE can execute models with over 10 billion parameters on small
edge devices with minimal overhead. Its key innovations include expert-wise bitwidth adaptation and predictive
expert caching, enabling real-time inference without exhausting device resources.

4.1.2  Distributed LLM Deployment. While various models and strategies exist for deploying LLMs directly on
the edge device, interacting with users and data-generating sensors, this approach is often constrained by the
necessity of using smaller, less performing models, and by the latency of the models on producing each token
at inference time due to the hardware limitations. A key alternative to mitigate this issue is using a distributed
approach. This strategy involves hosting the models either on cloud servers, which offer high computational and
memory resources, or distributing the model’s computation across multiple edge or fog nodes.

Cloud Distribution. Cloud computing offers the capability to host large open-source or proprietary LLMs on
powerful servers, often accessed via Web Applications or APIs provided by major companies such as OpenAl
(offering models like GPT-4, GPT-4o, o1, and 03), Anthropic (providing models like Claude 2.1, Claude 3.5 Sonnet,
Claude 3.5 Haiku, and Claude 3.7), or Mistral(providing models like Mistral Large and Mistral Small). In this
architecture, edge devices transmit user prompts to these remote servers hosting the LLMs. The server receives
the prompt, processes it with the designated model, generates a response, and then sends the answer back to
the originating edge device. Cloud computing proves advantageous when high-performance LLMs are required.
However, as the servers and models are typically managed by external entities, careful consideration must be
given to user privacy, the potential for connection instability, and response latency. Examples of cloud-based LLM
applications include [72], where models like GPT-4 and Claude 2.1 are employed for reasoning and managing
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smart home devices; MobileGPT [43] on smartphones, which uses GPT-4 to manage mobile applications; and
Intrusion Detection System Agent [49], where GPT-40 reasons over network traffic data, generating and executing
actions such as data preprocessing, classification, and knowledge retrieval for intrusion detection with detailed
explanations. In scenarios where a single LLM may exhibit limitations across diverse domains, a multi-LLM
approach can be employed. This involves using multiple LLMs from different cloud providers, managed by a
router. Upon receiving a user request, the router intelligently directs the query to the model best specialised for
that specific domain, optimizing the response quality. For instance, Nexa AI's Octopus v4 [14] is an LLM agent
designed to run locally on the user’s device. It analyzes incoming requests and determines the most appropriate
model to handle them, preparing the prompt to maximise the chosen model’s performance. This agent can route
calls to both cloud-hosted and edge-hosted LLMs. Additionally, Division-of-Thoughts (DoT) [80] is a framework
that combines SLMs with powerful cloud LLMs to efficiently handle complex tasks. It first decomposes a user’s
query into simpler sub-tasks using a Task Decomposer, exploiting the reasoning abilities of language models. A
Task Scheduler then analyzes dependencies among sub-tasks to decide which ones can be executed locally and
which need cloud support. A lightweight, plug-and-play Adapter helps the SLM decide task allocation without
changing its core parameters. This collaboration reduces costs, boosts speed, and preserves reasoning quality.

Edge/Fog Distribution. Edge and fog computing deploys models closer to users to minimise communication
latency, while simultaneously maintaining significant computational power by distributing workloads across
multiple devices. This approach enhances user privacy and system modularity, as models operate within user-
managed nodes, ultimately improving overall system responsiveness. Although lacking the computational power
of cloud environments, these distributed architectures effectively harness the combined resources of numerous
edge or fog nodes to distribute computation. This collaborative use of resources enables the deployment of larger,
more capable models and the achievement of faster inference times compared to the constraints of a single edge
device, as previously outlined. However, a significant challenge lies in the complexity of managing and maintaining
the distributed nodes and orchestrating the computation across them, requiring considerable effort from the user.
The literature presents several methodologies to address this distributed deployment paradigm. Some strategies
focus on dynamic resource allocation and intelligent task distribution such as SpeziLLM [128] and Ai Flow [81].
SpeziLLM is an open-source framework that dynamically distributes LLM inference across decentralised fog and
edge layers, in healthcare applications. By abstracting orchestration tasks like node selection, model placement,
and task splitting, SpeziLLM simplifies the integration of LLMs into mobile and healthcare environments. It
prioritizes the execution of sensitive data tasks on trusted local or fog nodes while offloading less critical or
computationally intensive tasks to the cloud when necessary, balancing privacy, cost, and user experience through
seamless model migration, fault tolerance, and flexible scaling. Al Flow redefines communication by focusing on
"intelligence flow" rather than raw data transfer, adapting to dynamic network conditions to optimise inference
across devices, edge nodes, and cloud servers. Instead of transmitting raw data, Al Flow sends only critical
extracted features, significantly reducing communication overhead. It adaptively assigns portions of the inference
task based on available computational resources, network bandwidth, and real-time conditions, ensuring low-
latency responses and efficient model execution even in fluctuating environments. Other strategies work on
collaborative inference among edge devices such as Distributed Mixture-of-Agents (MoA) [63]. This architecture
enables multiple edge devices, each hosting a localised LLM, to collaborate through decentralised gossip protocols,
achieving high-quality responses without a centralised server. Each device can independently process prompts
and share intermediate results with neighboring devices using decentralized gossip algorithms. Devices act as
"proposers” generating answers and "aggregators" refining or selecting the best response. This distributed setup
enhances robustness, reduces latency, and improves answer quality compared to relying on a single device, while
also ensuring queue stability despite resource limitations and varying workloads. Another approach is using
the edge devices to model partitioning and distribution, cooperating as a single high performance edge device.
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EdgeShard [135] is a method that facilitates efficient LLM inference by partitioning large models into smaller
"shards" and distributing them across multiple edge devices. It intelligently selects devices and allocates model
parts based on their computing power, memory, and network conditions, leveraging collaborative edge computing
to reduce latency, bandwidth usage, and privacy risks. By employing dynamic programming algorithms for
optimized device selection and task scheduling, EdgeShard enables large models like Llama2-70B to run efficiently
even in heterogeneous, resource-limited environments, significantly improving inference speed and throughput
without compromising model accuracy. In [140] the edges are used for a cooperative inference with terminal
devices. In this framework efficient LLM inference is enabled by promoting collaboration between the user’s
device (terminal) and a nearby edge server. The terminal device rapidly generates speculative tokens using a
lightweight model, while the edge server concurrently verifies and corrects them using a larger, more accurate
LLM. This serial-parallel approach significantly reduces token generation delay and energy consumption by
balancing the computational load between local and edge resources without heavy reliance on the cloud. An
optimization algorithm manages model approximation and token generation to minimise delay and maintain
high accuracy. Finally in distributed scenarios, guaranteeing service despite intermittent connectivity is crucial.
In [145] the authors address this problem with a novel "Mixture of Attentions" architecture for speculative
decoding. This method significantly enhances a local small model’s autonomous prediction by integrating Layer
Self-Attention and Cross-Attention, effectively using LLM activations when available, yet maintaining accuracy
when disconnected. This approach boosts robustness, enabling continuous, accurate inference without persistent
network access.

4.2 LLMs Alignment Strategies

LLMs are pretrained on vast quantities of internet text, equipping them with remarkable capabilities across
a spectrum of tasks, including conversation, mathematics, logic, reasoning, translation, and coding. However,
challenges emerge when LLMs, particularly within agentic frameworks, are tasked with operating in highly
specialized or entirely novel domains, a common occurrence in pervasive environments. For instance, deploying
an agent to autonomously interact with smartphone applications, many unseen during the model’s pretraining,
often results in poor task completion performance. Furthermore, the inherent resource constraints of pervasive
computing often necessitate the use of smaller LLMs, which inevitably exhibit a notable performance decrease
compared to their larger, more robust counterparts. To address these limitations, a crucial technique is LLM
alignment. LLM alignment involves additional post-training of these models to specialise (align) them with the
specific domains of deployment, thereby minimizing errors and hallucinations. The primary method for achieving
domain-specific alignment in pervasive computing is model fine-tuning, broadly categorized into three main
approaches: Supervised Fine-Tuning (SFT), Direct Preference Optimization (DPO), and Federated Learning.

Supervised Fine Tuning. Supervised Fine-Tuning aligns a LLM to a specific domain by training it on a curated
reference dataset comprising input and desired output, Z = [x;, y;], pairs relevant to the desired specialization.
For instance, to align a model for mathematical tasks, the training data would consist of numerous examples of
mathematical problems paired with their corresponding solutions. Regarding dataset creation, three primary
methodologies are employed:

e Datasets can be constructed through human annotation of relevant examples.

o Alternatively, larger and more capable models can be used to generate task completions, with their
interactions meticulously annotated until the desired outcome is achieved.

e Finally, another method involves human supervision of a large model, ensuring its adherence to the task
and its correct progression towards the intended goal.

A common SFT approach involves full fine-tuning, where the model’s initial weights, denoted as @, are updated
to @ + A® through iterative gradient descent. This process aims to maximise the conditional language modeling
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objective, as represented by:
lyl
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where Z represents the training dataset of (input x, target output y) pairs, and y«, denotes the preceding tokens
in the target output sequence.

However, a significant drawback of full fine-tuning is that each downstream task necessitates learning a new set
of parameters, ®, whose size is equivalent to the original model’s parameter set, ®y. In resource-limited scenarios,
such as pervasive computing environments, this approach becomes prohibitively complex and computationally
expensive. To mitigate these challenges, Parameter-Efficient Fine-Tuning (PEFT) methods have emerged. These
strategies are specifically designed to enable model adaptation even under stringent resource constraints. Among
prominent PEFT techniques are Low-Rank Adaptation [34] (LoRA) and its quantized variant, QLoRA [23]. These
methods enable efficient fine-tuning by learning a significantly smaller set of task-specific parameters, denoted as
O, where [O] < |®g|. Consequently, the task of determining the weight update A® is reframed as an optimization
problem over the smaller parameter set ©:
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This approach significantly reduces the memory and computational overhead associated with fine-tuning, making
model adaptation more feasible in resource-constrained settings. For instance InfiGUI Agent [54] uses Full
Supervised Fine-Tuning in two stages. In Stage 1, they collected diverse page contents and vision-language
datasets, using screen coordinates, to train basic skills like page contents understanding and grounding. In Stage
2, they synthesized new data to teach two advanced reasoning skills: hierarchical reasoning (strategic + tactical
task planning) and expectation-reflection reasoning (self-correction from outcomes). For dataset creation, they
used both real page contents datasets and synthetic SFT data generated from multimodal LLMs. They focused on
"Reference-Augmented Annotations" to precisely link visual elements and textual reasoning. ReachAgent [108]
uses a first stage of Supervised Fine-Tuning (SFT). They build three datasets: Page Navigation, Page Reaching, and
Page Operation. Each dataset focuses on different subtasks such as reaching pages, operating within pages, and
navigating multi-step tasks. They generated tasks and step-by-step labels using various LLMs. The SFT trains the
model to understand full page contents flows and improve multi-step planning before any reinforcement learning.
This stage ensures the agent can solve subtasks accurately before optimizing for full-task preferences in later
RL training. MaViLa’s Supervised Fine-Tuning (SFT) to perform visual scene understanding, anomaly detection,
and manufacturing reasoning using using LoRA on a Vicuna 13B model [25]. For dataset creation, they collected
real-world and schematic manufacturing images, each manually captioned. They generated instruction-response
pairs by prompting GPT-4, distinguishing between general and domain-specific questions. For domain-specific
instructions, they used Retrieval-Augmented Generation (RAG) to ground answers in manufacturing knowledge.
Instructions were classified by complexity, reasoning need, and domain specificity to ensure high-quality fine-
tuning data. Finally in [125] researchers used Supervised Fine-Tuning (SFT) to customise LLMs for stable activity
generation in smart home simulations. To create the fine-tuning dataset, they collected labeled examples of
human-like daily schedules and activity outputs. Fine-tuning focused on ensuring structured outputs (like
JSON) to prevent simulator crashes from unstructured LLM replies. The SFT enhanced the model’s ability to
generate realistic, context-aware daily activities for virtual smart home agents. As a result, they achieved a 4.3%
improvement in simulation stability and efficiency compared to baseline prompting.

Direct Preference Optimization. Another effective approach for aligning LLMs through Fine-Tuning is Direct
Preference Optimization (DPO) [70]. This method offers a more efficient approach to instruction-tuning. It directly
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trains the LLM agent on pairs of preferred ("winner") and less-preferred ("loser") responses to an instruction.
Critically, DPO achieves this by fine-tuning LLMs without the need for an explicit reward model, relying solely on
these direct preference comparisons between output pairs. The DPO algorithm begins by sampling completions
Y1, Y2 ~ Tref(+ | x) for each prompt x, and then labels these completions based on human preferences to construct

an offline preference dataset:
D _ (i) (&) (i) N
SV LYWL Y

i=1
Here, x(!) represents the i, input prompt, y,(f;) denotes the preferred ("winner") output, and yl(i) represents the

"loser” output, as determined by human feedback. Then, the language model y is optimized by minimizing the
DPO loss:

79(Yw | X) _ 7o(Yw | X) )
mser(yr | x) nser(yr | x)
Since these datasets are typically sampled using a Supervised Fine-Tuned model 7gpr, the reference policy is often
initialized as 7,f = mspr When available. However, if zgpr is not accessible, the initialization of 7. is achieved by
maximizing the likelihood of the preferred completions (x;, y,,) within the preference dataset:

LDPO(”Q; ”SFT) = _E(x,yw,yl)~2) [logo' (ﬂ 10g

Tref = arg m;lX E(x,y,)~» og w(y,, | x)]

For instance ReachAgent [108] uses Direct Preference Optimization (DPO) to refine its decision-making in mobile
GUI tasks. DPO is used without needing explicit numeric rewards, instead relying on preference pairs indicating
which actions are better. These preferences are constructed using a 4-level reward ranking (Golden > Longer >
Incomplete > Invalid) based on how effectively and efficiently page contents flows complete the task. During
training, the model learns to prefer actions that lead to more optimal flows—those that are both task-completing
and concise. This preference data is fed into the DPO loss function, which guides the policy (7g) to align closer
to preferred behaviors while softly deviating from the supervised fine-tuned policy (7srr). This enhances the
model’s ability to generate efficient and successful page contents flows without needing exact matches to gold
actions.

Federated Learning. Federated Learning (FL) is a machine learning paradigm that enables the training of a
unified model across numerous decentralized edge devices or servers, each holding local data, without the
need to exchange these sensitive datasets [6]. Essentially, FL allows for collaborative algorithm training on
distributed data sources while preserving data locality. One of the core principle of FL is to empower devices,
including smartphones and IoT devices, to collectively learn a shared predictive model, distributing the training
computation between multiple devices. For instance in FedMobileAgent framework [100], federated learning was
used to collaboratively train mobile agents across decentralized user data while preserving privacy. First each
user locally collects data Dy = {(T, a;, si) };=; via Auto-Annotation, where T is a task instruction, a; an action,
and s; a screenshot. Then local training updates the model using stochastic gradient descent:

*
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This two-level weighted aggregation balances episode and step diversity, improving learning from non-Independent
and Identically Distributed data.

4.3 Agent Design Strategies

As discussed in Section 2, LLM-based agents use Large Language Models to perceive their environment, reason
and plan into actionable subtasks, execute actions for each subtask, and iteratively refine their approach based on
feedback. Furthermore, operating within a pervasive environment, often characterized by resource-constrained
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devices or distributed systems such as cloud, fog, and edge nodes, introduces communication overhead and latency.
Consequently, the design of an agent’s architecture requires careful consideration not only of the underlying
LLM deployment strategy but also of Agent module adaptation, which includes Memory, Reasoning, Planning
and Action modules, as these significantly impact the agent’s behaviour and overall performance within these
constrained settings.

4.3.1  Memory. Memory is a critical component of intelligent agents, enriching their perception of the environ-
ment by providing crucial contextual information. It enables the agent to not only understand the immediate state
of the external world but also access to historical data, including past execution trajectories, actions previously
undertaken, errors encountered in prior attempts, and potentially effective solutions that can enhance future
performance. In pervasive computing agents typically implement two primary forms of memory: Short-Term
Memory and Long-Term Memory.

Short-Term Memory. This memory saves the intermediate steps within its current execution cycle. These
ongoing steps are readily accessible at each decision-making stage, allowing the agent to reason about the next
action in a context-aware manner. This mechanism significantly reduces the likelihood of the agent becoming
trapped in repetitive states or endlessly cycling through the same sequence of actions. For instance in [96] the
agent employs short-term memory to meticulously record all actions performed and the corresponding state
changes as it interacts with the environment. This dynamically observed information then directly informs
the next operational decisions. Also in [49] the agent uses short-term memory to maintain a log of the current
session’s context, including all prior reasoning steps, executed actions, and received observations. This memory
is structured and iteratively updated after each tool execution, ensuring a coherent and up-to-date understanding
of the ongoing situation. This allows the LLM to generate contextually relevant thoughts and actions at every
stage of its processing pipeline. Crucially, this short-term memory is session-bound and discarded upon the
completion of the inference process, guaranteeing real-time decision traceability without necessitating long-term
storage of transient data.

Long-Term Memory. Once an agent concludes its execution, regardless of whether the final goal was achieved,
all the intermediate steps and experiences accumulated during the session are consolidated. Through various
summarization or simplification techniques, this information is then archived in Long-Term Memory for future
reference and learning. For instance in [72] the agent leverages long-term memory to store a comprehensive history
of user interactions with the agent. It employs a vector database, using the MiniLM embedding model for efficient
storage and retrieval of semantically similar past executions when confronted with new tasks. Additionally, high-
level summaries of user-agent interactions are stored to build a dynamic and holistic understanding of individual
user preferences over time. Mobile-Agent-E [102] manages memory through a persistent long-term storage,
focusing on two key elements derived from past experiences: Tips and Shortcuts. Tips represent generalizable
insights gleaned from prior tasks, providing guidance for both high-level strategic planning and low-level action
execution. Shortcuts are reusable sequences of actions identified for frequently occurring subroutines. Following
each completed task, two "Experience Reflectors” analyse the entire interaction history to update existing Tips
and Shortcuts or generate new ones. These refined or novel insights are then using by the "Manager" for future
planning and the "Operator" for the next action execution. Finally in [43], the agent employs a hierarchical memory
system that stores tasks as ordered sequences of subtasks and actions, directly linked to specific application
screens. Each screen is represented as a node containing a set of available subtasks, with edges denoting transitions
between subtasks triggered by related low-level actions. Tasks are saved in a parameterized function-call format,
enabling flexible reuse across different contexts. During execution, the system can recall previously encountered
tasks or subtasks and adapt them to new situations through attribute matching and in-context learning techniques.
The memory is dynamically updated based on user feedback or the agent’s own self-correction mechanisms.
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As previously discussed, long-term memory serves as a repository of both successful and failed executions,
enabling the agent to learn and improve over time. Two core strategies are commonly employed for populating
this valuable resource:

e Exploratory Phase: Often, before being deployed for user interaction, an agent goes through a dedicated
exploratory phase. During this stage, the agent is encouraged to actively explore its environment (e.g.,
the functionalities of various applications on a device). The primary objective is to develop a foundational
understanding of the interaction mechanisms, identify the available tools and their functionalities, and
learn the effects of different actions and strategies for overcoming specific challenges. This proactive
exploration ensures that, when the agent is eventually used for real tasks, it already possesses a significant
knowledge to more reliably navigate the environment and find the correct path to achieve its goals. For
instance MobileGPT [43] analyzes app screens offline, extracting Ul layout and simplifying it to HTML.
The LLM identifies subtasks, formats them as function calls, and caches them for efficient live execution.
AutoDroid [105] explores apps by random Ul interactions, building a UI Transition Graph summarizing
states and elements as simulated tasks, stored in memory. Also AutoDroid-V2 [106] constructs structured
documents from page contents traces, abstracting states and transitions.

e Test Phase: In this scenario, the agent continuously learns from its interactions with the user during live
testing. Both successful and failed execution attempts are stored in long-term memory. This continuous
learning process allows the agent to gradually refine its strategies and improve its performance as the user
engages in more tasks. For instance IDS Agent [49] uses long-term memory to resolve ambiguous situations
by retrieving past sessions similar to the current one, incorporating their reasoning and outcomes for
better decisions. Also the LiMeDa Framework [11] stores summarized data from completed vehicle tasks
(route, time, energy) in memory, managing it to prevent overload. Upon receiving a new task, LiMeDa
retrieves relevant past experiences to improve decision efficiency and avoid repeating errors.

4.3.2  Reasoning and Planning. Following the perception of the system state and the memory module’s contents,
including previous actions or complete past executions, the agent proceeds through Reasoning and Planning. The
Reasoning step bring out a logical thinking process from the LLM, facilitating the formulation of an effective plan.
For instance Mobile Agent-E [102] implements an Action-Reflection module that analyzes the state before and
after an action, along with the action itself, to determine if the outcome aligns with the expected goal. This module
categorizes action outcomes into: Successful or partially successful (outcome matches expectation), Failed because
result leads to an incorrect state, and Failed because an action produces no observable change. Also InfiGUI
Agent [54] operates in a three-step cycle: Reasoning (performing hierarchical reasoning), Action generation
(writing the next action and its anticipated outcomes), and Reflection (analyzing the resulting state to evaluate if
the expected results were achieved and generating a textual summary of this reflection). A popular reasoning
technique is Chain of Thought (CoT) prompting [103] , that allows the agent to tackle complex reasoning tasks
by breaking them down into a sequence of explicit steps, often initiated by prompts such as "Let’s think step
by step". For instance Mavila [25] , used for process automation, employs CoT reasoning to decompose tasks
into a series of sequential steps and in the SAGE framework [72], planning (the decomposition of a high-level
goal into substeps) is managed using CoT reasoning in conjunction with the ReAct [122] design pattern. Tool
instructions and formatting guidelines encourage the LLM to first outline a plan before specifying the execution
details. Also AutoDroid [105] fine-tunes a small language model (SLM) to reason with a zero-shot CoT approach,
using a structured format.

The other step is Planning, where, informed by prior events and the reasoning process, the agent decides on
the next action(s) to take. For instance in the IDS Agent [49], planning involves selecting the appropriate tool
based on the information in memory and the analyzed traffic data. The agent then decides, based on classification
results, whether to trigger an alert, thus identifying a potential security threat. Mobile Agent-E [102] features
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a Manager module responsible for generating a plan broken down into subtasks. At each step, the Manager
considers the initial user query, the current screenshot, the previous overall plan, the preceding subgoal, the
current progress status, available Shortcuts from long-term memory, and any relevant notes. It then updates
the overall plan and identifies the next immediate subgoal to pursue. Finally in [96] the agent employs three
distinct agent roles for mobile device interaction. The Planning Agent determines the task progression using
historical data. The Decision Agent observes relevant content from past screens via memory to generate actions
and update the memory. The Reflection Agent evaluates if actions meet expectations by comparing screen states
and initiates corrective re-execution if needed.

4.3.3 Action. The specific actions that an agent can perform within pervasive computing are highly dependent
on its designated operational domain and the available tools or interfaces. Common categories of agent actions
include:

e Tool Use / API Calls: Agents can leverage external services or system functionalities by using specific
tools or making API calls. This includes a wide range of interactions, such as operating smartphone applica-
tions, sending emails, querying databases, retrieving weather information, or controlling external devices.
For example, in [105], the agents possesses a defined set of possible actions (CLICK, CHECK/UNCHECK,
SCROLL<DIRECTION>, INPUT<TEXT>) to interact with a smartphone device’s interface. In [72], the
agent flexibly manages smart home devices using a dedicated device interaction tool. The API calls are
executed using the SmartThings REST API for reading device attributes and sending commands, with
an automatic error correction mechanism in case of call failures. Similarly, in [49] the agent is equipped
with a series of tools, including Knowledge Retrieval, Data Extraction, Classification, and Long-Term
Memory Retrieval, which it can use for intrusion detection analysis. These tools are invoked using a JSON
format that specifies an action name (the tool’s identifier) and an action input (the associated settings or
parameters for that tool).

e Code Execution: Agents may generate and execute code snippets to test conditions or directly interact
with underlying systems. For example, in [106], the agent interacts with the environment by translating a
user’s natural language task into executable Python-like scripts. These scripts are generated by a small
language model based on a structured app document and are then executed on the device to manipulate
page contents elements, such as tapping buttons or scrolling content. Also, in [71], a large language
model is employed to generate Python code that guides the placement of microservices between edge and
cloud infrastructure, based on real-time workload and latency data. This enables the LLM to adaptively
recommend whether a microservice should run on the edge or in the cloud, with new placement decisions
being automatically integrated into the running application.

e User Messaging (Natural Language Interaction): Agents can also act by directly interacting with
users through natural language messages, providing support as intelligent assistants. For instance, in [25],
the agent communicates its analysis of manufacturing images to users, performing anomaly detection
and scene understanding to provide comprehensive support to smart factory employees. Also, in [128],
the system uses a unified interface to interact with users naturally via chat, enabling secure, real-time
processing of health data in healthcare domains such as Electronic Health Record (EHR) analysis, patient
data explanation, and medical form automation.

4.4  Applications and Evaluations of Pervasive Agents

As discussed in Section 3, while pervasive computing offers a multitude of applications, it still faces with challenges
such as extracting and integrating heterogeneous data from diverse sources, translating complex natural language
instructions into standardised actions executable across various tools and devices, and navigating intricate
environments to accomplish complex objectives. These challenges can be effectively addressed by LLM-agents.
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As detailed in Section 4, these systems possess a suite of features capable of overcoming these limitations and
also unlocking a broad range of potential applications within the pervasive computing domain.

Smart Homes. Agents interpret user commands for device control via dynamic planning. For instance SAGE
agent achieve 76% success rate on complex queries [72]. Multi-agent systems like CASIT enhance IoT deployments
by coordinating sensor data and detecting anomalies, outperforming single agents in data-rich environments [142].
The MuRAL dataset aids socially aware LLM development for smart environments with richly annotated sensor
data [16]. Frameworks like LLMind integrate LLMs with Al modules for multi-device orchestration via natural
language commands translated into device control scripts [20].

Mobile Task Automation. Agents automate smartphone tasks by interpreting user instructions and executing
page contents actions, eliminating manual interaction. AutoDroid [105] use UI understanding and exploration
for autonomous task completion. InfiGUIAgent [54] employs human-like reasoning for robust Ul interaction.
MobileGPT [43] prioritizes efficiency with adaptable task memory and hybrid failure recovery. Benchmarks like
Android Agent Arena (A3) [8], LlamaTouch [134], and MobileAgentBench [97] facilitate agent evaluation, while
MobileSafetyBench [43] focuses on safe handling of sensitive operations.

Smart Health and Factories. Agents provide analysis of medical and industrial data. AutoHealth [7] integrates
agents into wearables for Parkinson’s monitoring. SpeziLLM [128] enables privacy-preserving medical Al on local
nodes. In Smart Manufacturing, IMVA [52] and MaViLa [25] offer multimodal reasoning for tasks like quality
control and system orchestration, improving decision-making and automation.

Smart Cities. Agents enable intelligent vehicle dispatching (LiMeDa) [11], realistic personal mobility genera-
tion (LLMob) [39], and natural language interaction with smart building management for energy optimization
and control (BuildingSage) [22]. These systems demonstrate the transformative potential of LLM-based agents in
creating intelligent and adaptive urban infrastructures.

5 Discussion

LLM-based agents represent a substantial advancement in Artificial Intelligence, enabling the tackling of highly
complex tasks across diverse domains including software engineering, research, medicine, and robotics. As
outlined in Section 2, these agents operate by perceiving their environment, reasoning and planning actions
to achieve defined goals, and executing these plans through specific actions. This architecture typically uses a
foundational model, either an LLM or a MLLM, and three essential modules: Memory, Planning, and Action. The
Memory module stores necessary information, the Planning module designs action sequences, and the Action
module generates individual steps. Pervasive computing stands out as a field for a practical application of this
architecture. As detailed in Section 3, this domain focuses on enhancing human activity through integrated
technology, providing computational power for a variety of applications that can significantly improve daily life.
From smart homes and factories to the every day usage smartphones, embedding the computational power of
agents within pervasive computing systems holds the potential to solve numerous challenges by autonomously
handling previously intractable tasks. Section 4 introduced various strategies for integrating these agents into
pervasive devices. These strategies are heavily influenced by the available resources on the deployment devices,
and have facilitated the application of agents in pervasive computing, including personal assistants for health
monitoring and device interaction, as well as building and traffic management in smart cities. However, several
critical challenges remain under active research and warrant careful consideration.

Small/Quantized Models Limitations. A primary challenge is the performance degradation associated with
the use of small or quantized models. As discussed in Section 4.1, pervasive computing scenarios often involve
devices with limited computational power, memory, and energy, driven by connectivity constraints or the need
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for on-device data privacy. This frequently necessitates the deployment of agents relying on Small Language
Models (SLMs) or quantized models, which can exhibit a significant performance drop compared to larger, more
robust alternatives. To address this, researchers are exploring post-training alignment methods like Supervised
Fine-Tuning (SFT) and Direct Preference Optimization (DPO) to better tailor models to specific application
domains, as well as techniques for distributing model computation across multiple edge nodes. Furthermore,
even when employing larger models, the inherent limitations in LLM architecture pose challenges. For instance
the issue of hallucinations, that is the generation of highly probable but irrelevant or factually inconsistent token
sequences, poses a significant obstacle to the proper functioning of agents. Ongoing research seeks to mitigate
this through Retrieval-Augmented Generation (RAG) systems, which inject relevant external information into
the model’s context, and post-training domain alignment techniques to better guide output coherence.

Generalization Problem. Another recognized limitation is the difficulty that LLMs face with generalization.
As demonstrated in [62], even superficial changes like variable name alterations in mathematical problems can
significantly degrade model performance, highlighting their reliance on training data patterns. This lack of
robust generalization can be problematic for agents, particularly during the planning phase, potentially leading
to suboptimal solutions or failure to follow task constraints, as emphasized in [40]. This study indicates that even
advanced models like GPT-40 and Claude-3-opus struggle with planning tasks despite the use of techniques like
ReAct [122] and Chain-of-Thought [103]. To address this, modular LLM frameworks that incorporate critique and
reformulation mechanisms, as proposed in [30], show promising results. Additionally, enhancing the reasoning
capabilities of models at inference time has led to the development of Large Reasoning Models (LRMs). These
models, during inference, first engage in a reasoning phase, similar to "human-like thought", before providing
an answer. This process appears to increase the likelihood of the model to generate a correct response. Various
methodologies are being explored in this area, including forcing the model to produce rationales ("thinking")
before giving the final answer [130], the use of Outcome-Supervised Reward Models (ORM) and Process Reward
Models (PRM) to evaluate reasoning during training [32, 51, 133], and fine-tuning techniques that enable models
to detect and self-correct errors using rationales [68]. The emergence of powerful LRMs like OpenAI’s o1, 03,
04-mini, Anthropic’s Claude 3.7 Sonnet, and DeepSeek’s V3 underscores the active research and development in
this area.

Memory Limitation. The external nature of the memory module in current agent architectures also presents a
significant limitation. As agents interact with their environment, their experiences must be stored externally and
then selectively reintroduced into the LLM’s context window. The limited size of this context window poses a
constraint, particularly for agents requiring numerous interactions to achieve a goal, potentially leading to the
loss of crucial information if earlier interactions are simplified or overly summarized, as discussed in Sections 2.2.2
and 4.3.1. To overcome this, researchers are exploring strategies to find better summarization methods, or to
expand the context window, as seen with the 1 Million context window Qwen’s Qwen2.5-Turbo [118] and
Google’s Gemini 2.5 Pro. Another promising direction involves the direct integration of memory modules within
the models themselves, such as the approach proposed by Google researchers in [4].

Energetic Issue. The energy issue is particularly significant when we are facing with agents that have to
use frequently LLMs for reasoning, planning, action, and memory management tasks. This challenge must be
addressed especially in pervasive environments, where there is a wide heterogeneity of devices, from large cloud
high resources computing servers to smartphones that have limited energy resources. As discussed in Section 4.1,
an LLM has a very high energy cost per billion parameters, which leads to rapid battery drain on edge devices
and high electricity consumption when used on fog or cloud servers. To mitigate this issue, recent works have
explored multiple strategies to reduce energy consumption without severely compromising performance. In [124]
the authors implemented a KV cache compression and swapping method to avoid the recomputation of the KV
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cache by the model. In [58] the researchers show that selecting models based on task complexity, and applying
hardware-level techniques such as Dynamic Voltage and Frequency Scaling (DVFS), can cut energy usage by
up to 50% without major accuracy loss. Another approach involves decentralized inference, where LLM layers
are distributed across edge devices equipped with energy harvesting (e.g., solar panels). This allows sustained
inference under energy constraints by dynamically scheduling computation based on device energy availability
and predicted energy inflow [41]. Furthermore, in [75] the researchers tested multi-GPU inference and highlighted
the substantial energy benefits of optimized LLM sharding strategies. In particular, using power capping strategies
(limiting Watts usage), that increase the average inference time, save a lot energy without impacting the accuracy
of the models. Finally, the GREEN-CODE [36] framework introduces dynamic early exiting during inference using
reinforcement learning. This enables LLMs to terminate inference early at intermediate layers when sufficient
confidence is obtained, achieving energy reductions of 23-50% in code generation tasks while maintaining output
quality.

Privacy Issue. Finally, is fundamental to consider privacy in pervasive computing due to the close interaction

with users and the consequent handling of large amounts of sensitive data. Agents operating in this context
must manage this information while guaranteeing the user’s complete privacy. For instance, when an agent
interacts with applications on a smartphone or PC, it must exercise extreme caution in handling sensitive user
data, including full names and the contents of private documents or files. The literature features various analyses
and several benchmarks specifically designed to evaluate the security of agents in ensuring the preservation of
user privacy. The PrivacyLens framework [82] provides a multi-level evaluation of LLM agents’ awareness of
contextual privacy norms. It introduces a pipeline that converts privacy-sensitive seeds into expressive vignettes
and executable agent trajectories to uncover instances of private information leakage, such as sharing job-seeking
details inappropriately, even with privacy-preserving prompts. PrivacyLens reveals that even advanced LLMs
like GPT-4 leak sensitive information in a significant number of cases (up to 25.68%). AgentDojo [21] assesses
agents robustness against prompt injection attacks. This framework puts LLM agents with realistic scenarios like
email management or banking app navigation while defending against malicious inputs aimed at extracting user
data. AgentDojo highlights the persistent vulnerability of agents to adversarial inputs and underscores the need
for privacy-aware defenses. Finally, Agent-SafetyBench [139] offers a broader evaluation of agents’ behavior
across diverse environments, identifying privacy-related safety risks like unintentional data leakage. Evaluation
across 2,000 test cases revealed that no agent achieved a safety score above 60%, highlighting a systemic lack of
robustness and risk awareness in current LLM-based agent implementations.
Given these real privacy challenges that agents have to face, various strategies have been proposed to try to
mitigate this issue. For instance, AgentDojo [21] incorporates and evaluates several defense mechanisms, including
secondary attack detection modules like Data delimiters, Prompt injection detection, Prompt sandwiching, and
Tool Filter. These strategies significantly reduce the success rate of prompt injection attacks, demonstrating a
drop to 7.5% when a tool filter is active. However, no single defense mechanism offers complete protection against
these vulnerabilities. AutoDroid [105] employs a Privacy Filter, a Personal Identifiable Information (PII) scanner,
to detect sensitive information (such as names, phone numbers, and email addresses) within the prompt. This
filter replaces any identified sensitive data, aiming to safeguard user privacy on smartphone devices. Furthermore,
a layered defense strategy proposes three firewalls for agent and user data protection reducing private leakage
from 70% to less than 2% [1]: i) a data firewall isolates private data in environment outputs using task-relevant
rules, without accessing the conversation; ii) a trajectory firewall checks the agent’s response against security
rules post-decision, with an option to regenerate safer outputs; iii) an input firewall sanitizes external inputs by
converting them to structured formats like JSON, removing manipulative language to reduce attack risks.
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6 Conclusion

This paper investigated the evolving landscape of research on LLM-based agents in the domain of pervasive
computing. Initially, it provided a comprehensive analysis of agents, exploring their architecture, evaluation
methodologies, and diverse applications across various fields. Afterwards, the paper introduced the pervasive
computing field, outlining its infrastructures and wide-ranging applications. It then explored the growing inte-
gration of artificial intelligence within this domain, culminating in the integration of intelligent agents. Building
on this foundation, the paper presented a detailed examination of agent-based architectures specifically designed
for pervasive environments. This included an analysis of architectural adaptations, novel strategies introduced
to suit the constraints of these contexts, and a review of implemented applications. The paper then proposed
a discussion of the critical challenges in this field, alongside an overview of current research efforts aimed to
address these limitations.

The field of artificial intelligence, is experiencing a period of exponential growth. Each month brings the release
of more robust and effective models, driven by novel LLM architectures such as Mixture of Experts [38] and in-
creasingly efficient post-training alignment techniques such as reinforcement learning techniques like GRPO [83],
knowledge distillation, and fine-tuning methods like SFT and DPO. New powerful open-weight model families
(e.g., DeepSeek r1, LLaMA 4, Qwen 3) and close-sources (e.g. Claude 4, OpenAl o1, 03) are released every few
months. We are also observing the emergence of increasingly compact models that shows similar performances or
even surpass larger state-of-the-art counterparts. For example, QwQ-32B demonstrates performance comparable
to or better than models like DeepSeek-R1-Distilled-Qwen-32B, DeepSeek-R1-Distilled-LLaMA-70B, o1-mini, and
the original DeepSeek-R1 [69]. This miniaturization is critical for pervasive deployments.

Substantial progress is also being made in hardware development. Innovations like the cost-effective NVIDIA
Jetson Orin and the NVIDIA DGX Spark project, featuring compact devices capable of running models with up
to 200 billion parameters, clearly signal a future where affordable, personalised agent hosting is accessible to
individuals and companies [64]. Also the NVIDIA CEO Jensen Huang highlights this rapid advancement, stating,
"Our systems are progressing way faster than Moore’s Law", attributing this acceleration to integrated innovation
across the entire stack of architecture, chip, systems, libraries, and algorithms [129]. This means that increasingly
compact devices will offer greater computational power at lower costs.

Over the next 2-3 years, the exponential growth in both of these areas will profoundly impact the agent field in
pervasive computing, driven by the increasing performance of Fog and Edge Computing devices. The continuous
integration of greater computational capabilities into smaller, more energy-efficient, and affordable hardware
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will enable the deployment of agents of various scales, dynamically adapting to user service requirements.
Consequently, we will see a proliferation of specialized agents distributed across diverse fog and edge nodes,
each providing tailored services based on their computational resources and the robustness of their embedded
LLMs. This trajectory marks a definitive shift in pervasive computing: from an "anytime, anywhere" model to one
that is "all the time, everywhere". The traditional "anytime, anywhere" agent approach relied on a limited number
of high-performance computing (HPC) devices providing agent services, which were constrained by connectivity
and response latency. In contrast, the emerging "all the time, everywhere" agent approach leverages the increasing
capability of smaller devices, such as fog and edge nodes, to host agents. This ensures the continuous provision
of agent services, virtually at all times. As detailed in Section 4.1, various strategies for deploying LLMs, the core
of these agents, have been proposed, as seen in works like [63, 81, 135, 140], and research in this area is rapidly
advancing. This future will be characterised by an increasingly interconnected network topology spanning cloud,
fog, and edge devices. The enhanced performance of these edge components will enable the robust deployment
of LLM-based agent services much closer to the user, facilitating faster response times and ensuring continuity
of service even under unstable connectivity. Crucially, a smaller, edge-deployed agent can maintain essential
functionality and deliver ongoing service in scenarios where reliance on cloud resources would be impractical
or impossible. This vision lead to an increasing proliferation and usage of various agent services in multiple
domains and applications, raising a crucial question:

Does the future of pervasive computing necessitate single, general-purpose agents capable of au-
tonomously operating across numerous domains, or will it favour multiple, specialized agents, each
expertly designed to solve a dedicated task upon request?

Consider a single agent attempting to manage both smartphone applications and smart home sensors. Achieving
such broad expertise would demand computationally intensive, highly robust models and significant resources
(a particular challenge in pervasive computing). Conversely, the demonstrated effectiveness of domain-specific
fine-tuning suggests a more practical and scalable approach: deploying separate, specialised agents for distinct
tasks. This lead to what we call "Agent as a Tool". Each specialised agent offers services that can be used like
traditional software tools (Figure 5). In a realistic future scenario, each individuals can have a personal agent on
their devices. These personal agents will be trained to interact with classic tools (e.g., email, calendar) [55, 110] and,
critically, call other specialised agent-tools. For instance, a personal agent might seamlessly call upon a dedicated
smart home agent for managing household systems or a software engineering agent for coding assistance within
a development environment. The personal agent would intelligently decide which agent-tool to use for specific
subtasks. Its overall task-handling capacity would depend on factors such as the robustness of its core LLM, the
computational hardware constraints (edge, fog, cloud), and the accessibility of required classic-tools or agent-tools
(e.g., network availability, physical location, co-hosting status). A calendar application, for example, might be
locally accessible, while specialised company agent-tools might reside on remote edge or fog devices. This vision
culminates in a complex, compound system comprising personal agents, classic tools, and specialised agent-tools.
While these agents will operate semi-autonomously, proposing plans that align with the specialized task’s
workflow and executing corresponding actions, user interaction and guidance will remain crucial. To enhance
agent performance and user experience, advanced memory strategies, such as summarizing past interactions, can
be employed. This interaction data also presents a valuable opportunity for further fine-tuning or reinforcement
learning techniques to improve agent performance [109]. Another paramount aspect is security. For critical
actions (e.g., database modifications, code commits), essential safeguards requiring authorized user approval are
indispensable for both personal agents and agent-tools [1, 66]. Robust firewall strategies must also be in place to
protect sensitive user data. Communication between personal agents, tools, and agent-tools can leverage various
established protocols, such as A2A3 for agent-to-agent communication and the Model Context Protocol (MCP) [2]

3A2A, Agent Interoperability
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for classic tool calls. This architecture’s broad and inherent adaptability, applicable from optimizing industrial
production to enhancing individual daily life, provides a significant opportunity to fundamentally reshape how
businesses operate and to tangibly improve the daily experiences of people.
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