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Abstract

The ability to perform repeated Byzantine agreement lies at the heart of important applications such as
blockchain price oracles or replicated state machines. Any such protocol requires the following properties:
(1) Byzantine fault-tolerance, because not all participants can be assumed to be honest, (2) recurrent tran-
sient fault-tolerance, because even honest participants may be subject to transient “glitches”, (3) accuracy,
because the results of quantitative queries (such as price quotes) must lie within the interval of honest par-
ticipants’ inputs, and (4) self-stabilization, because it is infeasible to reboot a distributed system following
a fault.

This paper presents the first protocol for repeated Byzantine agreement that satisfies the properties
listed above. Specifically, starting in an arbitrary system configuration, our protocol establishes consistency.
It preserves consistency in the face of up to ⌈n/3⌉−1 Byzantine participants and constant recurring (“noise”)
transient faults, of up to ⌈n/6⌉−1 additional malicious transient faults, or even more than ⌈n/6⌉−1 (uniformly
distributed) random transient faults, in each repeated Byzantine agreement.

1 Introduction

In finance, a price oracle (or just oracle) is a service that connects users (often smart contracts on blockchains)
with timely real-world data. Examples might include the spot price of Bitcoin, the current dollar/euro exchange
rate, or nightly temperatures in Florida citrus groves. Today, oracle services are a growing business sector, led
by companies such as Chainlink [7], Pyth Network [2], and others [30].

Much hinges on price oracle accuracy. Oracle price data drives automated trading algorithms, and unex-
pected fluctuations may trigger ruinous margin calls or liquidations. To avoid costly errors or fraud, commercial
oracle services typically employ a variety of ad-hoc techniques, typically aggregating and smoothing data from
multiple sources [30].

This paper introduces a class of Byzantine agreement algorithms well-suited to provide a systematic, rigorous
foundation for decentralized price oracles immune to tampering from a small coalition of participants. A
decentralized price oracle consists of a set of n processes, each connected to a distinct data source, such as a
stock market feed or a sensor. A user query causes the processes to reach consensus on an aggregate price to
be delivered to that user. Here is a list of (informally stated) properties a consensus protocol for a price oracle
should satisfy.

• Byzantine Fault-Tolerance: Because the stakes are high, one cannot assume all participants are honest.
Our protocol tolerates ⌈n/3⌉ − 1 Byzantine (permanently dishonest) processes.

• Recurrent Transient Fault-Tolerance: Even honest participants may be subject to recurring transient
errors, where an otherwise honest participant periodically undergoes an incorrect state change, but then
resumes honest behavior. Our protocol tolerates ⌈n/6⌉ − 1 recurring intermittent transient errors.

• Price Accuracy: As conditions change, honest participants may receive different prices from their
sources, while dishonest participants may claim arbitrary prices. Even in the face of differing inputs and
disruptive participants, it is not acceptable to deliver a null � price to a user. Instead, our protocol guar-
antees that the price delivered to the user lies within the range of prices proposed by honest participants.
(Under some circumstances, the protocol can be adapted to return specific values, such as the internal
mode or median.)
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§Sorbonne Université, LIP6, Paris, France. Email: maria.potop-butucaru@lip6.fr
¶Chalmers University of Technology, Sweden. Email: elad.schiller@chalmers.se

1

https://arxiv.org/abs/2506.12900v1


• Self-Stabilization: When something goes wrong, it is not feasible to restart a decentralized service. An
oracle state is legitimate if it could have been produced by a failure-free execution. Our protocol is self-
stabilizing : starting from any (possibly illegitimate) state, the system will eventually enter a legitimate
state, and remain in legitimate states until the next transient failure, see [12].

These properties are useful for applications beyond price oracles. For example, a replicated state machine is
a fundamental task in distributed computing in which multiple processes coordinate to act as a single process
(state machine). Devising replicated state machine protocols that work in the face of imperfect communication
and Byzantine participants is a classic problem of distributed computing [24, 29].
Related work. Prior work on Byzantine agreement has addressed tolerating Byzantine participants and
faults, e.g., [17, 8]. By contrast, our work here investigates the effects of repeated transient faults in the scope
of repeated consensus to realize a replicated state machine. Our protocol has more flexibility in choosing decision
values than protocols restricted to approximate agreement [11], median [35], or interval agreement [28].

Stolz and Wattenhofer [35] propose a Byzantine agreement protocol that satisfies median validity, meaning
that the non-faulty processes decide on a value that is at most t places away from the median value of the
non-faulty nodes, where t is the upper limit of the number of Byzantine processes. Melnyk and Wattenhofer [28]
propose a Byzantine agreement protocol that satisfies interval validity, which requires the non-faulty processes
to decide values close to the kth smallest initial value of the non-faulty processes. While both protocols
take the median of a (possibly not identical) vector of the inputs structured by each process, here we ensure
that each non-Byzantine process structures an identical vector of the inputs. While these two works aim to
approximate almost equal (but possibly different) values decided by non-Byzantine participants, our approach
obtains consistency on an entirely agreed-upon vector. All non-Byzantine participants agree upon each vector
entry before taking the median. In order to obtain such an identical vector, another Byzantine agreement
algorithm, that may return �, is employed; we chose a classical one presented in [36].

Binum et. al. [6] presented a self-stabilizing Byzantine replicated machine; however, they do not address
the tolerance of recurring transient faults nor ensure strong validity, namely, the usage of the preceding state
replica under one-third Byzantine and one-sixth recurring transient faults. Several approaches were suggested to
seamlessly cope with transient faults, including superstabilization for tolerating the dynamicity of the commu-
nication graph [15], fault containment, and local stabilization for coping with a close-by corruption of the state
of the participants, [22, 1]. Here, we introduce the possibility of tolerating Byzantine and recurrent (arbitrary
and randomized) transient faults while ensuring a replicated state machine with strong validity. We ensure that
the replicated state agreed upon by the non-Byzantine participants is used when computing the next replicated
state, despite recurring transient faults that corrupt the replicas maintained by a bounded number of them.

Several prior works address the combination of Byzantine fault tolerance and self-stabilization in a replicated
state machine protocol. Dolev et al. [13] propose a self-stabilizing Byzantine-tolerant replicated state machine
architecture, relying on failure detectors to manage faulty behavior. While their design also targets recovery
and Byzantine resilience, it assumes transient faults are rare and isolated. In contrast, our solution explicitly
tolerates recurring transient faults that may continuously affect system execution. Georgiou et al. [20] propose a
loosely self-stabilizing binary Byzantine consensus protocol for asynchronous message-passing systems without
relying on digital signatures. Their work focuses on binary input domains, whereas our approach targets
multivalued consensus with stronger interval validity guarantees under recurring transient faults. Browenstein
et al. [8] presented a self-stabilizing Byzantine replicated state machine that preserves the global state privacy,
based on secure multi-party computation.

In the scope of Blockchain, Dolev et al. [16] present techniques for using wallet information to reconstruct
corrupted (or even erased) Blockchain records. Georgiou et al. [21] present a self-stabilizing, Byzantine-tolerant
framework for recycling single-shot consensus objects in long-lived computations, allowing the reuse of object
identifiers and other finite resources. Recently, Duvignau et al. [18, 19] present self-stabilizing versions of
reliable broadcast and multivalued consensus protocols designed for Byzantine environments. Like our work,
their approach addresses fault tolerance from arbitrary initial states and supports recovery in the presence of
transient faults. However, it does not account for the recurring nature of such faults, which is a central focus
of our system settings.

While previous works focus on resource reuse and managing global variables under adversarial conditions,
our work targets agreement and state machine replication with recurring transient fault containment and strong
validity on the replicated state guarantees.
Paper roadmap. System settings appear in the next section, Section 2, the requirements of the Byzantine
agreement and the replicated state machine appear in Section 3. Madian-based multi-valued Byzantine agree-
ment is presented in Section 4, then our replicated state machine appears in Section 5. Lastly, conclusions
appear in Section 6. Some details appear in the Appendix, and some are omitted from this extended abstract.
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Figure 1: Layered architecture showing interactions between the system components.

2 System Settings

The Byzantine Agreement problem was first defined in [31]. The agreement task involves a set of processes that
attempt to agree on a value by executing a common protocol during which they communicate. In Byzantine
agreement, some processes act maliciously, sending the worst possible sequence of (inconsistent) messages. The
Byzantine participants can be two-faced, sending or omitting conflicting messages to different participants or
fainting crashes.

We assume a fully synchronous system model, dividing time into discrete, globally synchronized rounds. A
global pulse, implemented via an external timing mechanism, defines the start of each round. All non-faulty
processes send their messages simultaneously at the beginning of the round, and all messages are delivered
before the next round begins.

The processes p1, . . . , pn are a set of processes that execute the same algorithm. Each process can send
messages to any other process. In each round, a process may send different messages to different recipients.
Processes proceed according to global rounds. The communication graph is a clique: each process has a unique
identifier and can communicate directly with all other processes. The sender’s identity is known upon receipt,
either encoded in the message or inferred from the communication channel.

The system state (also called a configuration) at any time consists of the vector of the local states of all
processes. Due to synchronous delivery, message buffers are assumed empty at round boundaries. We define a
system execution as a sequence of global configurations resulting from atomic computation steps executed in
rounds. Each round triggered by a global pulse consists of four phases: (i) an input phase, in which every process
receives an external input value simultaneously; (ii) a send phase, where each process broadcasts messages; (iii)
a receive phase, where all messages are delivered; and (iv) a computation phase, where each process updates its
local state based on received messages and input.

We consider Byzantine faults [31], where faulty processes may arbitrarily deviate from the algorithm and
act maliciously. To enable system recovery and continuous functionality of the system [31, 5], the number of
Byzantine processes is bounded throughout execution by t < ⌊n/3⌋.

We also account for transient faults, as introduced in Dijkstra’s seminal work on self-stabilization [10]. These
faults occur only before the start of the execution, possibly due to temporary violations of fault thresholds, and
may arbitrarily corrupt the initial system configuration. From that point on, the fault thresholds, e.g., number
of Byzantine processes, are assumed to remain within tolerated bounds, and no transient fault can arbitrarily
change the system state.

In contrast, we define recurring transient faults (also called online transient faults) as arbitrary local state
corruptions that may occur throughout execution. These affect at most one process per corruption event and
are assumed to occur with bounded intensity. Specifically, the number of such corruptions in any given round
is strictly fewer than r < ⌈n/6⌉ − 1.

The bound on r ensures that the median used in our agreement algorithms remains within the range of
correct values. Since up to ⌊n/3⌋ processes may be Byzantine and some correct values may be lost or unavailable,
allowing more than ⌊n/6⌋−1 recurring corruptions could cause the median to reflect faulty or adversarial values.
This threshold ensures that a sufficient number of uncorrupted, correct inputs influence the outcome.

Due to the presence of transient faults, the system may begin in an arbitrary configuration, meaning that
transient faults may corrupt each process’s state. Our algorithms are designed to be self-stabilizing, i.e., they
converge to correct behavior even in the presence of a bounded (e.g., one third of the processes) number of
Byzantine processes together with a bounded (e.g., one sixth of the processes) recurring state corruptions.

Legitimate States and Self-Stabilization. A system state is said to be legitimate if it satisfies all
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requirements specified by the problem definition (Section 3). An algorithm is self-stabilizing if, from any
arbitrary state, the system is guaranteed to reach a legitimate configuration in a finite number of rounds
and remains in legitimate configurations as long as the number of faults per round remains within tolerated
thresholds. Our algorithms stabilize even when starting from an arbitrarily corrupted state due to transient
faults, and continue to function correctly under a bounded number of Byzantine processes and recurring state
corruptions.

We define the stabilization time as the worst-case number of synchronous rounds required for the system
to reach a legitimate configuration from an arbitrary state, assuming up to t Byzantine faults and up to r
recurring state corruptions per round.

We summarize the system description and main terms used in the sequel.

Processes p1, . . . , pn are a set of processes that execute the same protocol. Each process can send a message
to any other process. Processes execute the protocol according to sequential global pulses. Messages are
sent when a pulse occurs and are received before the next pulse appears. The communication graph is
a clique. Each message is identified by the communication link through which it arrives. Therefore, the
identity of the process that sent a message is known to the receiver.

Pulse number A global pulse is associated with a global counter modulo a given integer b. The processes are
exposed to the global pulse and the global pulse number 1. We denote a global pulse that triggers the
transition of the replicated state machine as Pulse, each such Pulse is invoked when the global counter
of pulses is zero. Then we have intermediate pulses, for which the pulse counter value is 1,2, . . . , b − 1,
denoted IPulse to finalize the needed computation for the next replicated state. In the sequel, we may
omit mentioning the IP lus that controls the advance in the intermediate round stages whenever there is
no possible confusion.

Faulty (Byzantine) Process A faulty process is a process that deviates from the protocol. This includes
processes that crash during execution or have unlimited computation power to send the most malicious
sequence of messages to prevent the other processes from reaching an agreement. There are at most f
faulty processes where f < ⌈n/3⌉ − 1.

Transient Faults A (spontaneous) change of a state of a process to an arbitrary state in the domain of its
states. There are at most r transient faults where r < ⌈n/6⌉ − 1 in situations with no prior knowledge of
the distribution of transient faults.

3 Problem Statement and Solution Framework

We study a class of agreement problems for systems that tolerate both recurring transient faults and Byzantine
faults, provided that the number of Byzantine processes is less than ⌊n/3⌋ and the number of recurring transient
faults is less than ⌈n/6⌉ − 1. We focus on three variants of Multi-valued Byzantine Agreement (MVBA). Our
main contribution is a protocol that achieves interval validity and consistency, building upon an algorithm that
guarantees only weak validity. For comparison, we also recall the definition of MVBA with strong validity, and
briefly mention the related concept of approximate agreement.

Figure 1 illustrates the layered architecture of our solution framework. At the bottom lies the synchronous
message-passing system (Section 2), which provides reliable, round-based communication among processes,
activated by global pulses. On top of this network layer, the MVBA layer (Definition 2, Algorithm 1) implements
agreement primitives that tolerate Byzantine faults and recurring transient faults. This layer combines a multi-
valued agreement structure with most-common and median-based selection mechanisms to ensure consistency
and interval validity. It interacts with the communication layer via the send and receive interfaces, and
with higher layers via synchronous input and output operations. At the top of the stack is the State Machine
Replication layer (Definition 4, Algorithm 2), which relies on the agreement abstraction to execute deterministic
transitions consistently across all correct replicas.

We clarify that, for the sake of a simple presentation, the studied problems are specified only by the
requirements critical to understanding our contribution. For a more comprehensive treatment of consensus
problems in distributed systems, we refer the reader to e.g, [32, 23, 27, 3]. It is also known that in synchronous
message-passing systems, any consensus algorithm that terminates within a bounded number of rounds can be
transformed into a self-stabilizing algorithm that recovers within the same bound after the occurrence of the
last transient fault. See, for example, Theorem 2 of Georgiou et al. [21]. Therefore, from this point onward,
our work focuses exclusively on protocols that tolerate both recurring transient faults and Byzantine faults.

1The global pulse and global pulse number can themselves be an output of semi-synchronous algorithms, e.g., [17, 26].
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3.1 Multi-valued Byzantine Agreement (MVBA)

Our solution framework uses the problem specified in Definition 2 to construct a replicated state machine
(Definition 4) that tolerates both Byzantine faults and recurring transient faults.

Definition 1 (Reference Problem: MVBA with Strong Validity). A set of n processes executes a Multi-valued
Byzantine Agreement algorithm. For all 1 ≤ i ≤ n, each process pi starts with an input value vi ∈ V from some
domain of values V and returns a decision value di ∈ V within a known constant number of synchronous rounds.
The algorithm is correct if it satisfies the following properties:

• Consistency: All non-faulty processes decide on the same value.

• Strong Validity: All non-faulty processes decide on a value proposed by a non-faulty process.

A variation on Definition 1 substitutes the strong validity requirement with discrete interval validity (Def-
inition 2), which captures the intuition that the decided value must lie within the interval of values proposed
by non-faulty processes, even if a Byzantine process proposes it.

Definition 2 (Target Problem: MVBA with Discrete Interval Validity). A Multi-valued Byzantine Agreement
algorithm satisfies discrete interval validity if, in addition to satisfying consistency (Definition 1), all non-faulty
processes decide on the same value d ∈ V , and this integer value lies within the range of the inputs proposed by
non-faulty processes.

Formally, if T = {vi ∣ pi is non-faulty} is the multiset of inputs from non-faulty processes, then d ∈
{minT, . . . ,maxT}.

An MVBA algorithm with discrete interval validity accepts values that Byzantine processes may have
proposed, as long as they fall within the range of correct inputs and do not violate agreement. The value
chosen does not result from the (not necessarily integer) mean computation used to approximate the input
value of the non-faulty processes, see e.g., [11]. Unlike weak validity (defined next), discrete interval validity
does not introduce an artificial default value �.

In the sequel, we use interval validity instead of discrete interval validity whenever no confusion can arise.

3.2 Our Building Block: MVBA with Weak Validity

Our solution framework for MVBA with interval validity builds upon a Byzantine Agreement algorithm that
guarantees only weak validity, such as the one proposed by Turpin and Coan [36]. Note that weak validity
permits a decision on the default value �, which may not be acceptable for application-level correctness or
progress.

Definition 3 (Building Block: MVBA with Weak Validity). A Multi-valued Byzantine Agreement algorithm
satisfies weak validity if all non-faulty processes decide on the same value ( i.e., satisfy consistency from Defi-
nition 1), and the decided value is either:

• a value proposed by a non-faulty process, if all such processes proposed the same input; or

• a value from the decision domain V , which may include a default value � otherwise.

A related but distinct problem is approximate agreement [11], in which the decision values of non-faulty
processes must be within a small ϵ range of each other and lie within the bounds of the correct inputs.

3.3 Our Application: State Machine Replication

The state machine is a foundational model of computation with many variations. In general, a state machine
M has a set of states q1, q2, . . . and a transition function δ(q, in) that takes a state q and an input in and
returns the resulting state. A state machine is deterministic if δ always returns the same result for the same
input and state.

The State Machine Replication problem was introduced by Lamport in [25] and later investigated under
different settings. In [33], the authors specify the state machine replication problem in distributed systems
prone to failures. A distributed protocol implementing state machine replication should verify the following
two properties:

Agreement Every non-faulty copy of the state machine receives every command;

Order Commands are processed in the same order by every non-faulty copy of the state machine.
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A replicated state machine consists of multiple identical replicas of M that maintain synchronized states and
execute transitions based on agreed inputs. The following is a formal definition of a replicated state machine
based on the definitions in [14, 34].

Definition 4. State Machine: Let M be a deterministic state machine. Let S = {s1, s2, . . .} be its set of
states, Σ = {in1, in2, . . .} be its input alphabet, and δ ∶ S ×Σ→ S be the transition function.

Replicas: The processes p1, . . . , pn that maintain local copies of M and apply transitions using δ.

Program: A program is a sequence of atomic steps, each consisting of a local computation followed by a
communication step.

Configuration and Global Input: A configuration is defined by a function over the replica states ( e.g., the
most common state), and the global input is defined by aggregating local inputs ( e.g., the median of all
inputs).

Execution: A replicated execution is an alternating sequence R = c1, in1, c2, in2, . . . such that for all i > 0,
δ(ci, ini) = ci+1.

See e.g., [4] for the importance of fault-tolerant replicated state machines in the scope of Blockchain tech-
nologies.

4 Median-based Multi-valued Byzantine Agreement

We design a one-shot Multi-valued Byzantine Agreement algorithm that returns the most frequently occurring
value among the agreed-upon inputs, provided that value’s observed frequency surpasses the threshold required
to guarantee validity. Otherwise, the algorithm returns the median value. In cases where applications tolerate
a default value �, it is always trivially possible to return that value. However, we are interested in applications
where default values would not be satisfactory. Our algorithm works by first reaching agreement on a vector of
inputs using an agreement algorithm that satisfies a weaker validity condition. After this step, each non-faulty
process obtains an identical vector of values. The process then removes all default entries (�), sorts the resulting
list—with repetitions preserved—and selects the median. If the list contains an even number ℓ of non-default
elements, the algorithm returns the entry at position ℓ/2 in the sorted list. We introduce a tunable threshold
parameter α, which controls when a value is considered sufficiently frequent to be selected directly. In situations
where assumptions about the distribution of values of transient faults can be made, reducing the parameter α
allows for greater transient fault tolerance, up to a third of all processes in the best case. When no assumptions
can be made about the distribution of values of transient faults, setting α to a sixth of all processes yields the
greatest transient fault tolerance.

In the context of replicated state machine applications, we aim to prefer the most common value in the
decision vector, provided it occurs frequently enough to ensure strong validity. Specifically, if a value appears
in more than one-third of the entries plus an additional margin α, it is selected. Otherwise, the median value is
used. The parameter α accounts for the possible influence of recurring transient faults, allowing the algorithm
to distinguish between values that reflect genuine consensus and those that may result from adversarial skew.

4.1 Algorithm description

We now present Algorithm 1, which implements the median-based multi-valued Byzantine agreement. The
algorithm begins by allocating an array A to hold values received from other processes (line 13). Each process
then broadcasts its own input value to all others (lines 14-15) and records received values in A (lines 16-17).
Since messages include sender identities, each process can associate received values with sender indices, ensuring
that A[i] stores the value claimed by process pi.

Each process then invokes a weak-validity multi-valued Byzantine agreement algorithm on every entry in A,
running these instances in parallel (lines 18-19). The algorithm WeakMVBA is used here, which can be instantiated
with the algorithm from Turpin and Coan [36], listed in the Appendix for completeness. After this step, each
non-faulty process holds an array A in which each entry A[i] reflects the agreed-upon value for process pi’s
input. Since the same agreement algorithm is applied to each index, and all non-faulty processes use the same
inputs and follow the same logic, their resulting arrays are identical. The process then calls select value(A)
(line 20) to determine the final decision value, to be returned.

The function select value processes the agreed-upon vector A to determine the final output. It first
removes all occurrences of the default value � to produce a cleaned array A/� (line 2), then counts the frequency
of each remaining value using a dictionary C (lines 4–6). The most common value m is identified via an argmax
operation (line 7). If m appears in at least ⌊k/3⌋ + 1 + α entries (line 8), it is returned as the final decision.
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Otherwise, the array A/� is sorted (line 10), and the median element—specifically, the ⌊k/2⌋-th entry—is returned
(line 11). This rule ensures consistency across all non-faulty processes and protects against biased skewing from
faulty or corrupted inputs.

The parameter α serves as a tunable resilience margin that reflects assumptions about the distribution and
coordination of recurring transient faults. In adversarial scenarios, where faults may intentionally reinforce each
other to skew the output, a conservatively set α = ⌈n/6⌉ − 1 ensures correctness despite worst-case behaviour.
In more benign environments, such as when transient faults follow a uniform or independent distribution, it is
often safe to choose a smaller α, since the likelihood of multiple faults supporting the same incorrect value is
significantly reduced.

As noted earlier, we instantiate WeakMVBA to be the algorithm of Turpin and Coan [36], which returns a
default value � when agreement cannot be reached. However, the specific choice of agreement algorithm is not
essential—any one-shot MVBA algorithm satisfying weak validity (i.e., agreeing on a correct input when all
non-faulty processes begin with the same value, and otherwise deciding on a value from the decision domain
including �) is sufficient. This modularity enables reuse and flexibility in system design.

Our decision rule then selects the most frequently occurring agreed-upon value—excluding �—if it appears
at least ⌊n/3⌋ + 1 + α times. Otherwise, the rule returns the median value from the sorted array A/�. In case of
ties (e.g., even-length arrays), we break them deterministically by selecting the lower of the two middle values.

The returned value by the Algorithm 1 is always consistent across the processes and satisfies the weak
validity; proof provided next.

4.2 Correctness Proof

We begin by proving that Algorithm 1 has consistency and interval validity despite less than ⌊n/3⌋ Byzantine
faults. This is shown in Lemmas 1 and 2. Then we further expand this result by showing that Algorithm 1
remains correct despite ⌈n/6⌉ − 1 transient faults in addition to ⌊n/3⌋ Byzantine faults, as shown in Theorem 5.

Lemma 1. Algorithm 1 satisfies the consistency property of Definition 1 despite less than ⌊n/3⌋ Byzantine
faults.

Proof. Let K be the set of ⌊ 2n
3
⌋ + 1 indexes such that pj is non-faulty for all j ∈K and let Ai denote the local

array A of process pi. When pi reaches line 18, it holds that Ai[j] = vj for all j ∈K.
Therefore, for any i ∈K, due to the weak validity of WeakMVBA, it holds that in line 19, WeakMVBA(Ai[j]) returns
vj since all correct participants executed the protocol with the same input value, thus no action taken by the
faulty processes could change the result due to the f -fault tolerance of the protocol WeakMVBA.

Moreover, based on the consistency of WeakMVBA, when all non-faulty processes reach line 20, we have that
Aj = Ai for all j, i ∈K, that is, A is consistent, for entries ℓ /∈K too.

Every key inserted into the dictionary C is a value from A (line 6). This means that for any m we choose
(line 7), there exists an i such that A[i] =m as m is a value of C. Therefore, since A is identical in all correct
processes, returning m (line 9) returns the same output to all correct processes. ◻

Lemma 2. Algorithm 1 satisfies the interval validity property (Definition 2) despite less than ⌊n/3⌋ Byzantine
faults.

Proof. We prove interval validity by showing that any value returned by the algorithm is within the interval
of values of non-faulty processes. We do so by looking at the possible cases the Byzantine processes can create
and showing that none violate interval validity. Since any value is either returned in line 9 or 11, we address
each case separately. Recall the set K from the proof of Lemma 1. Let T = {vj ∣j ∈ K} be a set of values of
non-faulty processes and let I = {x∣minT ≤ x ≤maxT} be the interval of the values of non-faulty processes. By
Lemma 1, when all processes reach line 9, A is consistent across the non-faulty processes. Consider the possible
cases for the distribution of values in A:

1. All of the faulty processes sent values inside of I

2. All of the faulty processes sent values outside of I

3. Some of the faulty processes sent values outside of I

• In case 1, all values in A are within I; thus, any decision value satisfies the interval validity property.

• Notice that we return values only on lines 9 and 11 (which get returned again in line 20).

• In cases 2 & 3, consider situations where m is returned (line 9). This only happens if at least ⌊n
3
⌋ + 1

processes send value m due to the condition on line 8. There are at most f < ⌊n
3
⌋ + 1 faulty processes.

Therefore they can only set ⌊n
3
⌋ entries of A. Thus, the faulty processes cannot force m to be outside of

I, therefore m ∈ I.
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/* accepts a vector of inputs and returns one item from the vector, never returns � */

1 function select value(A)
Data: 0 ≤ α < ⌈n/6⌉ − 1 a parameter reflecting recurring transient fault distribution
/* Create new array A/� as a copy of A with � values removed */

2 A/� ← remove bottom(A);
/* After removing bottom values, we get a new array length k ≤ n */

3 k ← ∣A/�∣;
/* Take C to be a dictionary where keys are from V and values are their frequency in A/� */

4 C ← an empty dictionary;
5 foreach i ∈ [1 . . . k] do
6 C[A/�[i]] ← C[A/�[i]] + 1;

/* Take m to be the most common value, that is, the key with the highest value in C */

7 m← argmaxv∈A
/�
C[v];

/* If the most common value appears at least ⌊k/3⌋ + 1 + α times, return it */

8 if C[m] ≥ ⌊k/3⌋ + 1 + α then
9 return m;

/* Else, return the median of the proposed values */

10 A′ ← sort(A/�);

11 return A′[⌊ k
2
⌋];

12 function median byzantine agreement(v ∈ V )
Data: P [1 . . . n] array of addresses of all the parties
/* Allocate an empty array to hold the initial values of all parties */

13 A[1 . . . n] ← �;
/* Broadcast my initial value to all parties (including self) */

14 foreach i ∈ [1 . . . n] do
15 send v to P [i];

/* Save the initial values received from other parties (including self) */

16 foreach value ui received from party pi do
17 A[i] ← ui;

/* Execute the Multi-Valued Byzantine Agreement protocol with Weak Validity in parallel to

reach agreement on each value in A */

18 foreach i ∈ [1 . . . n] do
19 A[i] ← WeakMVBA(A[i]);

20 x← select value(A);
21 return x;

Algorithm 1: Median-based Byzantine Agreement protocol
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• Notice that in line 10, A′ is created by sorting A/�, which in turn is a copy of A.

• In cases 2 & 3 again, consider now situations where A′[⌊n
2
⌋] (the median of A) is returned (line 11). At

most, ⌊n/3⌋ entries of A have a value outside of I. Therefore, there are at least ⌊ 2n
3
⌋ + 1 entries of A with

a value inside of I. The same holds for A′, as a copy of the values of A. This implies that values of A that
are outside of I are either in the top third or the bottom third, but never in the middle of A′. Therefore,
the median of A must be inside of I, that is, A′[⌊n

2
⌋] ∈ I.

◻

Theorem 3. Algorithm 1 implements the Multi-valued Byzantine Agreement specification (Definition 2) with
interval validity in systems with less than ⌊n/3⌋ Byzantine processes.

Proof. Follows from Lemmas 1 and 2. ◻

Lemma 4. Any Byzantine agreement protocol that satisfies weak validity remains consistent despite transient
faults.

Proof. Unlike a Byzantine process, a process that experiences a transient fault broadcasts the same value to
all the other processes. It can differ from the value the process computed in the previous pulse, or even be the
default value �. Therefore, the value’s impact on the decision computation is consistent across the non-faulty
processes. ◻

Theorem 5. Algorithm 1 implements the Multi-valued Byzantine Agreement specification (Definition 2) with
interval validity in systems with less than ⌊n/3⌋ Byzantine processes and less than α < ⌈n/6⌉ − 1 malicious
transient faults.

Proof. To prove consistency and interval validity still hold despite additional malicious transient faults, we
consider the case in which a system of n processes executing Algorithm 1 experiences α malicious transient
faults in addition to having at most ⌊n/3⌋ Byzantine processes. First, we show that consistency holds, then we
show validity holds up to the set parameter α of malicious transient faults. To do so, we reexamine the cases
from the proof of Lemma 2, this time considering malicious transient faults.

Consistency follows from Lemma 1 and Lemma 4. By Lemma 4, every entry A[i] where i is the index of a
process with a transient fault is consistent across the non-faulty processes. Consider again the three possible
cases for the values of A from the proof of Lemma 2, this time, accounting for the additional transient faults.

• In case 1, as in Lemma 2, interval validity property is trivially satisfied

• In case 2 & 3, consider situations where m is returned (line 9). Let x /∈ I be the most common value
proposed by a process with a transient fault. Suppose then that x is the most common value in A, this
implies that after line 7, m = x. Byzantine processes do not control transient processes. Therefore, in
order to maximize the values in A to be outside of I, all Byzatine processes must propose the value x.
Thus, the frequency of x in A is at most α+⌊n/3⌋, due to the assumption of at most α transient faults. But
due to the condition on line 8, m will only be returned if the frequency of m is greater than ⌊n/3⌋ + 1+α.
Therefore, faulty processes (Byzantine + transient) will always fall short of the threshold. Therefore, if
m is returned, then m ∈ I.

• In case 2 & 3 again, consider now situations where A′[⌊n
2
⌋] is returned (line 11). There are at most

⌊n/2⌋ − 1 values outside of I in A since α < ⌈n/6⌉ − 1. Therefore there are at least ⌊n
2
⌋ + 1 values inside of

I in A. Notice that in line 10, A′ is created by sorting A/�, which in turn is a copy of A. The same holds
for A′. The values outside of I are placed in either the bottom half or top half of A′, but in either case,
there are at most ⌊n/2⌋ − 1 of them Thus A′[⌊n

2
⌋] ∈ I.

◻

Corollary 6. If the values yielded by recurrent transient faults are maliciously chosen, the bound on the
tolerated recurrent transient faults is α = ⌈n/6⌉ − 1. If the values of the recurrent transient faults are ( e.g.,
uniformly) distributed, then α reflects the expected number (with safety factor) of recurrent transient faults that
may happen to choose a malicious value.

We assume adversarial behavior if there is no prior knowledge regarding the distribution of transient faults.
Therefore, we can tolerate at most ⌈n/6⌉−1 transient faults since the non-faulty processes must have a majority
to guarantee interval validity. However, transient faults may be regarded as non-malicious; viewed as a change
of a value to hold a value chosen according to a uniform distribution, their number only slightly contributes to
the value chosen by the Byzantine processes.
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5 Byzantine and Transient Faults Resilient State Machine Replica-
tion

The following algorithm solves the state machine replication task in a system of n processes, where up to ⌊n/3⌋
may be Byzantine and up to ⌈n/6⌉ − 1 may experience recurring transient faults per synchronous round. The
algorithm achieves this by reaching agreement on both the current state and the next input using repeated
invocations of Algorithm 1, the multi-valued Byzantine agreement with interval validity. Execution proceeds
in iterations called Pulses, each consisting of several synchronous communication rounds. As mentioned in
Section 2, global pulses are provided by an external timing mechanism that defines the start of each round.
We clarify that within each Pulse, several communication rounds are executed, and the external mechanism is
responsible for coordinating the algorithm’s steps. Each Pulse is triggered externally, and the algorithm waits
for the next Pulse to trigger before executing the next iteration of the main loop.

The initialization steps preceding the Pulse loop in Algorithm 2 are included for completeness, but they are
not essential for ensuring self-stabilization. Rather, they help define the starting state when reasoning about
eventual safety, in line with the discussion in [9], which emphasizes the role of initial values in comparing the
guarantees of self-stabilizing versus non-self-stabilizing algorithms.

1 function state machine replication(input, s)
Global Automaton: M a state machine with states Q = {q0 . . . qm}, alphabet Σ, and transition

function δ ∶ Q ×Σ→ Q
/* Initialization for completeness, see [9] */

2 input value← input;
3 current state← s;

/* Main loop, each iteration is externally triggered by a Pulse, the execution

waits until the next Pulse */

4 Upon Pulse
/* Agree on next input */

5 input value← median byzantine agreement(input value);
/* Agree on current state */

6 current state← median byzantine agreement(current state);
/* Apply state transition from state current state with input input value on

machine M */

7 Apply state δ(current state, input value) to M ;

Algorithm 2: State Machine Replication protocol

The following lemma establishes the correctness of Algorithm 2. For simplicity, we assume that recurring
transient faults may only occur at the beginning of each Pulse. That is, when a new instance of the Byzantine
agreement protocol is invoked, each non-Byzantine process broadcasts either a correct value from its local
state or a corrupted value due to a transient fault. Any other types of state deviation or faulty behavior are
conservatively attributed to Byzantine processes.

Lemma 7. Consider the execution of Algorithm 2 between two successive pulses, Pulsei and Pulsei+1, in the
presence of less than ⌊n/3⌋ Byzantine processes and less than ⌈n/6⌉ − 1 processes with corrupted state (due to
recurrent transient fault), then all non-Byzantine processes reach the same state just before Pulsei+1.

Proof. Each participant pi starts the execution with some input inputi and state si, which is its replica of
the replicated state machine. In line 5, the participants execute Algorithm 1 with inputi as input; thus, by
Theorem 5, every non-faulty process has the same value in input value after line 5. In line 6, every non-faulty
process proposes a state; thus, by Theorem 5, after line 6, every non-faulty participant has the same value in
current state. Due to the determinism of δ, since both input value and current state are consistent across
the non-faulty parties, δ(current state, input value) is the same for all non-faulty parties. ◻

Lemma 8. Just before every pulse, Pulsei, i > 1, every non-faulty process executing Algorithm 2 is in a state
that is derived from a state of a non-faulty process just before Pulsei−1 and the commonly decided input inputi−1
despite less than ⌊n/3⌋ Byzantine faults and less than ⌈n/6⌉ − 1 transient faults.

Proof. By Lemma 7, after execution of Pulsei, every non-faulty process is in the same state, denoted as s. Due
to recurring transient faults, some of the non-faulty processes may change to a state different from s. Let r be
the number of non-faulty processes that experience a transient fault after the execution of Pulsei. In line 6, all
non-faulty processes propose state s while the r transient faulty and Byzantine processes propose some other
state. There are at most ⌈n/6⌉ − 1, therefore r < ⌈n/6⌉ − 1. At least ⌊n/2⌋ + 1 non-faulty processes, thus at least
⌊n/2⌋+1 processes propose the value s for the agreement step in line 6. Therefore, in line 7 of Algorithm 1, m is
chosen to be s in all non-faulty processes. Due to the majority condition in line 8, m is returned in line 9 (both
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lines of Algorithm 1). Thus, after line 6, it holds that current state = s for every non-faulty process. Theorem
5 shows that input value is consistent across the non-faulty process. Therefore, every non-faulty process will
apply the state δ(s, input value) at the end of the execution of Pulsei+1 (line 7). ◻

We conclude the series of proofs with the following theorem that declares a constant stabilization time, too.

Theorem 9. In the presence of ⌈n/3⌉ − 1 Byzantine participants and ⌈n/6⌉ − 1 recurrent transient faults,
Algorithm 2 satisfies the agreement and order requirements, satisfying strong validity on the state and interval
validity on the inputs, from the second replicated state and onwards.

Benign transient faults. We now discuss benign, recurring, transient faults, where the outcome of the
recurring transient fault is a value chosen randomly and uniformly across all possible values. The discussion
regards the Byzantine agreement on the state, as the Byzantine agreement on the inputs may not be subject
to recurring transient faults. Recall that the Byzantine agreement on the inputs yields interval validity using
only the median criteria.

Let x be the total number of recurring transient faults in a pulse Pulse. Let y be the most popular
value among the z possible values that can be obtained due to recurrent transient faults. Let w be the
number of processes with value y. Since the recurrent transient faults are randomly chosen, w is a function
of x and z. Since the ⌈n/3⌉ − 1 Byzantine participants can benefit by joining a value y to compete with the
⌊2n/3⌋+1−x non-Byzantine that do not experience recurrent transient faults in Pulse, the strong validity holds
when ⌈n/3⌉ − 1 +w < ⌊n/3⌋ + 1 + α < ⌊2n/3⌋ + 1 − x.

In other words, in a given Pulse, the ⌈n/3⌉ − 1 Byzantine processes may choose to join the most popular
value resulting from the randomly and uniformly chosen values of recurrent transient faults. When the number
of recurrent transient faults is slightly less than ⌈n/3⌉, (leading to a total of almost two-thirds of the processes
being faulty) and the possible number of possible values of the recurrent transient faults outcomes, z, is large
(say, exponentially larger than the number of processes) then the value chosen by the non-faulty processes has
a high probability of staying the most popular value. Schemes mentioned in the related work cannot support
strong validity under such severe settings. In particular, any scheme based on the mean may decide on a value
(at least slightly) different from the noncorrupted state of a non-Byzantine participant.

Thus, we obtain the following theorem:

Theorem 10. When the recurring transient faults are uniformly distributed, there are α values that preserve
strong validity on the state with high probability even when the number of recurring transient faults exceeds
⌈n/6⌉.

6 Conclusions and Discussions

We investigated self-stabilizing Byzantine-tolerant algorithms that cope with arbitrary initial configurations
(due to the occurrence of any number of transient faults) and Byzantine behaviours, converging to a desired
behaviour despite Byzantine and recurrent transient faults. A replicated state machine that withstands such
a combination of faults and maintains a strong validity property for the state component under such severe
conditions is presented. Interestingly, in order to verify the strong properties of self-stabilizing Byzantine-
tolerant state machine replication, our implementation is constructed on top of a self-stabilizing Byzantine-
tolerant agreement protocol that only needs to guarantee discrete interval validity (a weak form of validity).
Our replicated state machine transition benefits from strong validity for the state component and nondefault
interval validity for the outside inputs. Still, when the inputs of many non-Byzantine participants are identical,
a reasonable assumption in many scenarios, strong validity is also guaranteed for the outside inputs.

Practical and timely applications include Blockchain Oracle‘s services that report stock prices or currency
exchange rates. Current practice is ad hoc, mostly using a combination of meetings and voting. Our infras-
tructure enables new such services with provable systematic guarantees.

Further note that the assumption of a global clock pulse may be relaxed using versions of self-stabilizing
Byzantine clock synchronization algorithms, e.g., [11, 26] that withstand recurring transient faults. As the
protocol we employ [36] uses two rounds to complete the consensus, we may start the activity of [36] in every
odd clock value. For other synchronous consensus, a similar modulo approach can be used.
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A Appendix

A.1 Byzantine Agreement protocol of Turpin and Coan [36]

Below is the exact verbatim definition of the protocol in [36].

Each process sends its initial value to every other process in the first round. A process is said to be
perplexed if, in the first round, it receives at least as many (P − T )/2 initial values different from
its own. Processes that are not perplexed are said to be content. Each perplexed process sends a
message to every other process in the second round. The semantics of this message are just ”I am
perplexed”.

Each process maintains three local variables: two arrays indexed by the process number and a
boolean. These variables are assigned values during the first two rounds. For process j, and i ≠ j,
these variables are defined as follows:

v(j) The processe’s initial value.

v(i) The initial value received from process i

p(j) A boolean that is set true if and only if process j is perplexed, that is, v(j) ≠ v(i) for at least
as many as (P − T )/2 distinct values of i

p(i) A boolean that is set true if and only if process i sent a message claiming it is perplexed

alert A boolean that is set true if and only if at least as many as P − 2T elements of p are true

The binary computation is used to reach an agreement on alert. If the binary computation agrees
alert = true, there are correct processes with different initial values from V . In this case, all correct
processes use a predefined default value from V as the result of the extended computation. If
agreement is alert = false, then all correct content processes have the same initial value from V .
This value is the result of the extended computation. Perplexed processes deduce this result by using
the initial value that is common to a majority of the content processes. Each perplexed process
tabulates as votes the values v(j) for which p(j) is false. The majority vote is for the value favored
by the correct content processes.

Next, we present a pseudocode format for the algorithm of [36].

14



1 function turpin coan ext(j, v ∈ V )
Data: P [1 . . . n] array of addresses of all the parties
/* Allocate an empty array to hold the initial values of all parties */

2 A[1 . . . n] ← �;
/* Counter to check perplexity */

3 c← 0;
/* Counter to check alertness */

4 d← 0;
/* Broadcast my initial value to all parties */

5 foreach i ∈ [1 . . . n] do
6 send v to P [i];

/* Save the initial values received from other parties */

7 foreach value ui received from party pi do
8 A[i] ← ui;

/* Check if current party is perplexed */

9 foreach i ∈ [1 . . . n] do
10 if A[i] ≠ v ∧ i ≠ j then
11 c← c + 1;

/* If more than n−f
2

sent values are different from the current party, then

the current party is perplexed */

12 if c ≥ n−f
2

then
/* Broadcast the fact that the current party is perplexed to all other

parties */

13 foreach i ∈ [1 . . . n] do
14 send message ”pj is perplexed” to P [i];

/* Stop checking for perplexity */

15 break;

/* Save the perplexity flags received from other parties */

16 foreach message ”pi is perplexed” received from party pi do
17 d← d + 1;

/* If more than n − 2t parties are perplexed, then turn on the alert flag[36],

that is, return � */

18 if d > n − 2f then
19 return �;

20 alert ← binary agreement(alert);
/* If the system is not alert, return the majority value from the received values

*/

21 return the most common value in A;

Algorithm 3: Byzantine Agreement protocol of Turpin and Coan [36]
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