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Abstract
Machine unlearning focuses on efficiently removing specific
data from trained models, addressing privacy and compliance
concerns with reasonable costs. Although exact unlearning
ensures complete data removal equivalent to retraining, it is
impractical for large-scale models, leading to growing interest
in inexact unlearning methods. However, the lack of formal
guarantees in these methods necessitates the need for robust
evaluation frameworks to assess their privacy and effective-
ness. In this work, we first identify several key pitfalls of the
existing unlearning evaluation frameworks, e.g., focusing on
average-case evaluation or targeting random samples for eval-
uation, incomplete comparisons with the retraining baseline.
Then, we propose RULI (Rectified Unlearning Evaluation
Framework via Likelihood Inference), a novel framework to
address critical gaps in the evaluation of inexact unlearning
methods. RULI introduces a dual-objective attack to measure
both unlearning efficacy and privacy risks at a per-sample
granularity. Our findings reveal significant vulnerabilities in
state-of-the-art unlearning methods, where RULI achieves
higher attack success rates, exposing privacy risks underesti-
mated by existing methods. Built on a game-based foundation
and validated through empirical evaluations on both image
and text data (spanning tasks from classification to genera-
tion), RULI provides a rigorous, scalable, and fine-grained
methodology for evaluating unlearning techniques.1

1 Introduction

Unlearning is crucial in modern machine learning, enabling
the efficient removal of specific data (unlearn samples) or
knowledge from trained models. It ensures compliance with
privacy laws [1, 11], corrects outdated [32] or harmful con-
tent [7], and keeps models ethical and adaptable. As mod-
els and datasets continue to scale, interest in machine un-
learning [9, 37, 70] has grown rapidly. While retraining from
scratch without the removed samples provides a theoretically

1Code is available at https://github.com/datasec-lab/Ruli

sound solution, it remains computationally expensive. To ad-
dress this, a variety of inexact unlearning methods [9, 36]
have been proposed as more efficient alternatives. Recent
efforts focus on improving the efficiency, robustness, and ac-
curacy of these approaches. Accordingly, rigorous evaluation
is critical to ensure their practical effectiveness and to support
trustworthy deployment by model providers and users alike.

First, from a privacy perspective, techniques such as dif-
ferentially private training [2] and defenses against inference
attacks [27, 53, 68] typically require strong empirical vali-
dation—often through inference attacks (e.g., membership
inference attacks [3, 52, 55])—to assess their effectiveness in
mitigating privacy risks under worst-case or average-case sce-
narios. Substantial research efforts have been dedicated to the
design and evaluation of privacy mechanisms, often supported
by empirical studies using inference attacks. Inexact unlearn-
ing can also be considered as a post-hoc privacy mechanism
to efficiently remove samples and therefore, selectively [34]
protect the privacy for a portion of data upon requests. Simi-
larly, we require strong verifications to evaluate and minimize
the privacy leakage for any unlearned sample [38, 42]. Ex-
isting unlearning works often report high protection against
privacy attacks [18, 44, 79]. However, Hayes et al. initiated ef-
forts to advance stronger sample-level attacks [38] indicating
stronger attackers are required to evaluate unlearning. Accord-
ing to [38], existing algorithms are more vulnerable to their
per-sample [12] adapted attack. These insights motivate us to
further investigate the following questions.

Q1 [Privacy]: Can existing inference attacks accurately
measure the privacy leakage from unlearned models?

Second, another key requirement for evaluating unlearning
success is assessing how closely it approximates the gold
standard of retraining [38, 76].

Q2 [Efficacy]: How to accurately measure the difference
between the unlearned model and the retrained model?

Since efficacy reflects whether the requested samples have
been effectively removed from the model through unlearning,
it is related to (but distinct from) the privacy of the unlearned
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samples. While privacy concerns the risk of information leak-
age (“existence of unlearned samples”), efficacy focuses on
the actual removal of the samples from the model.

1.1 Contributions

Motivated by the above questions, this work contributes the
following to the field of machine unlearning.

(1) Identifying the limitations of existing inference attacks
in evaluating unlearning. We observe that current inference
attacks on unlearning methods [26, 38, 46] might not suffi-
ciently challenge unlearning algorithms to enable a compre-
hensive evaluation of their effectiveness. First, most evalua-
tions typically focus on average-case scenarios and targeting
random samples, neglecting the per-sample vulnerabilities
associated with specific high-risk (or particularly vulnera-
ble) data samples [13]. Second, we also observe that simply
comparing the retrained model with the unlearned model’s
accuracy may not yield an accurate assessment of privacy
leakage [38].

(2) Developing novel inference attacks for dual measure-
ments on privacy leakage and efficacy. To address these
deficiencies, we revisit the theoretical foundations of adver-
sarial settings and design novel membership inference attacks
(MIAs) [12, 19, 62] with two key objectives:

• Privacy Leakage: an MIA to assess whether a sample has
been unlearned or was never part of the training set (and
subsequently not unlearned) based solely on inferring
the unlearned model.

• Efficacy: an MIA to assess whether a sample’s inference
output corresponds to an unlearned or retrained model.

With new MIAs, we propose a novel unlearning evaluation
framework RULI (Rectified Unlearning Evaluation Frame-
work via Likelihood Inference). To our best knowledge, RULI
takes the first step to perform per-sample, targeted attacks on
vulnerable samples in unlearning using refined membership
signals and hypothesis testing, enabling the evaluation of both
efficacy and privacy leakage at a reasonable attack cost.

(3) High attack performance and accurate unlearning eval-
uation. We evaluate RULI against state-of-the-art (SOTA)
attacks on standard unlearning benchmarks and conduct a
comprehensive study of how different target samples exhibit
varying levels of privacy leakage. For example, using a Gradi-
ent Ascent-based unlearning method, RULI achieves at least
20% TPR@1% FPR on CIFAR-10 and CIFAR-100, and up
to 54% TPR@1% FPR when unlearning targeted 7-gram
sequences from the WikiText-103 dataset. Our results also
demonstrate that existing average-case attacks [26, 38, 46]
and advanced methods like U-LiRA [38] have substantially
underestimated the privacy leakage (and efficacy) especially
under target random samples.

As Figure 1 shows, we uncover significantly stronger pri-
vacy leakage and highlight that efficacy is a distinct metric
from privacy. We find that most inexact unlearning methods
cannot closely approximate retraining. In other words, inex-
act unlearning may fail to remove samples as effectively as
retraining, and even strong unlearning methods may fail to
protect vulnerable samples when injected as canaries.
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Figure 1: RULI (ours) separates privacy leakage and unlearn-
ing efficacy through targeted membership inference. Popula-
tion average-case attacks [35] consistently underestimate pri-
vacy leakage and fail to capture unlearning efficacy. This fig-
ure demonstrates some representative results, e.g., Scrub [44]
on CIFAR-10 (ResNet-18) and TinyImageNet (Vision Trans-
former [47]) for image sample unlearning, and NPO [82]
on WikiText-103 (GPT2-small [57]) for token sequence un-
learning. U-LiRA [38] falls between RULI and average-case
attacks, as it targets random samples on a per-sample basis
but considers the efficacy similar to the privacy leakage.

(4) Generalizability. RULI can be generalized to broadly
support diverse tasks (from image classification to text gener-
ation) in multiple domains. We have validated its effectiveness
on both image datasets (e.g., CIFAR-10/100, TinyImageNet)
and text datasets (e.g., WikiText-103) by unlearning targeted
data samples from various models, such as images from ViT
models and token sequences from language models.

2 Preliminaries

2.1 Machine Unlearning
Machine Unlearning refers to the process of selectively forget-
ting specific pieces of data that a model has previously trained
on. Consider a model, denoted as θI , trained on a dataset
Dtrain; any samples belonging to Dtrain can be subjected to
unlearning, often due to the right to be forgotten (Article 17
of the GDPR) [1, 11] and form a forget set D f . The challenge
is to erase the influence of D f while preserving the utility of
the remain data Dr = Dtrain\D f . Machine unlearning employs
various techniques to efficiently remove the influence of D f
from a model originally trained on Dtrain. The objective is for
the resulting unlearned model to closely approximate a model
trained exclusively on Dr, without requiring full retraining.



Unlearning Measurement. Most inexact unlearning meth-
ods [26, 46] consider accuracy measurements to find how
much the accuracy on Dr, D f , and also unseen test data (Dtest)
differs with retraining. Previous works have also explored
the use of Membership Inference Attacks (MIAs) [16, 17,
46, 65, 78] to evaluate unlearning, defining success based on
the attacker’s ability to distinguish whether a sample was un-
learned or included in retraining. Unlearning measurement is
specifically critical in inexact unlearning algorithms as these
methods, despite being efficient and scalable, often do not
provide formal guarantees on data removal [36]. Therefore,
requires robust evaluations (often by strong attacks [38]) to
empirically ensure the unlearning algorithm is comparable to
a retrained model and ensures privacy.

2.2 Inexact Unlearning Criteria

Apart from the first goal of unlearning to speed up the data
removal process compared to retraining (efficiency), given an
initially trained model θI and an unlearning algorithm U, the
goal of inexact unlearning is to remove a subset D f ⊂ Dtrain
from the training data by meeting the following key criteria:

(1) Accuracy. The unlearned model (θU) should ideally be-
have similarly to a retrained model (θR ), recalling that the
retrained model is the model trained excluding the D f . As
mentioned, the basic accuracy test is that Acc(θU)≈Acc(θR )
on all samples from D f , Dr, and test data.

(2) Efficacy. A widely accepted definition of the goal of un-
learning is to ensure that the distribution of an unlearned
model becomes indistinguishable from the distribution of a
retrained model, which is trained exclusively on the remained
dataset (Dr) [32, 60]. As highlighted in [38], there is a need to
develop a tool to empirically estimate this indistinguishability.

(3) Privacy. It focuses on ensuring that the unlearned model
(θU) provides no residual information about the forget data,
D f . In this context, the objective is that an MIA on D f using
θU should fail to infer whether any sample from D f was part
of the original training process and unlearned [42]. This test
emphasizes the privacy protection provided by the unlearning
process, ensuring that no attacker can exploit the unlearned
model to extract information about any forget sample.

Unlearning vs. MIA-resilience. Unlike MIA-mitigation
methods [15, 53, 54, 68], which aim to protect the entire
training set, unlearning provides selective privacy on demand.
It targets only the requested forget set D f , leaving Dr unaf-
fected unless specified. While applying MIA-resilient training
to D f may reduce privacy leakage, it fails to meet the efficacy
requirements. This calls for efficacy measurements besides
the privacy leakage to evaluate unlearning.

3 Unlearning Framework and Threat Model

Similar to previous works (e.g., [16, 36, 44, 46, 70]), the
framework is divided into two phases: training and unlearn-
ing. In the training phase, the model is trained without antici-
pating future unlearning requests, without training assump-
tions [20, 37] or incorporating additional checkpoints [9, 44].
When an unlearning request is received, the unlearning phase
is activated as a separate process, efficiently updating the
model to produce θU with minimal computational costs. Our
approach adheres to this flexible framework, enabling seam-
less integration of nearly all “inexact unlearning” methods.

Specifically, our unlearning framework involves three main
entities: (1) Users (whose data are used for training the model
and who may request to have their data unlearned), (2) Model
Trainer (who trains the model and executes the unlearning
process), and (3) Model Recipient (who can interact with the
model, potentially performing inference attacks to evaluate
privacy risks [17, 20, 31, 39, 59]).

Users. Individuals or entities who contribute to the data used
in the model training. In the unlearning setting, users may
request the removal or modification of their data from the
trained model, necessitating mechanisms to ensure that their
data can be effectively unlearned. These requests can pertain
to any type of data contributed during training. Henceforth,
we will refer to the specific data contributor and entities who
request unlearning as the users for simplicity.

Model Trainer. The entity is responsible for storing data,
training the model, and executing unlearning. The model
trainer ensures that data are securely stored and processes
requested queries. In the context of unlearning, it must also
handle data removal requests and update the model to exclude
the specified data while maintaining model performance and
respecting user privacy rights [1, 11]. We consider an honest
model trainer, who performs training and unlearning with no
adversarial objective against users’ privacy.

Attacker’s Capabilities. We consider an attacker with black-
box access to only the final unlearned model. That is, the
attacker can query the unlearned model but has no access to
the original (pre-unlearning) model or to any intermediate
model states during the unlearning process. This assumption
differs from some prior works [17, 39], which assume the
attacker has access to both the original and unlearned mod-
els. In contrast, our threat model aligns with a more realistic
deployment scenario: once unlearning is complete, only the
final unlearned model is released. This assumption also re-
flects the nature of inexact unlearning methods, which directly
modify the original trained model rather than retraining from
scratch. Unlike retraining, which inherently produces interme-
diate models, inexact unlearning does not expose meaningful
unlearning checkpoints throughout the process. Therefore, it
is reasonable to assume that the unlearned model becomes
available only after the unlearning process is fully completed.



Moreover, following [12, 38, 62], we assume the attacker
has knowledge of the training and unlearning algorithms, and
can therefore train and access shadow models to support the
inference attack.
Unlearning Efficacy Evaluator Capabilities. We treat the
efficacy evaluator as an honest model trainer who empirically
assesses how well unlearning approximates retraining. As
shown in Section 4.3.2, querying only the final unlearned
model is insufficient for this purpose. Unlike an attacker, the
evaluator audits unlearning fidelity, not privacy leakage. The
evaluator interacts with models via black-box queries, avoid-
ing parametric comparisons [34, 72], since inexact unlearning
does not follow the same gradient path as retraining, nor does
it guarantee indistinguishability with the retrained model. In-
stead, we assess behavioral differences resulting from the
removal of requested samples.

4 A New Inference Attack on Unlearning

In this section, we examine privacy leakage and efficacy in
unlearning by identifying pitfalls in existing methods and
introducing a new inference attack (Sections 4.1 and 4.2).

Game 1: Existing MIA for unlearning privacy

1. The challenger trains a model with Dtrain ⊆D and gets θI .
2. The challenger unlearns D f ⊂ Dtrain to get the unlearned model θU .
3. The challenger flips a coin c:

• If c = head, the challenger chooses a data point z from D f

• If c = tail, the challenger chooses a data point z from D\Dtrain

4. The challenger sends the selected data point z to the adversary.
5. Given the unlearned model θU , the adversary queries z to determine
if it is in Dtrain and guess ĉ = {head, tail}; adversary wins if ĉ = c.

4.1 Pitfalls in Existing Unlearning Evaluation

Unlearning privacy is measured by the attacker’s inabil-
ity to distinguish between unlearned and never-trained sam-
ples [38, 42, 44, 61]. This critical problem can be formalized
through a game-based framework [13, 49, 59, 78], which sim-
ulates the interaction between a challenger, responsible for
training and unlearning a model, and an adversary, who aims
to infer membership. In the challenger-adversary framework
for unlearning, the process begins with a challenger C, who
trains a model θI using a training dataset sampled from data
distribution D (Dtrain ⊆D) via a training algorithm A . After
initial training, the challenger selectively unlearns a subset of
data points, D f ⊂ Dtrain, by applying an unlearning algorithm
U. The resulting model, after unlearning, is denoted as θU .
The adversary’s (A) attack settings are captured through dif-
ferent games, characterized by different types of access and
tools. In this paper, these games can serve as the theoretical
representation for evaluating the privacy leakage and efficacy

of unlearning.2

Game 1 formalizes the existing MIAs for unlearning pri-
vacy. Specifically, it assesses the adversary’s ability to distin-
guish between data points that have been unlearned and those
that were never part of the training dataset. In this setup, the
adversary has neither prior knowledge of nor control over the
data samples requested for unlearning. This game simulates a
scenario where the adversary can only query random samples
provided by the challenger, serving as a baseline for measur-
ing privacy leakage in unlearning under non-targeted attacks.
However, existing evaluations (mostly built upon this game
and the corresponding MIA) exhibit significant shortcomings.

Pitfall I: Average-case MIAs Cannot Fully Disclose Un-
learning Privacy. Nearly all existing works [25, 26, 44, 46]
rely on MIAs based on Game 1 to evaluate the privacy
leakage of their unlearning methods. The most naive ap-
proach [26, 46] involves training an MI-classifier on equal-
sized training/testing datasets to measure the attacker’s ability
to identify an unlearned sample as part of the training. A re-
fined approach [35] employs population attacks, where many
shadow models are trained and unlearned, and an MI-classifier
is trained on unlearn and out (excluded from training) popula-
tions for distinguishing these two cases. While this improves
upon naive approaches, it still evaluates privacy leakage in
terms of aggregate metrics, failing to consider the unique
memorization status of individual samples. Since memoriza-
tion varies per sample, unlearning should also be evaluated at
the per-sample level for accurate privacy assessment.

Pitfall II: Evaluating Random Samples Underestimates
Unlearning Privacy. Recent trends in machine learning pri-
vacy research emphasize identifying and evaluating vulner-
able samples, rather than assessing the privacy of the entire
dataset [3, 4]. However, to our best knowledge, nearly all un-
learning methods only consider the case of random sample
evaluation for unlearning—choosing random samples uni-
formly across all classes or within a single class—without
accounting for the specific memorization level of each sample.
While recent works [38, 44] suggest that unlearning random
samples within a single class poses the greatest challenge,
even more extreme cases can further challenge unlearning.
More importantly, we show that evaluating random samples
tends to underestimate the privacy leakage in unlearning.

Pitfall III: Incomplete Comparisons with the Retrain Base-
line (Efficacy). Many inexact unlearning methods are com-
pared to a retrained model [74] to ensure that the unlearned
model behaves similarly to it. However, these comparisons are
often limited to accuracy metrics [16, 26, 44], which might be
inaccurate (see Table 2 and Figure 5). For example, a model
showing close accuracy performance to the retrained model
might unlearn data samples differently than the retrained

2Similar to the instantiated MIAs, the adversary in the game is also
capable of training and accessing the shadow models (this applies to all the
games and inference attacks defined in this paper).



model. We emphasize the need to evaluate how individual
samples are unlearned relative to their retrained counterparts.
While this pitfall does not directly relate to privacy, it high-
lights the limitations of existing methods in quantifying the
similarity between unlearned and retrained models beyond
simple accuracy comparisons.

4.2 Avoiding Pitfalls Requires New Games

Previous studies have assessed the unlearning success by
observing the attacker’s inability to execute an inference at-
tack [42, 44] on the unlearned model. As discussed in Pitfall
I, although many unlearning benchmarks have demonstrated
average-case MIA-resilience, our focus is on evaluating un-
learning through sample-specific membership signals for iden-
tifying underestimated privacy leakage, in line with recent
privacy evaluation literature [3, 12, 52, 80].
Per-Sample Privacy Evaluation for Unlearning. MIAs are
typically evaluated using metrics such as the Area Under
the Curve (AUC) and TPR@lowFPR over the entire train-
ing dataset. For example, in CIFAR-10, the target training
data consists of 50,000 samples equally split between trained
and not-trained samples [12]. However, MIA performance
and memorization behavior are not uniform across all sam-
ples [3, 12]. As shown in Table 10 (in the experiments),
targeting smaller, randomly selected subsets of training data
often leads to degraded attack performance [3], likely due to
the increased likelihood of these smaller subsets containing
predominantly safe samples [13]. Consequently, uniformly
selected smaller subsets result in lower attack accuracy and
reduced TPR@lowFPR. This challenge is particularly rele-
vant in the context of unlearning. Similarly, the target set (i.e.,
Dtarget) of membership inference is typically a smaller fraction
of the training set, often less than 10% [9]. Additionally, most
unlearning algorithms are not designed to handle the removal
of large portions of data [26]. Thus, evaluations should not
only consider individual samples but also include challenging
scenarios for unlearning algorithms, avoiding Pitfall II.

Game 2: Targeted MIA for unlearning privacy

1. The challenger trains a model with Dtrain ⊆D and gets θI .
2. The adversary chooses a target set Dtarget and sends to challenger.
3. The challenger unlearns D f ∪{Dtrain ∩Dtarget} to get the model θU .
4. The challenger flips a coin c:

• If c= head, the challenger chooses a data point z from D f ∩Dtarget

• If c = tail, the challenger chooses a data point z from
Dtarget\Dtrain

5. The challenger sends the selected data point z to the adversary.
6. Given the unlearned model θU , the adversary queries z to determine
if it is in Dtrain and guess ĉ = {head, tail}; adversary wins if ĉ = c.

Targeted MIA for Evaluating Unlearning Privacy. To ad-
dress these challenges, our approach is introduced in Game
2 (new contents marked in blue), which extends the attack

setting to allow targeted access to the unlearned model. In
this setting, the adversary selects specific targeted samples
Dtarget for unlearning rather than relying on random samples.
Despite this extended capability, the adversary operates in a
targeted black-box threat model [73, 75], lacking access to
internal parameters, gradients, or embeddings and unable to
manipulate the unlearning process directly.

Game 3: MIA for unlearning efficacy

1. The challenger trains a model with Dtrain ⊆D and gets θI .
2. The adversary chooses a target set Dtarget and sends to challenger.
3. The challenger unlearns D f ∪{Dtrain ∩Dtarget} to get the model θU .
4. The challenger flips a coin c:

• If c= head, the challenger chooses a data point z from D f ∩Dtarget,
and the query result will be given as fθU (·)

• If c= tail, the challenger chooses a data point z from Dtarget\Dtrain,
and the query result will be given as fθI (·)

5. The challenger sends the selected data point z to the adversary.
6. Given the query from queries z as fθ(·), the adversary determines if
z is in D f and guess ĉ = {head, tail}; adversary wins if ĉ = c.

Evaluating Efficacy with Indistinguishability between Un-
learned Model and Retrained Model. As highlighted in
Pitfall III, inexact unlearning lacks formal guarantees, mak-
ing empirical evaluation essential [38]. To assess whether
an unlearning method approximates retraining behavior, we
adopt a formal game formulation based on indistinguishability
between the unlearned model and a retrained model. In Game
3 (new contents marked in pink), the challenger first trains
and unlearns a model to obtain θU . The challenger flips a
coin and chooses the target sample from the target set chosen
and shared by the adversary. If the sample belongs to D f , the
query result will be given to the adversary as fθ(·) = fθU (·);
and if the sample was not involved in training, the query result
will be given as fθ(·) = fθI (·). The adversary must guess if
that sample is unlearned or retrained. This game is fair: The
adversary receives output from only one model and never has
access to internal weights or both models simultaneously. The
baseline success rate remains 50% (random guessing), and
the adversary gains no extra advantage. The game only tests
distinguishability between 1) a sample that was unlearned,
and 2) a sample that was never trained on, based solely on
observable predictions.

We highlight that Game 2 is a practical privacy attack for
identifying the privacy leakage in the unlearned model θU .
Game 3 defines the foundation for an attack to differentiate
the retrained model from an unlearned model (efficacy), and
it is not instantiated as a real-world attack.

4.3 RULI to Resolve Pitfalls
4.3.1 Theoretical Foundation for RULI

Earlier, we have established the theoretical foundation to
tackle Pitfalls. Now we design a new MIA for instantiating
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Figure 2: Overview of RULI shadow model training and unlearning to measure the privacy leakage and efficacy.

the attack from the empirical perspective. Similar to [12], we
begin with the distributions an adversary requires to make a
hypothesis test [12] on them. According to Game 2, adversary
requires two distinct distributions of unlearned models.

Qu ={θ←U(A(Dtrain∪{z}),{z}∪D f | D f ⊂ Dtrain ∼D)}
Qh ={θ←U(A(Dtrain),D f | D f ⊂ Dtrain ∼D)}

where U and A refer to the unlearning and training algo-
rithms, respectively. Specifically, Qu denotes the distribution
of models in which the target sample (z) was included in
training and subsequently unlearned, while Qh represents the
distribution of models where {z}was never part of the training
set and thus not unlearned. Hence, given an unlearned model
θU , the attacker makes a likelihood ratio test [12] to derive
the membership of the target sample according to Equation 1.

Λ(z) =
p(θU | Qu(z))
p(θU | Qh(z))

, ∀(z) ∈ Dtarget (1)

Furthermore, regarding Game 3, attacker essentially re-
quires these distributions:

Qu ={θ←U(A(Dtrain∪{z}),{z}∪D f | D f ⊂ Dtrain ∼D)}
QR ={θ← A(Dtrain | Dtrain ∼D)}

Similarly, QR represents the distribution of the models
trained without the target sample (z) (“retrained excluding
{z}”). Different from previous tests, the hypothesis test here
cannot be on a single unlearned model or retrained model.
Hence, we introduce a new unlearning test model as:

θT (z) =

{
θU(z) if z ∈ Dtarget∩Dtrain

θR (z) if z ∈ Dtarget \Dtrain
(2)

Then, given a test model θT , the following likelihood ratio
test can be adopted to derive the efficacy based on Game 3.

Ψ(z) =
p(θT | Qu(z))
p(θT | QR(z))

, ∀(z) ∈ Dtarget (3)

In practice, the test model is introduced to enable per-
sample efficacy evaluation without requiring direct access
to both the unlearned and retrained models for comparison.
Since each target sample may either be unlearned or never
trained on, but we only have access to individual models
trained under one configuration at a time, we use θT (z) as a
unified interface. It returns the output from the correct model
depending on {z}’s status: unlearned or excluded. Figure 2
(b) shows how a test model operates in RULI. If a target sam-
ple is unlearned, a query would be given from the unlearned
model. Otherwise, the query would be given from the model
that is trained, excluding the target sample, and the efficacy
would be evaluated from a likelihood test per Equation 3.

4.3.2 MIA in RULI

Membership Inference in RULI. Algorithm 1 outlines the
attack pipeline in RULI to evaluate the privacy leakage and
unlearning efficacy. The attacker trains N shadow models
using samples drawn from the data distribution D. For each
target sample z, the algorithm ensures that model outputs
(observations) are collected under three training scenarios:
when z is included in training (In), when it is excluded entirely
(Out), and when it is included and later unlearned via a known
unlearning algorithm (Unlearned). It also simulates when it
is Out and the model is unlearned (Held-out). After each
model is trained, the inference function φ is applied to obtain
the model’s observation on the target sample, and the result
is stored in one of five observation sets. Figure 2 shows an
example for the shadow model training and unlearning.

In the second step, Kernel Density Estimation (KDE) [64]
is applied to fit smooth distributions over the collected confi-
dence scores from each distribution. The attacker then queries
the actual unlearned model and computes two likelihood ra-
tio tests: Λ, which compares the unlearned distribution to
the held-out distribution to evaluate privacy leakage, and Ψ,
which compares the unlearned distribution to the out distribu-
tion (excluded samples) to measure the unlearning efficacy.

Parallelizing MIA to All Target Samples. To scale the algo-
rithm to a set of target samples while maintaining balanced
per-sample coverage across roles, we structure the shadow



training in groups of three. In each iteration, we select a
disjoint subset of target samples of size N

3 , and assign each
sample to a unique role within that batch: one-third as Din,
one-third as Dunlearn, and one-third as Dout. We train shadow
models Din∪Dunlearn∪Dattack and then unlearn Dunlearn. After
repeating this procedure three times, each target sample will
have at least one observation instance for all intended distri-
butions. Once all N iterations are completed, this structure
guarantees that each target sample has at least N

3 complete
set of observations to form the corresponding distributions
(Qu,QR,Qh). The resulting distributions are then used to fit
KDE distributions for the privacy leakage and efficacy evalu-
ations of the target samples.

Algorithm 1 Membership Inference Attack in RULI
Input: trained model f , target sample z ∈ Dtarget, forget data D f ∈

Dattack, data distribution D, training algorithm A , unlearning
algorithm U, inference function φ (loss, logit-scaled confidence),
output observation O, number of shadow models N.

1: Initialize: O in,Oout,Ounlearned,Oheld-out
2: Oremained← /0

> Step 1: training & unlearning shadow models
3: for N iterations do
4: Dattack←D
5: fi← A(Dattack∪{z})
6: fR← A(Dattack)
7: O in← O in∪{φ( fi(z))}
8: Oout← Oout∪{φ( fR(z))}
9: fu←U(A(Dattack∪{z}),D f ∪{z})

10: Ounlearned← Ounlearned∪{φ( fu(z))}
11: fh←U(A(Dattack),D f )
12: Oheld-out← Oheld-out∪{φ( fh(z))}
13: fr←U(A(Dattack∪{z}),D f )
14: Oremained← Oremained∪{φ( fr(z))}
15: end for
> Step 2: estimating distributions

16: f̂in← KDE(O in)
17: f̂out← KDE(Oout)
18: f̂unlearned← KDE(Ounlearned)
19: f̂held-out← KDE(Oheld-out)
20: f̂remained← KDE(Oremained)
> Step 3: querying models

21: fU ←U( f ,z)
22: O fU ← φ( fU(z))
23: fT ← Equation 2
24: O fT ← φ( fU(z))
> Step 4: deriving the privacy leakage & efficacy

25: Λ← p(O fU | f̂unlearned)

p(O fU | f̂held-out)

26: Ψ← p(O fT | f̂unlearned)

p(O fT | f̂out)

27: Return Λ, Ψ

RULI vs. U-LiRA [38]. One might naturally extend the
MIAs to the unlearning setting by considering the unlearning
step, comparing the distributions of retrained and unlearned
models with a query from an unlearned model and formulating

a likelihood-based ratio test such as:

p(θU | Qu(z))
p(θU | QR(z))

.

This is the core idea behind U-LiRA [38], the first per-sample
framework for evaluating unlearning by comparing inferences
from the unlearned model (Qu) against those of a retrained
model (QR). U-LiRA marks a notable step towards structured
evaluation of unlearning effectiveness. Then, we summarize
the major differences between RULI and U-LiRA as below.

Efficacy Modeling. The hypothesis test in U-LiRA (as dis-
cussed above) relies on a critical assumption: the infer-
ence behavior of the unlearned model, θU(z), will closely
match that of the retrained model, θR(z), for target samples
z ∈Dtarget \Dtrain. Membership is then inferred by comparing
the unlearned model’s output at z to the distribution QR(z).

However, this assumption may not hold. Our empirical
analysis (see Figure 9) reveals a distributional mismatch: the
unlearned and retrained models diverge significantly where z
is out. This divergence is not merely a subtle shift—it directly
impacts MIA performance and may lead to impacting privacy
leakage and more noticeably efficacy measurement. Also, this
mismatch reflects a limitation of Game 2 and our motivation
for introducing Game 3 and consequently the Test model for
efficacy measurement in RULI.

Targeted Attack for Unlearning Evaluation. First, in contrast
to U-LiRA, RULI incorporates an additional shadow dis-
tribution Qh, which represents held-out samples, i.e., sam-
ples that are neither trained nor unlearned. This enables a
dual-objective inference framework where privacy leakage Λ

is evaluated against Qh, and efficacy Ψ is evaluated against
QR (not in U-LiRA). Second, this requires a revised shadow
model design, and RULI remains computationally efficient
by sharing models across roles. Third, RULI involves a new
target sample selection strategy on vulnerable samples (ca-
naries) while U-LiRA focuses on random samples. We demon-
strate that applying our target selection strategy to U-LiRA
improves its MIA performance, outperforming previously re-
ported accuracy even for strong unlearning baselines. Finally,
as a targeted attack, RULI requires significantly fewer shadow
models, making it more efficient than U-LiRA. We provide
empirical comparisons for RULI and U-LiRA in Section 6.4.

5 Rectified Unlearning Evaluation

In this section, we integrate the proposed MIA in RULI into
a unified framework for unlearning evaluation. Section 5.1
illustrates how these components can interconnect to provide
a holistic view of privacy risks and efficacy. With the refined
likelihood ratios, we then perform targeted attacks on canaries
using the selection strategy from Section 5.2.



5.1 Major Steps for Rectified Evaluation
Shadow Model Training. Using the MIA in RULI, we train
N shadow models with a fixed target unlearning set. For the
shadow-trained models, we obtain the In and Out distributions.
For the shadow-unlearned models, each sample x ∈ Dtarget is
evenly distributed across three inference types: remained,
unlearned, and held-out, with each type represented by N

3
models. This corresponds to Steps 1 and 2 in Algorithm 1.

Target Model Training and Unlearning. We begin by parti-
tioning the unlearning target set Dtarget into three equal sub-
sets: one-third is designated to be excluded from training,
while the remaining two-thirds are used to train the target
model θI along with disjoint attack data to ensure generaliza-
tion. After training, we perform unlearning by removing half
of the Dtarget training subset, resulting in the unlearned model
θU . This setup ensures a balanced design for evaluating both
validation accuracy and membership inference (MI) using the
two likelihood tests defined in RULI: Λ (privacy leakage)
and Ψ (unlearning efficacy), as detailed in Steps 3 and 4 in
Algorithm 1. Since these evaluations require equal-sized sub-
sets for fair comparison, we may adjust the partitioning ratio
of Dtarget accordingly if needed.

Note that RULI can provide a comprehensive set of likeli-
hood tests in Table 1 with a single run. It enables measure-
ment metrics other than privacy leakage and efficacy on forget
data. For example, we might evaluate how unlearning impacts
remain data privacy and how memorization levels would be
changed. Ideally, the memorization on remain samples should
remain similar to the original model (no unintended privacy
leakage and no unintended unlearning).

Table 1: RULI enables comprehensive MIA tests on un-
learned and trained models.

Target Evaluation Likelihood Ratio Test

Unlearning efficacy p(θT |Qu(z))
p(θT |QR(z))

, ∀(z) ∈ Dtarget

Privacy leakage p(θU |Qu(z))
p(θU |Qh(z))

, ∀(z) ∈ Dtarget

Trained model privacy leakage p(θI |Qi(z))
p(θI |QR(z))

, ∀(z) ∈ Dtarget

Privacy leakage on remained samples p(θU |Qr(z))
p(θU |Qh(z))

, ∀(z) ∈ Dtarget

5.2 Target Samples Selection
To bridge the proposed attack with the evaluation, we now
address a critical challenge: How to select target samples that
represent corner cases in unlearning? Most existing unlearn-
ing methods rely on random subsets of the training data, focus-
ing on average-case evaluations. However, not all samples are
memorized equally, and most are generally well-protected in
typical datasets [71]. This inspires us to investigate unlearning
in a more challenging scenario: How does unlearning perform
on highly memorized (vulnerable) samples?

We further examine the impact of unlearning vulnerable
samples alongside non-vulnerable (i.e., safe or protected)

ones, inspired by the canary injection technique from privacy
auditing [14, 52, 66]. Our results show that, when carefully
tuned, stronger unlearning methods can provide greater protec-
tion than expected—especially when only vulnerable samples
are unlearned (see Table 2 and Table 5). We found that a more
practical setting of injecting vulnerable samples as canaries
yields higher privacy leakage and lower efficacy (higher MIA
success). We suspect this behavior is influenced by the rela-
tive impact of sample vulnerability, and when samples with
different memorization levels are unlearned in mini-batches,
the averaged gradient cannot update the model to sufficiently
unlearn the vulnerable samples. An example of such an effect
in Figure 3 where unlearning vulnerable samples together
with protected samples is challenging. We leave a deeper in-
vestigation of this observation to future work. For now, we
consider this scenario the most challenging and practical set-
ting for unlearning. To support this, we have conducted a
comprehensive study on alternative target sample selection
strategies in Section 6.2.1.
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Figure 3: Two samples under inexact unlearning; A protected
sample’s out and unlearned distributions are distinguishable
(efficacy); vulnerable sample’s unlearned and held-out distri-
butions are distinguishable (privacy leakage).

Canary Injection. By specifying the target set in RULI, we
can focus on measuring privacy leakage (rather than efficacy),
drawing inspiration from the well-known canary injection
technique [14, 66] used in differential privacy auditing [52].
This approach offers an efficient strategy for evaluating inex-
act unlearning algorithms on their ability to remove vulnera-
ble samples. The strategy is simple: inject canaries into the
forget set and query only these samples after unlearning.

Specifically, we inject vulnerable samples into a randomly
selected forget set. This random forget set may or may not
overlap with a predefined set of safe samples, allowing us to
simulate realistic unlearning scenarios (a portion of forget
data can be vulnerable). Then, we only focus on the attacker’s
advantage solely on vulnerable samples. However, one might
try to achieve tighter bounds on the privacy leakage of unlearn-
ing by a more careful choice of canaries or adversarial canary
injection. In this paper, we focus on providing more insights
for unlearning evaluation rather than trying to achieve very
tight bounds on the privacy leakage of unlearned models.



6 Experiments

6.1 Experimental Setup
Consistent with existing research on unlearning [34, 38, 44,
46, 70] and machine learning privacy benchmarks [12, 38, 48],
we evaluated the unlearning methods on typical CIFAR-10
and CIFAR-100 datasets with ResNet models. To demon-
strate the generalizability of RULI, we evaluate unlearning
on two challenging settings: TinyImageNet fine-tuned on a
vision transformer (ViT), and WikiText-103 fine-tuned for
text generation on two language models. We will provide the
experiment setup in the following as we proceed. Details on
the training hyperparameters are deferred to Appendix A.1.

6.1.1 Unlearning Benchmarks

We adopted RULI and other MIAs to attack and evaluate the
following SOTA unlearning methods.

ℓ1 Sparse [46] based unlearning approach employs a pruning
and fine-tuning strategy. Initially, it removes weights with the
smallest absolute values, based on the assumption that these
weights contribute the least to the model’s performance. This
pruning step not only facilitates unlearning but also results in
a sparser, potentially smaller neural network. After pruning,
the model is fine-tuned on Dr to recover its performance.

Scrub [44] employs a distillation-based approach for unlearn-
ing. It guides the model to diverge from the original pre-
dictions for D f . Simultaneously, it ensures that the model’s
predictions on Dr remain consistent with its original behavior.
By leveraging distillation, Scrub achieves a balance between
unlearning the forget data and preserving the accuracy and
functionality of the remain data.

GA/GA+ [34, 44, 70] is an enhanced version of gradient as-
cent tailored for unlearning. It operates in two stages: first, it
maximizes the loss on D f , then, it fine-tunes the model to min-
imize the loss on the Dr, ensuring that the model maintains its
predictive accuracy on remain data. We specifically add fine-
tuning (refining) steps to make gradient ascent comparable
with other benchmarks.

NegGrad+ [38, 44] is designed to optimize two goals: raising
the loss on the forget set while reducing the loss on the remain
data, controlled by a balancing parameter.

There are growing baselines not included in this paper, as
the methods presented above consistently achieved superior
performance, in line with the findings of [38, 46]. However,
any inexact unlearning algorithm can be measured by RULI.

6.1.2 Target Samples for Unlearning

We collected target samples for unlearning by conducting
classic Membership Inference Attacks (MIAs), specifically
LiRA [12]. For a given sample, p(In) is the estimated likeli-
hood probability that it was in the training set, while p(Out)

is the estimated probability that it was not. Samples with like-
lihoods exceeding a certain threshold at TPR@lowFPR are
marked as highly memorized (i.e., vulnerable). Conversely,
when p(In)≈ p(Out), the samples are considered less mem-
orized, making them more resistant to MIAs. Specifically, for
CIFAR-10 and CIFAR-100, we consider the standard setting
from [12], where a model is trained on a dataset containing
half of the samples from training set (i.e., 25,000 training sam-
ples). The remain data serves as the attack dataset in Section
6.1.3. We then identified the vulnerable highly memorized
samples (easier to attack) and protected samples as the ones
with lower memorization (harder to attack). We refer readers
to more details in A.3

Target Samples for Shadow Model Training and Unlearn-
ing. We select different setups of target samples and name
these settings in the parentheses: 1) 600 random samples
(“Random”), 2) 600 vulnerable samples (“Vulnerable”), 3)
600 protected samples (“Protected”), 4) 600 protected sam-
ples + 600 vulnerable samples (“Vulnerable + Protected”),
and 5) 600 random samples of one class of dataset (“Class”).3

6.1.3 MIA Settings

After performing model unlearning, we evaluate the unlearned
models using MIAs.

Shadow Model Training. To facilitate MIAs, we construct a
training set that includes unlearned examples from the vari-
ous unlearning settings, along with randomly sampled data
from the attack dataset, which is non-overlapping with the
unlearning set.

For MIA, we trained 90 shadow models, each for 50 epochs.
The shadow models achieve an accuracy of at least 88%. Addi-
tionally, we tune hyperparameters to ensure that the unlearn-
ing baselines match the Retrain gold standard in accuracy
across the remain, forget, and test datasets [74]. This involves
conducting a comprehensive grid search similar to [38], but
with a set of parameters specifically adapted to each target
data setup (see Table 9 in Appendix A.2 for details). Our
implementation leverages the open-sourced code bases from
these benchmarks.

Average-case Attack. To implement an average-case attack
as a baseline, we aggregate the logit-scaled confidences across
all shadow models following similar population attack adap-
tations [35, 38, 62]. Specifically, for each setting (e.g., when
the target data consists of vulnerable samples), we combine
the outputs from all shadow models to form aggregated popu-
lations. A linear binary classifier is then fitted to these aggre-
gated distributions, learning to differentiate between member
and non-member populations across the entire set.

3Hayes et al. [38] considers this setting as a challenging setting for CIFAR-
10; We have excluded class-wise unlearning as removing an entire class from
the dataset violates typical MI assumptions (blind attacks would outperform
any targeted attack in such a setting).



6.2 Privacy: (Stand-alone) Unlearned Model
6.2.1 Privacy Leakage across Different Target Sets

We evaluate RULI under the standard setting that we have
shadow models for all target sample setups. This study helps
illustrate which unlearning settings are more prone to our pri-
vacy attacks. As shown in Table 2, we report Attack Accuracy,
Attack AUC, and TPR@1% FPR as privacy leakage metrics
for different unlearning methods, considering different com-
binations of forget and target data. Additionally, we present
the accuracy gap between the unlearned model (θU) and the
retrained model (θR ) to provide a general performance evalu-
ation of the unlearning methods.

Table 2: Attacking or evaluating unlearning methods on the
CIFAR-10 dataset (whether by selecting safe samples, class-
specific random samples, or exclusively vulnerable samples
as forget sets, does not effectively assess privacy risk–Pitfall
II). A better approach is to use target samples as canaries.
Inferences are performed in a single training and unlearning
run, selecting the best unlearning instance for evaluation.
Unlearning
Methods Forget Data Target Data

Attack
AUC

Attack
ACC

TPR@
1% FPR

∆

ACC(D f )

ℓ1 Sparse

+ Random Random 45% 48% 1% 2.5%

+ Class Class 54.0% 53.75% 0.0% 7.5%

+ Vulnerable Vulnerable 55.97% 50.50% 1% 3%

+ (Vulnerable + Protected) Protected 48.96% 48.46% 1.06% 4%+ (Vulnerable + Protected) Vulnerable 56.85% 53.37% 1.9%

Scrub

+ Random Random 52% 51.75% 3% 0.5%

+ Class Class 61% 57% 1% 0.3%

+ Vulnerable Vulnerable 57.0% 54.5% 5% 3.0%

+ (Vulnerable + Protected) Protected 57.75% 49.98% 0.0% 7.5%+ (Vulnerable + Protected) Vulnerable 73.53% 68.27% 8.53%

GA+

+ Random Random 56% 54.75% 7% 10.5%

+ Class Class 61% 55.25% 3% 7%

+ Vulnerable Vulnerable 60.75% 65% 6% 10%

+ (Vulnerable + Protected) Protected 52.13% 54.17% 0.0% 7.75%+ (Vulnerable + Protected) Vulnerable 76.17% 68.5% 22.75%

NegGrad+

+ Random Random 52% 52.75% 4% 2%

+ Class Class 69% 58.50% 4% 17%

+ Vulnerable Vulnerable 76% 70.25% 21% 43.5%

+ (Vulnerable + Protected) Protected 52.5% 51.56% 1.59% 15.5%+ (Vulnerable + Protected) Vulnerable 77.54% 72.36% 18.48%

The results show that privacy leakage is more pronounced
when the forget set includes a mix of vulnerable and protected
samples, compared to using random samples or random sam-
ples from “Class”. For example, in GA+, when the forget data
and target data consist of random samples or random samples
from “Class”, the attack AUC is 56% and 61%, respectively,
while TPR@1% FPR is 7% and 3%. Similarly, the attack
accuracy is 54.75% and 55.25%. However, when the forget
data consists of both Vulnerable and Protected samples and
the target data is Vulnerable, the attack AUC, attack accu-
racy, and TPR@1% FPR increase significantly to 76.17%,
68.5%, and 22.75%, respectively. A similar trend is observed
for Scrub and NegGrad+, indicating that RULI is highly ef-
fective at inducing privacy leakage across most unlearning
methods. We attribute this behavior to the batch-averaging
effect inherent in methods like NegGrad+, GA+, and Scrub,

which optimize an objective loss on D f (distillation for Scrub
and cross-entropy for NegGrad+ and GA+). As expected, ℓ1
Sparse demonstrates the highest resilience to RULI, likely
due to its reduced memorization capacity, which makes it less
vulnerable to both RULI and traditional MIAs [40] on model
training. However, this resilience comes at a cost, as sparse
models also exhibit reduced memorization of remaining vul-
nerable samples, a tradeoff discussed further in Section 6.3.
Overall, we conclude that using a combination of Vulnerable
+ Protected samples as forget data and Vulnerable samples as
target data represents the most effective setting for evaluating
privacy leakage.

Additionally, we observe that GA+ achieves a similar accu-
racy gap (7.75% vs 7.5%) compared to Scrub but exhibits a
significantly higher TPR@1% FPR, with a margin of 14.22%.
This highlights the inadequacy of relying on average accuracy
to assess unlearning privacy leakage.
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(b) CIFAR-100 Results

Figure 4: Attack accuracy and TPR@1%FPR targeting vulner-
able samples as canary with RULI vs targeted average-case
attack. Average-case attacks are underestimating the privacy
risk (TPR@1%FPR) even under target vulnerable samples.
RULI achieves higher attack success on all methods.

6.2.2 Vulnerable Samples as Canaries

We examine vulnerable samples analogous to canaries [3, 66]
in a similar setting. We inject 600 vulnerable samples (100
would be trained and remain in the model to prevent possible
Onion effect [13]) along with 600 random samples, except for
the vulnerable set. Consequently, we will have 500 canaries
to target (250 unlearned and 250 held-out).

Targeted Average-case Attack. As a baseline vs RULI, we
adapt average-case attacks to evaluate its performance. Specif-
ically, we derive two populations from all distributions gen-
erated by shadow models for the vulnerable samples. Using
these populations, we train a regression model to classify the
samples based on their population membership. The model



can distinguish between samples that were unlearned and
those that were entirely held out from both the training and
unlearning processes. This approach shows RULI’s effective-
ness in capturing nuanced privacy leakage.

Results. Figure 4 presents the attack accuracy and TPR@1%
FPR for CIFAR-10 and CIFAR-100 datasets, where RULI
outperforms average-case attacks significantly. For CIFAR-
10, across the unlearning benchmarks, the attack accuracy and
TPR@1% FPR achieved by RULI are, on average, 18.63%
and 11.88 times higher, respectively, compared to the average-
case attacks. Similarly, for CIFAR-100, RULI surpasses
average-case attacks by 30.72% in attack accuracy and 9.38
times in TPR@1% FPR. Thus, the average-case attacks sig-
nificantly underestimate privacy risks, even when targeting
vulnerable samples, underscoring the severity of Pitfall I.

We acknowledge that our strategy does not offer the tight-
est privacy leakage estimation. For example, leveraging only
the top vulnerable samples and getting the membership in-
ference over hundreds of runs on those samples, [3, 66] can
potentially provide higher TPR@low FPR results. We leave
this exploration to future works, positioning our findings as a
step towards systematically attacking unlearning algorithms.

6.3 Efficacy: Unlearning vs. Retraining

We evaluated RULI for efficacy attack to determine whether
a target sample was unlearned or retrained, as described in
Game 3.

To achieve this, we utilized Algorithm 1 to compute the
likelihood test ratio in accordance with Equation 3. This ex-
periment requires the Test model to construct a hypothetical
test model, as defined in Equation 2 and illustrated in Figure 2.
The goal of this experiment is to provide a more fine-grained
evaluation for comparing the effectiveness of inexact unlearn-
ing methods against the retraining global standard.

We consider four attack settings, where the target data con-
sist of “Random” Samples, “Vulnerable” Samples, “Vulner-
able + Protected” Samples, and randomly selected samples
from “Class”, respectively. Figure 5a-5d, demonstrating that
by querying the test model θT , the attacker achieves a high
attack success rate, effectively distinguishing many samples
under TPR@FPR. From the figures, we observe that in our
newly introduced attack settings (Vulnerable and Vulnerable +
Protected), TPR@FPR is larger (TPR@1%FPR≥10%) across
all unlearning methods. Notably, the Vulnerable + Protected
setting dominates on the ℓ1 Sparse and Scrub. The Vulnerable
setting achieves better results on GA+ and NegGrad+. These
findings indicate that RULI successfully avoids Pitfall III,
effectively distinguishing retrained models from unlearned
models. While these results do not show privacy leakage,
they establish a promising foundation also for future works.
One could leverage this method to audit the upper bounds of
certified unlearning approaches [18, 36, 81].

Some Insights. Efficacy attack can be used as the definitive
evaluation standard, as it provides a clear basis for comparing
inexact unlearning with retraining. An interesting finding that
is not observable in average-case accuracy evaluation is the
unintended loss of memorization of remained vulnerable sam-
ples caused by inexact unlearning algorithms. Ideally, only the
information related to the forget set should be removed. How-
ever, we observed that the model’s accuracy on the remaining
vulnerable dataset was also unintentionally reduced.

Table 3: Inexact unlearning methods cannot accurately pre-
serve the remained vulnerable samples (shown as Vul set).

Unlearning
Methods

CIFAR-10 CIFAR-100

Acc(D f ) Acc(Dr) Acc(Dtest)
Acc(Dr)

on Vul set
Acc(D f ) Acc(Dr) Acc(Dtest)

Acc(Dr)
on Vul set

ℓ1 Sparse 57.5% 94.84% 88.36% 45.10% 51% 87.48% 66.34% 50.54%
Scrub 65.0% 97.58% 89.63% 70.10% 61.5% 96% 64.86% 83.70%
GA+ 66.60% 94.42% 84.24% 62.50% 67% 99.11% 63.13% 100%
NegGrad+ 81.0% 96.93% 85.74% 80.96% 65.0% 91.89% 58.41% 86.96%

Retrain 59.50% 99.79% 90.71% 96.19% 35.75% 99.93% 67.39% 99%

As shown in Table 3, ACC(D f ), ACC(Dr), ACC(Dtest), and
ACC(Dr) on Val set denote accuracy on forget data, remain
data, test data, and remaining vulnerable data, respectively.
Generally, after unlearning, the model performs well on forget
data, remain data, and test data, as the ACC(D f ), ACC(Dr),
ACC(Dtest) of unlearned models are comparable to those of re-
trained models for both datasets. However, unlearned models
show a significant accuracy drop on remaining vulnerable data
compared to the retrained model. For CIFAR-10, ACC(Dr)
on the vulnerable set is 96.19% for the retrained model but
only 64.67% on average for unlearned models. Similarly, for
CIFAR-100, ACC(Dr) on Val set is 99% for the retrained
model versus 80.3% on average for unlearned models.

Among the benchmarks, ℓ1 Sparse exhibited the most pro-
nounced loss of memorization on the remain data. We hypoth-
esize that this is due to the strong global sparsity enforced
by the method. While the sparsity was maintained at approxi-
mately 60% to optimize the accuracy gap, it likely contributed
to the observed loss in memorization. Notice that, to validate
our findings, we reduce model sparsity to 7%, observing only
a 1–2% change in accuracy on the remaining vulnerable set.

6.4 Comparison with U-LiRA

Differences in Target Design and Testing Strategy. RULI
differs from U-LiRA along two key designs: target sample
selection and model querying during hypothesis testing. U-
LiRA selects random samples from a single class (the setting
of “Class”), while we construct the target set by injecting
vulnerable samples into a set of known protected samples,
though we only evaluate on the vulnerable ones. Additionally,
while both U-LiRA and RULI query the unlearned model
θU for privacy leakage, they differ in how reference distri-
butions are constructed. U-LiRA compares outputs between
unlearned and retrained models (Qu vs QR), while RULI uses
Qh, a held-out distribution QR. For efficacy, RULI evaluates
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Figure 5: Comparing with retraining using RULI. All unlearning benchmarks are highly distinguishable from retraining.

queries using the test model θT (z), which selects between a
retrained model θR or an unlearned model θU depending on
whether the sample was excluded or unlearned.

Table 4: Ablation study comparing U-LiRA and RULI under
different target selection strategies and MIAs for Scrub and ℓ1
Sparse on CIFAR-10 dataset. For “Vulnerable + Protected”,
privacy leakage is computed only on vulnerable samples. Re-
sults are averaged over 10 independent runs.

Privacy Leakage MIA for Efficacy

Setting Target Samples MIA Method ACC ↑ TPR@1
%FPR ↑ ACC ↑ TPR@1

%FPR ↑

ℓ1 Sparse
U-LiRA Baseline one "Class" only U-LIRA 50.2% 0.5% - -
Alt. MIA Only Vulnerable + Protected U-LiRA 55.7% 1.6% - -
Alt. Target Only one "Class" only RULI 51.73% 1.37% 65.6% 18.0%
RULI (Full) Vulnerable + Protected RULI 54.4% 1.4% 81.1% 23.3%

Scrub
U-LiRA Baseline one "Class" only U-LIRA 53.75% 1.13% - -
Alt. MIA Only Vulnerable + Protected U-LiRA 62.8% 8.6% - -
Alt. Target Only one "Class" only RULI 53.32% 1.7% 65.1% 7.0%
RULI (Full) Vulnerable + Protected RULI 65.5% 11.8% 67.4% 8.8%

Results.4 Table 4 evaluates the impact of two key components
in our evaluation pipeline: (1) the target sample selection strat-
egy, and (2) the MIA. We compare four configurations using
both ℓ1 Sparse and Scrub unlearning (which achieve the top
unlearning performance from prior results). U-LiRA’s origi-
nal setting selects random samples from “Class” as the target
set and uses their own likelihood-ratio test. In contrast, our
setting structures the target by injecting vulnerable samples
into a set of protected samples, and uses RULI for the attack.

When we replace only the target selection while keeping
U-LiRA’s test, privacy leakage improves significantly. Under
Scrub, TPR@1%FPR increases from 1.13% to 8.6%. This
shows that our target selection alone improves the evaluation,
even benefiting U-LiRA. Conversely, when we change only
the attack to RULI while keeping the “Class” target, the gains
are marginal, suggesting that these targets limit the attack per-
formance. Finally, in our full setting (Vulnerable + Protected
target + RULI), we observe the strongest results, e.g., Scrub
achieves 11.8% TPR@1%FPR for privacy leakage and 8.8%
for efficacy, while ℓ1 Sparse reaches 1.4% and 23.3%, respec-
tively. Since U-LiRA assesses efficacy through the lens of
privacy leakage, we do not report MIA results for its efficacy.

4We re-implemented U-LiRA (not official) based on the algorithm in [38].

Efficiency. We acknowledge that training shadow models in-
troduces additional computational costs, and this applies to all
per-sample standard MIA evaluations. For reference, RULI
incurs 1.2× runtime of LiRA [12] (standard per-sample MIA
for machine learning training) per shadow model under un-
learning CIFAR-10 using Scrub. In practice, U-LiRA is more
computationally expensive. For example, in a setting with
1,200 target samples (e.g., our Vulnerable + Protected set-
ting), for preparing 30 unlearned shadow models per sample,
U-LiRA incurs approximately 270× higher cost than single
shadow model training and requires around 40× unlearning
models for each trained model. While, RULI completes it
with 36× more than single shadow model training.

6.5 Generalizability of RULI

We next evaluate the generalizability of RULI by applying
it to model fine-tuning on larger-scale and complex datasets
(TinyImageNet and WikiText-103) and unlearning in vision
transformer (ViT) and language models.

6.5.1 Vision Transformer (ViT) on TinyImageNet

For the TinyImageNet dataset, we employ a pre-trained ViT
(Swin-small [47] Transformer) to fine-tune and unlearn. Train-
ing is performed to reach the test accuracy of at least 84%
by fine-tuning the model only with 2 epochs. Shadow model
training and canary injection settings are similar to those on
preparing 90 shadow models in Sections 6.1.3 and 6.2.2. For
unlearning evaluation, we avoid from-scratch training or fine-
tuning architectures like ResNets on this dataset, due to low
test accuracy and severe overfitting, making them unsuitable
for our study. We also use the top benchmarks from prior
results (ℓ1 Sparse and Scrub) to unlearn image samples from
the ViT model for this group of experiments.

Results. Efficacy results indicate a consistent gap in per-
sample behavior between the retrained model and unlearned
models across all three target data configurations, achieving
an attack accuracy of at least 66% on ℓ1 Sparse and 71% on
Scrub. Efficacy tests can achieve at least 10% TPR@1%FPR
in the “Vulnerable + Protected” setting. The privacy leakage
results show a different trend. We conduct a targeted popu-
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Figure 6: MIA for unlearning efficacy on different choices
of target samples, with best unlearning baselines evaluated
when fine-tuning and unlearning a Swin-small ViT model.

Table 5: Privacy leakage on TinyImageNet. We evaluate three
target selection strategies—Canary injection, Vulnerable-only,
and Random samples—using a target set of 500 samples (250
unlearned and 250 are held-out). All experiments are per-
formed on a Swin-small ViT model.

Targeted average-case attack
(Population attack) RULI

Target data AUC ACC
TPR@
1%FPR

TPR@
5%FPR AUC ACC

TPR@
1% FPR

TPR@
5%FPR

ℓ1 Sparse
Vulnerable

only 54.4% 55.1% 2.3% 5.2% 59.6% 56.0% 2.4% 12.4%

Vulnerable
as canaries 55.3% 54.7% 0.8% 5.6% 62.6% 57.0% 6.3% 16.6%

Random 53.2% 52.8% 0.0% 2.4% 56% 54.4% 0.8% 6.4%

Scrub
Vulnerable

only 52.5% 52.4% 2.0% 5.4% 65.3% 61.5% 11.7% 23.9%

Vulnerable
as canaries 56.0% 56.2% 1.0% 6.3% 69.5% 63.6% 10.9% 27.1%

Random 49.6% 49.8% 1.0% 2.8% 59.7% 57.0% 6.0% 14.0%

lation attack as the baseline and compare it with RULI on
a different set of target data. Results confirm the prior ob-
servations: unlearning vulnerable samples, when injected as
canaries, leads to increased privacy leakage. Exclusively un-
learning vulnerable samples results in a higher attack success
rate compared to random samples, but is not generally more
effective than when they are injected as canaries.

6.5.2 Text Generation on WikiText-103

We conduct our experiments on the WikiText-103 dataset,
fine-tuning Pythia-70m [8] and GPT2-small [57] (see details
in Appendix A). The unlearning task focuses on removing
n-gram sequences that the fine-tuned models have memorized
within the training. To validate RULI’s generalizability, we
apply unlearning methods designed for language models [43,
45, 61, 82]. The attacker aims to infer the membership of the
specific n-gram sequence by querying the unlearned model.

Unlearning Benchmarks. Previous inexact unlearning meth-
ods in Section 6.1.1, are not originally proposed for language
model unlearning. Instead, we adapt two gradient-based un-
learning methods [61]: GA+GDR and NPO [82] to unlearn

sequences from language models. GA+GDR applies Gradient
Ascent on the forget data to increase its loss and reduce its
influence, while using Gradient Descent on the remain data
(GDR) to preserve generalization. NPO introduces a direc-
tional forgetting loss that compares the current model’s logits
to those of a frozen trained model (reference model), directing
the updated model to assign lower confidence to the forget
data. In both methods, the forgetting and retention objectives
are applied jointly to ensure effective removal without de-
grading overall performance. Moreover, we add SFT steps on
remaining data to recover any loss due to unlearning.

Attack Setup. For shadow model training, we use a dataset
of 15,000 records (containing over 1 million tokens) and con-
sider 1,000 7-gram sequences [24] (with prefixes drawn from
test data records) as the target data for training shadow mod-
els. We fine-tune both Pythia-70m and GPT2-small with 5
supervised fine-tuning (SFT) [10] epochs and 2 epochs of
prefix language modeling (PLM) [58]. Similarly, for unlearn-
ing, we use PLM to optimize the model to unlearn the target
7-grams. We also execute 2 more SFT epochs on the remain-
ing data to improve unlearning and generalization (see more
details in Appendix A). We have trained 60 shadow models
and collected the target 7-grams samples’ loss [55, 78] for
membership signaling. Note that canary injection was not ap-
plied, as it is not yet commonly adopted in language models;
nonetheless, RULI still demonstrates strong performance in
evaluating text unlearning, as detailed below.
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Figure 7: Privacy leakage results on WikiText-103 using a
target set of 500 samples (250 out and 250 unlearned) on
WikiText-103 with the unlearning 7-gram sequences task.

Results. Figure 7 shows that RULI achieves higher accuracy
and TPR@1%FPR than the targeted average-case baseline
across all evaluated models and unlearning methods. The
Pythia-70m model generally yields more privacy leakage
than GPT2-small, especially under the GA+GDR unlearn-
ing method. Figure 8 shows that both GA+GDR and NPO
exhibit substantial differences from the retrained model, with
Pythia-70m reaching up to 90% MIA accuracy. This sug-
gests that the unlearned model still retains distinguishable
characteristics compared to the retrained model.

Scaling to LLMs. While we demonstrate the effectiveness
of RULI in multiple domains, including TinyImageNet and
WikiText-103, there remain several challenges in applying it
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Figure 8: Unlearning efficacy on 400 target samples (200 Out
and 200 Unlearned), evaluated using NPO and GA+GDR
baselines with fine-tuning-based unlearning on GPT2-small
and Pythia-70m models.

to production-scale language models with broad knowledge
coverage. First, performing per-sample MIAs on LLMs is
computationally intensive and may be impractical at scale.
Second, privacy and unlearning on text data and LLMs have
not yet been well standardized [63], and current membership-
based auditing methods may not fully capture privacy leakage
in LLMs [51]. Thus, while RULI is applicable to relatively
smaller-scale settings for unlearning text in language mod-
els [55], privacy and efficacy evaluation for LLM unlearning
needs further advancements, along with the future develop-
ment of unlearning guarantees and privacy attacks on LLMs.

7 Related Works
Machine Unlearning. Numerous studies have explored ma-
chine unlearning, broadly categorized into data-oriented and
model-oriented approaches [77].

First, data-oriented methods focus on modifying training
data. The SISA framework by Bourtoule et al. [9] parti-
tions data into subsets, enabling selective retraining. Tarun
et al. [69] proposed adding error-maximizing noise to ob-
scure forgotten samples. Second, model-oriented methods
modify the model directly. Golatkar et al. [6, 34] used Fisher
information [50] for selective forgetting, and later developed
quadratic unlearning methods [33], though at some cost to ac-
curacy. Chundawat et al. [21] introduced a student-teacher ap-
proach, and their zero-shot Gated Knowledge Transfer (GRT)
method [22] uses pseudo data with a band-pass filter to isolate
retained knowledge. Similar post-hoc model adjustment tech-
niques have been developed for generative models. All inexact
unlearning baselines in the evaluation fall in this category.

Furthermore, a parallel line of work investigates certified
unlearning, which provides formal guarantees that unlearning
approximates retraining without the removed data [18, 36].
These methods, inspired by differential privacy, define (ε,δ)-
bounded differences in model outputs, often focusing on loss
or gradient divergence. While theoretically sound, certified
unlearning relies on conservative assumptions and tight con-
straints, making it less scalable to large models. Thus, we
focus on evaluating practical, inexact unlearning methods,

where empirical privacy risks are more pronounced.
Other Threats of Machine Unlearning. Although machine
unlearning is designed to enhance data privacy, recent work
has uncovered significant privacy risks. Most existing at-
tacks operate under a strict threat model. Chen et al. [17, 31]
showed that differences between models before and after
unlearning can unintentionally leak information, enabling
average-case MIA-based attacks to succeed. Under the same
assumptions, [39] demonstrated model inversion attacks to
further expose unlearning vulnerabilities. Attribute inference
attacks [5, 30], which infer sensitive features from observed
data, have also been adapted to unlearning. Stock et al. [67]
investigated such attacks in the context of feature-level un-
learning in white-box settings, evaluating whether specific
attributes were present in the original dataset. Model inversion
attacks [29] pose additional risks by reconstructing input data
from model outputs. These attacks are particularly effective
against models subjected to class-level unlearning [6]. Graves
et al. [35] advanced this line of work by adapting model inver-
sion techniques to assess the robustness of class-level unlearn-
ing strategies. Other lines of attack involve injecting poisoned
data or issuing adversarial unlearning requests to disrupt the
unlearning process [41]. These attacks aim to corrupt the
unlearning mechanism and represent valuable, emerging di-
rections; in contrast, our work focuses on evaluating whether
unlearning has occurred under an assumed correct process.

8 Conclusion
In this work, we have proposed RULI, a novel framework
that fills critical gaps in evaluating privacy and efficacy of
inexact unlearning. RULI employs a dual-objective attack to
provide fine-grained insights, outperforming existing methods
in distinguishing unlearned models from retrained models and
exposing privacy risks in SOTA benchmarks. We have vali-
dated its effectiveness on image (e.g., CIFAR-10/100, Tiny-
ImageNet) and text (e.g., WikiText-103) datasets using ViT
and language models. Our findings reveal persistent vulnera-
bilities, particularly for sensitive samples, and highlight the
limitations of existing unlearnings. RULI sets a new evalua-
tion standard for robust, scalable unlearning.
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Appendix

A Further Implementation Details

A.1 Training Details
The training configurations for different models and datasets
involved in the experiments are shown in Table 7. All models



Table 6: Frequently used notations.

Symbol Meaning

θI Trained model
θ∗ Intermediate model parameter after t steps unlearning optimizations
θR Retrained model
θU Unlearned model
θT Test model
Dtrain Training data
D Dataset Distribution
Dr Remain data
D f Forget data
Dtarget Target data
z Target sample

Qh(z)
held-out distribution (from a sample was not in training
and unlearning

Qr(z)
remained distribution (from a sample was in training
but not in unlearning)

Qu(z)
unlearned distribution (from a sample was in training
and in unlearning)

Qi(z) in distribution (from a sample was in training)
QR(z) retrain distribution (from a sample retrained/not in training)
A Training algorithm
U Unlearning algorithm
A Adversary (attacker)
C Challenger
N Number of shadow models

Table 7: Training configurations for different models/datasets

Training Parameters CIFAR-10 CIFAR-100 TinyImageNet

ResNet-18 ResNet-18 Swin-small

Training/fine-tuning epochs 50 50 2
Batch size 128 128 128

Momentum 0.9 0.9 0.9
Learning rate 1×10−1 1×10−1 1×10−4

Optimizer SGD SGD AdamW
ℓ2 regularization 5×10−4 5×10−4 5×10−4

were developed using PyTorch [56] for image classification;
for text generation, we used Hugging Face 5 implementations
of the language models for training and unlearning. The ex-
periments are performed on servers equipped with multiple
NVIDIA H100 Hopper GPUs (80 GB each).

A.2 Hyperparameters of Unlearning Baselines

We carefully tuned the hyperparameters to ensure that the
unlearning baselines are close to the accuracy performance
of the Retrain gold standard. We assumed the model provider
can adapt the parameters adaptively according to the forget
data (though in practice, this might be challenging). Specifi-
cally, we conducted a comprehensive grid search, tuning the
parameter sets to each unlearning setting. Table 9 presents the
hyperparameters used for various unlearning settings.

5Pythia on Hugging Face, GPT-2 on Hugging Face

Table 8: Training configurations for language model unlearn-
ing using SFT with prefix language modeling.

Training Parameters Configuration

Supervised training epochs 5
Batch size 16
Learning rate 5×10−5

Optimizer AdamW
Prefix language modeling Enabled (+2 epochs)
Early Stopping Enabled
Weight decay 0.01

Table 9: Hyper-parameters in unlearning benchmarks.
Unlearning Tunable Hyper-parameters

ℓ1-sparse learning rate: {0.01}, sparsity parameter (α): {10−4, 2×10−4, 5×10−4, 3×10−4 },
batch size: {16, 64, 128}, sparsity scheduler: {linear increase, decay, constant}

Scrub
learning rate: {5×10−4,10−4,5×10−5}, α: 0.1, β: 0.0, γ: 0.99,
forget batch size: {16, 64, 128}, retain batch size: {16, 64, 128},
maximizing steps: {1, 2, 4, 6}, minimizing steps: {2, 5, 6, 10}

GA+ learning rate: {10−4, 10−3}, unlearn epochs: {3, 5, 7, 10, 15, 20},
refine epochs: {0, 3, 4, 5}, batch size: {16, 64, 128}

NegGrad+
learning rate: 5×10−4, 5×10−5, α: {0.1, 0.3, 0.35, 0.4, 0.5, 0.9},
forget batch size: {16, 64, 128}, retain batch size: {16, 64, 128},
maximizing steps: {1, 2, 4, 6}

A.3 Target Data
Details on Identifying Vulnerable and Protected Sam-
ples. We train 256 shadow models on the dataset and set
TPR@0.01% FPR as the threshold for classifying highly
memorized samples. In this scenario, the attacker’s confi-
dence is quantified by the likelihood ratio (τ = p(In)

p(In)+p(Out) ),

which, if it hovers around 0.5±10−3, approximates a coin flip
in predicting membership. Our results, detailed in Table 10,
indicate that 627 samples (approximately 2.5%) in CIFAR-10
can be chosen as vulnerable samples. We noticed most of
the remaining samples (16,586 out of 25,000 samples) are
less memorized and difficult for an attacker to infer member-
ship. We consider data samples other than these 627 samples
as safe and protected ones. As expected, 2,583 samples (ap-
proximately 10.33%) in CIFAR-100 are highly memorized.
Conversely, we identified 16,586 less memorized samples in
CIFAR-10 and 6,639 in CIFAR-100.

Table 10: MIA’s TPR@FPR and number of vulnerable sam-
ples (256 shadow models on one-round membership infer-
ence).

Dataset
TPR@

0.1%FPR
TPR@

0.01%FPR
#Highly

memorized
#Less

memorized
CIFAR-10 4.1% 2.5% 627 16,586
CIFAR-100 24.33% 10.33% 2,583 6,639

A.3.1 Target Data Indistinguishability

Image. To ensure the reliability of membership inference
evaluations, it is critical that the selected two cases of target
data do not exhibit distribution shifts and are resistant to blind
attacks [23]. In blind attacks, the adversary does not rely on

https://huggingface.co/collections/EleutherAI/pythia-scaling-suite-64fb5dfa8c21ebb3db7ad2e1
https://huggingface.co/openai-community/gpt2


model training and instead attempts to distinguish data solely
based on its distributional characteristics. We assess the in-
distinguishability of members (Unlearned) and non-members
(Out/Held-out) samples using two metrics: Label Overlap,
which quantifies the proportion of shared classes to rule out
label-based separability; and Embedding Classifier, which
trains a linear classifier from embeddings extracted from a
ViT-based model to distinguish the two sets. A near-chance
classifier accuracy (≈50%) indicates no clear distributional
difference. We also include a uniformly random selection
baseline to reflect the expected distinguishability when se-
lecting 250 samples from each set—particularly. Results in
Table 11 show both canary (our targets) and random selections
yield similar overlap and indistinguishability.

Table 11: Blind attack results: label overlap and classifier
accuracy.

Canary (ours) Random

Labels
Overlap

Accuracy
(Classifier)

Labels
Overlap

Accuracy
(Classifier)

CIFAR-10 92.0% 52.0% 91.6% 51.3%
CIFAR-100 87.2% 51.3% 87.6% 50.0%
TinyImageNet 54.8% 53.3% 53.2% 46.7%

Text. We randomly select the out and unlearned target se-
quences from the test set of WikiText-103, ensuring that
both groups are drawn from the same underlying distribu-
tion. Since our membership inference only queries the final
7 tokens of each sample, we evaluate whether these target
spans are lexically indistinguishable from one another. We
compute both exact 7-gram matches and token-wise (1-gram)
overlap between the out and unlearned spans under different
selection modes: first 7 tokens, final 7 tokens, and random
7 tokens. Exact matches are rare in all settings (≤ 2%), but
we observe relatively high token-wise overlap for the final 7
tokens (mean: 54.3%), which we use as our targets.

B Empirical evidence of mismatch between
Out and Held-out distributions

To demonstrate the distinguishability of Qh and QR, and to
support our claim in Section 4.3.2 that these two distributions
are not similar for all samples, we present logit-scaled confi-
dences derived from our shadow models representing these
distributions. We selected 12 random samples from class 5 of
the CIFAR-10 dataset and utilized 90 shadow models for this
analysis. The logit-scaled confidences were evaluated using
ℓ1 Sparse, GA+, NegGrad+, and Retrain (standard) bench-
marks, as shown in Figure 9. In the figure, the red distribution
represents cases where the sample was excluded from both
shadow model training and shadow model unlearning (held-
out), while the blue distribution represents cases where the
sample was excluded from training alone (out). Our results

demonstrate that for inexact unlearning benchmarks, such as
ℓ1 Sparse, GA+, and NegGrad+, the held-out and out distri-
butions differ significantly across all 12 samples. In contrast,
when employing the Retrain (standard) benchmark, these
distributions appear similar, suggesting consistency. This dis-
crepancy highlights a key limitation of inexact unlearning
methods, where Qh ̸∼ QR directly challenges the assumption
that these distributions are interchangeable. This finding em-
phasizes the need for more nuanced evaluation frameworks
to account for such distributional differences in unlearning.

(a) ℓ1 Sparse

(b) Scrub

(c) GA+

(d) Retrain

Figure 9: Logit-scaled confidences of two distributions held-
out (Qh) and out (QR) from 16 randomly samples of class-5
of CIFAR-10 (compatible with the U-LiRA setting). Our
empirical evidences are showing that Qh is not similar to Qu
unless in Retraining.

C Discussions

C.1 Possible Solutions to Mitigate Privacy Risk
of Inexact Unlearning Designs

We discuss two possible solutions to mitigate privacy leakage
of inexact unlearning.



Estimating Memorization. To mitigate the negative effects
of batch optimizations during unlearning, one approach is to
estimate the memorization levels of all forget samples and
sequentially unlearn similar samples within the same round.
However, accurately assessing per-sample memorization is
computationally expensive, often requiring the training of
numerous models. Prior work has shown that many of the
most vulnerable samples tend to be mislabeled or ambiguous,
suggesting that model trainers could use static analysis tech-
niques to pre-identify and handle these cases separately. As
a proof of concept, we assume that the model provider has
some means of estimating per-sample memorization and can
construct mini-batches ranked by the memorization scores of
the forget data. Using this strategy, we observe a notable re-
duction in attack performance: attack accuracy drops to 61%,
and TPR@FPR 1% decreases to 3% on the Scrub unlearning.

Training with DP-SGD. Differentially Private SGD (DP-
SGD) [2] is a principled training framework that provides
worst-case privacy guarantees for every individual sample.
This enables provable, per-sample privacy estimates [71],
which can be leveraged to assess the privacy status of forget
samples. Such a property makes DP-trained models a com-
pelling candidate for unlearning, as one can, in theory, show
that the effective privacy loss (ε) for a forgotten sample is
near zero. However, DP training is not commonly adopted in
practice due to its privacy-utility trade-offs [28]. Despite this,
designing unlearning algorithms specifically for DP-trained
models remains a promising direction. Since DP-trained mod-
els are often meant to protect sensitive data, effective un-
learning in this setting could be both feasible and beneficial.
Exploring unlearning techniques that push the per-sample ε

lower (ideally towards zero) could offer a new perspective on
practical, certifiable unlearning.

C.2 Notes on Provided Results

Sensitivity to Hyperparameters. We observe that unlearning
algorithms are significantly more sensitive to hyperparameter
settings than standard training, especially when forgetting
high-risk canaries. While we perform grid search to select
reasonable settings, small variations can lead to meaning-
ful shifts in attack performance. For example, applying the
CIFAR-10 unlearning setting to CIFAR-100—by reducing
just one unlearning step—raises the TPR@1%FPR to 24.5%.
This suggests that even subtle changes can disturb unlearning
performance and even possibly amplify privacy leakage.

Varying Canary Rates. One can vary the canary rates with-
out retraining the shadow models. In our default setting (Sec-
tion 6.2.2), nearly 55% of the forget set consists of vulnerable
samples canaries. As an illustrative example, we reduce this
rate to 5% by injecting more non-canary samples into for-
get data, and adjust the Scrub unlearning hyperparameters
accordingly. The attack remains effective. On CIFAR-10, we

observe an average TPR@1%FPR of 8.7%, TPR@5%FPR
of 26.6%, and attack accuracy of 68.5%. On TinyImageNet,
TPR@1%FPR reaches 9.6%, TPR@5%FPR is 28.2%, and
accuracy is 65.2%. These results demonstrate that RULI’s
effectiveness at a lower canary rate.
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