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Fig. 1. Illustrations of the drone swarm overwatch concepts for convoy escort of Target 1.

Abstract— Commercial UAVs are an emerging security threat
as they are capable of carrying hazardous payloads or
disrupting air traffic. To counter UAVs, we introduce an
autonomous 3D target encirclement and interception strategy.
Unlike traditional ground-guided systems, this strategy employs
autonomous drones to track and engage non-cooperative hostile
UAVs, which is effective in non-line-of-sight conditions, GPS
denial, and radar jamming, where conventional detection and
neutralization from ground guidance fail. Using two noisy real-
time distances measured by drones, guardian drones estimate
the relative position from their own to the target using
observation and velocity compensation methods, based on anti-
synchronization (AS) and an X−Y circular motion combined
with vertical jitter. An encirclement control mechanism is
proposed to enable UAVs to adaptively transition from
encircling and protecting a target to encircling and monitoring
a hostile target. Upon breaching a warning threshold, the
UAVs may even employ a suicide attack to neutralize
the hostile target. We validate this strategy through real-
world UAV experiments and simulated analysis in MATLAB,
demonstrating its effectiveness in detecting, encircling, and
intercepting hostile drones. More details: https://youtu.
be/5eHW56lPVto.

I. INTRODUCTION

The rise of commercial drones with long endurance [1]
and advanced navigation capabilities [2], [3] has introduced
security challenges, calling for effective countermeasures [4].
Traditional defensive systems rely on ground-based visual [5]
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or radar tracking [6], which are optimized for large objects.
However, their limitations in detecting small UAVs make
them less effective against low-altitude compact drones.

Newer methods [7], such as radio frequency jamming,
GPS spoofing, and net-catching [8], attempt to address
these threats but suffer from issues such as high power
consumption, immobility, etc. To overcome these issues,
the latest anti-drone concept [9] proposes drone to drone
combat system, offering an interesting way to neutralize
threats beyond the horizon. While manual drones have
been used in conflicts like Ukraine for counter-drone
operations, transitioning to autonomous aerial drones poses
challenges. Target localization is constrained by payload
limits, onboard sensors [10], and computational restrictions,
making lightweight sensors the most practical solution.

Existing target localization algorithms often rely on
cameras for bearing or relative angle measurement [11],
[12], but this requires a complex visual processing pipeline.
In contrast, distance measurement is generally simpler
and more practical. However, ranging systems like UWB
[13], [14] or WiFi [15] depend on cooperative targets,
limiting their versatility in real-world scenarios. To address
non-cooperative hostile targets, recent ranging solutions
[16], [17] employ microphones, enabling robust localization
independent of lighting or radio frequency conditions.
Despite these advantages, range-only localization algorithms
face inherent limitations, often assuming the target is
stationary, moving at a constant speed, or moving slowly
[18]–[20]. When targets exhibit unpredictable or high-speed
movement, additional estimators or compensators become
necessary for accurate motion tracking.
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While localization is crucial, neutralization remains an
even greater challenge in aerial anti-drone operations.
Research in joint aerial anti-drone estimation and
neutralization is still emerging, with limited studies
available. Many existing neutralization techniques [21]–[23]
rely on detecting radio control frequencies, but these
approaches lack precision and are easily circumvented
by advanced technologies such as 5G-datalink [24],
optical communications [25], or tethered control systems
[1]. Alternative approaches, such as deep reinforcement
learning-based interception [26]–[28], require extensive
training data and high onboard computing power, making
them impractical and costly for real-world deployment.
Additionally, most existing control techniques [8], [11],
[29]–[32] focus solely on target detection and following,
lacking the capability for direct engagement. As a result,
these methods are ineffective against agile or evasive
drones, underscoring the need for more adaptive and robust
anti-drone solutions.

This paper presents a novel approach to autonomous
drone-based overwatch, interception, and neutralization of
unauthorized or malicious drones, eliminating the need for
complex surface vehicle guided systems. To the best of our
knowledge, this work is the first to demonstrate autonomous
drone-to-drone interception using minimal onboard sensors
with range-only measurements. The key contributions of this
paper are summarized as follows:

1) We propose a method for estimating the relative
position of a non-cooperative target using noisy
distance measurements from onboard sensors of two
drones, without requiring prior knowledge of the
target’s motion. Unlike previous approaches [30], [33],
this estimator can achieve persistently exciting (PE)-
based estimation by leveraging the distribution of
UAVs and self-control-compensated observations.

2) We propose a novel anti-drone controller (ADC) that
utilizes the anti-synchronization (AS) encirclement
strategy [34], [35] and an X−Y circular motion
combined with vertical jitter. Unlike direct target
guidance methods [11], [36], our controller
compensates for hostile target observations while
encircling the protected target, as well as adaptively
encircling the hostile target.

II. PROBLEM FORMULATION

Our mission focuses on providing overwatch to the
protected target from the threats posed by the non-
cooperative hostile target. To this end, we will deploy two
guardian drones, designated as Drone 1 and Drone 2. A
protected target can be any vehicle or boat, but a hostile
target is strictly considered a drone with hostile intentions.

We denote the position of drone i as pi. Hence, the
kinematic model of the UAVs is defined as follows [37]:

Ri(k + 1) = Exp
(
ūi(k)t

)
Ri(k), (1)

pi(k + 1) = pi(k) + tRi(k)ui(k), (2)

where t is the sampling time, and Ri = w
b Ri ∈ SO(3)

denotes the rotation matrix that transforms the control input
in the drone body frame b to the world frame w. The vectors
ui(k) ∈ R3 and ūi = [ūi,ϕ, ūi,θ, ūi,ψ]

⊤ ∈ R3 denote the
linear velocity and angular velocity of drone i in the body
frame, respectively. ϕ, θ, ψ are attitude angles.

Based on (1), the relative position between drone 1 and
drone 2, denoted as q12, is obtained by taking the difference
between q1 and q2 at any time instance k, which yields:

q12(k + 1) = q12(k)

+ t
[
R1(k) · u1(k)−R2(k) · u2(k)

]
. (3)

For notational convenience, the time index (k) will be
partially omitted in the following discussion. Specifically,
(k + 1) will be represented as (+) and (k − 1) as (−).

We define the relative motion model for the target j, j ∈
{1, 2} and drone i in the world frame as

qji
(+)

= qji + t(Riui − vj), i ∈ {1, 2}, (4)

where qji ∈ R3 is the relative position from drone i to
the target j at time k, and v ∈ R3 is the unknown
velocity of target. Here, v can follow an arbitrary distribution
and includes some environmental noise and own nonlinear
maneuvers, but is assumed to satisfy ∥vj∥ ≤ v̌j with known
v̌s ∈ R+.

We define the relative distances between the drones or
targets are denoted as follows,

d12 ≜ ∥q12∥ , dji ≜
∥∥∥qji ∥∥∥ , d12 ≜

∥∥q2
i − q1

i

∥∥ , (5)

where the subscript is reserved for the index of the guardian
and the superscript for the target.

In this work, we focus on dealing with a three-dimensional
non-cooperative Target 2. Therefore, we assume that Target 1
will share its position with both drones. For simplicity, when
the protected target is a surface robot, we define Target 1 as
a virtual point at a height hi above the real target, i.e. ž1 = h
for Drones.

Denote ŝ2 and d̂12 as the estimate of s2 and d12, which
will be furnished via some estimation laws. We define three
decision zones based on d̂12, namely Ω1 = {d̂12|d̂12 ≥ z3},
Ω2 = {d̂12|z3 > d̂12 ≥ z2} and Ω3 = {d̂12|z2 > d̂12 ≥ z1},
where z1, z2 and z3 are the radii of the target protection zone,
take down (or capture) zone and warning zone, respectively,
as depicted in Fig. 1.

Moreover, we define an encirclement shape vector
ζ(r, ν, k) ∈ R3 as

ζ(r, ν, k) = r(k)
[
sin(νkπ), cos(νkπ), g(k)

]⊤
, (6)

where r(k) is the encirclement radius, and g(k) ∈ R is the
vertical motion function. {ζ(k)} satisfies the following PE
assumption.

Assumption 1: The sequence {ζ(k)} is PE, i.e. there exist
âζ , ǎζ ∈ R+ and N ∈ Z+ such that:

âζI ≤
k+N−1∑
m=k

ζ(m)ζ(m)⊤ ≤ ǎζI, ∀k ≥ 0.
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Definition 1: The guardian drones are said to encircle
Target j in an anti-synchronization (AS) manner when the
preset encirclement shape ζ(r, ν, k) and the relative positions
qji , i, j ∈ Φ2 satisfy ζ(r, ν, k)⊤qj1 = −∥ζ(r, ν, k)∥

∥∥∥qj1∥∥∥ and

ζ(r, ν, k)⊤qj2 = ∥ζ(r, ν, k)∥
∥∥∥qj2∥∥∥.

In other words, the relative positions of the guardian
drones from the target are opposite to each other.

We can now make a statement for our problem of interest
as follows:

Problem 1: Design a range-based estimation law for
Target 2’s position. Simultaneously, design the control laws
ūi to ensure that the coordinate frames of all UAVs align
with the world coordinate system, and design the control laws
ui for the guardian drones to encircle Target 1 when d̂12 ∈
Ω1, and encircle or take down Target 2 when d̂12 enters Ω2

and Ω3, respectively. The estimation and control objectives
under the proposed laws can be expressed mathematically
as:

R1 = R2 = I, (7a)

lim
k→∞

∥∥q2
i − q̂2

i

∥∥2 ≤ ϱ1, (7b)

lim
k→∞

∥∥∥qj1 + ζ(r, ν, k)
∥∥∥2 ≤ ε2,j , (7c)

lim
k→∞

∥∥∥qj2 − ζ(r, ν, k)
∥∥∥2 ≤ ε2,j , (7d)

where ϱ1 is the estimation error bound for Target 2.
ε1,j and ε2,j represent the AS-based encirclement tracking
error bound and the encirclement error bound for Target
j, respectively. The difference between encirclement and
capture is based on the radius r. When r ≥ r̄, we say the
objective is to encircle and capture otherwise. Note that for
surface targets, we only ensure that the two drones achieve
encirclement in the XY plane.

III. ESTIMATOR AND CONTROLLER DESIGN

A. Measurement

In this work, the distance d2i can be measured by the on-
board sensors of Drone i, e.g., by equirectangular perception
module, wireless signal strength indicators, or target sound
noise strength captured by a microphone [16]. Some of
these ideas have been validated as proof of concept [38].
Target 1 shares its position information with the two drones.
Moreover, communication exists between the two UAVs,
allowing them to share visual data as well as attitude
angles obtained from the fusion of IMU and compass
measurements. This ensures the alignment of coordinate
frames between UAVs and enables the acquisition of the
relative position q12 (e.g. visual SLAM or UWB array).

Given that d2i and pi can be measured, the target position
may exist at any point on the sphere with center pi and
radius d2i , i.e. (x − x̄i)

2 + (y − ȳi)
2 + (z − z̄i)

2 = (d2i )
2.

Considering the presence of two drones, the position of the
target can be further constrained to any point on the circle
where the spheres intersect, as illustrated in Fig. 2. Define
the radius and the center of the intersection circle as ς and

Target 2

𝑷𝟐 𝒌  
𝑷𝟐 −  
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𝑷𝟏 −  
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𝒅𝟐
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𝒅𝟐
𝟐(𝒌)

𝒄 −  
𝒄

Potential target 

position
Potential target 

position

Target position
Target position

Fig. 2. Range-based target motion analysis.

c, respectively. Considering ∥p1 − c∥2 + ς2 = (d21)
2 and

∥p2 − c∥2+ ς2 = (d22)
2, the radius ς and the center c of the

intersection circle can be calculated as:

ς =

√
4d212(d

2
1)

2 − ((d21)
2 − (d22)

2 + d212)
2

2d12
, (8)

c = p1 +

√
(d21)

2 − ς2

d12
p21. (9)

Furthermore, based on the measurement distance d2i and
the position pi, one output variable ϖi,p,2 related to the
position of Target 2 can be obtained for (d2i )

2 = p⊤
i pi −

2p⊤
i q

2
i + (q2

i )
⊤q2

i , i.e.

ϖi,p,2 ≜q⊤
12q

2
i

=
1

2
((d21)

2 − (d22)
2 − p⊤

12p12).
(10)

The above observation model will be used to design the
Target Postion Estimator (TPE) in the subsequent part.

B. Position estimation

In this work, the center displacement of the intersection
circle, i.e. c − c(−), will be used to compensate for the
displacement of Target 2. From Fig. 2, we observe that the
maximum error of the displacement compensator is ς(−)+ ς ,
where ς is less than d2i . Therefore, we can understand that the
displacement compensator error decreases as d2i decreases.
When d̂12 ∈ Ω1, our objective is mainly to encircle Target
1, where d2i is relatively large. However, once d̂12 enters Ω2

and Ω3, i.e. the two drones start encircling Target 2, both
d2i and ς decrease. In this case, the displacement of Target
2 will roughly be equal to c− c(−).

Let the time set when d̂12 ∈ Ω2 and d̂12 ∈ Ω3, be denoted
as Φ(Ω2,Ω3). Furthermore, denote km− k̃ ∈ Φ(Ω2,Ω3), where
k̃ represents the time it takes for the two drones to transition
from encircling Target 1 to encircling Target 2.

Therefore, based on the center c and the variable ϖi,p,2

in (9) and (10), the update law for the TPE of Target 2 can
be designed as

q̂2
i = q̂2

i (k|k − 1) +K(ϖi,p,2 − ϖ̂p,2), (11a)

q̂2
i (k|k − 1) = q̂

2(−)
i + t(R

(−)
i u

(−)
i + v̂

(−)
2 ), (11b)
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v̂
(−)
2 =

v̌2(c− c(−))

max{v̌2,
∥∥c− c(−)

∥∥}δ{k = km}, (11c)

ϖ̂p,2 = q⊤
12q̂

2
i (k|k − 1), (11d)

where q̂2
i = [x̂2, ŷ2, ẑ2]

⊤ ∈ R3 and q̂2
i (k|k − 1) ∈ R3 are

the estimated and predicted position of Target j at instant k,
respectively. ϖ̂p,2 represents the estimated position output of
Target j. K ∈ R3 is an adaptive estimator gain based on the
recursive least-squares method. Specifically.

K = η
(−)
1 q12(γ1 + q⊤

12η
(−)
1 q12)

−1, (12)

where the covariance matrix η1 ∈ R3×3 (η1(0) > 0) is
defined as

η−1
1 =γ1(η

(−)
1 )−1 + q12q

⊤
12 (13)

with a forgetting factor γ1.
In addition, the term v̂2 in (11c) is a displacement

compensator. δ is Dirac delta function, i.e, δ{k = km} = 1
for k = km, otherwise δ{k = km} = 0.

C. Anti-drone control

First, considering real-time UAV attitude variations caused
by dynamic environmental noise, the actual rotation matrix
R̂i(k) can be obtained based on real-time measurement
angles ϕ, θ, ψ of drone i. An attitude controller can then
be designed using the following law to ensure that Ri = I .

ūi = −1

t
Log(R̂i). (14)

Secondly, from the TPE, we can obtain an estimate of the
iner-target distance d̂12 = ∥q̂2

i − q1
i ∥. To achieve the whole

encirclement object, the AS-based ADCs can be designed in
the following three cases.

Case 1: When d̂12 ∈ Ω1,

u1 =
R−1

1

t
{(α− 1)q1

1 + αζ(r1, ν, k)

− ζ(r1, ν,+) + v
(−)
1 }, (15a)

u2 =
R−1

2

t
{(α− 1)q1

2 − αζ(r1, ν, k)

+ ζ(r1, ν,+) + v
(−)
1 }, (15b)

where α is the controller gain. r1 is the given constant.
Case 2: When d̂12 ∈ Ω2,

u1 =
R−1

1

t
{(α− 1)q̂2

1 + αζ(r2, ν, k)

− ζ(r2, ν,+) + v̂
(−)
2 }, (16a)

u2 =
R−1

2

t
{(α− 1)q̂2

2 − αζ(r2, ν, k)

+ ζ(r2, ν,+) + v̂
(−)
2 }, (16b)

where r2 is the given constant.
Case 3: When d̂12 ∈ Ω3,

u1 =
R−1

1

t
{(α− 1)q̂2

1 + αζ(r3, ν, k)

− ζ(r
(+)
3 , ν,+) + v̂

(−)
2 }, (17a)

Drone 1
Drone 2
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𝑷𝟏 𝒌  

Potential target position

Drone 1 Drone 2

𝑷𝟐 𝒌  𝑷𝟏 𝒌  

Unique target position

Target 2

Target 2

(a) two drones track the target without centering on it

(b) two drones track the target with centering on it

𝒅𝟏
𝟐(𝒌) 𝒅𝟐

𝟐(𝒌)

𝒅𝟐
𝟐(𝒌)𝒅𝟏

𝟐(𝒌)

Fig. 3. Two drones are symmetrical to the target.

u2 =
R−1

2

t
{(α− 1)q̂2

2 − αζ(r3, ν, k)

+ ζ(r
(+)
3 , ν,+) + v̂

(−)
2 }, (17b)

where r3 = r
(−)
3 − (r2−r̄)(v̂2(Ω3(0))+ι2)

z2−z1 with the estimated
velocity v̂2(Ω3(0)) and time Ω3(0) of Target 2 as it enters
zone Ω3. ι2 is a given constant, and r3(Ω3(0)) = r2.

Remark 1: From a practical perception perspective,
compared to other formation methods, having two guardian
drones observe the target from opposite sides ensures
maximum coverage and facilitates the acquisition of more
information, see reference [39]. From Fig. 3, it is easy to
see that when two guardian drones encircle the target as
the center, the position of the target is geometrically unique
based solely on the two distance measurements. Therefore,
the use of AS control can enhance positioning accuracy,
which has been shown in reference [39].

D. Convergence analysis

Considering the movement of the two drones under the
AS-based ADC in the previous section, q12 = αq

(−)
12 +

2αζ(r, ν, k) − 2ζ(r(+), ν(+),+) can be derived. Since α is
given value and ζ(r, ν, k) satisfies PE, the following Lemma
1 can be obtained based on the Theorem IV.1 in [30] and
[40].

Lemma 1: (Persistently exciting) The sequence
{q12(κ)}, κ ∈ [k, k + N − 1],∀κ ∈ Z is persistently
exciting if the following inequality holds,

0 < â2In×n ≤
k+N−1∑
κ=k

q12(κ)q
⊤
12(κ) ≤ ǎ2In×n <∞,

where N is the motion period of encirclement. â2 and ǎ2
are the position contants.

Theorem 1: The two drones can estimate the position of
Target 2 within an error bound if the exponential forgetting
factor γ1 satisfies 0 < γ1 ≤ 1

2 .
Proof: See Appendix A.
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Theorem 2: The two drones can achieve the encirclement
of all targets within a minimum error bound as the controller
gain α satisfies the following condition − 1√

3
< α ≤ 1√

3
.

Proof: See Appendix B.

IV. SIMULATIONS AND EXPERIMENTS

A. Numerical simulation

A simulation example validates that the designed TPE
and AS-based ADC can both act well. Here, we consider
two drones, one ground cooperative car (Target 1), and one
hostile drone (Target 2). For system models, the sampling
period t is given as 0.1s, and the initial values are as follows:

q12(0) = [0, −2, 0.05]⊤, q2
1(0) = [−6, −4, −1.45]⊤,

q2
2(0) = [−6, −2, −1.5]⊤.

Based on Theorem 1 and Theorem 2, the following
parameters are set, i.e. γ1 = 0.45 and α = −0.001.
The vertical motion function can be designed as g(k) =
0.3 cos( 18kπ) and r̄ = 0.1, r1 = 5.8, r2 = 3 and ι = 0.03.
Additionally, Drone 1 and Drone 2 will project Target 1 onto
the excepted height plane, i.e. h = 0.5.

The simulation results are shown in Fig. 4 to Fig. 5. The
error trajectory in Fig. 4 shows that the position estimation
error for Target 2 is relatively large when encircling Target
1. Once Target 2 enters the warning area, the drones begin
encircling it, and the position estimation error for Target
2 decreases to around 0.05 meters, which indicates that
AS-based encirclement control contributes to improving the
drones’ positioning accuracy for targets. Additionally, from

Fig. 6. Experiment setup.

the tracking error trajectory in Fig. 5, it can be seen that
the two drones can quickly switch from encircling Target
1 to encircling Target 2. For cooperative Target 1, the
encirclement tracking error is close to 0, while for non-
cooperative Target 2, the encirclement tracking error is within
0.05 meters.

B. Real-world UAV-based experiment

Experiment setup: To validate the proposed solution, a
real-world demonstration is conducted, as shown in Fig. 6.
The setup of the experiment consists of a surface patrol
vehicle that simulates the vulnerable ship, two guard drones,
and a hostile drone. All drones used in this study are low-
cost Tello drones, chosen to minimize potential damage in
the event of a simulated collision. However, these drones
lack onboard payload capacity for a microphone array
and a PC. To address this limitation, each Tello drone is
wirelessly connected to a Raspberry Pi 4B, which manages
the configuration and deconfliction of IP addresses. This
setup enables simultaneous control and video streaming for
all drone units. Once the IP addresses are assigned, an
NUC 11 i7-1165G7 is utilized to process individual visual
SLAM instances and issue control commands. Meanwhile, a
separate NUC is responsible for managing the hostile drone’s
behavior, which is autonomously controlled.

All robots operate with multiple instances of AirSLAM
nodes [41], [42], processing input images resized to 480p
at 30 Hz. The local point clouds generated by each drone
are aligned with a pre-built map constructed using offline
AirSLAM mapping solutions [41], as illustrated in Fig.
6. Guardian drones estimate their relative positions by
referencing common global point clouds, while pseudo
range distances between the guardian UAV, hostile UAV,
and surface patrol vehicle are inferred indirectly. Unlike
motion capture systems, camera-based range measurements
introduce inherent noise, closely resembling real-world
measurement uncertainty.

Scenario setup: The experiment simulates a defense
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Fig. 7. Real-world and virtual UAV swarm tactics for overwatch, approach, encirclement, engagement, and takedown.

scenario in which a surface vehicle, representing a vulnerable
ship, traverses a designated area under human control.
When a remote-controlled hostile drone attempts a kamikaze-
style attack on the convoy, two guardian UAVs respond by
encircling the hostile drone based on its relative distance. If
the hostile drone approaches too closely, the guardian UAVs
execute a direct kinetic collision to neutralize the threat. The
overall concept of the real-world demonstration is illustrated
in Fig. 7.

The real-world demonstration lasted approximately 50
seconds, during which a buffering mechanism was
implemented to capture the state of each drone at every
observation. Uninitialized states were marked as unavailable
and the buffered data was published for visualization.
Theoretically, the system could collect up to 8,500 state
feedback instances. However, due to bandwidth limitations
and processing delays, approximately 6,000 samples were
recorded over the 50-second duration, resulting in an average
effective observation rate of 20 to 25 Hz per drone.

During the first 500 measurements, both guardian drones
prioritized reaching their designated orbital positions around
Target 1, maintaining minimal deviation while disregarding
Target 2, as shown in Fig 8. By the 2,500th measurement,
the guardian swarm detected a threat from Target 2 and
began maneuvering toward it. This phase was marked by a
crossover event, where the two guardian drones repositioned
themselves between Targets 1 and 2. From the 3,000th to
the 5,000th measurement, the guardian drones maintained
an orbit around Target 2. As the hostile entity approached
dangerously close, the encirclement radius was gradually
reduced, ultimately leading to a controlled collision to
neutralize the threat.

More simulation and experimental details can be found in
the URL https://youtu.be/5eHW56lPVto.

V. CONCLUSIONS

In this research, we presented an innovative aerial
drone-to-drone encirclement and interception strategy
designed as a robust vehicle protection solution without any
surface vehicle guidance. This approach leveraged AS-based
control strategies and simple range-based measurements,
primarily derived from hostile UAV noise information.
Our results demonstrated the effectiveness of a specially
designed perception-aware controller, which enabled drones

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500
0

2

4
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10

Encircle Target 1 Encircle Target 2

Fig. 8. The trajectories of the AS-based encirclement tracking errors e1(k)
and e2(k) in experiment.

to autonomously neutralize hostile threats without requiring
external surface vehicle guidance. This autonomous
capability proved particularly valuable in safeguarding
vulnerable ships, enhancing situational awareness, and
improving countermeasures against aerial threats.

APPENDIX A

PROOF OF THEOREM 1

Denote the relative position estimation error of Target 2 as
ep,2 ≜ q2

i − q̂2
i . Then, recalling the relative position model

in (4) and the position estimator in (11a), the dynamics of
ep,2 can be further obtained as

e
(+)
p,2 =A1(ep,2 + t(v2 − v̂2)), (18)

where A1 = In −K(+)(q
(+)
12 )⊤.

The Lyapunov function (LF) candidate can be chosen
as V11 = e⊤p,2η

−1
1 ep,2. Furthermore, denoted the velocity

compensation error of Target 2 as ev,2 ≜ v2 − v̂2 and based
on the Cauchy-Schwarz inequality, the difference of V11 can
be deducted as

△V11 =V
(+)
11 − V11

≤2e⊤p,2A
⊤
1 (η

(+)
1 )−1A1ep,2 + 2t2e⊤v,2A

⊤
1 (η

(+)
1 )−1

×A1ev,2 − e⊤p,2η
−1
1 ep,2.

According to the matrix inversion lemma, we can obtain
A1 = γ1η

(+)
1 η−1

1 . The differences of V11 can be re-obtained
as

△V11 =V
(+)
11 − V11

≤(2γ1 − 1)e⊤p,2η
−1
1 ep,2 + 2γ1t

2e⊤v,2η
−1
1 ev,2.
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Referring back to Lemma 1 and formation (13), through
a straightforward recursive process, we establish the upper
and lower bounds of the error covariance matrix η−1

1 , i.e.
0 < β̂1In ≤ η−1

1 ≤ β̌1In for all k ≥ N − 1. Detailed
derivations can be found in the proof of Lemma 1 in [43].

Assume that ∥ev,2∥ ≤ ϱ2, the convergence of position
estimation error ep,2 can be further analyzed. As k → ∞
and 0 < 2γ1 ≤ 1, we arrive at the result ∥ep,2∥2 ≤ ϱ1,
where ϱ1 =

2t2γ1β̌1ϱ
2
2

(1−2γ1)β̂1
, which implies that the target position

estimation error is exponentially bounded.

APPENDIX B

PROOF OF THEOREM 2

Based on Problem 1, we can define the AS-based tracking
encirclement error and the encirclement errors for Drone
1 and Drone 2 as ē1,j ≜ qj1 + ζ(r, ν, k) and ē2,j ≜
qj2−ζ(r, ν, k), respectively. Then, for target 2, the following
dynamics of ē1,2 and ē2,2 can be further derived based on
the relative position model of drones and Target 2 in (4).

ē
(+)
1,2 =αē1,2 + (α− 1)ep,2 − (e

(−)
v,2 +∆v2),

ē
(+)
2,2 =αē2,2 + (α− 1)ep,2 − (e

(−)
v,2 +∆v2).

The LFs for the encirclement errors can be chosen as
V21 = ∥ē1,2∥2 and V22 = ∥ē2,2∥2. Then, the differences
of V21 and V22 can be obtained as

△V21 ≤(3α2 − 1)V21 + 3(α− 1)2 ∥ep,2∥2

+ 3 ∥ev,2 +∆v2∥2 ,
△V22 ≤(3α2 − 1)V22 + 3(α− 1)2 ∥ep,2∥2

+ 3 ∥ev,2 +∆v2∥2 .

Based on the condition − 1√
3
< α ≤ 1√

3
, we also can

make sure that ∥ē1,2∥2 = ∥ē2,2∥2 ≤ ε2,2 for k → ∞, where
ε2,2 = 3(α−1)2ϱ1+3(ϱ2+v̌2)

2

1−3a2 .
Furthermore, the dynamics of the AS-based tracking

encirclement error and the encirclement errors for Target 1
can be derived as

ē
(+)
1,1 =αē1,1 +∆v1,

ē
(+)
2,1 =αē2,1 +∆v1.

Similarly, based on the condition − 1√
3
< α ≤ 1√

3
, we

have ∥ē1,1∥2 = ∥ē2,1∥2 ≤ ε2,1 with ε1,1 =
8v̌21

1−2a2 and

ε2,1 =
2v̌21

1−2a2 for k → ∞.
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