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Differentially Private Bilevel Optimization: Efficient
Algorithms with Near-Optimal Rates

Andrew Lowy∗ Daogao Liu†

Abstract

Bilevel optimization, in which one optimization problem is nested inside another,
underlies many machine learning applications with a hierarchical structure—such
as meta-learning and hyperparameter optimization. Such applications often in-
volve sensitive training data, raising pressing concerns about individual privacy.
Motivated by this, we study differentially private bilevel optimization. We first
focus on settings where the outer-level objective is convex, and provide novel upper
and lower bounds on the excess risk for both pure and approximate differential
privacy, covering both empirical and population-level loss. These bounds are nearly
tight and essentially match the optimal rates for standard single-level differentially
private ERM and stochastic convex optimization (SCO), up to additional terms
that capture the intrinsic complexity of the nested bilevel structure. The bounds
are achieved in polynomial time via efficient implementations of the exponential
and regularized exponential mechanisms. A key technical contribution is a new
method and analysis of log-concave sampling under inexact function evaluations,
which may be of independent interest. In the non-convex setting, we develop novel
algorithms with state-of-the-art rates for privately finding approximate stationary
points. Notably, our bounds do not depend on the dimension of the inner problem.

1 Introduction

Bilevel optimization has emerged as a key tool for solving hierarchical learning and decision-making
problems across machine learning and beyond. In a bilevel optimization problem, one task (the
upper-level problem) is constrained by the solution to another optimization problem (the lower-level
problem). This nested structure arises naturally in a variety of settings, including meta-learning [40],
hyperparameter optimization and model selection [19, 26], reinforcement learning [24], adversarial
training [45], and game theory [43], where the solution to one problem depends implicitly on the
outcome of another. Formally, a bilevel problem can be written as:

min
x∈X

{
Φ(x) := F (x, y∗(x))

}
(1)

s.t. y∗(x) ∈ argminy∈RdyG(x, y),

where x and y are the upper- and lower-level variables respectively, F is the upper-level objective, G
is the lower-level objective, X ⊂ Rdx is a domain. Solving (1) is challenging due to the dependency
of y∗(x) on x. The study of algorithms and complexities for solving (1) has received a lot of attention
from the optimization and ML communities in recent years [21, 27, 10, 14, 18, 36, 28, 30, 31, 12].

In many applications where bilevel optimization can be useful, data privacy is of critical importance.
Machine learning models can leak sensitive training data [42, 11, 39]. Differential privacy (DP) [16]
mitigates this by ensuring negligible dependence on any single data point.
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While differentially private optimization has been extensively studied in a variety of settings [9, 6, 4,
8, 20, 32], the community’s understanding of DP BLO is limited. Indeed, we are only aware of two
prior works on DP BLO [13, 25]. The work of [13] considers local DP [23] and does not provide
guarantees in the important privacy regime ε = O(1). On the other hand, [25] provides guarantees
for central DP nonconvex BLO with any ε > 0, which we improve over in this work.

In this work, we provide DP algorithms and error bounds for two fundamental BLO problems.
The first BLO problem we study is bilevel empirical risk minimization (ERM) w.r.t. data set Z =
(z1, . . . , zn) ∈ Zn:

min
x∈X

{
Φ̂Z(x) := F̂Z(x, ŷ

∗
Z(x)) =

1

n

n∑
i=1

f(x, ŷ∗Z(x), zi)

}
(Bilevel ERM)

s.t. ŷ∗Z(x) = argminy∈Rdy

{
ĜZ(x, y) =

1

n

n∑
i=1

g(x, ŷ∗Z(x), zi)

}
,

where f : X × Rdy × Z → R and g : X × Rdy × Z → R are smooth upper- and lower-level loss
functions. Second, we consider bilevel stochastic optimization (SO):

min
x∈X

{
Φ(x) := F (x, y∗(x)) = Ez∼P [f(x, y∗(x), z)]

}
(Bilevel SO)

s.t. y∗(x) = argminy∈Rdy {G(x, y) = Ez∼P [g(x, y, z)]} .

We assume, as is standard, that g(x, ·, z) is strongly convex, so ∀x there are unique ŷ∗Z(x) and y∗(x).

A fundamental open problem in DP BLO is to determine the minimax optimal error rates for solving
problems Bilevel ERM and Bilevel SO. A natural first step is to consider the convex case:

Question 1. What are the optimal error rates for solving
problems Bilevel ERM and Bilevel SO with DP when Φ̂Z
and Φ are convex?

Contribution 1. We give a (nearly) complete answer to Question 1 for both pure ε-DP and
approximate (ε, δ)-DP, by providing nearly tight upper and lower bounds : see Section 3. Our results
show that if the smoothness, Lipschitz, and strong convexity parameters are constants, then it is
possible to achieve the same rates as standard single-level convex DP-ERM [9] and DP-SO [6],
despite the more challenging bilevel setting (e.g., O(dx/εn) for ε-DP bilevel ERM). On the other
hand, our lower bound establishes a novel separation between standard single-level DP optimization
and DP BLO, showing that the error of any algorithm for DP BLO must necessarily depend on the
complexity parameters of the lower-level problem (e.g. the Lipschitz parameter of g(x, ·, z)). Our
algorithms are built on the exponential mechanism [37] for ε-DP and the regularized exponential
mechanism [22] for (ε, δ)-DP. We provide efficient (i.e. polynomial-time) implementations of these
mechanisms for DP BLO and a novel analysis of how function evaluation errors affect log-concave
sampling algorithms.

DP Nonconvex BLO. The recent work of [25] provided an (ε, δ)-DP algorithm A capable of
finding approximate stationary points of nonconvex Φ̂Z such that

EA∥∇Φ̂Z(A(Z))∥ ≤ Õ

(√
dx
εn

)1/2

+

(√
dy

εn

)1/3
 . (2)

If dy is large, bound (2) suffers: e.g., if dy ≥ dx, then the bound is ≳ (
√
dy/εn)

1/3. This leads us to:

Question 2. Can we improve over the state-of-the-art bound
in (2) for DP stationary points in nonconvex Bilevel ERM?

Contribution 2: We give a positive answer to Question 2 in Section 4, developing novel DP
algorithms that improve over the bound in (2). Our first algorithm A1 is a simple and efficient
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second-order DP BLO method that achieves an improved dy-independent bound of

E∥∇Φ̂Z(A1(Z))∥ ≤ Õ

((√
dx
εn

)1/2
)
.

Second, we provide an (inefficient) algorithm A2 that uses the exponential mechanism to “warm start”
A1 using the framework of [34] to obtain a further improved bound in the parameter regime dx < nε:

E∥∇Φ̂Z(A2(Z))∥ ≤ Õ

( √
dx

(εn)3/4

)
.

As detailed in Appendix C.3, our results imply a new state-of-the-art upper bound for DP non-convex
bilevel finite-sum optimization:

E∥∇Φ̂Z(ADP(Z))∥ ≤ Õ

((√
dx
εn

)1/2

∧
√
dx

(εn)3/4
∧ dx
εn

∧ 1

)
. (3)

1.1 Technical overview

We develop and utilize several novel algorithmic and analytic techniques to obtain our results.

Techniques for convex DP BLO: Our algorithms are built on the exponential and regularized
exponential mechanisms [37, 22]. A key challenge is to implement these algorithms efficiently in
BLO, where one lacks access to ŷ∗Z(x) and hence cannot directly query Φ̂Z(x). To overcome this
challenge, we provide a novel analysis of log-concave sampling with inexact function evaluations,
building on the grid-walk algorithm of [3] and the approach of [9]. To do so, we prove a bound on
the conductance of the perturbed Markov chain arising from the grid-walk with perturbed/inexact
function evaluation, as well as a bound on the relative distance between the original and perturbed
stationary distributions. We believe these techniques and analyses may be of independent interest,
since there are many problems beyond BLO where access to exact function evaluations is unavailable.

To prove our lower bounds, we construct a novel bilevel hard instance with linear upper-level f and
quadratic lower-level g. This allows us to chain together the x and y variables, control ŷ∗Z(x), and
reduce BLO to mean estimation. By carefully scaling our hard instance, we obtain our lower bound.

Techniques for nonconvex DP BLO: In the nonconvex setting, our algorithm uses a second-
order approximation ∇F̂Z(xt, yt+1) ≈ ∇Φ̂Z(xt) in order to approximate gradient descent run on
Φ̂Z . A key insight is that we can obtain a better bound by getting a high-accuracy non-private
approximate solution yt+1 ≈ ŷ∗Z(xt) and then noising ∇F̂Z(xt, yt+1), rather than privatizing yt+1.
To prove such an approach can be made DP, we require a careful sensitivity analysis that leverages
perturbation inequalities from numerical analysis. Further, we build a two-step algorithm on our
novel second-order algorithm by leveraging the warm-start framework of [35].

2 Preliminaries

Notation and assumptions. Let f : X × Rdy × Z → R and g : X × Rdy × Z → R be loss
functions, with X ⊂ Rdx being a closed convex set of ℓ2-diameter Dx ∈ [0,∞]. The data universe
Z can be any set. P denotes any data distribution on X . Let ∥ · ∥ denote the ℓ2 norm when
applied to vectors. When applied to matrix A, ∥A∥ := smax(A) =

√
λmax(AAT ) denotes the

ℓ2 operator norm, which is the largest singular value of A. Function h : X → R is L-Lipschitz
if |h(x) − h(x′)| ≤ L∥x − x′∥ for all x, x′ ∈ X . Function h : X → R is µ-strongly convex if
h(αx+(1−α)x′) ≤ αh(x)+(1−α)h(x′)− α(1−α)µ

2 ∥x−x′∥2 for all α ∈ [0, 1] and all x, x′ ∈ X .
If µ = 0, we say h is convex. The excess (population) risk of a randomized algorithm A with
output x̂ = A(Z) on loss function h(x, z) is EA,Z [H(x̂)] − H∗, where H(x) = Ez∼P [h(x, z)]
and H∗ := infxH(x). If ĤZ(x) =

1
n

∑n
i=1 h(x, zi) is an empirical loss function w.r.t. data set Z,

then the excess empirical risk of A is EA[ĤZ(x̂)]− Ĥ∗. Denote a ∧ b := min(a, b). For functions
φ and ψ of input parameters θ, we write φ ≲ ψ if there is an absolute constant C > 0 such that
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φ(θ) ≤ Cψ(θ) for all permissible values of θ. We use Õ to hide logarithmic factors. Denote by
∇J(x, y(x), z) = ∇xJ(x, y(x), z) +∇y(x)T∇yJ(x, y(x), z) the gradient of function J w.r.t. x.

We assume, as is standard in DP optimization, that the loss functions are Lipschitz continuous, and
that g(x, ·, z) is strongly convex—a standard assumption in the BLO literature:

Assumption 2.1. 1. f(·, y, z) is Lf,x-Lipschitz in x for all y, z.

2. f(x, ·, z) is Lf,y-Lipschitz in y for all x, z.

3. g(x, ·, z) is µg-strongly convex in y.

4. There exists a compact set Y ⊂ Rdy with {ŷ∗Z(x)}x∈X ⊆ Y for ERM or {y∗(x)}x∈X ⊆ Y
for SO such that g(x, ·, z) is Lg,y-Lipschitz on Y .

Note that diam(Y) ≤ Lg,y

µg
by Assumption 2.1. Some of our algorithms additionally require:

Assumption 2.2. For all x, x′y, y′, z we have:

1. ∥∇yf(x, y, z)−∇yf(x, y
′, z)∥ ≤ βf,yy∥y − y′∥.

2. ∥∇xf(x, y, z)−∇xf(x
′, y, z)∥ ≤ βf,xx∥x− x′∥.

3. ∥∇xf(x, y, z) −∇xf(x, y
′, z)∥ ≤ βf,xy∥y − y′∥ and ∥∇yf(x, y, z) −∇yf(x

′, y, z)∥ ≤
βf,xy∥x− x′∥.

4. ∥∇2
xyg(x, y, z)∥ ≤ βg,xy and ∥∇2

yxg(x, y, z)∥ ≤ βg,xy .

5. ∥∇2
yyg(x, y, z)∥ ≤ βg,yy.

6. ∥∇2
xyg(x, y, z)−∇2

xyg(x
′, y, z)∥ ≤Mg,xy∥x− x′∥, ∥∇2

yxg(x, y, z)−∇2
yxg(x

′, y, z)∥ ≤
Mg,xy∥x− x′∥, and ∥∇2

yyg(x, y, z)−∇2
yyg(x

′, y, z)∥ ≤Mg,yy∥x− x′∥.

7. ∥∇2
xyg(x, y, z) −∇2

xyg(x, y
′, z)∥ ≤ Cg,xy∥y − y′∥, ∥∇2

yxg(x, y, z) −∇2
yxg(x, y

′, z)∥ ≤
Cg,xy∥y − y′∥, and ∥∇2

yyg(x, y, z)−∇2
yyg(x, y

′, z)∥ ≤ Cg,yy∥y − y′∥.

Assumption 2.2 is standard for second-order optimization methods and is essentially the same as the
[25, Assumptions 2.5 and 2.6], but we define the different smoothness parameters at a more granular
level to get more precise bounds. As discussed in [21], these assumptions are satisfied in important
applications of BLO, such as model selection and hyperparameter tuning with logistic loss (or another
loss with bounded gradient and Hessian) and some Stackelberg game models.

Differential Privacy. Differential privacy prevents any adversary from inferring much more about
any individual’s data than if that data had not been used for training.

Definition 2.3 (Differential Privacy). Let ε ≥ 0, δ ∈ [0, 1). Randomized algorithm A : Zn → W is
(ε, δ)-differentially private (DP) if for any two datasets Z = (z1, . . . , zn) and Z ′ = (z′1, . . . , z

′
n) that

differ in one data point (i.e. zi ̸= z′i, zj = z′j for j ̸= i) and any measurable set S ⊂ X , we have

P(A(Z) ∈ S) ≤ eεP(A(Z ′) ∈ S) + δ.

Algorithmic preliminaries on DP are given in Appendix A.

3 Private convex bilevel optimization

In this section, we characterize the optimal excess risk bounds for DP convex bilevel ERM and SCO:

Theorem 3.1 (Convex DP BLO - Informal). Let Φ̂Z and Φ be convex (∀Z ∈ Zn) and grant
Assumption 2.1. Then, there is an efficient ε-DP algorithm with output x̂ such that

EΦ̂Z(x̂)− Φ̂∗
Z ≤ Õ

(
dx
εn

)
.
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If Assumption 2.2 parts 3-4 hold, then there is an efficient (ε, δ)-DP algorithm with output x̂ s.t.

EΦ̂Z(x̂)− Φ̂∗
Z ≤ O

(√
dx log(1/δ)

εn

)
, and

EΦ(x̂)− Φ∗ ≤ O

(√
dx log(1/δ)

εn
+

1√
n

)
.

Moreover, all of the above upper bounds are tight (optimal) up to logarithmic factors.

The following subsections contain formal statements capturing the precise dependence on the problem
parameters given in Assumptions 2.1 and 2.2 and runtime bounds.

3.1 Conceptual algorithms and excess risk upper bounds

This section contains our conceptual algorithms (ignoring efficiency considerations) and precise
excess risk upper bounds.

Pure ε-DP. Consider the following sampler for DP bilevel ERM, which is an instantiation of the
exponential mechanism [37]: Given Z ∈ Zn, sample x̂ = x̂(Z) ∈ X with probability

∝ exp
(
− ε

2s
Φ̂Z(x̂)

)
, where (4)

s :=
2

n
[Lf,xDx + Lf,yDy] +

4Lf,yLg,y
µg

.

Theorem 3.2. Grant Assumption 2.1 and suppose Φ̂Z is convex. The Algorithm in (4) is ε-DP and

E[Φ̂Z(x̂)− Φ̂∗
Z ] ≤ O

(
dx
εn

[
Lf,xDx + Lf,yDy +

Lf,yLg,y
µg

])
.

We defer the proof to Appendix B and describe the efficient implementation in Section 3.2. If Φ is
not convex, then privacy still holds and the same excess risk holds up to logarithmic factors. The
key step in the privacy proof is to upper bound the sensitivity of the score function Φ̂Z(x) by s, by
leveraging Assumption 2.1 and the fact that ∥ŷ∗Z(x)− ŷ∗Z′(x)∥ ≤ 2Lg,y/µgn for adjacent Z ∼ Z ′.

Approximate (ε, δ)-DP. Consider the following instantiation of the regularized exponential mecha-
nism [22]: Given Z, sample x̂ = x̂(Z) from probability density function

∝ exp(−k(Φ̂Z(x̂) + µ∥x̂∥2)), where (5)

k = O

(
µn2ϵ2

G2 log(1/δ)

)
and

G = Lf,x +
Lf,yβg,xy

µg
+
Lg,yβf,xy

µg
,

where µ is an algorithmic parameter that we will assign (not to be confused with µg).

Theorem 3.3. Grant Assumption 2.1 and parts 3 and 4 of Assumption 2.2. Assume Φ̂Z and Φ are
convex for all Z ∈ Zn. There exists a choice of µ and k such that Algorithm (5) is (ε, δ)-DP and
achieves excess empirical risk

EΦ̂Z(x̂)− Φ̂∗
Z ≤ O

((
Lf,x +

Lf,yβg,xy
µg

+
Lg,yβf,xy

µg

)
Dx

√
dx log(1/δ)

εn

)
.

Further, if Z ∼ Pn are independent samples, the excess population risk with a different choice of
k, µ is

EΦ(x̂)− Φ∗ ≤ O

((
Lf,x +

Lf,yβg,xy
µg

+
Lg,yβf,xy

µg

)
Dx

(√
dx log(1/δ)

εn
+

1√
n

))
.
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The main idea of the privacy proof (in Appendix B) is to show that Φ̂Z − Φ̂Z′ is 2(Lf,x

n +
Lf,yβg,xy

µgn
+

Lg,yβf,xy

nµg
)-Lipschitz and then compare the privacy curve [5] between the distributions Q and Q′

(corresponding to (5) with data Z and Z ′ respectively) to the privacy curve between two Gaussians,
by leveraging [22, Theorem 4.1].
Remark 3.4 (Near-optimality). The bounds in Theorem 3.2 and 3.3 nearly match the optimal bounds
for standard single-level DP ERM and SCO [9, 6], e.g. Θ(Lf,xDx

√
dx log(1/δ)/εn) for (ε, δ)-DP

ERM [9, 44], except for the addition of two terms capturing the complexity of the bilevel problem:
For ε-DP ERM, the additional terms are O(Lf,yDydx/εn) and O((Lf,yLg,y/µg)dx/εn). Our lower
bound in Theorem 3.9 shows that the first additional term is necessary. We conjecture that the second
additional term is also necessary and that our upper bound is tight up to an absolute constant. This
conjecture is clearly true in the parameter regime Lg,y/µg ≈ Dy . For (ε, δ)-DP, the additional terms
scale with O((Lf,yβg,xy/µg + Lg,yβf,xy/µg)Dx). Our lower bound in Theorem 3.9 shows that
dependence on Lf,y is necessary and that the Lf,yβg,xy/µg term is tight in the parameter regime
Dy ≈ Dxβg,xy/µg. If also Dxβg,xy/ ≲ Lg,y, then the bounds in Theorem 3.3 are tight up to an
absolute constant factor.

3.2 Efficient implementation of conceptual algorithms

In many practical applications of optimization and sampling algorithms, we face unavoidable approx-
imation errors when evaluating functions. Given any x, we may not get the exact ŷ∗Z(x) in solving
the low-level optimization, which means we may introduce a small error each time we compute the
function value of f(x, ŷ∗Z(x), z). This section analyzes how such small function evaluation errors
affect log-concave sampling algorithms. We establish bounds on the impact of errors bounded by ζ
on the conductance, mixing time, and distributional accuracy of Markov chains used for sampling.
We then develop an efficient implementation based on the [9] approach that maintains polynomial
time complexity while providing formal guarantees on sampling accuracy in the presence of function
evaluation errors. As a corollary of our developments, we obtain Theorem 3.1.

Our approach builds on the classic Grid-Walk algorithm of [3] for sampling from log-concave
distributions. Let F (·) be a real positive-valued function defined on a cube A = [a, b]d in Rd. Let
f(θ) = − logF (θ) and suppose there exist real numbers α, β such that:

|f(x)− f(y)| ≤ α

(
max
i∈[1,d]

|xi − yi|
)
,

f(λx+ (1− λ)y) ≥ λf(x) + (1− λ)f(y)− β,

for all x, y ∈ A and λ ∈ [0, 1]. The algorithm of [3], detailed in Appendix B.3.1 for completeness,
samples from a distribution ν on the continuous domainA such that for all θ ∈ A, |ν(θ)−cF (θ)| ≤ ζ ,
where c is a normalization constant and ζ > 0. The algorithm defines a random walk (which is a
Markov Chain) on the centers of small subcubes that partition A and form the state space Ω ⊂ A.
The final output of the algorithm is a point x ∈ A, returned with probability close to F (x).

Next, we briefly outline our analysis how the Grid-Walk algorithm behaves when the function F can
only be evaluated with some bounded error, resulting in a “perturbed” Markov chain.

Conductance bound with function evaluation errors. For a Markov chain with state space Ω,
transition matrix P and stationary distribution q, its conductance φ measures how well the chain
mixes, i.e. how quickly it converges to its stationary distribution:

φ := min
S⊂Ω:0<q(S)≤1/2

∑
x∈S,y∈Ω\S q(x)Pxy

q(S)
.

We analyze how function evaluation errors affect Grid-Walk conductance:
Lemma 3.5 (Conductance with Function Evaluation Errors). Let P be the transition matrix of the
original Markov chain in the grid-walk algorithm of Section B.3.1 based on function f , with state
space Ω and conductance φ. Let P ′ be the transition matrix of the perturbed chain based on f ′ where
f ′(θ) = f(θ) + ζ(θ) with |ζ(θ)| ≤ ζ for all θ ∈ Ω, where ζ(·) is a bounded error function. Then the
conductance φ′ of the perturbed chain satisfies:

φ′ ≥ e−6ζφ.
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Relative distance bound between F and F ′. We now analyze how function evaluation errors
affect the distributional distance between the original and perturbed stationary distributions.
Lemma 3.6 (Distance Between F and F ′). Let F (θ) = e−f(θ) and F ′(θ) = e−f

′(θ) where f ′(θ) =
f(θ) + ζ(θ) with |ζ(θ)| ≤ ζ for all θ ∈ A. Then,

e−ζ ≤ F ′(θ)

F (θ)
≤ eζ , ∀θ ∈ A.

Furthermore, if we define the distributions π(θ) ∝ F (θ) and π′(θ) ∝ F ′(θ), then:

Dist∞(π′, π) := sup
θ∈A

∣∣∣∣log π′(θ)

π(θ)

∣∣∣∣ ≤ 2ζ.

Mixing time analysis. For a Markov chain with state space Ω, transition matrix P , and stationary
distribution π, the mixing time tmix(ϵ) with respect to the L∞-distance is defined as:

tmix(ϵ) := min{t ≥ 0 : max
x∈Ω

Dist∞(P t(x, ·), π(·)) ≤ ϵ}, (6)

for any ϵ ≥ 0. We determine the number of steps required for L∞ convergence with perturbed F :
Lemma 3.7 (Impact on Mixing Time). The mixing time t′mix(ϵ) of the perturbed chain to achieve
L∞-distance ϵ to its stationary distribution satisfies:

t′mix(ϵ) ≤ e12ζ ·O

(
α2τ2d2

ϵ2
eϵmax

{
d log

ατ
√
d

ϵ
, ατ

})
.

Efficient implementation. Leveraging our analysis of how function evaluation errors affect conduc-
tance, mixing time, and distributional distance, we develop an efficient algorithm for sampling from
log-concave distributions in the presence of such errors. Our approach builds upon the framework
developed by [9], extending it to handle approximation errors.
Theorem 3.8 (Log-Concave Sampling with Function Evaluation Error). Let C ⊂ Rd be a convex
set and f : C → R be a convex, L-Lipschitz function. Suppose we have access to an approximate
function evaluator that returns f ′(θ) = f(θ) + ζ(θ) where |ζ(θ)| ≤ ζ for all θ ∈ C, and ζ = O(1)
is a constant independent of dimension. There exists an efficient algorithm that outputs a sample
θ ∈ C from a distribution µ′ such that:

Dist∞(µ′, π) ≤ 2ζ + ξ (7)

where π(θ) ∝ e−f(θ) is the target log-concave distribution and δ > 0 is an arbitrarily small constant.
This algorithm runs in time O(e12ζ · d3 · poly(L, ∥C∥2, 1/ξ)).

The efficiency claims in Theorem 3.1 follow as corollaries of Theorem 3.8: see Appendix B.3.

3.3 Excess risk lower bounds

If the problem parameters (e.g., Lipschitz, smoothness) are constants, then the upper bounds in
Theorems 3.2 and 3.3 are tight and match known lower bounds for standard single-level DP ERM
and SCO [9, 6]. In this section, we go a step further and provide novel lower bounds illustrating
that the dependence of our bounds on Lf,yDy (or a quantity larger than this) is necessary, thereby
establishing a novel separation between single-level DP optimization and DP BLO:
Theorem 3.9 (Excess risk lower bounds for DP ERM). 1. Let A be ε-DP. Then, there exists

a data set Z ∈ Zn and a convex bilevel ERM problem instance satisfying Assumptions 2.1
and 2.2 with µg = Θ(Lg,y/Dy) such that

EΦ̂Z(A(Z))− Φ̂∗
Z = Ω

(
(Lf,xDx + Lf,yDy)min

{
1,
dx
nε

})
.

2. Let A be (ε, δ)-DP with 2−Ω(n) ≤ δ ≤ 1/n1+Ω(1). Then, there exists a data set Z ∈ Zn

and a convex bilevel ERM problem instance satisfying Assumptions 2.1 and 2.2 with µg =
Θ(Lg,y/Dy) such that

EΦ̂Z(A(Z))− Φ̂∗
Z = Ω

(
(Lf,xDx + Lf,yDy)min

{
1,

√
dx log(1/δ)

nε

})
.
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By comparing the lower bounds in Theorem 3.9 with the bounds in [9], one sees that the DP bilevel
ERM is harder (in terms of minimax error) than standard single-level DP ERM if Lf,yDy > Lf,xDx.

See Appendix B.4 for the proof. A key challenge is in constructing the right f and g to chain together
the x and y variables and obtain the desired Lf,yDy scaling term.
Remark 3.10 (Bilevel SO lower bounds). One can obtain lower bounds on the excess population risk
that are larger than the excess empirical risk bounds in Theorem 3.9 by an additive Lf,xDx(1/

√
n),

via the reduction in [7]. This implies the near-optimality of our scheme in (5) for DP bilevel convex
SO (c.f. Theorem 3.3).

4 Private non-convex bilevel optimization

In this section, we provide novel algorithms with state-of-the-art guarantees for privately finding
approximate stationary points of non-convex Φ̂Z (see (3)).

4.1 An iterative second-order method

Assume for simplicity that X = Rdx so that the optimization problem is unconstrained.3 A natural
approach to solving Bilevel ERM is to use a gradient descent scheme, where we iterate

xt+1 = xt − η∇Φ̂Z(xt). (8)

By the implicit function theorem, we have (c.f. [21]):

∇Φ̂Z(x) = ∇xF̂Z(x, ŷ
∗
Z(x))−∇2

xyĜZ(x, ŷ
∗
Z(x))[∇2

yyĜZ(x, ŷ
∗
Z(x))]

−1∇yF̂Z(x, ŷ
∗
Z(x)).

Define the following approximation to ∇Φ̂Z(x) at (x, y):

∇F̂Z(x, y) := ∇xF̂Z(x, y)−∇2
xyĜZ(x, y)[∇2

yyĜZ(x, y)]
−1∇yF̂Z(x, y). (9)

Note that ∇F̂Z(x, y) = ∇Φ̂Z(x) if y = ŷ∗Z(x).

Then to approximate (8) (non-privately), we can iterate (c.f. [21]):

yt+1 ≈ ŷ∗Z(xt)

xt+1 = xt − η∇F̂Z(xt, yt+1). (10)

A naive approach to privatizing the iterations (10) is to solve yt+1 ≈ ŷ∗Z(xt) = argminyĜZ(xt, y)
privately at each step (e.g., by running DP-SGD), and then add noise to ∇F̂Z(xt, yt+1) before taking
a step of noisy GD. (This is similar to how [25] privatized the penalty-based bilevel optimization
algorithm of [27].) However, this approach results in a bound E∥∇Φ̂Z(x̂)∥ ≤ O(

√
dx + dy/εn)

1/2

that depends on dy due to the bias ∥∇F̂Z(xt, yt+1)−∇Φ̂Z(xt)∥ that results from using private yt+1.
To mitigate this issue and obtain state-of-the-art utility independent of dy , we propose an alternative
approach in Algorithm 1: we find an approximate minimizer of ĜZ(xt, ·) non-privately in line 3.
Since ĜZ(xt, ·) is a smooth, strongly convex ERM function, we can implement line 3 efficiently
using a non-private algorithm such as SGD or Katyusha [2].

Denote L := Lf,x +
βg,xyLf,y

µg
, which is an upper bound on ∥∇f(x, ŷ∗Z(x), z)∥, and

C := βf,xy +
βf,yyβg,xy

µg
+ Lf,y

(
Cg,xy
µg

+
Cg,yyβg,xy

µ2
g

)
, (11)

which satisfies ∥∇Φ̂Z(x)−∇F̂Z(x, y)∥ ≤ C∥ŷ∗Z(x)− y∥ for any x, y by [21, Lemma 2.2]. Let

K := 2

[
βf,xyLg,y

µg
+ 2L+

βg,xyβf,yyLg,y
µ2
g

+
Lf,yCg,xyLg,y

µ2
g

+
Lf,yβg,xyLg,yCg,yy

µ3
g

+
Lf,yβg,yyβg,xy

µ2
g

]
.

(12)
3Our approach and results readily extend to constrained X by incorporating proximal steps and measuring

utility in terms of the norm of the proximal gradient mapping.
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Algorithm 1: A Second-Order DP Bilevel Optimization Algorithm
1 Input: Dataset D = (Z1, . . . , Zn), noise scale σ, initial points x0, y0 ∈ X × Y , parameter α;
2 for i = 0, . . . , T − 1 do
3 Find yt+1 ≈ ŷ∗Z(xt) such that ∥yt+1 − ŷ∗Z(xt)∥ ≤ α (e.g., via SGD or Katyusha [2]);

xt+1 = xt − η
(
∇F̂Z(xt, yt+1) + ut

)
, where ut ∼ N (0, σ2Idx).

4 end
5 Output: x̂T ∼ Unif({xt}Tt=1).

Lemma 4.1 (Sensitivity Bound for Algorithm 1). For any fixed xt, define the query qt : Zn → Rd,

qt(Z) := ∇F̂Z(xt, yt+1),

where yt+1 = yt+1(Z) is given in Algorithm 1. If α ≤ K
Cn where C and K are defined in

Equations (11) and (12), then the ℓ2-sensitivity of qt is upper bounded by 4K
n .

The proof of this lemma—in Appendix C—is long. It uses the operator norm perturbation inequality
∥M−1−N−1∥ ≤ ∥M−1∥∥N−1∥∥M −N∥ to bound the sensitivity of [∇2

yyĜZ(xt, yy+1)]
−1 in (9).

Now we can state the main result of this subsection:
Theorem 4.2 (Guarantees of Algorithm 1 for Non-Convex Bilevel ERM - Informal). Grant Assump-
tions 2.1 and 2.2. Set σ = 32K

√
T log(1/δ)/nε. Denote the smoothness parameter of Φ̂Z by βΦ,

given in Lemma C.2. There are choices of α, η s.t. Algorithm 1 is (ε, δ)-DP and has output satisfying

E∥∇Φ̂Z(x̂T )∥ ≲

[
K

√(
Φ̂Z(x0)− Φ̂∗

Z

)
βΦ

√
dx log(1/δ)

εn

]1/2
.

The privacy proof leverages Lemma 4.1. Utility is analyzed through the lens of gradient descent with
biased, noisy gradient oracle. We choose small α so the bias is negligible and use smoothness of Φ̂Z .

4.2 “Warm starting” Algorithm 1 with the exponential mechanism

This subsection provides an algorithm that enables an improvement over the utility bound given in
Theorem 4.2 in the parameter regime dx < nε. Our algorithm is built on the “warm start” framework
of [34]: first, we run the exponential mechanism (4) with privacy parameter ε/2 to obtain x0; then,
we run (ε/2, δ)-DP Algorithm 1 with “warm” initial point x0. See Algorithm 2 in Appendix C.2.
Theorem 4.3 (Guarantees of Algorithm 2 for Non-Convex Bilevel ERM). Grant Assumptions 2.1
and 2.2. Assume that there is a compact set X ⊂ Rdx of diameter Dx containing an approximate
global minimizer x̂ such that Φ̂Z(x̂)− Φ̂∗

Z ≤ Ψ d
εn , where Ψ := Lf,xDx+Lf,yDy+

Lf,yLg,y

µg
. Then,

there exists an (ε, δ)-DP instantiation of Algorithm 2 with output satisfying

E∥∇Φ̂Z(xpriv)∥ ≤ Õ

[KΨ1/2β
1/2
Φ

]1/2(dx√log(1/δ)

(nε)3/2

)1/2
 .

In Appendix C.3, we explain how to deduce the upper bound in (3) by combining Theorems 4.2 and
4.3 with the exponential mechanism using cost function ∥∇Φ̂Z(x)∥.

5 Conclusion and discussion

We provided novel algorithms and lower bounds for differentially private bilevel optimization, with
near-optimal rates for the convex setting and state-of-the-art rates for the nonconvex setting. There
are some interesting open problems for future work to explore: (1a) What are the optimal rates for
DP nonconvex bilevel ERM and SO? Since the optimal rates for standard single-level DP nonconvex
ERM and SO are still unknown, a first step would be to answer: (1b) Can we match the SOTA rate
for single-level non-convex ERM [35] in BLO? Incorporating variance-reduction in DP BLO seems
challenging. (2) This work was focused on fundamental theoretical questions about DP BLO, but
another important direction is to provide practical implementations and experimental evaluations.
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Appendix

A More privacy preliminaries

Definition A.1 (Sensitivity). Given a function q : Zn → Rk the ℓ2-sensitivity of q is defined as

sup
Z∼Z′

∥q(Z)− q(Z ′)∥,

where the supremum is taken over all pairs of datasets that differ in one data point.
Definition A.2 (Gaussian Mechanism). Let ε > 0, δ ∈ (0, 1). Given a function q : Zn → Rk with
ℓ2-sensitivity ∆, the Gaussian Mechanism M is defined by

M(Z) := q(Z) + v

where v ∼ Nk

(
0, σ2Ik

)
and σ2 = 2∆2 log(2/δ)

ε2 .

Lemma A.3 (Privacy of Gaussian Mechanism [17]). The Gaussian Mechanism is (ε, δ)-DP.

If we adaptively query a data set T times, then the privacy guarantees of the T -th query is still DP
and the privacy parameters degrade gracefully:
Lemma A.4 (Advanced Composition Theorem [17]). Let ε ≥ 0, δ, δ′ ∈ [0, 1). Assume A1, · · · ,AT ,
with At : Zn × X → X , are each (ε, δ)-DP ∀t = 1, · · · , T . Then, the adaptive composition
A(Z) := AT (Z,AT−1(Z,AT−2(X, · · · ))) is (ε′, T δ + δ′)-DP for

ε′ =
√
2T ln(1/δ′)ε+ Tε(eε − 1).

B Proofs for Section 3.1

B.1 Conceptual algorithms and excess risk upper bounds

Pure ε-DP. We restate and prove the guarantees of the ε-DP exponential mechanism for BLO
below:
Theorem B.1 (Re-statement of Theorem 3.2). Grant Assumption 2.1 and suppose Φ̂Z is convex. The
Algorithm in 4 is ε-DP and achieves excess empirical risk

E[Φ̂Z(x̂)− Φ̂∗
Z ] ≤ O

(
dx
εn

[
Lf,xDx + Lf,yDy +

Lf,yLg,y
µg

])
.

Proof. Privacy: First, notice that the distribution induced by the exponential weight function in 4 is
the same if we use exp

(
− ε

2s [Φ̂Z(x)− Φ̂Z(x0)]
)

for some arbitrary point x0 ∈ X . To establish the

privacy guarantee, it suffices to show that the sensitivity of Φ̂Z(x)− Φ̂Z(x0) is upper bounded by s
for any x. Now, let Z ∼ Z ′ be any adjacent data sets differing in z1 ̸= z′1 and let x ∈ X . Then the
sensitivity of Φ̂Z(x)− Φ̂Z(x0) is upper bounded by∣∣∣Φ̂Z(x)− Φ̂Z(x0)− Φ̂Z′(x) + Φ̂Z′(x0)

∣∣∣
≤ 1

n
|f(x, ŷ∗Z(x), z1)− f(x0, ŷ

∗
Z(x0), z1)− f(x, ŷ∗Z′(x), z′1) + f(x0, ŷ

∗
Z′(x0), z

′
1)|

+
1

n

∑
i>1

|f(x, ŷ∗Z(x), zi)− f(x, ŷ∗Z′(x), zi)|

+
1

n

∑
i>1

|f(x0, ŷ∗Z(x0), zi)− f(x0, ŷ
∗
Z′(x0), zi)|

≤ 2

n
[Lf,xDx + Lf,yDy] +

1

n

∑
i>1

|f(x, ŷ∗Z(x), zi)− f(x, ŷ∗Z′(x), zi)|

+
1

n

∑
i>1

|f(x0, ŷ∗Z(x0), zi)− f(x0, ŷ
∗
Z′(x0), zi)|.
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Now, for any x, we have

∥ŷ∗Z(x)− ŷ∗Z′(x)∥ ≤ 2Lg,y
µgn

,

by [41, 33]. Together with Lf,y-Lipschitz continuity of f(x, ·, z), we can then obtain the desired
sensitivity bound.

Excess risk: This is immediate from Lemma B.2 (stated below) in the convex case. For nonconvex
Φ̂Z , the same excess risk bound holds up to logarithmic factors by [37].

Lemma B.2 (Utility Guarantee, [15, Corollary 1]). Suppose k > 0 and F is a convex function over
the convex set K ⊆ Rd. If we sample x according to distribution ν whose density is proportional to
exp(−kF (x)), then we have

Eν [F (x)] ≤ min
x∈K

F (x) +
d

k
.

Next, we turn to the (ε, δ)-DP case.

Approximate (ε, δ)-DP. We define the privacy curve first:
Definition B.3 (Privacy Curve). Given two random variables X,Y supported on some set Ω, define
the privacy curve δ(X∥Y ) : R≥0 → [0, 1] as:

δ(X∥Y )(ϵ) = sup
S⊂Ω

Pr[Y ∈ S]− eϵ Pr[X ∈ S].

We have the following theorem from [22]:
Theorem B.4 (Regularized Exponential Mechanism, [22]). Given convex set K ⊆ Rd and µ-strongly
convex functions F, F̃ over K. Let P,Q be distributions over K such that P (x) ∝ e−F (x) and
Q(x) ∝ e−F̃ (x). If F̃ − F is G-Lipschitz over K, then for all z ∈ [0, 1],

δ(P ∥ Q)(ϵ) ≤ δ

(
N (0, 1)

∥∥∥∥ N (
G
√
µ
, 1)

)
(ϵ).

It suffices to bound the Lipschitz constant of Φ̂Z(x) − Φ̂Z′(x). We have the following technical
lemma:
Lemma B.5. Let ŷ∗Z(x) = argminy∈YĜZ(x, y) where ĜZ(x, y) = 1

n

∑n
i=1 g(x, y, zi). If g(x, ·, z)

is µg-strongly convex in y and ∥∇yĜZ(x, y)−∇yĜZ(x
′, y)∥ ≤ βg,xy∥x− x′∥ for all x, y, z, then

∥ŷ∗Z(x)− ŷ∗Z(x
′)∥ ≤ βg,xy

µg
∥x− x′∥.

Proof. Since ŷ∗Z(x) is the minimizer of ĜZ(x, y), the first-order optimality condition gives:

∇yĜZ(x, ŷ
∗
Z(x)) = 0

Similarly for x′:

∇yĜZ(x
′, ŷ∗Z(x

′)) = 0

By µg-strong convexity of ĜZ(x′, ·) and the first-order optimality condition, we have:

µg∥ŷ∗Z(x)− ŷ∗Z(x
′)∥2 ≤⟨∇yĜZ(x

′, ŷ∗Z(x))−∇yĜZ(x
′, ŷ∗Z(x

′)), ŷ∗Z(x)− ŷ∗Z(x
′)⟩

=⟨∇yĜZ(x
′, ŷ∗Z(x))−∇yĜZ(x, ŷ

∗
Z(x)), ŷ

∗
Z(x)− ŷ∗Z(x

′)⟩
≤∥∇yĜZ(x

′, ŷ∗Z(x))−∇yĜZ(x, ŷ
∗
Z(x))∥ · ∥ŷ∗Z(x)− ŷ∗Z(x

′)∥
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≤βg,xy∥x′ − x∥ · ∥ŷ∗Z(x)− ŷ∗Z(x
′)∥.

Therefore:

∥ŷ∗Z(x)− ŷ∗Z(x
′)∥ ≤ βg,xy

µg
∥x− x′∥.

Lemma B.6. Grant Assumption 2.1 and additionally assume ∥∇xf(x, y, z) − ∇xf(x, y
′, z)∥ ≤

βf,xy∥y−y′∥ and ∥∇yĜZ(x, y)−∇yĜZ(x
′, y)∥ ≤ βg,xy∥x−x′∥ for all x, x′, y, y′, z. Then, for any

datasets Z,Z ′ ∈ Zn differing in one element, Φ̂Z− Φ̂Z′ is 2(Lf,x

n +
Lf,yβg,xy

µgn
+
Lg,yβf,xy

nµg
)-Lipschitz.

Proof. Suppose without loss of generality that Z and Z ′ differ only at the first element z1 ̸= z′1.
Then:

Φ̂Z(x)− Φ̂Z(x
′)− Φ̂Z′(x) + Φ̂Z′(x′)

=
1

n
[f(x, ŷ∗Z(x), z1)− f(x′, ŷ∗Z(x

′), z1)] +
1

n
[f(x, ŷ∗Z′(x), z′1)− f(x′, ŷ∗Z′(x′), z′1)]

+
1

n

n∑
i=2

[f(x, ŷ∗Z(x), zi)− f(x′, ŷ∗Z(x
′), zi)]−

1

n

n∑
i=2

[f(x, ŷ∗Z′(x), zi)− f(x′, ŷ∗Z′(x′), zi)].

For i = 1, we have

|f(x, ŷ∗Z(x), z1)− f(x′, ŷ∗Z(x
′), z1)|

≤ |f(x, ŷ∗Z(x), z1)− f(x′, ŷ∗Z(x), z1|+ |f(x′, ŷ∗Z(x), z1)− f(x′, ŷ∗Z(x
′), z1)|

≤Lf,x∥x− x′∥+ Lf,yβg,xy
µg

∥x− x′∥,

where the last inequality follows from Lemma B.5. The same argument works for z′1.

For each i ≥ 2 (where zi is the same in both datasets), recalling that ∥ŷ∗Z(x)− ŷ∗Z′(x)∥ ≤ 2Lg,y

µgn
, we

have

[f(x, ŷ∗Z(x), zi)− f(x, ŷ∗Z′(x), zi)]− [f(x′, ŷ∗Z(x
′), zi)− f(x′, ŷ∗Z′(x′), zi)]

=

∫ 1

0

∇xf(tx+ (1− t)x′, ŷ∗Z(tx+ (1− t)x′), zi)dt · (x− x′)

−
∫ 1

0

∇xf(tx+ (1− t)x′, ŷ∗Z′(tx+ (1− t)x′), zi)dt · (x− x′)

Using the smoothness of ∇xf with respect to y:∥∥∥∥∫ 1

0

[∇xf(tx+ (1− t)x′, ŷ∗Z(tx+ (1− t)x′), zi)−∇xf(tx+ (1− t)x′, ŷ∗Z′(tx+ (1− t)x′), zi)]dt

∥∥∥∥
≤
∫ 1

0

βf,xy∥ŷ∗Z(tx+ (1− t)x′)− ŷ∗Z′(tx+ (1− t)x′)∥dt

≤
∫ 1

0

βf,xy
2Lg,y
nµg

dt =
2Lg,yβf,xy

nµg
.

Therefore,

|[f(x, ŷ∗Z(x), zi)− f(x, ŷ∗Z′(x), zi)]− [f(x′, ŷ∗Z(x
′), zi)− f(x′, ŷ∗Z′(x′), zi)]|

≤ 2Lg,yβf,xy
nµg

∥x− x′∥
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A similar analysis applies to the term involving z1 and z′1, with an additional constant accounting for
the difference between functions.

Therefore,∣∣∣Φ̂Z(x)− Φ̂Z(x
′)− Φ̂Z′(x) + Φ̂Z′(x′)

∣∣∣ ≤ 2

(
Lf,x
n

+
Lf,yβg,xy
µgn

+
Lg,yβf,xy
nµg

)
∥x− x′∥,

as desired.

B.2 Generalization error of the regularized exponential mechanism for bilevel SCO

Another advantage of Regularized Exponential Mechanism is that it can have a good generalization
error.
Lemma B.7 ([22]). If we sample the solution from density πZ(x) ∝ exp(−k(Φ̂Z(x) + µ∥x∥2/2),
the excess population loss is bounded as

Ex∼πZ ,Z∼Pn [Φ(x)− Φ∗] ≤ G2

µn
+
dx
k
.

Theorem B.8 (Re-statement of Theorem 3.3). Grant Assumption 2.1 and parts 3 and 4 of Assump-
tion 2.2. Assume Φ̂Z and Φ are convex for all Z. Sampling x̂ from a distribution proportional to
exp(−k(Φ̂Z(x) + µ∥x∥2/2)) with k = O

(
µn2ϵ2

G2 log(1/δ)

)
and G = (Lf,x +

Lf,yβg,xy

µg
+

Lg,yβf,xy

µg
) is

(ϵ, δ)-DP. Moreover,

• setting µ =
G
√
dx log(1/δ)

nDxϵ
, we achieve excess risk

EΦ̂Z(x̂)− Φ̂∗
Z ≤ O

((
Lf,x +

Lf,yβg,xy
µg

+
Lg,yβf,xy

µg

)
Dx

√
dx log(1/δ)

nε

)
.

• setting µ =
G
√
dx log(1/δ)

nDxϵ
+ G

Dx
√
n

, the population loss has the following guarantee:

EΦ(x̂)− Φ∗ ≤ O

((
Lf,x +

Lf,yβg,xy
µg

+
Lg,yβf,xy

µg

)
Dx

(√
dx log(1/δ)

n
+

1√
n

))

Proof. The privacy guarantee follows from the privacy curve of Gaussian variables and Lemma 6.3
in [22].

When setting µ =
G
√
d log(1/δ)

nDxε
, Lemma B.2 gives us that

EΦ̂Z(x̂)− Φ̂∗
Z ≲

dx
k

+
µD2

x

2
=
dxG

2 log(1/δ)

µn2ε2
+
µD2

x

2
= O

(
GDx

√
dx log(1/δ)

nε

)
.

As for the population loss, with the setting of µ and k, by Lemma B.7, we have

EΦ(x̂)− Φ∗ ≲
dx
k

+
G2

µn
+ µD2

x =
dxG

2 log(1/δ)

µn2ε2
+
G2

µn
+
µD2

x

2
= O

(
GDx(

√
dx log(1/δ)

n
+

1√
n
)

)
.
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B.3 Efficient implementation of conceptual algorithms

In many practical applications of optimization and sampling algorithms, we face unavoidable approx-
imation errors when evaluating functions. Given any x, we may not get the exact ŷ∗Z(x) in solving
the low-level optimization, which means we may introduce a small error each time we compute the
function value of f(x, ŷ∗Z(x), z). This section analyzes how such small function evaluation errors
affect log-concave sampling algorithms. We establish bounds on the impact of errors bounded by ζ
on the conductance, mixing time, and distributional accuracy of Markov chains used for sampling.
We then develop an efficient implementation based on the [9] approach that maintains polynomial
time complexity while providing formal guarantees on sampling accuracy in the presence of function
evaluation errors.

B.3.1 Original Grid-Walk Algorithm for Log-Concave Sampling

We first state the classic Grid-Walk algorithm from Applegate and Kannan [3] on sampling from
log-concave distributions.

Let F (·) be a real positive-valued function defined on a cube A = [a, b]d in Rd, where [a, b]d

represents a hypercube with side length κ := b− a. Let f(θ) = − logF (θ) and suppose there exist
real numbers α, β such that:

|f(x)− f(y)| ≤ α

(
max
i∈[1,d]

|xi − yi|
)
,

f(λx+ (1− λ)y) ≥ λf(x) + (1− λ)f(y)− β,

for all x, y ∈ A and λ ∈ [0, 1].

Let γ ≤ 1/(2α) be a discretization parameter. The following algorithm samples from a distribution ν
on the continuous domain A such that for all θ ∈ A, |ν(θ)− cF (θ)| ≤ ϵ, where c is a normalization
constant:

1. Divide the cube A into small cubes {Cx} of side length γ, with centers {x}. Let Ω be the
set of all such centers.

2. If κ < 1/α, then pick a point θ uniformly from A and output θ with probability
F (θ)/(emaxx∈A F (x)); otherwise restart.

3. For κ ≥ 1/α, proceed as follows:

(a) Choose a starting point x0 ∈ Ω arbitrarily.
(b) Define a random walk on the centers of the small cubes as follows:

i. At a state (cube center) x, stay at x with probability 1/2.
ii. Otherwise (with probability 1/2), choose a direction u ∈ {±e1, · · · ,±ed} uni-

formly at random (each chosen with probability 1/2d), where ei is the standard
basis vector in the i-th coordinate.

iii. If the adjacent cube in that direction is not in A, stay at x.
iv. Otherwise, move to the center y of that adjacent cube with probability

min{1, F (y)/F (x)}; with probability 1−min{1, F (y)/F (x)}, remain at x.
(c) Run this random walk for T steps. Let x be the final state.
(d) Pick a point θ uniformly from the cube Cx.
(e) Output θ with probability F (θ)/(eF (x)); otherwise, restart from step 3(a) with a new

recursive call.

For implementation details, we refer to the original paper [3]. In the subsections that follow, we
analyze how this algorithm behaves when the function F can only be evaluated with some bounded
error, a common scenario in practical applications.

B.3.2 Conductance Bound with Function Evaluation Errors

The conductance of a Markov chain measures how well the chain mixes, specifically how quickly it
converges to its stationary distribution. For a Markov chain with state space Ω, transition matrix P
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and stationary distribution q, the conductance φ is defined as:

φ := min
S⊂Ω:0<q(S)≤1/2

∑
x∈S,y∈Ω\S q(x)Pxy

q(S)
.

Higher conductance implies faster mixing, while lower conductance suggests the presence of bottle-
necks in the state space.

We now analyze how small errors in function evaluation affect the conductance of the Markov chain
used in log-concave sampling, described in Section B.3.1. This analysis is central to understanding
the robustness of sampling algorithms in the presence of approximation errors.
Lemma B.9 (Re-statement of Lemma 3.5). Let P be the transition matrix of the original Markov
chain in the grid-walk algorithm of Section B.3.1 based on function f , with state space Ω and
conductance φ. Let P ′ be the transition matrix of the perturbed chain based on f ′ where f ′(θ) =
f(θ) + ζ(θ) with |ζ(θ)| ≤ ζ for all θ ∈ Ω, where ζ(·) is an arbitrary bounded error function and
ζ > 0 is an upper bound on its magnitude. Then the conductance φ′ of the perturbed chain satisfies:

φ′ ≥ e−6ζφ.

Proof. Fix any subset S of the state space. The conductance of S in the original chain is:

φS =

∑
x∈S,y/∈S q(x)Pxy

min{
∑
x∈S q(x),

∑
x/∈S q(x)}

.

where q is the stationary distribution and Pxy are the transition probabilities.

In the grid-walk algorithm, we know Pxy = 0 if x ̸= y are not adjacent; for adjacent points x and y:

Pxy =
1

4d
min

{
1,
F (y)

F (x)

}
=

1

4d
min{1, e−(f(y)−f(x))},

and remarkably Pxx = 1−
∑
x ̸=y Pxy .

For the perturbed chain with adjacent x, y:

P ′
xy =

1

4d
min

{
1,
F ′(y)

F ′(x)

}
=

1

4d
min{1, e−(f ′(y)−f ′(x))}.

Since f ′(y)− f ′(x) = f(y)− f(x) + (ζ(y)− ζ(x)) and |ζ(y)− ζ(x)| ≤ 2ζ, we have:

e−(f(y)−f(x)−2ζ) ≤ e−(f ′(y)−f ′(x)) ≤ e−(f(y)−f(x)+2ζ).

This implies:

e−2ζ min{1, e−(f(y)−f(x))} ≤ min{1, e−(f ′(y)−f ′(x))} ≤ e2ζ min{1, e−(f(y)−f(x))}.

Therefore:

e−2ζPxy ≤ P ′
xy ≤ e2ζPxy.

The stationary distributions q and q′ satisfy:

q(x) =
F (x)∑
z∈Ω F (z)

and q′(x) =
F ′(x)∑
z∈Ω F

′(z)
.

Since F ′(x) = e−f
′(x) = e−(f(x)+ζ(x)) = e−f(x)e−ζ(x) = F (x)e−ζ(x), we have:

e−ζ · q(x) ·
∑
z∈Ω F (z)∑
z∈Ω F

′(z)
≤ q′(x) ≤ eζ · q(x) ·

∑
z∈Ω F (z)∑
z∈Ω F

′(z)
.

The normalization ratio satisfies:

e−ζ ≤
∑
z∈Ω F

′(z)∑
z∈Ω F (z)

≤ eζ .
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Therefore:

e−2ζ · q(x) ≤ q′(x) ≤ e2ζ · q(x).

Using the bounds on transition probabilities and stationary distributions:∑
x∈S,y/∈S

q′(x)P ′
xy ≥ e−4ζ

∑
x∈S,y/∈S

q(x)Pxy.

And:

min

{∑
x∈S

q′(x),
∑
x/∈S

q′(x)

}
≤ e2ζ min

{∑
x∈S

q(x),
∑
x/∈S

q(x)

}
.

Therefore:

φ′
S =

∑
x∈S,y/∈S q

′(x)P ′
xy

min{
∑
x∈S q

′(x),
∑
x/∈S q

′(x)}

≥
e−4ζ

∑
x∈S,y/∈S q(x)Pxy

e2ζ min{
∑
x∈S q(x),

∑
x/∈S q(x)}

= e−6ζφS .

Since φ = minS φS and φ′ = minS φ
′
S , we have:

φ′ ≥ e−6ζφ.

B.3.3 Relative Distance Bound Between F and F ′

We now analyze how function evaluation errors affect the distributional distance between the original
and perturbed stationary distributions.

For distributions, we define the L∞ distance (or log-ratio distance) between distributions µ and ν on
A as:

Dist∞(µ, ν) = sup
θ∈A

∣∣∣∣log µ(θ)ν(θ)

∣∣∣∣ . (13)

Lemma B.10 (Re-statement of Lemma 3.6). Let F (θ) = e−f(θ) and F ′(θ) = e−f
′(θ) where

f ′(θ) = f(θ) + ζ(θ) with |ζ(θ)| ≤ ζ for all θ ∈ A. Then the relative distance between F and F ′ is
bounded by:

e−ζ ≤ F ′(θ)

F (θ)
≤ eζ , ∀θ ∈ A.

Furthermore, if we define the distributions π(θ) ∝ F (θ) and π′(θ) ∝ F ′(θ), then the infinity-distance
between them is bounded by:

Dist∞(π′, π) = sup
θ∈A

∣∣∣∣log π′(θ)

π(θ)

∣∣∣∣ ≤ 2ζ.

Proof. For any θ ∈ A, we have:

F ′(θ) = e−f
′(θ) = e−(f(θ)+ζ(θ)) = e−f(θ)e−ζ(θ) = F (θ)e−ζ(θ).

Since |ζ(θ)| ≤ ζ, we have:

e−ζ ≤ e−ζ(θ) ≤ eζ .

19



Therefore:

e−ζF (θ) ≤ F ′(θ) ≤ eζF (θ).

For the normalized distributions, we have:

π(θ) =
F (θ)∫

A
F (z)dz

,

π′(θ) =
F ′(θ)∫

A
F ′(z)dz

=
F (θ)e−ζ(θ)∫

A
F (z)e−ζ(z)dz

.

This gives:

π′(θ)

π(θ)
=

F (θ)e−ζ(θ)∫
A
F (z)e−ζ(z)dz

·
∫
A
F (z)dz

F (θ)
= e−ζ(θ) ·

∫
A
F (z)dz∫

A
F (z)e−ζ(z)dz

.

Since e−ζ ≤ e−ζ(z) ≤ eζ for all z ∈ A, we have:

e−ζ
∫
A

F (z)dz ≤
∫
A

F (z)e−ζ(z)dz ≤ eζ
∫
A

F (z)dz.

Therefore:

e−2ζ ≤ π′(θ)

π(θ)
≤ e2ζ .

Thus, the L∞-distance between π′ and π is bounded by:

Dist∞(π′, π) = sup
θ∈A

∣∣∣∣ln π′(θ)

π(θ)

∣∣∣∣ ≤ 2ζ.

B.3.4 Mixing Time Analysis and Implementation Details

For a Markov chain with state space Ω, transition matrix P , and stationary distribution π, the mixing
time tmix(ϵ) with respect to the L∞-distance is defined as:

tmix(ϵ) = min{t ≥ 0 : max
x∈Ω

Dist∞(P t(x, ·), π(·)) ≤ ϵ}, (14)

for any ϵ ≥ 0. For efficient implementation of the grid-walk algorithm, we utilize the results of [9].
Following their approach, we can determine the number of steps required for L∞ convergence using:
Lemma B.11 (Mixing time for relative L∞ convergence [38]). Let P be a lazy, time-reversible
Markov chain over a finite state space Γ with stationary distribution π. Then, the mixing time of P
w.r.t. L∞ distance is at most

t∞ ≤ 1 +

∫ 4/ϵ

4π∗

4dx

xφ2(x)
(15)

where φ(x) = inf{φS : π(S) ≤ x}, φS denotes the conductance of the set S ⊆ Γ, and π∗ =
minx∈Γ π(x) is the minimum probability assigned by the stationary distribution.

We now provide a bound on how function evaluation errors affect the mixing time.
Lemma B.12 (Re-statement of Lemma 3.7). The mixing time t′mix(ϵ) of the perturbed chain to achieve
L∞-distance ϵ to its stationary distribution satisfies:

t′mix(ϵ) ≤ e12ζ ·O

(
α2τ2d2

ϵ2
eϵmax

{
d log

ατ
√
d

ϵ
, ατ

})
.
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Proof. For a log-concave function F (x) = e−f(x) where f is α-Lipschitz, we set the grid spacing
parameter γ = ϵ

2α
√
d

. Using the conductance bound from previous analysis [9], we can derive the
lower bound on conductance:

φ(x) ≥ ϵ

8ατd3/2eϵ
.

By Lemma 3.5,the conductance φ′ for the perturbed chain F ′ satisfies

φ′(x) ≥ e−6ζϵ

8ατd3/2eϵ
.

By the Lipschitz assumption, we have that

π′(u) =
F ′(u)∑
v∈Ω F

′(v)
≥ e−ατ−2ζ

(τ/γ)d
.

Hence, by the lower bounds of conductance and minimum probability in the state space and
Lemma B.11, we complete the proof.

Building upon our analysis of how function evaluation errors affect conductance, mixing time,
and distributional distance, we now develop an efficient algorithm for sampling from log-concave
distributions in the presence of such errors. Our approach builds upon the framework developed by
Bassily, Smith, and Thakurta [9], extending it to handle approximation errors with formal guarantees.

Theorem B.13 (BST14-Based Implementation). Let C ⊂ Rd be a convex set and f : C →
R be a convex, L-Lipschitz function. There exists an efficient algorithm that, when given exact
function evaluations, outputs a sample θ ∈ C from a distribution µ such that the relative distance
between µ and the target log-concave distribution π(θ) ∝ e−f(θ) can be made arbitrarily small, i.e.,
Dist∞(µ, π) ≤ ξ for any desired ξ > 0. This algorithm runs in time O(d3 · poly(L, ∥C∥2, 1/ξ)),
which is polynomial in the dimension d, the diameter of C, the Lipschitz constant L, and the accuracy
parameter 1/ξ.

The key techniques in this implementation include:

1. Extending the function f beyond the convex set C to a surrounding cube A

2. Using a gauge penalty function to reduce the probability of sampling outside C

3. Implementing an efficient grid-walk algorithm to sample from the resulting distribution

We now formally incorporate the effect of function evaluation errors into this framework:

Theorem B.14 (Re-statement of Theorem 3.8). Let C ⊂ Rd be a convex set and f : C → R be a
convex, L-Lipschitz function. Suppose we have access to an approximate function evaluator that
returns f ′(θ) = f(θ)+ζ(θ) where |ζ(θ)| ≤ ζ for all θ ∈ C, and ζ = O(1) is a constant independent
of dimension. There exists an efficient algorithm that outputs a sample θ ∈ C from a distribution µ′

such that:

Dist∞(µ′, π) ≤ 2ζ + ξ (16)

where π(θ) ∝ e−f(θ) is the target log-concave distribution and δ > 0 is an arbitrarily small constant.

This algorithm runs in time O(e12ζ · d3 · poly(L, ∥C∥2, 1/ξ)). When ζ = O(1) is a constant, this
remains O(d3 · poly(L, ∥C∥2, 1/ξ)) with the same asymptotic complexity as the exact evaluation
algorithm, differing only by a constant factor e12ζ in the running time.

Proof. We follow the approach of [9] with appropriate modifications to account for function evalua-
tion errors:

1. Enclose the convex set C in an isotropic cube A with edge length τ = ∥C∥∞.
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2. Construct a convex Lipschitz extension f of the function f over A using:

f(x) = min
y∈C

(f(y) + L∥x− y∥2)

This extension preserves the Lipschitz constant L and the convexity of f .

3. Define a gauge penalty function using the Minkowski functional of C:

ψα(θ) = α ·max{0, ψ(θ)− 1}

where ψ(θ) := inf{r > 0 : θ ∈ rC} is the Minkowski norm of θ with respect to C, and α
is a parameter set to ensure correct sampling properties.

4. Define the target sampling distribution:

π(θ) ∝ e−f(θ)−ψα(θ), ∀θ ∈ A.

5. In the presence of function evaluation errors, for θ ∈ A, the algorithm samples from:

π′(θ) ∝ e−f
′
(θ)−ψα(θ)

where f
′
(θ) = f(θ) + ζ(θ) and |ζ(θ)| ≤ ζ.

6. By Lemma 3.6 on the relative distance between distributions, we have:

Dist∞(π′, π) ≤ 2ζ.

7. For the sampling algorithm’s computational efficiency, we note that by Corollary 3.7, the
mixing time increases by a factor of e12ζ . and the modified algorithm’s running time
becomes O(e12ζ · d3 · poly(L, ∥C∥2, 1/ξ)).

If ζ is a constant, then the factor e12ζ is also a constant. Therefore, the algorithm maintains the
same asymptotic polynomial complexity in d as the exact evaluation algorithm, with only the leading
constant factor affected by the approximation error.

Theorem B.15 (Exponential Mechanism Implementation). Under Assumptions 2.1, for any constants
ε = O(1), there is an efficient sampler to solve DP-bilevel ERM with the following guarantees:

• The scheme is (ε, 0)-DP;

• The expected loss is bounded by Õ
(
dx
εn

[
Lf,xDx + Lf,yDy +

Lf,yLg,y

µg

])
;

• The running time isO
(
d6n · poly(L,Dx, 1/ε, log(dL

2
f,y/µg)) ∧ d4n · Lg,y

µg
· poly(L,Dx, 1/ε)

)
.

Proof. Privacy: Let Z and Z ′ be adjacent data sets. Consider the exponential mechanism and the
probability density πZ proportional to exp(− ε′

2s Φ̂Z(x)). We set ζ = ξ = ε′/6. Let the π′
Z be the

probability density of the final output of the sampler. Then by Theorem B.14, we know

Dist∞(π′
Z , πZ) ≤ ε′/2.

By Theorem 3.2, we have

Dist∞(πZ , πZ′) ≤ ε′.

Hence we know

Dist∞(π′
Z , π

′
Z′) ≤ 2ε′,

and setting ε′ = ε/2 completes the proof of the privacy guarantee.

Excess risk: The excess risk bound follows from Theorem 3.2 and the assumption that ε = O(1).
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Time complexity: Given a function value query of Φ̂Z(x), we need to return a value of error at
most ζ. By the Lipschitz of f(x, ·, z), it suffices to find a point y such that

∥y − ŷ∗Z(x)∥ ≤ ζ/Lf,y.

By the strong convexity of g(x, ·, z), there are multiple ways to find the qualified y. In
our case, we can simply apply the cutting plane method [29], which can be implemented in
O(d3npoly(log(dL2

f,y/ζµg)). Alternatively, we could apply the subgradient method to ĜZ(x, ·),
which can be implemented in O(dn(

Lg,y

µgζ
)). Combining the query complexity in Theorem B.14 gives

the total running time complexity.

With Theorem B.8 and a similar argument on the implementation, we can get the following result of
the Regularized Exponential Mechanism.
Theorem B.16 (Regularized Exponential Mechanism Implementation). Grant Assumptions 2.1
and additionally assume ∥∇xf(x, y, z) − ∇xf(x, y

′, z)∥ ≤ βf,xy∥y − y′∥ and ∥∇yĜZ(x, y) −
∇yĜZ(x

′, y)∥ ≤ βg,xy∥x − x′∥ for all x, x′, y, y′, z. Given ε = O(1) and 0 < δ < 1/10, there is
an efficient sampler to implement the Regularized Exponential Mechanism and solve DP-bilevel ERM
with the following guarantees:

• The scheme is (ε, δ)-DP;

• The expected empirical loss is bounded byO
((

Lf,x +
Lf,yβg,xy

µg
+

Lg,yβf,xy

µg

)
Dx

√
dx log(1/δ)

n

)
.

• The running time isO
(
d6n · poly(L,Dx, 1/ε, log(dL

2
f,y/µg)) ∧ d4n · Lg,y

µg
· poly(L,Dx, 1/ε)

)
.

With a different parameter setting, we can get the (ε, δ)-DP sampler
with the same running time and achieve the expected population loss as

O

((
Lf,x +

Lf,yβg,xy

µg
+

Lg,yβf,xy

µg

)
Dx

(√
dx log(1/δ)

n + 1√
n

))
.

B.4 Excess risk lower bounds

Theorem B.17 (Re-statement of Theorem 3.9). 1. Let A be ε-DP. Then, there exists a data
set Z ∈ Zn and a convex bilevel ERM problem instance satisfying Assumptions 2.1 and 2.2
with µg = Θ(Lg,y/Dy) such that

EΦ̂Z(A(Z))− Φ̂∗
Z = Ω

(
(Lf,xDx + Lf,yDy)min

{
1,
dx
nε

})
.

2. Let A be (ε, δ)-DP with 2−Ω(n) ≤ δ ≤ 1/n1+Ω(1). Then, there exists a data set Z ∈ Zn

and a convex bilevel ERM problem instance satisfying Assumptions 2.1 and 2.2 with µg =
Θ(Lg,y/Dy) such that

EΦ̂Z(A(Z))− Φ̂∗
Z = Ω

(
(Lf,xDx + Lf,yDy)min

{
1,

√
dx log(1/δ)

nε

})
.

Proof. Case 1: Suppose Lf,xDx ≲ Lf,yDy. Then we will show Φ̂Z(A(Z)) − Φ̂∗
Z =

Ω
(
(Lf,yDy)min

{
1, dnε

})
with probability at least 1/2 for pure ε-DP A and Φ̂Z(A(Z))− Φ̂∗

Z =

Ω
(
(Lf,yDy)min

{
1,

√
d

nε

})
with probability at least 1/3 for (ε, δ)-DP A.

Let f(x, y, z) = −⟨y, z⟩, which is convex and 1-Lipschitz in x and y if X = Y = B are unit balls in
Rd, d = dx = dy, and Z = {±1/

√
d}d. Let g(x, y, z) = 1

2∥y − ζx∥2 for ζ > 0 to be chosen later.
Note F̂Z(x, y) = −⟨y, Z⟩, where Z = 1

n

∑n
i=1 zi, ŷ

∗
Z(x) = ζx, and Φ̂Z(x) = F̂Z(x, ŷ

∗
Z(x)) =

⟨−ζx, Z⟩ =⇒ x̂∗(Z) = argminx∈X Φ̂Z(x) =
Z

∥Z∥ . Therefore, for any x ∈ X , we have

Φ̂Z(x)− Φ̂Z(x̂
∗(Z)) = −ζ

〈
Z, x− Z

∥Z∥

〉
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= ζ
[
∥Z∥ (1− ⟨x, x̂∗(Z)⟩)

]
≥ ζ

2

[
∥Z∥∥x− x̂∗(Z)∥2

]
, (17)

since ∥x∥, ∥x̂∗(Z)∥ ≤ 1. Now, recall the following result, which is due to [9, Lemma 5.1] and [44,
Theorem 1.1]:

Lemma B.18 (Lower bounds for 1-way marginals). Let n, d ≥ 1, ε > 0, 2−Ω(n) ≤ δ ≤ 1/n1+Ω(1).

1. ε-DP algorithms: There is a number M = Ω(min(n, d/ε)) such that for every ε-DP A,
there is a data set Z = (z1, . . . , zn) ⊂ {±1/

√
d}d with ∥Z∥ ∈ [(M − 1)/n, (M + 1)/n]

such that, with probability at least 1/2 over the algorithm random coins, we have

∥A(Z)− Z∥ = Ω

(
min

(
1,

d

εn

))
.

2. (ε, δ)-DP algorithms: There is a number M = Ω(min(n,
√
d log(1/δ)/ε)) such that

for every (ε, δ)-DP A, there is a data set Z = (z1, . . . , zn) ⊂ {±1/
√
d}d with ∥Z∥ ∈

[(M − 1)/n, (M +1)/n] such that, with probability at least 1/3 over the algorithm random
coins, we have

∥A(Z)− Z∥ = Ω

(
min

(
1,

√
d log(1/δ)

εn

))
.

We claim there exists Z ∈ Zn with ∥Z∥ ∈ [(M − 1)/n, (M + 1)/n] such that∥∥∥∥A(Z)− Z

∥Z∥

∥∥∥∥ ≳ 1 (18)

with probability at least 1/2. Suppose for the sake of contradiction that ∀Z ∈ Zn with ∥Z∥ ∈
[(M − 1)/n, (M + 1)/n], we have ∥∥∥∥A(Z)− Z

∥Z∥

∥∥∥∥≪ 1

with probability at least 1/2. Let c ∈ [−1/n, 1/n] such that ∥Z∥ = M/n + c. Then for the ε-DP
algorithm Ã(Z) := M

n A(Z), we have

∥Ã(Z)− Z∥ =

∥∥∥∥Mn A(Z)− Z

∥∥∥∥
=

∥∥∥∥Mn A(Z)−
(
M

n
+ c

)
Z

∥Z∥

∥∥∥∥
≤
∥∥∥∥Mn

[
A(Z)− Z

∥Z∥

]∥∥∥∥+ c

∥∥∥∥ Z

∥Z∥

∥∥∥∥
≪ M

n
+ c ≤ M + 1

n
,

which implies ∥Ã(Z) − Z∥ ≪ 1 ∧ d
εn , contradicting Lemma B.18. By combining the claim (18)

with inequality (17), we conclude that if x = A(Z) is ε-DP, then

Φ̂Z(x)− Φ̂∗
Z ≥ ζ

2

[
∥Z∥∥x− x̂∗(Z)∥2

]
≳ ζ

M

n
· 1 ≳ ζmin

{
1,

d

nε

}
.

Next, we scale our hard instance to obtain the ε-DP lower bound. Define the scaled parameter
domains X̃ = DxB, Ỹ = DyB, Z̃ = Z = {±1/

√
d}d, and denote x̃ = Dxx, ỹ = Dyy for any

x, y ∈ X × Y = B2. Define f̃ : X̃ × Ỹ × Z̃ → R by

f̃(x̃, ỹ, z̃) = −Lf,y⟨ỹ, z̃⟩,
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which is convex and Lf,y-Lipschitz in y for any permissible x̃, z̃. Define g̃ : X̃ × Ỹ × Z̃ → R by

g̃(x̃, ỹ, z̃) =
µg
2
∥ỹ − ζx̃∥2,

where
ζ := Dy/Dx.

Then g̃ is µg-strongly convex in y and 2Lg,y-Lipschitz, since Lg,y ≥ µgDy . Now,

F̃Z̃(x̃, ỹ) :=
1

n

n∑
i=1

f̃(x̃, ỹ, z̃i) = −Lf,y⟨ỹ, Z̃⟩,

ỹ∗
Z̃
(x̃) := argminỹ∈Rdy

[
G̃Z̃(x̃, ỹ) =

µg
2
∥ỹ − ζx̃∥2

]
= ζx̃ ∈ Ỹ,

and
Φ̃(x̃) := F̃Z̃(x̃, ỹ

∗
Z̃
(x̃)) = −Lf,y⟨ζx̃, Z̃⟩.

Also,

x̃∗(Z̃) := argminx̃∈X̃ Φ̃(x̃) =
Z̃

∥Z̃∥
Dx = Dxx̂

∗(Z) = Dx
Z

∥Z∥
.

Thus, for any ε-DP A, there exists a dataset Z = Z̃ such that the following holds with probability at
least 1/2, where we denote x̃ = A(Z̃):

Φ̃(x̃)− Φ̃(x̃∗(Z̃)) = −Lf,y
[
ζ⟨x̃, Z̃⟩ − ζ⟨x̃∗

Z̃
, Z̃⟩

]
= −Lf,yζ

[
Dx⟨x− x̂∗(Z), Z⟩

]
= −Lf,yζDx

〈
x− Z

∥Z
,Z

〉
≥ Lf,yDxζ

2

[
∥Z∥∥x− x̂∗(Z)

]
≳ Lf,yDxζ

[
d

εn
∧ 1

]
= Lf,yDy

[
d

εn
∧ 1

]
.

The argument for the (ε, δ)-DP case is identical to the above, except we invoke part 2 of Lemma B.18
instead of part 1.

Finally, it is easy to verify that Assumptions 2.1 and 2.2 are satisfied, with βg,xy ≤ µgDy

Dx
, Cg,xy =

Cg,yy =Mg,yy =Mg,xy = 0 = βf,xx = βf,xy = βf,yy .

Case 2: Lf,yDy ≲ Lf,xDx. In this case, the desired lower bounds follow from a trivial reduction
to the single-level DP ERM lower bounds of [9, Theorems 5.2 and 5.3]: take Y = {y0} for some
y0 ∈ Rd with ∥y0∥ ≤ Dy, X = DxB, Z = {±1/

√
d}d, and let f(x, y, z) = −Lf,x⟨x, z⟩ and

g(x, y, z) =
µg

2 ∥y∥2. Then f and g satisfy Assumption 2.1, ŷ∗Z(x) = y0, F̂Z(x) = Φ̂Z(x) =

−Lf,x⟨x, Z⟩. Thus, the lower bounds on the excess risk F̂Z(x)− F̂ ∗
Z for DP x given in [9, Theorems

5.2 and 5.3] apply verbatim to the excess risk Φ̂Z(x)− Φ̂∗
Z . This completes the proof.

C Proofs for Section 4

C.1 An iterative second-order method

We have the following key lemma, which will be needed for proving Theorem 4.2.
Lemma C.1 (Re-statement of Lemma 4.1). For any fixed xt, define the query qt : Zn → Rd,

qt(Z) := ∇F̂Z(xt, yt+1),

where yt+1 = yt+1(Z) is given in Algorithm 1. If α ≤ K
Cn where C and K are defined in

Equations (11) and (12), then the ℓ2-sensitivity of qt is upper bounded by 4K
n .
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Proof. We will need the following bound due to [21, Lemma 2.2]: for any x, y ∈ X × Y ,

∥∇Φ̂Z(x)−∇F̂Z(x, y)∥ ≤ C∥ŷ∗Z(x)− y∥ (19)

for

C = βf,xy +
βf,yyβg,xy

µg
+ Lf,y

(
Cg,xy
µg

+
Cg,yyβg,xy

µ2
g

)
.

Now, denoting yt+1 = yt+1(Z) and y′t+1 = yt+1(Z
′), the sensitivity of the the query qt is bounded

by

sup
Z∼Z′

∥qt(Z)− qt(Z
′)∥

= sup
Z∼Z′

∥∇F̂Z(xt, yt+1)−∇F̂Z′(xt, y
′
t+1)∥

≤ sup
Z∼Z′

[
∥∇F̂Z(xt, yt+1)−∇Φ̂Z(xt)∥+ ∥∇Φ̂Z(xt)−∇Φ̂Z′(xt)∥+ ∥∇Φ̂Z′(xt)−∇F̂Z′(xt, y

′
t+1)∥

]
≤ C∥yt+1 − ŷ∗Z(xt)∥+ ∥∇Φ̂Z(xt)−∇Φ̂Z′(xt)∥+ C∥y′t+1 − ŷ∗Z′(xt)∥
≤ 2Cα+ ∥∇Φ̂Z(xt)−∇Φ̂Z′(xt)∥

≤ 2K

n
+ ∥∇Φ̂Z(xt)−∇Φ̂Z′(xt)∥,

where we used the bound (19) and our choice of α, for K defined in the theorem statement. Next, we
claim

∥∇Φ̂Z(xt)−∇Φ̂Z′(xt)∥ ≤ 2K

n
. (20)

This will follow from a rather long calculation that uses Assumption 2.2 repeatedly, along with the
perturbation inequality ∥M−1 −N−1∥ ≤ ∥M−1∥∥M −N∥∥N−1∥ which holds for any invertible
matrices M and N . Let us now prove the bound (20). In what follows, the notation ∇ denote the
derivative of the function w.r.t. x (accounting for the dependence of the function on ŷ∗Z(x) via the
chain rule) and denote

MZ(x, y) := ∇2
xyĜZ(x, y)[∇2

yyĜZ(x, y)]
−1.

Then,

∥∇Φ̂Z(xt)−∇Φ̂Z′(xt)∥

≤ 1

n

∥∥∥∥∥
n∑
i=1

∇f(x, ŷ∗Z(x), zi)−∇f(x, ŷ∗Z′(x), zi)

∥∥∥∥∥+ 1

n

∥∥∥∥∥
n∑
i=1

∇f(x, ŷ∗Z′(x), zi)−∇f(x, ŷ∗Z′(x), z′i)

∥∥∥∥∥
≤ 1

n

n∑
i=1

∥∇xf(x, ŷ
∗
Z(x), zi)−∇xf(x, ŷ

∗
Z′(x), zi)∥

+
1

n

n∑
i=1

∥MZ′(x, ŷ∗Z′(x))∇yf(x, ŷ
∗
Z′(x), zi)−MZ(x, ŷ

∗
Z(x))∇yf(x, ŷ

∗
Z(x), zi)∥

+
1

n

∥∥∥∥∥
n∑
i=1

∇f(x, ŷ∗Z′(x), zi)−∇f(x, ŷ∗Z′(x), z′i)

∥∥∥∥∥
≤ 1

n

n∑
i=1

βf,xy ∥ŷ∗Z(x)− ŷ∗Z′(x)∥

+
1

n

n∑
i=1

∥MZ′(x, ŷ∗Z′(x))∇yf(x, ŷ
∗
Z′(x), zi)−MZ(x, ŷ

∗
Z(x))∇yf(x, ŷ

∗
Z(x), zi)∥

+
1

n
∥∇f(x, ŷ∗Z′(x), z1)−∇f(x, ŷ∗Z′(x), z′1)∥ ,

where we assumed WLOG that z1 ̸= z′1 and used the smoothness assumption in the last inequality
above. Now, recall that

∥ŷ∗Z(x)− ŷ∗Z′(x)∥ ≤ 2Lg,y
µgn
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and note that

∥∇f(x, ŷ∗Z′(x), z1)−∇f(x, ŷ∗Z′(x), z′1)∥ ≤ 2L = 2

(
Lf,x +

Lf,yβg,xy
µg

)
,

by the chain rule and (βg,xy/µg)-Lipschitz continuity of ŷ∗Z (see [21] for a proof of this result). Thus,

∥∇Φ̂Z(xt)−∇Φ̂Z′(xt)∥ ≤ 1

n

n∑
i=1

βf,xy
2Lg,y
µgn

+
1

n

n∑
i=1

∥MZ′(x, ŷ∗Z′(x))∇yf(x, ŷ
∗
Z′(x), zi)−MZ(x, ŷ

∗
Z(x))∇yf(x, ŷ

∗
Z(x), zi)∥

+
2L

n
.

Next, we bound

∥MZ′(x, ŷ∗Z′(x))∇yf(x, ŷ
∗
Z′(x), zi)−MZ(x, ŷ

∗
Z(x))∇yf(x, ŷ

∗
Z(x), zi)∥

≤ sup
x,Z

[∥MZ(x, ŷ
∗
Z(x))∥] ∥∇yf(x, ŷ

∗
Z(x), zi)−∇yf(x, ŷ

∗
Z′(x), zi)∥

+ sup
x,Z

[∥∇yf(x, ŷ
∗
Z(x), zi)∥] ∥MZ(x, ŷ

∗
Z(x))−MZ′(x, ŷ∗Z′(x))∥

≤ βg,xy
µg

βf,yy
2Lg,y
µgn

+ Lf,y∥MZ(x, ŷ
∗
Z(x))−MZ′(x, ŷ∗Z′(x))∥.

It remains to bound

∥MZ(x, ŷ
∗
Z(x))−MZ′(x, ŷ∗Z′(x))∥

≤
∥∥∥∇2

xyĜZ(x, ŷ
∗
Z(x))∇2

yyĜZ(x, ŷ
∗
Z(x))

−1 −∇2
xyĜZ(x, ŷ

∗
Z′(x))∇2

yyĜZ(x, ŷ
∗
Z(x))

−1
∥∥∥

+
∥∥∥∇2

xyĜZ(x, ŷ
∗
Z′(x))∇2

yyĜZ(x, ŷ
∗
Z(x))

−1 −∇2
xyĜZ(x, ŷ

∗
Z′(x))∇2

yyĜZ(x, ŷ
∗
Z′(x))−1

∥∥∥
+
∥∥∥∇2

xyĜZ′(x, ŷ∗Z′(x))∇2
yyĜZ′(x, ŷ∗Z′(x))−1 −∇2

xyĜZ′(x, ŷ∗Z′(x))∇2
yyĜZ(x, ŷ

∗
Z′(x))−1

∥∥∥
+
∥∥∥∇2

xyĜZ′(x, ŷ∗Z′(x))∇2
yyĜZ(x, ŷ

∗
Z′(x))−1 −∇2

xyĜZ(x, ŷ
∗
Z′(x))∇2

yyĜZ(x, ŷ
∗
Z′(x))−1

∥∥∥
≤ Cg,xy∥ŷ∗Z(x)− ŷ∗Z′(x)∥

µg

+ βg,xy

∥∥∥∇2
yyĜZ(x, ŷ

∗
Z(x))

−1 −∇2
yyĜZ(x, ŷ

∗
Z′(x))−1

∥∥∥
+ βg,xy

∥∥∥∇2
yyĜZ′(x, ŷ∗Z′(x))−1 −∇2

yyĜZ(x, ŷ
∗
Z′(x))−1

∥∥∥
+

2βg,xy
µgn

≤ 2Cg,xyLg,y
µ2
gn

+ βg,xy

∥∥∥∇2
yyĜZ(x, ŷ

∗
Z(x))

−1 −∇2
yyĜZ(x, ŷ

∗
Z′(x))−1

∥∥∥
+ βg,xy

∥∥∥∇2
yyĜZ′(x, ŷ∗Z′(x))−1 −∇2

yyĜZ(x, ŷ
∗
Z′(x))−1

∥∥∥
+

2βg,xy
µgn

≤ 2Cg,xyLg,y
µ2
gn

+ βg,xy
Cg,yy∥ŷ∗Z(x)− ŷ∗Z′(x)∥

µ2
g

+ βg,xy
2βg,yy
µ2
gn
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+
2βg,xy
µgn

≤ 2Cg,xyLg,y
µ2
gn

+ βg,xy
2Cg,yyLg,y

µ3
gn

+ βg,xy
2βg,yy
µ2
gn

+
2βg,xy
µgn

,

where in the second-to-last inequality we used the operator norm inequality

∥M−1 −N−1∥ ≤ ∥M−1∥∥M −N∥∥N−1∥,

which holds for any invertible matrices M and N of compatible shape.

Combining the above pieces completes the proof.

We have the following refinement of [21, Lemma 2.2c], in which we correctly describe the precise
dependence on the smoothness, Lipschitz, and strong convexity parameters of f and g:

Lemma C.2 (Smoothness of Φ̂Z). Grant Assumptions 2.1 and 2.2. Then, for any x1, x2,

∥∇Φ̂Z(x1)−∇Φ̂Z(x2)∥ ≤ βΦ∥x1 − x2∥,

where

βΦ := βf,xx+
2βf,xyβg,xy

µg
+
β2
g,xyβf,yy

µ2
g

+
Lf,yβg,xy

µ2
g

(
Mg,yy +

Cg,yyβg,xy
µg

)
+
Lf,yCg,xyβg,xy

µ2
g

+
Lf,yMg,xy

µg
.

(21)

Proof. Recall that

∇Φ̂Z(x) = ∇xF̂Z(x, ŷ
∗
Z(x))−M(x, ŷ∗Z(x))∇yF̂Z(x, ŷ

∗
Z(x)),

where
M(x, y) := ∇2

xyĜZ(x, y)[∇2
yyĜZ(x, y)]

−1.

Also, ŷ∗Z is βg,xy

µg
-Lipschitz (c.f. [21, Lemma 2.2b]). Therefore,

∥∇Φ̂Z(x1)−∇Φ̂Z(x2)∥ ≤ ∥∇xF̂Z(x1, ŷ
∗
Z(x1))−∇xΦ̂Z(x2, ŷ

∗
Z(x2))∥

+ ∥M(x1, ŷ
∗
Z(x1))∇yF̂Z(x1, ŷ

∗
Z(x1))−M(x2, ŷ

∗
Z(x2))∇yF̂Z(x2, ŷ

∗
Z(x2))∥

≤ βf,xx∥x1 − x2∥+ βf,xy∥ŷ∗Z(x1)− ŷ∗Z(x2)∥
+ ∥M(x1, ŷ

∗
Z(x1))∥∥∇yF̂Z(x1, ŷ

∗
Z(x1))− F̂Z(x2, ŷ

∗
Z(x2))∥+ ∥∇yF̂Z(x2, ŷ

∗
Z(x2))∥∥M(x1, ŷ

∗
Z(x1))−M(x2, ŷ

∗
Z(x2))∥

≤
(
βf,xx +

βf,xyβg,xy
µg

)
∥x1 − x2∥+

βg,xy
µg

∥∇yF̂Z(x1, ŷ
∗
Z(x1))− F̂Z(x2, ŷ

∗
Z(x2))∥

+ Lf,y

∥∥∥∇2
xyĜZ(x1, ŷ

∗
Z(x1))

∥∥∥∥∥∥∥[∇2
yyĜZ(x1, ŷ

∗
Z(x1)]

]−1

−
[
∇2
yyĜZ(x2, ŷ

∗
Z(x2)]

]−1
∥∥∥∥

+ Lf,y

∥∥∥∥[∇2
yyĜZ(x2, ŷ

∗
Z(x2)]

]−1
∥∥∥∥∥∥∥∇2

xyĜZ(x1, ŷ
∗
Z(x1))−∇2

xyĜZ(x2, ŷ
∗
Z(x2))

∥∥∥
≤
(
βf,xx +

βf,xyβg,xy
µg

)
∥x1 − x2∥+

βg,xy
µg

(
βf,yy

βg,xy
µg

∥x1 − x2∥+ βf,xy∥x1 − x2∥
)

+ Lf,yβg,xy

∥∥∥∇2
yyĜZ(x1, ŷ

∗
Z(x1))

−1 − ĜZ(x2, ŷ
∗
Z(x2))

−1
∥∥∥+ Lf,y

µg

∥∥∥∇2
xyĜZ(x1, ŷ

∗
Z(x1))−∇2

xyĜZ(x2, ŷ
∗
Z(x2))

∥∥∥
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≤

(
βf,xx +

2βf,xyβg,xy
µg

+
β2
g,xyβf,yy

µ2
g

)
∥x1 − x2∥

+
Lf,yβg,xy

µ2
g

∥∥∥∇2
yyĜZ(x1, ŷ

∗
Z(x1))−∇2

yyĜZ(x2, ŷ
∗
Z(x2))

∥∥∥+ Lf,y
µg

(Cg,xy∥ŷ∗Z(x1)− ŷ∗Z(x2)∥+Mg,xy∥x1 − x2∥)

≤

(
βf,xx +

2βf,xyβg,xy
µg

+
β2
g,xyβf,yy

µ2
g

)
∥x1 − x2∥

+
Lf,yβg,xy

µ2
g

[Mg,yy∥x1 − x2∥+ Cg,yy∥ŷ∗Z(x1)− ŷ∗Z(x2)∥] +
Lf,y
µg

(
Cg,xy

βg,xy
µg

∥x1 − x2∥+Mg,xy∥x1 − x2∥
)
,

where we used the operator norm inequality

∥M−1 −N−1∥ ≤ ∥M−1∥∥M −N∥∥N−1∥,

which holds for any invertible matrices M and N of compatible shape. Using the Lipschitz continuity
of ŷ∗Z one last time completes the proof.

Theorem C.3 (Precise version of Theorem 4.2). Grant Assumptions 2.1 and 2.2. Set σ =
32K

√
T log(1/δ)/nε and

α = min

 K

nC
,
1

C

[
K

√(
Φ̂Z(x0)− Φ̂∗

Z

)
βΦ

√
dx log(1/δ)

εn

]1/2
for C defined in Equation (11) in Algorithm 1, where

K = 2

[
βf,xyLg,y

µg
+ 2L+

βg,xyβf,yyLg,y
µ2
g

+
Lf,yCg,xyLg,y

µ2
g

+
Lf,yβg,xyLg,yCg,yy

µ3
g

+
Lf,yβg,yyβg,xy

µ2
g

]
.

Then, Algorithm 1 is (ε, δ)-DP. Further, choosing η = 1/2βΦ and T =⌈
nε√

dx log(1/δ)

√
βΦ(Φ̂Z(x0)−Φ̂∗

Z)

K

⌉
for βΦ defined in Equation (21), the output of Algorithm 1

satisfies

E∥∇Φ̂Z(x̂T )∥ ≲

[
K

√(
Φ̂Z(x0)− Φ̂∗

Z

)
βΦ

√
dx log(1/δ)

εn

]1/2
.

Proof. Privacy: By Lemma 4.1, the ℓ2-sensitivity of ∇F̂Z(xt, yt+1) is upper bounded by 4K/n.
Thus, by the privacy guarantee of the gaussian mechanism and the advanced composition theorem,
our prescribed choice of σ ensures that all T iterations of Algorithm 1 satisfy (ε, δ)-DP. Hence x̂T is
(ε, δ)-DP by post-processing.

Utility: We will need the following descent lemma for gradient descent with biased, noisy gradient
oracle:

Lemma C.4. [1, Lemma 2] Let H be β-smooth, xt+1 = xt − η∇̃H(xt), where ∇̃H(xt) =
∇H(xt) + bt + Nt is a biased, noisy gradient such that E[Nt|xt] = 0, ∥E[bt|xt]∥ ≤ B, and
E
[
∥Nt∥2|xt

]
≤ Σ2. Then for any stepsize η ≤ 1

2β , we have

E[H(xt+1)−H(xt)|xt] ≤ −η
2
∥∇H(xt)∥2 +

η

2
B2 +

η2β

2
Σ2. (22)

We will apply Lemma C.4 to H = Φ̂Z which is βΦ-smooth by Lemma C.2, ∇̃H(xt) =

∇F̂Z(xt, yt+1) + ut with bias bt = ∇F̂Z(xt, yt+1)−∇Φ̂Z(xt) and noise Nt = ut:

E[Φ̂Z(xt+1)− Φ̂Z(xt)|xt] ≤ −η
2
∥∇Φ̂Z(xt)∥2 +

η

2
B2 +

η2βΦ
2

Σ2

=⇒ E∥∇Φ̂Z(xt)∥2 ≤ 2

η
E[Φ̂Z(xt)− Φ̂Z(xt+1)|xt] +B2 + ηβΦΣ

2
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=⇒ E∥∇Φ̂Z(x̂T )∥2 =
1

T

T∑
t=1

E∥∇Φ̂Z(xt)∥2 ≤
2
(
Φ̂Z(x0)− Φ̂∗

Z

)
ηT

+B2 + ηβΦΣ
2 (23)

for any η ≤ 1
2βΦ

.

Now, [21, Lemma 2.2a] tells us that

∥∇F̂Z(xt, yt+1)−∇Φ̂Z(xt)∥ ≤ C∥ŷ∗Z(xt)− yt+1∥,

for C defined in Equation (11). Therefore,

B = ∥E[bt|xt]∥ ≤ Cα ≤

[
K

√(
Φ̂Z(x0)− Φ̂∗

Z

)
βΦ

√
dx log(1/δ)

εn

]1/2
by our choice of α. Further,

Σ2 = E
[
∥ut∥2|xt

]
= dxσ

2 =
1024dxK

2T log(1/δ)

n2ε2
.

Plugging these values into (23) and choosing η = 1/(2βΦ), we obtain

E∥∇Φ̂Z(x̂T )∥2 ≤
2
(
Φ̂Z(x0)− Φ̂∗

Z

)
ηT

+B2 + ηβΦΣ
2

≤
4βΦ

(
Φ̂Z(x0)− Φ̂∗

Z

)
T

+K

√(
Φ̂Z(x0)− Φ̂∗

Z

)
βΦ

√
dx log(1/δ)

εn
+

1024dxK
2T log(1/δ)

n2ε2
.

Plugging in the prescribed T from the theorem statement and then using Jensen’s inequality completes
the proof.

C.2 “Warm starting” Algorithm 1 with the exponential mechanism

Algorithm 2: Warm-Start Meta-Algorithm for Bilevel ERM
1 Input: Data Z ∈ Zn, loss functions f and g, privacy parameters (ε, δ), warm-start DP-ERM

algorithm A, DP-ERM stationary point finder B;
2 Run (ε/2, δ/2)-DP A on Φ̂Z(·) to obtain x0;
3 Run (ε/2, δ/2)-DP B on Φ̂Z(·) with initialization x0 to obtain xpriv;
4 Return: xpriv.

We instantiate this framework by choosing A as the exponential mechanism (4) and B as Algorithm 1
to obtain the following result:
Theorem C.5 (Re-statement of Theorem 4.3). Grant Assumptions 2.1 and 2.2. Assume that there is
a compact set X ⊂ Rdx of diameter Dx containing an approximate global minimizer x̂ such that
Φ̂Z(x̂)− Φ̂∗

Z ≤ Ψ d
εn , where

Ψ := Lf,xDx + Lf,yDy +
Lf,yLg,y
µg

.

Then, there exists an (ε, δ)-DP instantiation of Algorithm 2 with output satisfying

E∥∇Φ̂Z(xpriv)∥ ≤ Õ

[KΨ1/2β
1/2
Φ

]1/2(dx√log(1/δ)

(nε)3/2

)1/2
 .

Proof. Privacy: This is immediate from basic composition, since A is ε/2-DP and B is (ε/2, δ/2)-
DP.
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Utility: First, note that the output x0 of the exponential mechanism in (4) satisfies

Φ̂Z(x0)− Φ̂∗
Z ≤ Õ

(
dx
εn

[
Lf,xDx + Lf,yDy +

Lf,yLg,y
µg

])
with probability ≥ 1− ζ for any ζ > 0 that is polynomial in all problem parameters, by [17, Theorem
3.11]. Let us say x0 is good if the above excess risk bound holds. Now, by Theorem 4.2, the output
of Algorithm 1 satisfies

E∥∇Φ̂Z(x̂T )∥ ≲

[
K

√(
Φ̂Z(x0)− Φ̂∗

Z

)
βΦ

√
dx log(1/δ)

εn

]1/2
.

Therefore,

E
[
∥∇Φ̂Z(x̂T )∥|x0 is good

]
≤ Õ

[K√(dx
εn

[
Lf,xDx + Lf,yDy +

Lf,yLg,y
µg

])
βΦ

√
dx log(1/δ)

εn

]1/2
= Õ

[K√βΦΨ(dx
εn

)√
dx log(1/δ)

εn

]1/2 .

Now, since Φ̂Z(x)− Φ̂∗
Z ≤ LDx for any x ∈ X , the law of total expectation implies

E
[
∥∇Φ̂Z(x̂T )∥

]
≤ E

[
∥∇Φ̂Z(x̂T )∥|x0 is good

]
+ LDxζ

≤ Õ

[K√βΦΨ(dx
εn

)√
dx log(1/δ)

εn

]1/2+ LDxζ

≤ Õ

[K√βΦΨ(dx
εn

)√
dx log(1/δ)

εn

]1/2 ,

where the final inequality follows by choosing ζ sufficiently small.

C.3 Deducing the upper bound in (3).

We prove in Lemma B.6 that supZ∼Z′,x ∥∇Φ̂Z(x) −∇Φ̂Z′(x)∥ ≤ 2G
n , where G is defined in (5).

Thus, by similar arguments used to prove the results in Section 3.1, one can show that sampling x̂
proportional to the following density is ε-DP:

∝ exp
(
− ε

2G
∥∇Φ̂Z(x̂)∥

)
.

Moreover, the output of this sampler satisfies

E∥∇Φ̂Z(x̂)∥ ≤ O

(
G
dx
εn

)
. (24)

Further, outputting arbitrary x0 ∈ X trivially achieves ∥∇Φ̂Z(x0)∥ ≤ Lf,x with 0-DP. By combining
these upper bounds with our results in Theorems 4.2 and 4.3, we deduce the novel state-of-the-art
upper bound in (3) for DP nonconvex bilevel ERM (with constant problem parameters).

D Limitations

While our work provides near-optimal rates and efficient algorithms for differentially private bilevel
optimization (DP BLO), several limitations remain that should be considered when interpreting our
theoretical and practical contributions.
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Assumptions on Problem Structure. Our results rely on several assumptions that may not hold in
all practical settings. For convex DP BLO, we assume that the lower-level problem is strongly convex
and that the loss functions are Lipschitz continuous with bounded gradients (and, for some of our
algorithms, bounded and/or Lipschitz Hessians). These structural assumptions are standard in bilevel
optimization theory but may not accurately capture real-world scenarios where lower-level problems
are ill-conditioned, non-convex, or lack smoothness. Violations of these assumptions could degrade
both utility and privacy guarantees, as our sensitivity and excess risk bounds depend critically on
these properties.

Scalability and Computational Efficiency. Although most of our algorithms are polynomial-
time, they may still incur significant computational costs, especially in high-dimensional settings.
Our efficient implementations rely on sampling techniques (e.g., grid-walk) whose runtime scales
polynomially with the dimension. This may limit practicality on large-scale or high-dimensional
problems. Additionally, the warm-start algorithm for nonconvex DP BLO is inefficient. We leave it
for future work to develop algorithms with improved computational complexity guarantees.

Lack of Empirical Validation. This paper focuses on theoretical analysis and does not include
experimental results. While our theoretical rates are nearly optimal, empirical performance can depend
on implementation details, constant factors, and practical optimization challenges not captured in
our analysis. We defer empirical validation, including runtime measurements and real-data utility
evaluation, to future work.

E Broader Impacts

This work advances algorithms for protecting the privacy of individuals whose data is used in
bilevel learning applications, such as meta-learning and hyperparameter tuning. Privacy protection is
widely regarded as a societal good and is enshrined as a fundamental right in many legal systems.
By improving our theoretical understanding of privacy-preserving bilevel optimization, this work
contributes to the development of machine learning methods that respect individual privacy.

However, there are trade-offs inherent in the use of differentially private (DP) methods. Privacy guar-
antees typically come at the cost of reduced model utility, which may lead to less accurate predictions
or suboptimal decisions. For example, if a differentially private bilevel model is deployed in a sensi-
tive application—such as medical treatment planning or environmental risk assessment—reduced
accuracy could lead to unintended negative outcomes. While these risks are not unique to bilevel
learning, they highlight the importance of transparency when communicating the limitations of DP
models to stakeholders and decision-makers.

We also note that the performance of bilevel optimization algorithms depends on problem-specific
factors such as the conditioning of the lower-level problem, the smoothness of the loss functions, and
the dimensionality of the parameter spaces. Practitioners should carefully evaluate these factors when
applying our methods in practice.

Finally, while this work focuses on theoretical developments and does not include empirical evaluation
or deployment, we believe that the dissemination of privacy-preserving algorithms—alongside clear
communication of their trade-offs—ultimately serves the public interest by empowering researchers
and practitioners to build more responsible and privacy-aware machine learning systems.
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