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Abstract
FullyHomomorphic Encryption (FHE) is a promising privacy-
preserving technology enabling secure computation over en-
crypted data. A major limitation of current FHE schemes is
their high runtime overhead. As a result, automatic optimiza-
tion of circuits describing FHE computation has garnered
significant attention in the logic synthesis community. Exist-
ing works primarily target themultiplicative depth (MD) and
multiplicative complexity (MC) of FHE circuits, correspond-
ing to the total number of multiplications and maximum
number of multiplications in a path from primary input to
output, respectively. In many FHE schemes, these metrics
are the primary contributors to the homomorphic evaluation
runtime of a circuit. However, oftentimes they are opposed:
reducing either depth or complexity may result in an in-
crease in the other. To our knowledge, existing works have
yet to optimize FHE circuits for overall runtime, only con-
sidering one metric at a time and thus making significant
tradeoffs. In this paper, we use e-graphs to augment existing
flows that individually optimize MC and MD, in a technique
called cut tracing. We show how cut tracing can effectively
combine two state-of-the-art MC and MD reduction flows
and balance their weaknesses to minimize runtime. Our pre-
liminary results demonstrate that cut tracing yields up to a
40% improvement in homomorphic evaluation runtime when
applied to these two flows.

Keywords: fully homomorphic encryption, logic synthesis,
multiplicative complexity, multiplicative depth, e-graphs

1 Introduction
An FHE circuit is a DAG that describes computations on
ciphertexts with the main operations of FHE, homomorphic
add and multiply. Figure 1 shows an example circuit com-
puting the expression (𝑥1 × 𝑥2) × (𝑥1 + 𝑥2), where 𝑥1 and
𝑥2 are ciphertexts. The plaintext message encoded in the
ciphertext is assumed to be an integer mod some 𝑝 , termed
the plaintext modulus. When 𝑝 = 2, homomorphic add and
multiply operations are equivalent to XOR and AND gates
on Booleans. In this case, an FHE circuit is equivalent to an
XOR-AND graph (XAG). We focus on the Boolean case in
this work, because many FHE applications, such as a CRC
check, rely on a bitwise integer encoding [5].
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Figure 1. The expression (𝑥1 × 𝑥2) × (𝑥1 + 𝑥2) as an FHE
circuit. 𝑥1 and 𝑥2 are ciphertexts and ×, + correspond to
homomorphic multiply and add, respectively.

The limiting factor in most FHE schemes is the runtime
overhead of multiplication, with addition being compara-
tively cheap. Therefore, when considering an FHE circuit,
the total number of multiplications, the MC, is a major per-
formance indicator. However, multiplications also have a
disparate impact on the noise budget of the ciphertext, in
comparison to addition. FHE schemes store a noise compo-
nent in ciphertexts as part of a ring learning with errors
(RLWE) construction, used to provide their security guaran-
tees. Every operation on the ciphertext increases its noise;
if the noise grows past a certain budget, decryption will
fail. While it is possible to reset the noise on a ciphertext
in a procedure known as bootstrapping, it is often prohibi-
tively time-consuming. Instead, the ciphertext size can be
increased, raising the relative noise budget, at the cost of
increasing the global overhead of all operations. From this,
the constraint of multiplicative depth (MD) emerges: as each
multiplication operation scales the noise quadratically, the
longest path of multiplications in sequence in the circuit
dictates the allocated noise budget, in turn increasing the
global runtime cost.
There is a rich body of work on automatic methods to

reduce the MD and MC of Boolean circuits [2, 7, 8, 10]. For
example, [8] uses program synthesis to learn a set of MD-
optimal circuit rewrite rules, applying them towards a set of
HE benchmarks to reduce their evaluation runtime. Likewise,
[10] presents a flow for MC reduction using a combination
of area-reducing logic synthesis techniques. However, to our
knowledge, the joint optimization of both MC and MD in the
context of FHE has not been addressed. Existing techniques
only consider one quantity at a time, often blowing up MC
in the process of reducing MD, or vice versa.
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These techniques are difficult to extend to a model of
overall HE cost that balances MC and MD for two reasons.
First, they all apply optimizations locally, relying on the
computation of some local gain. When both MD and MC are
incorporated, gain becomes a poor indicator of the global cost
that will be achieved. Second, they apply these optimizations
as destructive rewrites to the circuit, meaning they compose
poorly: alternating MD and MC optimization passes does
not work because the design gets stuck in a local minimum
prioritizing only one metric.
Equality saturation has been shown to be effective in

situations like these, where destructive, greedy rewriting
leads to a poor global cost. However, we observe empirically
that equality saturation struggles to scale with the demands
of FHE circuit optimization, often producing considerably
worse results than state-of-the-art greedy methods. In par-
ticular, we find that the equivalence information generated
in the e-graph by saturation, does not consistently lead to
better solutions during extraction. For MD (which admits
efficient optimal extraction), saturation fails to find solutions
identified by simpler greedy approaches. Furthermore, the e-
graph sizes generated by saturation make the use of optimal
MC extraction methods, like those based on ILP, impractical
or prohibitive to apply.

Instead, we introduce amethodwe call “cut tracing”, which
uses e-graphs to store the intermediate optimizations found
by existing MD and MC reduction algorithms. Cut tracing
is able to strike a balance between the tendency of these
algorithms to fall into local minima and the inefficiency of
equality saturation for problems of this scale. Compared
to equality saturation in particular, cut tracing produces e-
graphs small enough that we not only gain the ability to use
an ILP formulation for MC-optimal extraction, but to add
MD constraints to the formulation, allowing us to sweep the
design space of MD/MC tradeoffs.
In this paper, we motivate and discuss cut tracing with

e-graphs as a means to optimize Boolean FHE circuits. We
use a flow combining the state-of-the-art MD and MC al-
gorithms ESOP balancing and MC-oriented cut rewriting
and resubstitution [7, 10] as our baseline, showing how cut
tracing can augment this flow to minimize the overall HE
runtime of a suite of benchmarks.

2 Background
2.1 XOR-AND graphs
As mentioned, in the case of a Boolean plaintext space, an
FHE circuit is equivalent to a XOR-AND graph (XAG). We
define an XAG as a directed acyclic graph with nodes 𝑉 and
edges 𝐸. An edge 𝑒 = (𝑣, 𝑣𝑖 ) ∈ 𝐸 corresponds to a fanin
𝑣𝑖 for the gate 𝑣 . We define the set of primary inputs 𝑃𝐼 =
{𝑣 ∈ 𝑉 |∀𝑣𝑖 , (𝑣, 𝑣𝑖 ) ∉ 𝐸}, and primary outputs 𝑃𝑂 = {𝑣 ∈
𝑉 |∀𝑣𝑜 , (𝑣𝑜 , 𝑣) ∉ 𝐸}. The nodes in 𝑉 − 𝑃𝐼 correspond to the
2-input gates ∧ and ⊕.
Next, we define a function 𝑑 (𝑣) where 𝑑 (𝑣) = 1 if 𝑣 ∈

𝑉 is a multiplication, and 𝑑 (𝑣) = 0 otherwise. Then, the

multiplicative depth (MD) of a node is given recursively by
𝑀𝐷 (𝑣) = 𝑑 (𝑣) + max

𝑐 | (𝑣,𝑐 ) ∈𝐸
𝑀𝐷 (𝑐).

Wedefine the𝑀𝐷 of the entire circuit as𝑀𝐷 = max𝑣∈𝑃𝑂 𝑀𝐷 (𝑣).
Similarly, we define the multiplicative complexity (MC) of a
circuit as

𝑀𝐶 = |{𝑣 |𝑣 ∈ 𝑉 ,𝑑 (𝑣) = 1}|

2.2 Cuts
A cut 𝐶 of an XAG is a set of leaves 𝐿 and a root 𝑣 such that
a) every path from 𝑣 to a primary input 𝑃𝐼 passes through
at least one leaf, and b) each leaf is contained in at least one
such path. We say that a cut 𝐶 is 𝑘-feasible if it has at most
𝑘 leaves.

Cuts are commonly used in logic synthesis algorithms to
optimize small pieces of a large logic network at a time. That
is, given some cut 𝐶 of the original network, a 𝐶′ is found
that implements the same Boolean function over the set of
leaves 𝐿, with a lower cost. This method is employed by the
MD andMC reducing algorithms we use as a baseline [7][10],
namely cut rewriting, resubstitution, and balancing. Rewriting
and resubstitution are used to reduce MC, while balancing
(with ESOP forms) reduces MD. We omit the details of each
algorithm here, but provide a high-level overview describing
the aspects they share in common, which are most relevant
for this work.

2.3 Rewriting, resubstitution, balancing
At a high-level, each of these algorithms performs peephole
optimization through cuts on a logic network. The optimiza-
tion is guided through the compuation of a gain: the effect
of the optimized cut on the cost of the network, estimated
locally. Algorithm 1 shows the structure shared by each.
The behavior of the functions 𝑂𝑃𝑇 , 𝐶𝑈𝑇𝑆 , and 𝐺𝐴𝐼𝑁 are
dependent on the algorithm and the mode of optimization.
For MC-oriented cut rewriting, for example, the optimiza-
tion function 𝑂𝑃𝑇 looks up known the Boolean function
corresponding to a 6-feasible cut in a database of known MC-
optimal XAG implementations for 6-input functions [10]. In
ESOP balancing,𝑂𝑃𝑇 expresses the cut in an exclusive-sum-
of-products form, which can be used to reduce the number
of AND levels (𝑀𝐷) of the Boolean function [7]. For 𝐶𝑈𝑇𝑆 ,
balancing and rewriting both make use of a procedure called
cut enumeration, which recursively enumerates 𝑘-feasible
cuts given some fixed 𝑘 . Finally, in the case of balancing,
𝐺𝐴𝐼𝑁 is given by the difference in 𝑀𝐷 of the cuts, while
resubstitution and rewriting formulate gain as the the saving
in𝑀𝐶 when the cut is replaced in the graph.

3 Cut Tracing
In this section, we motivate and describe our approach to
optimizing FHE circuits with e-graphs, called cut tracing.

3.1 Motivation
A key weakness of the balancing, rewriting and resubsti-
tution algorithms for MD and MC discussed above is that,
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(c) Full adder circuit in (a) after 2
iterations of eqsat. MC reported by
ILP = 2

Figure 2. XAGs representing a full adder circuit, along with the e-graph after 2 iterations in egg using Boolean laws as
rewrite rules. Dashed edges represent complement i.e. a NOT gate, which is considered to be free in terms of FHE as it can be
implemented with XOR.

Algorithm 1 Structure of cut-based optimization
Require: Logic network 𝑁 = (𝑉 , 𝐸), optimization function

𝑂𝑃𝑇 (𝐶), cut identifying function 𝐶𝑈𝑇𝑆 (𝑛), gain func-
tion 𝐺𝐴𝐼𝑁 (𝐶)

1: for node 𝑣 ∈ 𝑉 do
2: (𝐺𝑏𝑒𝑠𝑡 ,𝐶𝑏𝑒𝑠𝑡 ) ← (0,None)
3: for cut 𝐶 ∈ 𝐶𝑈𝑇𝑆 (𝑣) do
4: 𝐶𝑜𝑝𝑡 ← 𝑂𝑃𝑇 (𝐶)
5: 𝐺𝑜𝑝𝑡 ← 𝐺𝐴𝐼𝑁 (𝐶𝑜𝑝𝑡 )
6: if 𝐺𝑜𝑝𝑡 > 𝐺𝑏𝑒𝑠𝑡 then
7: (𝐺𝑏𝑒𝑠𝑡 ,𝐶𝑏𝑒𝑠𝑡 ) ← (𝐺𝑜𝑝𝑡 ,𝐶𝑜𝑝𝑡 )
8: if 𝐺𝑏𝑒𝑠𝑡 > 0 then
9: replace 𝐶𝑏𝑒𝑠𝑡 at 𝑣

among the cuts evaluated, the replacement cut with the high-
est gain is always selected, and this choice is never revisited.
This is especially problematic when trying to combine the
two flows to achieve an MD/MC balanced circuit: the design
is likely to already be stuck in a local minimum.
Equality saturation offers a compelling solution to this

problem. Instead of optimizing directly on the cuts of the
network, destroying opportunities for potentially superior
designs, we use an e-graph combined with rewrite rules
to collect a rich dataset of equivalent representations. We
expect that this e-graph will eventually become saturated
with the optimal design, which we can then extract out.

However, we observe that for FHE circuits, in practice,
equality saturation fails to keep up with the efficiency of
ESOP balancing and MC optimization. We demonstrate with
a small example. Figure 2a depicts an XAG of a full adder
circuit, with a multiplicative complexity of 2. For small cir-
cuits such as these, the exact optimal MC is known, and
in this case the optimal version requires only 1 AND gate
(Figure 2b.) We attempt to use equality saturation to find this

design. Inspired by previous work on equality saturation for
a different logic synthesis problem[3], we use a similar set
of Boolean laws over AND, XOR, and NOT as rewrite rules,
such as distributivity, redundancy, consensus, etc.

Figure 2c shows that in just 2 iterations of saturation using
the egg equality saturation framework [11], the size of the
e-graph explodes to contain 37 e-classes and 63 e-nodes
(up from 10 nodes in the original graph), and still has not
found the optimal MC. By 5 iterations, with 99 e-classes and
394 e-nodes, ILP finally reports an MC of 1. By contrast,
cut rewriting can identify this design in a single step: since
this whole circuit could be considered a 6-feasible cut, it
appears in the database of MC-optimal 6-input functions.
Compounded over an entire circuit, the efficiency loss of
having to find optimizations through repeated restructuring
rewrites is significant.
One solution to these problems is to use coarser rewrite

rules which similarly replace “cuts” of the e-graph at a time.
While this can solve the inefficiency of the simple rules, we
saw it introduce a new problem: now the e-graph needs to
be able to match against the left-hand side. Since there are
many different equivalent ways to structure a given XAG
(AND/XOR are commutative and associative), the results de-
pend on equality saturation’s ability to expose the structure
of the left-hand-side in the e-graph. In addition, this does
not solve the issue that equality saturation performs an undi-
rected search of rewriting rules. To apply 1 rule which is used
in the final solution, it may apply a multitude of others which
add unviable e-classes and e-nodes. At the scale of hundreds
or thousands of nodes present in typical FHE circuits, this
becomes a problem for the runtime of exact-optimal DAG
cost extraction methods like ILP, forcing the use of heuristics
that compromise the ability to achieve optimal MC.

The bottleneck we observe in equality saturation is in the
need to restructure the e-graph to expose rewriting opportu-
nities. On the other hand, techniques like MC optimization
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Figure 3. A visualization of cut tracing. The top shows a cut
of a logic network being replaced, while the bottom shows
the operation being traced in the e-graph by adding the
new cut root to the same e-class. The purple region denotes
sharing between the two cuts.

and ESOP balancing completely circumvent this issue. They
do not use structural rewriting at all, but rather identify a
replacement cut implementing the same Boolean function,
for each cut considered in the network. But the relationship
between a cut and its replacement is an equivalence that can
also be recorded in an e-graph. In doing so, the explosion of
the e-graph size through restructuring is avoided, while com-
pactly representing a rich set of local design choices that can
be passed to extraction to minimize the global cost. Based
on this insight, we propose cut tracing: recording, or “trac-
ing” the equivalence collected by a cut-based optimization
algorithm.

3.2 Description
Cut tracing augments an existing algorithm that manipulates
a circuit by optimizing cuts. The behavior of cut tracing is
simple: an e-graph is first initialized to hold the input circuit.
The algorithm to which cut tracing is attached proceeds as
normal, with the caveat that whenever a replacement cut
is identified, it is also added to the e-graph, and the roots
of the original and replacement cuts are placed in the same
e-class. This process happens alongside the replacement in
the original network carried out by the algorithm normally.
Figure 3 visualizes the process. Note that the original and
replacement cut may share some structure, shown in the pur-
ple region, which the e-graph automatically handles through
hashconsing.

When the algorithm completes, like in equality saturation,
the optimal term can be extracted from the e-graph with the

traced cuts, according to the desired cost function. Crucially,
however, tracing also works alongside the composition of
multiple algorithms, which may each optimize different pa-
rameters (like MD and MC.) By passing the same e-graph
along each optimization step, information is never destroyed,
only added. We use this property in the context of FHE cir-
cuits to apply both MC optimization and ESOP balancing
in sequence, while retaining enough information to allow
decisions made by either that are detrimental to overall HE
cost to be “undone” through extraction.
As mentioned, cut tracing does not interfere with the

optimizations that the algorithm would normally produce.
Consequently, notwithstanding extraction limitations, its
results must be at least as good as the network produced by
the original sequence of optimizations, since this form must
exist in the e-graph. However, this heavily constrains its
ability to expose better designs. Cut tracing cannot explore
the effect of applying optimizations to a cut that was never
enumerated in the source network. We show that in spite of
these limitations, with just the information collected from
tracing the standard behavior of these algorithms, the e-
graph can frequently recover a more balanced design.

While we show its efficacy for FHE circuits, we note that
cut tracing could be applied to any logic synthesis algorithm
that is based on cuts, of which there are many, since optimiza-
tion strategies which scale to entire networks are limited.

4 Discussion & Evaluation
In this section, we present our evaluation of the effect of
attaching cut tracing to a flow for FHE circuit optimization.
We first describe the flow, then compare its effect on the ho-
momorphic evaluation runtime of a suite of FHE benchmarks
to the baseline.

4.1 Cut Tracing Flow
Figure 4 shows our proposed flow. Cut rewriting and resub-
stitution are first applied to the circuit in sequence, reducing
the MC until no further optimizations are possible (conver-
gence is reached.) Next, ESOP balancing is applied to reduce
the MD, also until convergence. The result serves as our
baseline. We note that we also intended to test cut tracing
with the opposite ordering, ESOP balancing first and MC
optimization next, since we observed the choice of the first
optimization to impact the results. However, due to issues
in our implementation, we do not yet have results for cut
tracing on this flow. As a result, we compare cut tracing to
the best result achieved by either ordering in the baseline.
In the flow, cut tracing records cuts identified by each

algorithm in an e-graph, which is kept between applica-
tions of algorithms. One choice that cut tracing does not
define is which cuts to record; recording every candidate cut
regardless of whether it improves the cost may generate con-
siderable noise of unviable candidates. Based on empirical
observations, for cut rewriting & resubstution, we choose to
record only the best cut (maximizing the local gain) identi-
fied for each node. For ESOP balancing, however, we record
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Starting-
point XAG Rewriting Resubstitution ESOP balancing Baseline

E-graph construction Extraction MD-MC
balanced XAG

trace trace trace

until convergence until convergence

Figure 4. MC + MD optimization flow incorporating cut tracing.

all cuts, even those that do not improve the depth locally,
as we found that cut tracing can take advantage of these
options. After the flow completes and the e-graph is filled
with traced candidates, it is extracted to yield the optimized
circuit.

Our extraction method targets HE cost, an approximation
of the runtime of FHE circuits calculated from MD and MC
as𝑀𝐷2 ×𝑀𝐶 , based on analyses of the cost of FHE runtime
in the literature [4]. Algorithm 2 describes the extraction
method we use to minimize HE cost. First, a greedy bottom-
up extraction method which accurately evaluates shared MC
cost of visited terms, but does not account for globally opti-
mal MC, is used. The algorithm also prioritizes MD over MC,
meaning it returns an MD optimal circuit but uses MC to
break ties.𝑚𝑑_𝑔𝑙𝑜𝑏𝑎𝑙_𝑔𝑟𝑒𝑒𝑑𝑦_𝑑𝑎𝑔 modifies the implemen-
tation available in [1] to incorporate𝑀𝐷 prioritization.

Next, we incorporate an extension to the standard e-graph
ILP extraction formulation with constraints to ensure the so-
lution does not not exceed a bound onMD (𝑑𝑒𝑝𝑡ℎ_𝑏𝑜𝑢𝑛𝑑𝑒𝑑_𝑖𝑙𝑝).
This provides anMC-optimal solution with respect to a given
MD bound. Using this, the algorithm sweeps a fixed range
of possible MD values, continuously relaxing the bound on
MD to locate the overall best solution in terms of HE cost.
We note that the addition of depth constraints adds non-
insignificant solver runtime to the ILP formulation, but the
small e-graph sizes produced by tracing means that this ex-
traction technique remains viable.

Algorithm 2 Extraction for HE cost
Require: E-graph 𝐸, number of ILP iterations 𝑘
Ensure: Extracted XAG 𝑁

1: (𝑁𝑏𝑒𝑠𝑡 , 𝑀𝐷𝑏𝑒𝑠𝑡 , 𝑀𝐶𝑏𝑒𝑠𝑡 ) ←𝑚𝑑_𝑔𝑙𝑜𝑏𝑎𝑙_𝑔𝑟𝑒𝑒𝑑𝑦_𝑑𝑎𝑔(𝐸)
2: 𝐶𝑏𝑒𝑠𝑡 ← 𝑀𝐷2

𝑏𝑒𝑠𝑡
×𝑀𝐶𝑏𝑒𝑠𝑡

3: for 𝑖 = 0→ 𝑘 do
4: (𝑁,𝑀𝐶) ← 𝑑𝑒𝑝𝑡ℎ_𝑏𝑜𝑢𝑛𝑑𝑒𝑑_𝑖𝑙𝑝 (𝐸,𝑀𝐷𝑏𝑒𝑠𝑡 + 𝑖)
5: 𝐶𝑖 ← (𝑀𝐷𝑏𝑒𝑠𝑡 + 𝑖)2 ×𝑀𝐶

6: if 𝐶𝑖 ≤ 𝐶𝑏𝑒𝑠𝑡 then
7: (𝑁𝑏𝑒𝑠𝑡 ,𝐶𝑏𝑒𝑠𝑡 ) ← (𝑁,𝐶𝑖 )
8: return 𝑁𝑏𝑒𝑠𝑡

4.2 Experimental Setup
All experiments were conducted on an M1 MacBook Pro
with 16GB RAM.

Implementation. We implement cut tracing atop the
logic synthesis library mockturtle, which provides the im-
plementation of cut rewriting, resubstitution, and ESOP bal-
ancing [9]. We added hooks to these algorithms to record the
equivalences needed to reconstruct an e-graph in a trace file.
We implement the replaying of the trace and the extraction
of Algorithm 2 using the egg library [11].
To evaluate the FHE circuit runtime, we use the HELib

FHE library [6]. Security parameters are chosen by HELib
according to a Boolean plaintext space, and the depth of the
input circuit, with the security level 𝜆 = 128. The circuit
evaluator traverses the input circuit in a bottom-up fashion,
serially executing each AND or XOR node in the network. Or-
thogonal FHE optimizations such as batching are not utilized,
and the evaluator conservatively relinearizes the ciphertexts
after each AND node.
Benchmarks. We source a set of Boolean FHE circuit

benchmarks from [8], which represent a mix of standard
combinational logic circuits in XAG form, as well as ap-
plications of interest to FHE such as sorting and medical
diagnosis.
Baseline. For resubstitution and rewriting, we use the

same parameters as [10]. For ESOP balancing, we reuse the
same cut enumeration parameters (6-input cuts with 12 cuts
per node.) ESOP balancing is only applied on the critical path
of the circuit.

E-Graph Setup. For HE cost extraction, we fix the number
of iterations 𝑘 to 2, observing that the best HE cost design is
usually found close to the optimal depth. We use a timeout
of 10 minutes for the ILP solver.

4.3 Results
Table 1 displays our results. We record the MD, MC, and
homomorphic evaluation runtime of each benchmark. We
see that cut tracing is frequently able to find improvements
over the flow it is applied to, usually in the form of MC
reduction. We highlight bsort in particular (in blue), where
cut tracing was not only able to recover a lower MD, but also
barely trade off MC in the process (4 AND gates). In fact,
the e-graph for bsort contained an MD of 42, but as the ILP
solver timed out with this as the depth constraint, HE cost
extraction was able to identify this solution with a relaxed
bound of 43.



EGRAPHS’25, June 2025, Seoul, South Korea de Castelnau, Yu, De Micheli

Baseline Baseline (MD first) Cut Tracing

Name MD MC Eval. [s] MD MC Eval. [s] MD MC Eval. [s] Speedup
(baseline)

Speedup
(best order)

bar 10 1107 100.5 10 1107 101.7 10 1115 106.5 0.94 0.94
bsort 45 390 723.2 43 498 649.0 43 394 535.6 1.35 1.21
cardio 8 93 6.6 8 82 6.0 8 80 5.9 1.10 1.01
cavlc 11 623 69.2 11 474 54.8 11 638 72.4 0.96 0.76
ctrl 4 89 2.5 5 50 1.5 4 82 2.4 1.06 0.62
dec 3 292 4.7 3 292 4.7 3 292 4.7 0.99 0.99
dsort 8 594 37.9 7 540 28.9 8 594 38.8 0.98 0.75
hd01 5 107 2.8 5 85 2.3 5 83 2.2 1.29 1.04
hd02 7 84 4.5 6 76 3.67 6 67 3.2 1.40 1.15
hd03 5 34 0.9 5 27 0.8 5 26 0.7 1.29 1.03
hd04 8 58 4.0 8 50 3.6 8 41 3.0 1.33 1.21
hd05 7 105 4.7 6 138 6.9 7 105 4.8 0.97 0.97
hd06 7 105 4.7 6 138 6.8 7 105 4.8 0.98 0.98
hd07 4 11 0.3 5 17 0.43 4 11 0.3 0.97 0.97
hd08 5 12 0.3 6 18 0.84 5 12 0.3 0.97 0.97
hd09 10 135 11.8 11 115 12.4 10 95 8.4 1.40 1.40
hd10 5 34 0.9 5 32 1.0 5 32 0.9 1.02 1.02
hd11 14 384 76.1 14 345 74.3 14 341 69.7 1.09 1.07
hd12 14 70 13.8 14 70 13.6 14 70 14.1 0.98 0.96
i2c 9 1112 81.2 11 1039 118.1 9 1082 81.1 1.00 1.00
int2float 9 218 15.6 9 180 13.3 9 223 16.6 0.94 0.80
isort 45 390 722.1 43 498 651.4 43 394 539.8 1.34 1.21
msort 45 390 722.5 43 498 688.6 43 394 539.0 1.34 1.28
osort 25 338 154.7 25 338 156.8 25 338 163.7 0.94 0.94
router 12 213 27.6 12 224 29.4 12 164 21.6 1.28 1.28
Total (geomean) 1.10 1.00

Table 1.MD, MC and homomorphic evaluation time of benchmark suite, for baseline in both MD-first and MC-first orders,
and MC-first with cut tracing enabled.

Other benchmarks end up with a worse overall solution in
both MD and MC, but as mentioned, this should not be possi-
ble with the model of cut tracing, where the design reported
by the standard optimization flow should exist in the e-graph.
We believe this issue is due to the way the default ILP for-
mulation in egg handles the acylicity constraint, which is
to ban the use of any e-nodes detected as being part of a
cycle. Accordingly, every benchmark which did not improve
the baseline had cycles, and those that did had few or none.
Future work will integrate existing exact optimal extraction
algorithms with more sophisticated handling for cycles, such
as enforcing topological sorting in ILP constraints.

Comparing to the ESOP first ordering, we see firstly that,
as expected, the ordering of MD and MC flows heavily in-
fluences the path the design takes. One order is not always
the best. Secondly, we can see that in several cases (sort,
router, hd04) where ESOP first is the better order, cut trac-
ing is still able to beat out this design, making it the overall
best. However, it is still heavily constrained to the design
choices recorded in the original flow, as it is not able to find
a superior design identified by ESOP first in other cases.

5 Conclusion
We presented cut tracing, a logic optimization technique
using e-graphs that trades off the wider design space explo-
ration possible with equality saturation for greater scalability.
We applied cut tracing towards the application of Boolean
FHE circuit synthesis, creating a flow that explicitly opti-
mizes for overall HE runtime, rather than the individual
metrics of MC and MD. Cut tracing extends existing logic
synthesis algorithms, rather than replacing them, and we
showed that adding it to a sequence of existing flows for
MD and MC optimization yields a 40% best-case and 10%
average-case speedup over the baseline. Due to implementa-
tion issues preventing us from testing cut tracing on other
flows, it is only 20% best-case and tied over our best-known
results. We plan to fix these issues and continue investigating
cut tracing, specifically in terms of improving extraction and
in ways the e-graph can be incorporated during the design
flow, not just orthogonally.
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