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Abstract—As blockchain technology continues to evolve and
mature, smart contracts have become a key driving force
behind the digitization and automation of transactions. Smart
contracts greatly simplify and refine the traditional business
transaction processes, and thus have had a profound impact on
various industries such as finance and supply chain manage-
ment. However, because smart contracts cannot be modified
once deployed, any vulnerabilities or design flaws within the
contract cannot be easily fixed, potentially leading to signifi-
cant financial losses or even legal issues. The compiler, as a
critical component in the development process, directly affects
the quality and security of smart contracts. This paper inno-
vatively proposes a method, known as the Improved Different
Optimization Levels (IDOL), for testing the Solidity compiler.
The key idea behind IDOL is to perform reverse optimization
transformations (i.e., change optimized form into unoptimized
form) to generate semantically equivalent variants of the smart
contracts under test, aiming to maximize the opportunities
to trigger the compiler’s optimization logic. We conducted a
preliminary evaluation of IDOL and three confirmed compiler
optimization bugs have been uncovered at the time of writing.
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1. INTRODUCTION

As blockchain technology continues to evolve and mature,
smart contracts have become a key driving force behind the
digitization and automation of transactions. A smart contract is
a distributed computing paradigm that can automatically exe-
cute, control, or record events and actions between parties [1].
The smart contract development language, such as Solidity,
provides an efficient way of implementing the automatic exe-
cution of contracts. However, the immutable nature of smart
contracts also introduces new challenges. Since smart contracts
cannot be modified once deployed, any vulnerabilities within
the contract cannot be easily fixed. Thus, ensuring the security
of smart contracts is of great importance.
The smart contract compiler is a critical component in the
smart contract development process, and its security directly
impacts both the quality of the contracts deployed on the
blockchain and the overall system security. Thus, systematic
testing of the compiler is of vital importance. Compiler errors
may arise at various stages of the compilation process, such
as syntax analysis, semantic analysis, and code generation.
Moreover, to generate efficient target code, the compiler must
also account for the characteristics and optimization require-
ments of different hardware platforms. As such, ensuring the

compiler’s quality is an inherently challenging task. In partic-
ular, when using a specific program as test input, determining
whether the compiler’s output is correct can be difficult due
to the lack of explicit specifications. That is, the “test oracle”
issue is serious for compiler testing [2].
Randomized Differential Testing (RDT) [3] is an approach that
combines randomized testing with differential testing to ad-
dress the oracle issue. This method generates identical random
inputs for multiple systems with different implementations or
configurations, and compares their outputs to identify potential
errors. Since RDT does not rely on predefined correct outputs,
it is well-suited for complex systems that lack explicit speci-
fications, such as compilers and interpreters. Given that many
compiler errors are often triggered during the optimization
phase [4], Different Optimization Levels (DOL) testing was
proposed as a specialized form of RDT [5]. This method
applies different optimization levels to the same test program
on the same compiler, and compares the consistency of the
output results to detect potential optimization errors.
To more effectively detect bugs in smart contract compilers,
this paper innovatively proposes an Improved Different Op-
timization Levels (IDOL) testing method to test the Solidity
compiler. The key idea behind IDOL is to perform reverse
transformations on typical compiler optimizations to generate
semantically equivalent variants of the smart contracts under
test, aiming to maximize the opportunities to trigger the
compiler’s optimization logic. IDOL consists of three major
steps. First, a set of original smart contracts are generated in
bulk using Solsmith1. Then, for each original smart contract,
semantically equivalent variants are generated by referencing
typical optimization strategies and specific optimization rules
of the Solidity compiler. Finally, each variant is compiled and
executed under different optimization levels, and the output
results are compared. If differences are found in the execution
results at different optimization levels, it indicates that there
is a bug in at least one optimization path. We conducted a
preliminary evaluation of IDOL and three confirmed compiler
optimization bugs have been uncovered at the time of writing.

2. THE IDOL APPROACH

The --optimize-runs parameter in the Solidity compiler
is used to specify the expected execution frequency of each
code segment throughout the contract’s lifecycle, thereby
guiding the optimizer to balance between deployment size and
runtime cost. Smaller values typically generate bytecode that is
smaller in size but less efficient in execution, making it suitable

1https://github.com/logicseek/Solsmith

https://github.com/logicseek/Solsmith
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1 for (int i = 0; i <
n; i++) {

2 x = y + z;
3 a[i] = 6 * i + x

* x;
4 }

(a) Original Code

1 x = y + z;
2 t1 = x * x;
3 for (int i = 0; i < n

; i++) {
4 a[i] = 6 * i + t1;
5 }

(b) Optimized Code
Figure 1: Loop-invariant Code Motion Optimization.

1 int i, a[100];
2 i = 0;
3 while (i < 100) {
4 a[i] = 0;
5 i++;
6 }

(a) Original Code

1 int i, a[100];
2 i = 0;
3 if (i < 100) {
4 do {
5 a[i] = 0;
6 i++;
7 } while (i < 100);
8 }

(b) Optimized Code
Figure 2: Loop Inversion Optimization.

for low-frequency invocation scenarios. Larger values instead
prioritize execution efficiency, making them more appropriate
for high-frequency invocation logic. Given the large number
of optimization parameters available, to simplify the experi-
ments and cover typical optimization scenarios, we selected
three representative configurations for testing: optimization
disabled (--optimize=false), optimization enabled with
runs=1, and optimization enabled with runs=200.
Unlike the conventional approach which directly applies dif-
ferent optimization levels to the generated test programs, our
approach first performs semantically equivalent transforma-
tions on the test programs to make it easier to trigger potential
errors in the compiler’s optimization process. We then proceed
with testing under different optimization levels. The equivalent
transformations arise from compiler optimizations, currently
including loop invariant code motion, loop inversion, and
several optimization strategies specific to the Solidity compiler.
By performing reverse optimization transformations, we can
induce the compiler to execute the corresponding optimization
processes without altering the program semantics, thus in-
creasing the likelihood of bug triggering. Below we introduce
two of the considered compiler optimization strategies.
Loop-invariant Code Motion. It moves loop-invariant state-
ments or expressions outside the loop body without changing
the semantics of the program. The two operations x = y +
z and x * x in Figure 1a are loop invariants and will be
moved out of the loop body during compilation optimization,
thus transforming into the form of Figure 1b.
Loop Inversion. This optimization transformation replaces the
while loop with an if block containing a do..while loop.
Although the optimized code in Figure 2b may appear more
complex than the original code in Figure 2a, it may actually
run faster. This is because modern CPUs use instruction
pipelines and any jump in the code can cause a pipeline stall,
which degrades performance.
Note that the IDOL transformations are reverse, i.e., they
convert the optimized form back to the unoptimized form.

3. PRELIMINARY EVALUATIONS AND RESULTS

The IDOL testing process is illustrated in Figure 3. First, a
series of test programs are generated using the Solsmith tool.

Then, a mutation process is applied to these test programs to
produce corresponding equivalent variants. These equivalent
variants next are given as inputs to the Solidity compiler
(i.e., solc) and sloc compiles them at different optimization
levels. Finally, for each variant, the output results at different
optimization levels are compared. If discrepancies are found,
it suggests that there is a bug in at least one optimization path.
We conducted a preliminary evaluation of IDOL using 160,000
test programs generated by Solsmith, and have identified
three confirmed compiler optimization bugs. As a comparison,
we also tried the original DOL approach using the 160,000
generated test programs, but these three bugs are not detected.

Generating Test 
Programs

Compilation and Deployment

Equivalence Transformation 
Based on Compiler 
Optimization Rules

Optimization Level L2

Optimization Level L1

Solsmith Compilation and Deployment Test Results Finding Compiler Errors

Figure 3: The IDOL Testing Process

Optimizer Keccak Cache Bug. For Keccak-256 hash values
with the same memory content but different sizes, the compiler
incorrectly treats them as equal, causing the bytecode opti-
mizer to mistakenly reuse previously computed hash values.
Traditional Code Generation Pipeline Bug. The cause is
that the traditional code pipeline does not evaluate complex
expressions, preventing the contract from executing these
expressions, which in turn leads to incorrect contract behavior.
FullInliner Non-Expression Split Parameter Evaluation
Order Bug. When the compiler performs FullInliner optimiza-
tion, it fails to correctly handle the splitting of complex ex-
pressions, excessively altering the original logic and resulting
in an incorrect parameter evaluation order.

4. CONCLUSION

This paper presents an innovative IDOL testing method. The
key idea behind IDOL is to perform reverse optimization
transformations to generate semantically equivalent variants
of the smart contracts under test, aiming to maximize the
opportunities to trigger the compiler’s optimization logic. An
initial evaluation of IDOL uncovers three optimization bugs,
demonstrating the effectiveness and potential of the approach.
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