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Abstract—The limited or no protection for civilian Global Navi-
gation Satellite System (GNSS) signals makes spoofing attacks rel-
atively easy. With modern mobile devices often featuring network
interfaces, state-of-the-art signals of opportunity (SOP) schemes
can provide accurate network positions in replacement of GNSS.
The use of onboard inertial sensors can also assist in the absence
of GNSS, possibly in the presence of jammers. The combination
of SOP and inertial sensors has received limited attention, yet
it shows strong results on fully custom-built platforms. We
do not seek to improve such special-purpose schemes. Rather,
we focus on countering GNSS attacks, notably detecting them,
with emphasis on deployment with consumer-grade platforms,
notably smartphones, that provide off-the-shelf opportunistic
information (i.e., network position and inertial sensor data). Our
Position-based Attack Detection Scheme (PADS) is a probabilistic
framework that uses regression and uncertainty analysis for
positions. The regression optimization problem is a weighted
mean square error of polynomial fitting, with constraints that the
fitted positions satisfy the device velocity and acceleration. Then,
uncertainty is modeled by a Gaussian process, which provides
more flexibility to analyze how sure or unsure we are about
position estimations. In the detection process, we combine all
uncertainty information with the position estimations into a fused
test statistic, which is the input utilized by an anomaly detector
based on outlier ensembles. The evaluation shows that the PADS
outperforms a set of baseline methods that rely on SOP or inertial
sensor-based or statistical tests, achieving up to 3 times the true
positive rate at a low false positive rate.

Index Terms—GNSS attack detection, secure localization, op-
portunistic information

I. INTRODUCTION

Global Navigation Satellite Systems (GNSSs) face a wide
range of attack threats, with spoofing being particularly con-
cerning, as it allows adversaries to manipulate the GNSS posi-
tion and time. Real-world incidents, such as disrupting sensor
fusion algorithms to cause crashes in autonomous vehicles [1]
and misnavigation of luxury yachts [2], highlight the increas-
ing threat of GNSS attacks [3]. The rising sophistication and
accessibility of GNSS spoofing technology further intensifies
these concerns [4]. In response, various standalone strategies
have been proposed to counter and identify attacks, ranging
from the implementation of cryptographic protocols [5]–[7]
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to signal-level mechanisms [8]–[11]. Cryptographic solutions
require extensive updates to satellites and receivers, which are
cost-prohibitive and hard to implement at scale. Signal-level
solutions, relying on characteristics such as angle of arrival
(AoA), may require specialized hardware (e.g., antenna arrays)
and may be ineffective in challenging environments, such as
urban canyons with significant multipath [8], [9]. Moreover,
many consumer-grade devices do not integrate GNSS receiver
with strong anti-jamming/spoofing features or do not expose
the necessary low-level signal data (e.g., phase, correlations)
through standard operating system APIs [12].

Modern consumer-grade mobile platforms, such as smart-
phones and autonomous vehicles, offer a promising opportu-
nity for GNSS spoofing detection. These devices are equipped
with opportunistic information sources, including connectivity
(i.e., Wi-Fi, cellular, Bluetooth signals) and onboard sensors
such as inertial measurement units (IMUs). This combination
of data sources enables robust attack detection by cross-
checking GNSS positions with alternative positioning meth-
ods. However, leveraging these data sources for spoofing de-
tection is nontrivial due to their inherent limitations: network-
based positions often have larger fluctuation errors than GNSS
and IMU, while IMU-based systems suffer from cumulative
error [1], [13], [14]. Therefore, effectively integrating these
information sources into a unified framework for spoofing
detection remains an ongoing topic that requires further in-
vestigation.

An increasingly explored approach involves leveraging sig-
nals of opportunity (SOP) and IMU for GNSS-denied envi-
ronments or spoofing detection [15]–[23]. For instance, [20],
[23] utilize SOP, such as Wi-Fi or cellular signals, to localize
devices or detect deviations from GNSS-provided positions,
typically employing threshold-based binary decision models.
[15], [16] incorporate IMU data for trajectory analysis to
identify inconsistencies indicative of spoofing. [17]–[19], [22]
use both SOP and IMU with sophisticated custom hardware
platforms to present an accurate alternative positioning result,
although they do not look for the detection per se. While these
methods have shown promise for localization in GNSS-denied
environments, they are not readily applicable on consumer-
grade platforms, e.g., smartphones. Hence, we direct efforts
towards the detection of GNSS attacks with the use of all
available inputs (network positions and onboard sensor data)
and a hardware-agnostic design.

We propose a Position-based Attack Detection Scheme
(PADS) that integrates network-based positioning results and
velocity, acceleration, and orientation from the onboard sen-
sors, termed off-the-shelf opportunistic information, within a
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probabilistic detection framework for widely-used consumer-
grade mobile devices. The key idea involves accounting for
various types of noisy position sources with different update
rates, the movement of the GNSS receiver, and designing a
test statistic. The construction of the test statistic involves two
steps, which we refer to as a combo of model-based and data-
driven techniques. First, we establish a closed-form solution
to describe the relationship between motion and position
data, resulting in a motion-constrained regression problem.
This connects short-term estimation via the receiver’s motion
with long-term estimation through network-based positions,
effectively smoothing positions with motion model constraints.
Second, we employ Gaussian process regression [24] to model
the uncertainty inherent in the smoothed positions. Then, we
calculate a weighted sum of both positions and uncertain-
ties into a unified Gaussian function for the ensemble-based
anomaly detection [25], [26]. Crucially, PADS is designed as
a software-based detection layer that utilizes opportunistic in-
formation commonly accessible in modern platforms, making
it deployable without requiring specialized hardware or low-
level signal access.

Building on our earlier work [27], we incorporate a learning-
based detector into the decision-making part. Furthermore, we
apply our PADS to an existing dataset [1] in enhanced network
simulations of terrestrial infrastructures with real-world Wi-
Fi and cellular layouts, and a newly collected dataset from
consumer-grade Android phones under real GNSS attacks. Ad-
ditionally, we present improved theoretical and experimental
analyses to further assess the effectiveness of the scheme.

The main contribution of this work is a probabilistic frame-
work for GNSS attack detection: We combine network-based
positions and onboard sensors within a probabilistic frame-
work for GNSS position attack detection. Our Position-based
Attack Detection Scheme (PADS) can fuse position, velocity,
acceleration, and orientation data from various sources with
different accuracies and update rates. It provides a robust
and interpretable detection outcome, as well as a recovered
position using benign GNSS, networks, and onboard sensors.

In PADS, we contribute a formulation of a motion-
constrained regression problem for position smoothing that
combines short-term trajectory smoothing via IMU with long-
term stabilization from network-based positions. This fusion
reduces position noise and prevents IMU drift. A Gaussian
process regression is then employed to quantify positional un-
certainty. They are computationally efficient, with polynomial-
time complexity, and mathematical proofs are presented. In
addition, we design anomaly detection via a weighted
test statistic that incorporates position trajectories and their
uncertainties, enabling unsupervised anomaly detection. This
hyperparameter-free approach uses ensemble methods to de-
tect spoofing attacks and is also extensible and compatible
with signal-level detection methods by incorporating signal
properties, such as Doppler shift.

We also contribute a comprehensive evaluation on
consumer-grade platforms for GNSS attack detection. First,
we evaluate with the help of a simulated autonomous driv-
ing platform. Second, we experiment with various Android
smartphones, including different brands, prices, and chips

(from Exynos, MTK, Qualcomm, and Google Tensor). GNSS
attack strategies include a variety of meaconing and spoofing,
incurring gradual deviation or position jumping, notably in a
real-world setting, with data collected in Jammertest 2024.

The rest of the paper is organized as follows: Sec. II
provides background and reviews related work on GNSS
attacks, detection, and network-based positioning. Sec. III
presents our system model and adversary. Sec. IV and V detail
the problem formulation and the proposed PADS. Sec. VI
discusses evaluation and comparison with baselines. Finally,
Sec. VII concludes the paper.

II. RELATED WORK AND BACKGROUND

A. GNSS Attack and Detection

GNSS spoofing attacks typically craft fraudulent signals
with precise power and format as per GNSS protocols. Before
spoofing, the attacker may first employ jamming to deliber-
ately disrupt GNSS signals, causing the victim to lose the
GNSS signal lock [19]. Alternatively, with more sophisticated
strategies, the attacker may gradually amplify the spoofing
signal, eventually tricking the victim to follow it [1]. Meacon-
ing, the easiest method of spoofing signal generation, involves
retransmitting rightful satellite signals from a different area.
When it comes to authenticated GNSS signals, relay or replay
attacks [28] can transmit satellite signals using low-complexity
setups to deceive the victim into trusting the information.
Another more sophisticated modification, known as selective
delay [8], rebroadcasts separate satellite signals, allowing
for modification of the position solution according to the
attack scenario. Distance-decreasing (DD) attacks [29] provide
additional options for adversaries, employing Early Detection
and Late Commit to relay the GNSS signal, thereby making
the relayed one appear to arrive earlier than it would have.

Standalone detections often focus on analyzing the physical
characteristics of GNSS signals, e.g., Doppler effect, AoA,
signal-to-noise ratio (SNR), and received signal strength (RSS)
[8], [9], [11], [30], [31]. Recent advances include leveraging
signal quality monitoring [32] or machine learning on signal
features [33]. These methods can be effective against attacks
that cause signal distortions, but mostly can not provide an
alternative positioning. Moreover, access to the necessary
low-level measurements (e.g., precise phase, AoA) is often
limited by hardware and standard APIs [12]. For example,
AoA typically requires specialized multi-antenna hardware.
Furthermore, multipath in urban areas can also cause signal
anomalies. Sophisticated attackers can also employ strategies
such as slowly varying spoofing [1], [14] or imitating AoA
that minimizes abrupt changes, making detection based solely
on signals difficult.

Increasingly, low-end GNSS receivers are integrated into
mobile platforms that also feature onboard sensors and net-
work interfaces. This presents opportunities for leveraging
the sensors and networks to enhance attack detection. For
instance, [34] focuses on unmanned aerial vehicles (UAVs)
to fuse GNSS with IMU data. Then, they use relative distance
information obtained from RSS data to detect spoofing, with
alternative positions based on multi-agent systems enhancing
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navigation robustness under spoofing conditions. SOP from
terrestrial network infrastructures can assess GNSS-provided
positions [20], [35]. This involves assuming adequate network
scanning and the availability of base station (BS) or access
point (AP) positions, using RSS or time-of-arrival (TOA) as
the distance measure between the mobile platform and the
station to estimate position for checking GNSS. Additionally,
in [15], an extended Kalman filter (EKF) integrates GNSS and
IMU data, with Receiver Autonomous Integrity Monitoring
(RAIM) to assist with spoofing detection. Combined metric-
based approach [36] integrates multiple detection features such
as autocorrelation distortion, RSS, pseudorange, carrier phase
difference, and AoA to enhance detection.

Without considering the detection of GNSS attack, [17]–
[19], [22] fuse SOP with IMU to provide position and nav-
igation with great accuracy in GNSS-denied environments.
The work considers and experiments with different grades
of IMUs, types of devices, cellular clock errors, pseudo-
range measurement models, unknown transmitter locations,
etc. However, most of these APIs or information are still
unavailable on consumer-grade platforms, e.g., smartphones.

B. Network-based Positioning

In addition to the conventional dependence on GNSS for
positioning, the network infrastructures, such as Wi-Fi, cellu-
lar, Bluetooth, and eLoran [37], can also provide alternatives
or backups for accurate localization. They play an impor-
tant role in scenarios where GNSS signals may be limited
or unavailable [19]. Our focus is not to incorporate these
positioning techniques into our framework, but to use off-the-
shelf network-based positions to enhance the robustness and
reliability of the detection process.

Fingerprinting methods [38]–[40] are commonly used where
databases of pre-collected fingerprints (RSS, magnetic field
values, channel state information, or even visual informa-
tion) are compiled. After that, deterministic or probabilistic
fingerprint-matching algorithms are used for localization. They
provide supplementary information for positioning or offering
validations of GNSS attacks. However, fingerprint database
construction is time-consuming, especially for wide-open out-
door environments. Hence, fingerprint-based positioning is
often limited to a small area.

Range-based methods [41], [42] make use of various inputs
such as RSS, propagation time, or AoA to derive pseudo-
ranges, which are then utilized for multilateration. Recent
advances in network-GNSS hybrid positioning [43], [44] rely
on the ranging information (e.g., TOA of 5G millimeter-wave)
or localization results to provide additional observations in the
EKF framework.

III. SYSTEM MODEL

We consider a mobile GNSS-enabled platform that provides
computational power, heterogeneous network infrastructures
and diverse sensors. At time t, the actual platform position,
denoted as pc(t) ∈ R2, needs to be estimated based on
positioning. p0(t) represents the GNSS position at time t.
Wi-Fi and/or cellular networks can provide positions, pm(t),

Base station

Adversary

Access point

GNSS receiver

Cellular-based position

Wi-Fi-based position

GNSS-based position

Velocity, acceleration

Fig. 1. Illustration of position information from GNSS and network infras-
tructures, motion information from onboard sensors, and external adversary.

based on network-based positioning algorithms (e.g., [42],
[45], [46]), where m = 1, 2, ...,M and M signifies the number
of network interfaces; t spans from 1 to N seconds, with N
as the total number of time indexes. IMUs provide multi-axis
acceleration measurements, while velocity is possibly obtained
from wheel speed sensors (e.g., in autonomous vehicles),
denoted as velocity, v(t), acceleration, a(t), and orientation,
ω(t). Continuous network connectivity is not required, as
some infrastructure might be temporarily inaccessible for
reasons independent of the mobile device itself. We assume
that positioning errors of benign GNSS, Wi-Fi, and cellular
networks are zero-mean Gaussian random variables [47]–
[49]. As the mobile platform moves along a path in benign
conditions (as illustrated in Fig. 1), the GNSS-derived position
aligns with the opportunistic position information.

Adversary: Spoofed, relayed, or replayed GNSS satellite
signals manipulate the mobile platform into falsely estimating
the position. We assume that the attacker can observe the
victim position and has access to software-defined radios
(SDRs) equipped with GNSS spoofing capabilities to falsify
the signals. As GNSS signals are low power, the attack can
compel the victim to lose the lock on legitimate signals and
then acquire the lock on adversarial signals. We remain neutral
regarding the exact details of the attack, and do not restrict the
type of attacker as long as it achieves the malicious alteration
of position. In other words, as the GNSS solution includes
position and time, detecting alterations solely in time, without
corresponding changes in position, falls beyond the scope
of our investigation. The attacker can skillfully design the
victim’s spoofed positions, considering its actual path. Certain
trajectory designs, such as path drift [50] and gradual deviation
[1], remain almost undetectable for a period following the
initiation of the attack (e.g., Kalman filter-based detection).

The attacker considered here operates exclusively within
the GNSS realm. We assume the opportunistic information
sources (network-based position obtained via platform ser-
vices, onboard sensor data) remain unaffected by the GNSS
spoofing attack itself. This assumption is grounded in the
practical separation of these systems (e.g., network signals are
often authenticated or encrypted, and IMU sensors cannot be
affected unless the device itself is compromised). Therefore,
the scope of this work focuses on detecting GNSS attacks
using trustworthy opportunistic data. Wi-Fi spoofing, cellular
base station simulation, and physical sensor manipulation are
considered beyond this work. However, we assume that the
adversary can extend periods of unavailability for network-
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based positioning by interfering with wireless networks. Fur-
thermore, it is assumed that the attacker does not exert physical
control over the victim, thereby preventing manipulation of the
process for deriving position information from various network
interfaces and onboard sensors. In short, the adversarial actions
are confined to GNSS spoofing, while wireless networks may
experience interference. As a result, during a spoofing attack,
the GNSS-derived position should diverge from the actual
position and not match the opportunistic position information.

IV. PROBLEM FORMULATION

Our objective is to assess the consistency between the
GNSS-derived position and opportunistic position information
from {pm(t),v(t),a(t),ω(t)} to determine whether the cur-
rent GNSS position is indicative of an attack. By evaluating the
probability of a GNSS position attack, we seek to maximize
the true positive rate of detection. Additionally, we aim for a
detection scheme that remains reliable even if certain types of
opportunistic information are unavailable.

For the detection of GNSS position attacks at a given
time t and with M network interfaces, we use data
{pm(i),v(i),a(i),ω(i)} for 0 < i < t and m ∈ {0, 1, ...,M}
to determine whether p0(t) is subject to an attack. Two
corresponding hypotheses are presented as follows:

• H0: p0(t) is not under attack;
• H1: p0(t) is subject to attack.

Then, the decision made at the time t is denoted as Ĥ(t) ∈
{H0,H1}. The true positive is expressed as Ĥ(t) = H1 under
attack (H1), and the false positive is Ĥ(t) = H1 under H0.
The true positive rate for 0 < t ≤ N is

RTP(Ĥ(t)) = P[Ĥ(t) = H1|H1]. (1)

The false positive rate is

RFP(Ĥ(t)) = P[Ĥ(t) = H1|H0]. (2)

We define the detection time delay, ∆T , as the interval
between the moment the alarm is raised and the start of the
attack:

∆T = min
{
t
∣∣∣ I{Ĥ(t) = H1|H1} = 1

}
−min

{
t
∣∣∣ I{Ĥ(t) = H0|H1} = 1

}
(3)

where indicator function I{A|B} equals to 1 when condition
A is satisfied given condition B.

The problem is to: (a) maximize RTP when fixing RFP,
(b) minimize ∆T , and (c) provide a probability of being
under GNSS position attack, along with a recovered position
that fuses opportunistic information to replace GNSS position
when Ĥ(t) = H1.

V. PROPOSED SCHEME

As Fig. 2 shows, PADS detects attacks on GNSS positions
by using information about network positions and movements,
i.e., velocity, acceleration, and orientation. The input data is
from GNSS, Wi-Fi, cellular, and onboard sensors. A rolling
window takes a fixed-length series of positions, which will be

interpolated to generate a smoothed trajectory. Subsequently,
confidence intervals for these M +1 position series are calcu-
lated. The confidence intervals construct a fused test statistic
to determine whether the current GNSS position reflects an
attack, and if so, trigger an alarm. The overall process is shown
as Algorithm 1.

Rolling Window ( 1⃝) collects real-time positions of the
platform from GNSS, Wi-Fi, and cellular sources (with M+1
categories available, and we consider M = 2 here), in
addition to velocity, acceleration, and orientation data from
onboard sensors. These positions are organized in order of
their timestamps. As a result, the filters implement rolling
window techniques, taking fixed-length data at each detection
time t rather than utilizing the entire series.

Confidence Interval ( 2⃝) is constructed by combining both
motion and statistical models. The motion part (Sec. V-B1)
uses a local polynomial regression algorithm with move-
ment constraints to fit the position data. It exploits both the
short- and long-term characteristics of data: while onboard
sensors provide high short-term accuracy, they are unable to
maintain stable positional accuracy over time; to overcome
this limitation, we integrate their data with less frequent but
periodic positioning updates from terrestrial networks. We use
regression to fit the positions and minimize the fitting error
while adhering to movement constraints, ensuring the resulting
fit conforms to velocity and acceleration. The statistical part
(Sec. V-B2) is a Gaussian process, focusing on confidence
intervals represented as a probability distribution, indicating
the uncertainty of positions. We assume that the benign
position series of pm(t) follows a Gaussian process, with a
mean already determined through the motion part. To compute
the variance, Gaussian process regression uses a predefined
covariance function and differences from fitted results. This
allows for a better idea of the variability in position data.

Decision-Making ( 3⃝) builds a test statistic by using the
mean and variance of confidence intervals. Then, anomaly
detection relies on this test statistic across multiple sources
and over the time domain. To integrate the confidence intervals
in the time domain, we calculate a weighted sum over time
in Sec. V-C1, with the weights normalized to ensure their
summation to 1. The weighted sum is still Gaussian, with its
mean and variance determined as a linear combination of the
means and variances of the individual confidence intervals. To
fuse the GNSS-derived position with M opportunistic position
sources, we multiply M +1 distributions for time t. Then, we
create a fused test statistic based on it and apply an anomaly
detector (Loda [25]) in Sec. V-C2.

A. Rolling Window for Detection

We combine screening and detection: instead of analyzing
the entire time series at each detection step for every time
slot t, we select a fixed-size series by implementing a rolling
window mechanism with a specific window size. This ensures
that only recent network-based positions and motion data are
used for evaluating potential attacks on the current GNSS.

1) Coordinate Format: Coordinates pm(t) ∈ R2,m =
0, 1, ...,M are formatted according to the World Geodetic Sys-
tem (WGS) Latitude, Longitude, Altitude standard. Data from
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Likelihood

&

Position

① ② ③

Fusion
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Fig. 2. PADS overview. Inputs: GNSS position (p0), network positions (p1..M ), and motion data (v,a,ω). Components: Rolling Window ( 1⃝) selects recent
data; Confidence Interval ( 2⃝) estimates smoothed position p̂m and uncertainty Σ̂m for each source m using motion-constrained regression and Gaussian
processes; Decision-Making ( 3⃝) fuses these intervals into a test statistic (Λ1:M ), computes an anomaly score (fµ,σ), makes a detection decision (Ĥ), and
provides a recovered position (µ). Outputs: Ĥ, fµ,σ , µ for each time t. It fuses information across multiple (available) sources and over the time domain.

Algorithm 1 PADS overall operation with two alternative
positioning sources and onboard sensors

Input p0(t),p1(t),p2(t),v(t),a(t),ω(t)
Parameter w
Output Ĥ(t), fµ,σ(t), µ(t)

1: initialize S ▷ Sequence of positions and motion data
2: t← 0
3: while t < N do
4: t← t+ 1
5: ensure length(S) = w ▷ Rolling window
6: CI ≜ {N (p̂m(t), Σ̂m(t))}m=0..M ← Algorithm 2

▷ Construct confidence intervals
7: Ĥ(t), fµ,σ(t), µ(t)← Algorithm 3

▷ Detect attack using confidence intervals
8: if Ĥ(t) = H1 then
9: S ← {S; p1(t),p2(t),v(t),a(t),ω(t)}

10: else
11: S ← {S; p0(t),p1(t),p2(t),v(t),a(t),ω(t)}
12: end if ▷ Append data at t to the sequence
13: end while

onboard sensors v(t),a(t) ∈ R3 adheres to a local coordinate
system in the same units as pm(t), and ω(t) ∈ R3 comprises
roll (ϕ), pitch (θ), and yaw (ψ) angles from gyroscope and
magnetometer, which represent the orientations with respect
to the local coordinates and WGS.

2) Window Size w: The length of data series S is a
parameter: S = {pm(i),v(i),a(i),ω(i)} for t − w < i < t.
Numerous approaches are available to determine a good rolling
window size. One example is to use a “trial and error” strategy
that minimizes the mean squared error (MSE) of positioning.
It is a small-scale experiment with a range of window sizes
and evaluating their performance on the validation set before
detection, which is shown in our experiment results. Upon
selecting an appropriate window size w, we can then move
forward with processing S.

3) Processing S: At each t, the filtering process receives
detection feedback regarding the current GNSS position, in-

Algorithm 2 Construct confidence intervals of positions
Input S
Output CI

1: i← 0
2: while i < w do
3: i← i+ 1
4: W← (5) ▷ Compute the curve-fitting parameter
5: p̂m(t− w + i)← (4) ▷ Smoothen positions
6: xm(t− w + i)← (8) ▷ Residuals after smoothing
7: end while
8: x̂m(t)← (9) ▷ Estimate uncertainty at t using residuals
9: CI ← (11) ▷ Combine smoothed position and uncertainty

dicating whether it is potentially under attack. In the event
of an alarm, the filtering process constructs S for t + 1 by
incorporating data from sources excluding GNSS, denoted as
pm(t),v(t),a(t),ω(t),m ∈ 1, 2, ...,M . Conversely, if no at-
tack is detected, the filtering updates S using information from
all available sources, denoted as pm(t),v(t),a(t),ω(t),m ∈
0, 1, ...,M .

B. Constructing Confidence Intervals

This process involves two main steps: first, a model-
based approach using motion-constrained regression to obtain
smoothed positions, depicted in the dotted lines of Fig. 3, and
second, a data-driven approach using Gaussian processes to
model position uncertainty, as depicted in the shaded areas of
Fig. 3. The process is described in Algorithm 2.

1) Motion-Assisted Fitting: We use local polynomial re-
gression for its flexibility in interpolating and predicting posi-
tions, based on discrete pm(t) position points and motion data
v(t),a(t),ω(t). Crucially, we incorporate this with motion
constraints derived from onboard sensors. It allows smoothing
of noisy position measurements while ensuring the resulting
position is physically plausible (adhering to velocity and
acceleration limits), and the constrained optimization provides
robustness against outliers compared to unconstrained fits
or filters that might fuse spoofed data or IMU noise into
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Cellular-based position

Wi-Fi-based position

GNSS-based position

Fig. 3. Local polynomial regression is used to estimate traces (tiled view), and
the Gaussian process is used to model the residual part of estimated positions
(shaded areas).

updates. Local polynomial regression involves fitting a Taylor
expansion at a given point of a function through weighted least
squares [51]. Thus, for a polynomial with degree n, at a given
time t, the estimator p̂m(t) is represented as

p̂m(t) = Wt (4)

where W ∈ R2×(n+1) denotes the polynomial coefficients of
Taylor expansion that need to be determined, and t represents
a (n+ 1) dimensional vector, [t]i = ti−1.

To determine W, we introduce an optimization problem and
present a theorem for the estimation process, ensuring both
computational efficiency and reliability of position predictions.
W at the mth position and time t is from

min
W

fP(W)

s.t. |p̂m(t)− p̃m(t)| ≤ ϵt
(5)

where p̃m(t) is the mth position based on motion data (to con-
strain p̂m(t)), and ϵt ∈ R2 represents a small tolerance. p̃m(t)
ensures the physical feasibility of a short-term movement
(onboard sensors), and pm(t) ensures long-term (network-
based positions) anti-spoofing considerations. The objective
function for regression in (5) should minimize the weighted
squared error between the fitted polynomial p̂m(t′) = Wt′

and the observed positions pm(t′), defined as

fP(W) =

t∑
t′=t−w

[Wt′−pm(t′)]TKloc(t
′− t)[Wt′−pm(t′)]

(6)
where Kloc(x) = exp(−κx2) is a kernel function assigning
weights that help emphasize the contribution of recent data
points while down-weighting the influence of more distant
points, κ is a kernel parameter, and pm(t′) are data points.

To provide p̃m(t) for (5) using motion data, it is essential
to standardize the coordinate systems of onboard sensors. R
represents the rotation matrix responsible for converting the
local coordinate system to WGS coordinates [27]:

R(t) = Rψ(t)Rθ(t)Rϕ(t).

The state of the mobile platform is
(
pm(t),v(t)

)
, so

p̃m(t) = pm(t−∆t) +R(t−∆t)v(t−∆t)∆t

+
1

2
R(t−∆t)a(t−∆t)(∆t)2 (7)

and p̃m(0) are initialized by the first GNSS and network
positions. Moreover, if the onboard sensor does not furnish
velocity information, v(t) can be substituted by v(t−∆t) +∫ t
t−∆t

a(t)dt, and v(t − ∆t) is from the checked GNSS.
Similarly, if acceleration information is unavailable from the
onboard sensor, a(t) is assumed to be zero, indicating uniform
motion over ∆t. Then, p̃m(t) in the constraint provides a
rough movement range for the smoothed position p̂m(t).

Theorem 1. The estimator p̂m(t) in (4) can estimate pm(t)
within polynomial time.

Proof. See Appendix A.

This guarantees that (5) is convex and solvable in poly-
nomial time, making the estimation suitable for real-time
applications. Updating the position estimations from t = 1
to N , the p̂m(t) values should closely resemble the dotted
lines depicted in Fig. 3, illustrating the smoothed positions.
These lines represent the estimated trajectory of the mobile
platform from a tiled view to enhance visualization.

2) Modeling Uncertainty: After obtaining the smoothed
positions p̂m(t) from regression, we model the remaining
uncertainty. While (6) provides a measure of fit, we employ
Gaussian processes for a more principled and flexible approach
to modeling uncertainty. Gaussian processes [24] offer a non-
parametric, data-driven method to estimate the distribution of
the position residuals. They can capture temporal correlations
in the uncertainty via kernel functions, providing a better un-
certainty representation than just assuming independent noise.
Denote the residuals of the estimated positions at m, t as

xm(t) = p̂m(t)− pm(t). (8)

Then, in the absence of GNSS attack-induced deviations,
{xm(i); i ∈ (0, t)} are zero-mean Gaussian random variables
with unknown standard deviations σm(i). A covariance func-
tion K(xm(t),xm(t′)) = 1

2E[(xm(t) − xm(t′))2] is selected
to characterize the interrelation of two residuals, xm(t) and
xm(t′), at time t and t′. Commonly used kernels include linear,
polynomial, and squared exponential covariance functions, and
the best model and hyperparameters can generally be selected
from cross-validation [24]. Subsequently, a linear unbiased
estimator can estimate the residual, xm(t):

x̂m(t) =

t−1∑
i=t−w

λixm(i) (9)

where
∑t−1
i=t−w λi = 1. Gaussian process regression calculates

λi, minimizing the variance of the estimation error:

min
λ

V[x̂m(t)− xm(t)]

s.t.
∑t−1
i=t−w λi = 1

(10)

which can be solved using the Lagrangian method.
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Algorithm 3 Decision based on confidence intervals from
opportunistic position information

Input CI
Parameter γ
Output Ĥ(t), fµ,σ(t), µ(t)

1: Λ1:M (p0 (t))← (14) ▷ Fuse confidence intervals
2: µ(t)← (16) ▷ Fused alternative position
3: fµ,σ(t)← (17) ▷ Compute anomaly score
4: if fµ,σ(t) ≥ γ then
5: Ĥ(t)← H1 ▷ Positive as score exceeds a threshold
6: else
7: Ĥ(t)← H0 ▷ Negative otherwise
8: end if

Theorem 2. Given a covariance function, x̂m(t) in (9) can
estimate pm(t) uncertainty in polynomial time.

Proof. See Appendix B.

As the prediction yields a distribution for each time t, the
confidence intervals Im(t) indicate the uncertainty of the esti-
mation. Since GNSS and network-based positions are subject
to observational noise, the confidence intervals conform to
a Gaussian distribution at each time t for each information
source in a benign environment. Consequently, its mean p̂m(t)
and standard deviation σ̂m(t) of x̂m(t) characterize the con-
fidence interval:

Im(t) ∼ N (p̂m(t), Σ̂m(t)),m = 0, 1, ...,M (11)

where Σ̂m(t) = diag([σ̂m(t)]2) ∈ R2×2 is a diagonal
matrix and the square is Hadamard power. An illustration in
Fig. 3 shows lines connecting the individual position pins, i.e.,
p̂m(t), while the shaded areas are the uncertainties, Σ̂m(t).

C. Decision-Making Using the Intervals

Having obtained Gaussian confidence intervals Im(t) ∼
N (p̂m(t), Σ̂m(t)), decision-making fuses this information
from all position sources (i.e., GNSS, Wi-Fi, and cellular-
based positions) into a single test statistic. It then utilizes
an anomaly detector for GNSS position attacks. We have
two perspectives in the context of test statistic construction.
First, the temporal perspective assesses the historical behavior
of positions over time to capture patterns and anomalies.
Second, the categorical perspective groups different sources
of positions.

1) Fusing Intervals: To process the data, S, along with
its associated confidence intervals, Im(t) = p̂m(t) + x̂m(t),
which are derived from Algorithm 2, we fuse these confidence
intervals. It involves aggregating the weighted confidence
intervals across t with weights denoted as K(m, t), which
is a kernel function to ensure that K(m, t) from t − w to t
sum to 1. Then, the temporal fusion is

Z(m, t) ≜
t∑

t′=t−w
K(m, t′)Im(t′) (12)

and denote its probability density function (PDF) as
fZ(m,t)(p). Thus, the mth test statistic for H0 is

Λm (p0 (t)) |H0 = fZ(m,t)(p0(t)). (13)

where p0(t) is GNSS position. For M sources of positions,
the fused test statistic is

Λ1:M (p0 (t)) =

M∏
m=0

Λm (p0 (t)) |H0 . (14)

To simplify the calculation, we observe that Λ1:M (p0 (t)) is
proportional to a Gaussian PDF.

Theorem 3. Λ1:M (x) = S
σ(t)φ

(
x−µ(t)
σ(t)

)
, where S is a

constant scaling factor,

σ(t) =

 M∑
m=0

(
t∑

t′=t−w
[K (m, t′)]

2
[σ̂m(t′)]

2

)−1
− 1

2

(15)

µ(t) = σ2(t)

M∑
m=0

∑t
t′=t−wK (m, t′) p̂m(t′)∑t

t′=t−w [K (m, t′)]
2
[σ̂m(t′)]

2 . (16)

Proof. See Appendix C.

Note that in the fused mean µ(t), each source m’s contribu-
tion is inversely weighted by its estimated uncertainty Σ̂m(t′)
(derived from the Gaussian process). This means that sources
estimated to be less certain (higher variance) are naturally
down-weighted in the test statistic.

2) Decision-Making: After constructing the function in
(14), we apply Loda [25] to generate an anomaly score fµ,σ(t),
i.e., the probability of GNSS being under attack, shown as
Algorithm 3. It is unsupervised, requiring no labeled attack
data for training; lightweight and efficient, based on an en-
semble of simple histograms on projections, making it suitable
for resource-constrained platforms; robust due to its ensemble
nature; and hyperparameter-free, simplifying deployment. The
detector works by using random projections of the input and
then comparing their histograms to find differences.

Input data consists of σ(t) from (15) and µ(t)−p0 (t) from
(16) (other possible information includes antenna gain, dilution
of precision, etc.). For the training phase, the algorithm learns
the benign behavior of the data by constructing a set of models,
i.e., representations, using a subset of the available benign
data. This can be summarized by the following steps: (i)
projection: it projects benign data (σ(t), µ(t)−p0 (t)) onto a
lower-dimensional space using k random projection vectors,
{vi}ki=1, to get the projected ones, {x̃i}ki=1, where x̃i =
(σ(t), µ(t)−p0 (t))vi, (ii) histogram: it calculates histogram,
hi, of each projected value, x̃i, from ith projection vector,
and (iii) representations: the projection vectors, {vi}ki=1, and
histograms, {hi}ki=1, are the benign patterns.

For the testing (detecting) phase, the algorithm uses the
representations constructed during the training phase to detect
anomalies: (i) projection: this step is the same as in the training
phase to get the projected {z̃i}ki=1, and (ii) comparison:
the projected testing vectors are compared with the trained
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TABLE I
DATASETS FOR EXPERIMENTS.

Ground Truth GNSS Network Onboard Sensor

Dataset A 1 Hz 1 Hz 1 Hz & 1 Hz 200 Hz
Dataset B 1 Hz 1 Hz 0.1 – 0.3 Hz 100 Hz

histograms {hi}ki=1 to compute the anomaly score, fµ,σ(t), by
using the frequency of {z̃i}ki=1 in the distribution of {hi}ki=1:

fµ,σ(t) = −
1

k

k∑
i=1

logP[z̃i]. (17)

Note that all hyperparameters are determined automatically, as
presented in [25]; thus, the detector is termed hyperparameter-
free. The anomaly score, fµ,σ(t), reflects the degree of ab-
normality relative to the learned benign distribution, which
is empirically chosen based on the benign training data and
environment. When fµ,σ(t) ≥ γ, the decision is to raise an
alarm that the GNSS position is attacked (H1). Even if it
may be a false alarm, our provided recovered position from
(16) is close to the actual position because it is a secure
fusion of GNSS, network positions, and onboard sensors that
removes spoofed GNSS positions in S. Therefore, this will
not endanger the operation of one system that relies on this
GNSS position.

D. Computational Complexity

The complexity of the proposed PADS framework in Algo-
rithm 1 consists of solving the convex optimization problem
(5), Gaussian process regression (10), and Loda (17). First,
(5) implies computations for forming and solving a quadratic
program. The cost to form the objective part is O(w(n+1)2)
and the constraint part is O(n), where n is the polynomial
degree, usually taking a value of 1 − 3. The cost to solve
it depends on the (analytic, numerical) method, and it is
approximately O((n+ 1)3). Considering n is small, the total
cost is O(w).

Second, for the construction of uncertainty using a Gaussian
process, the main cost lies in solving the linear system derived
from the Lagrangian to find the weights λi. This typically
involves inverting a w × w covariance matrix, leading to a
complexity of O(w3). Third, fusing intervals requires calcula-
tions with complexity linear in M (number of sources) and w.
Loda detector requires projecting the input data onto k random
vectors. The complexity per detection is O(M × w + k).

As a result, the total complexity of detecting p0 is O(w +
w3 + M × w + k). Hence, the complexity is dominated
by the Gaussian process component (O(w3)), but remains
polynomial. Given w = 15 − 30, PADS is computationally
feasible. Our following experiments on mobile platforms also
confirmed efficient, real-time processing at typical GNSS rates.

VI. EXPERIMENT RESULTS

A. Experiment Setup

We have two datasets (Table I and illustrated in Fig. 4):
(i) Dataset A [1], comprising 6 GNSS traces from outdoor

Fig. 4. Ground truth (purple), network (green), and GNSS (blue) positions of
two traces from Dataset A (left) and B (right). Note that “network position”
refers to both Wi-Fi and cellular positions in Dataset A, and positions from
Android Network Location Provider in Dataset B.

Fig. 5. The placement of the mounted phones in a vehicle (car windshield).

urban environments and simulated attacks, and (ii) Dataset B
is collected in a real GNSS-attack environment, Jammertest
2024, in Bleik village, Norway [52]. GNSS receivers are
mounted on vehicles with speeds ranging from 0 to 90 km/h.
The error for benign GNSS positions is mostly within 3–10
meters for autonomous vehicles and smartphones in the test.

1) Dataset A: It includes GNSS positions, IMU data, and
ground truth positions from a simulated Apollo autonomous
driving platform [1]. In the same context, opportunistic posi-
tion data is synthesized using a custom-made network simu-
lator. The simulator generates the RSS from the seven nearest
BSs and APs, whose positions are from open databases [53]
and [54]. To accurately model the signal propagation, the
simulation parameters for the free-space path loss model are
derived from Long-Term Evolution (LTE) TR36.814 [55] and
802.11n 2.4 GHz. The transmit power of a BS is set at 20 dBm,
while it is 15 dBm for an AP. Additionally, Gaussian noise
with a variance level of 3 dB is added to the received power
for network interfaces. The positioning algorithm based on AP
and BS separately employs weighted nonlinear least squares
[42], and the resulting positions are subject to estimation error
with variances of 33 or 9 meters, as per [43], [56]. The
unavailability probability, Um, for pm(t) is set at 0.2 per t
for all m = 1, 2, ...,M , following a binomial distribution.
The spoofing attacks are provided in [1]. Its strategy consists
of (i) vulnerability profiling, where the attacker performs a
constant spoofing to GNSS with a small deviation, and (ii)
aggressive spoofing, where the attacker makes the deviation
grow exponentially after the receiver accepts the spoofed
position.
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2) Dataset B: GNSS receivers are embedded in Android
smartphones, which are Samsung Galaxy S9, Redmi 9, Google
Pixel 4 XL, and Google Pixel 8, shown in Fig. 5, and two u-
blox receivers as reference. The ground truth positions are
provided by precise kinematic positioning results from u-
blox ZED-F9P receivers using benign constellations and a
nearby GNSS reference station1. The (opportunistic) network
positions, GNSS positions, and IMU data are collected with
GNSSLogger. The Android LocationManager provides
access to multiple types of location services. It obtains 1 Hz
updates of GNSS positions, while network positioning results
are not at a fixed frequency and may update less frequently
than GNSS, typically 3 to 10 seconds between updates,
depending on the environment. The SensorManager stably
delivers linear acceleration, gyroscope, magnetometer, and
orientation at 100 Hz. Note that the u-blox receiver uses only
benign satellite constellations and an RTK reference station as
ground truth. The results presented later evaluate the detection
capabilities of PADS using Android smartphone standard
GNSS/Network/Sensors APIs while they were subjected to
spoofing attacks. The u-blox by itself is not a baseline method.
The GNSS position attacks involved both synchronous and
asynchronous spoofing [52]: stationary spoofing of small/large
position jumps, SBAS spoofing, simulated driving, flying
spoofing, as well as jamming. The attack equipment includes
cigarette-type jammers, handheld jammers, permanently in-
stalled jammers, BladeRF x115 mobile SDR spoofers, and
USRP X300 SDRs. Simulated GNSS signals corresponding to
5 predefined traces were transmitted using Skydel and USRP
X300 with an amplifier, including paths with small deviations
or jumping to another distant place2.

Since the attack gradually deviates GNSS positions from
the ground truth positions, we define a lower bound of attack
deviation, δd, for the ground truth detection results. Two types
of positions are close when there is no attack. If the distance
between GNSS and ground truth is larger than δd = 10 meters,
we classify this GNSS position as the result of an attack, as
our ground truth detection.

B. Baseline Methods

We consider the following four methods from related work
as baselines, including SOP, IMU-based, and both, which can
be implemented with the collected opportunistic information.

1) Signals of Opportunity (SOP, Baseline 1): [20] uses the
broadcast signals from the BSs and APs to validate GNSS.
It calculates weights w = [w1, w2, ..., wJ ] based on RSS,
where J is the number of BSs/APs, and the estimated mobile
platform position is the weighted centroid p̂c =

w·pbs
|w| , where

pbs ∈ RJ×2 is the concatenated coordinate of all BSs and
APs. If the distance of p̂c and the GNSS-provided position is
higher than a threshold, its outcome is “under attack”.

1ZED-F9P logs UBX files, and then we use RTKLIB tool to convert them
into RINEX files. The reference station with the code name “ANDE00NOR”
is located at Andøya island and logs RINEX files. The RINEX files con-
tain multiple constellations (Global Positioning System (GPS), GLONASS,
Galileo, and BeiDou) plus SBAS and QZSS satellites, with two frequencies,
so we use L1+L2, kinematic positioning mode, and benign constellations that
exclude GPS and Galileo in the RTKLIB post-processing tool.

2https://github.com/NPRA/jammertest-plan/blob/main/Testcatalog.pdf

2) Kalman Filter (KF, Baseline 2): [57] fuses IMU and
GNSS measurements, then we adapt it for IMU-based spoof-
ing detection [15], [16]. The filter estimates the position of
the mobile platform based on GNSS position and IMU. It
minimizes the error of observation and motion to recursively
get the mean and covariance matrix of the estimated position
p̂c(t). If the residual between p̂c(t) and GNSS position is
larger than a threshold, this method detects it as an attack.

3) Particle Filter (PF, Baseline 3): Similar to Kalman
filter, we use a simple particle filter for IMU-based spoofing
detection, which is based on the Markov Monte Carlo method
[58]. It generates particles uniformly around the initial position
and then calculates the error between particles and position
measurements. Then, the estimated position is a weighted sum
of the particles based on errors. In the detection phase, a
distance threshold-based detector is used for classification.

4) Combined Metrics (GLRT, Baseline 4): It follows the
generalized likelihood ratio test (GLRT) framework in [36].
Step 1 involves calculating detection metric logΛm =
− 1

2 ||p0 (t) − p̃m(t)||2Σm(t)−1 for m. Step 2 assumes these
detection metrics are statistically independent, and a likeli-
hood ratio function is used to combine them: logΛ1:M =∑M
m=1 logΛm. Step 3 tests logΛ1:M whether it is zero mean

(i.e., under H0) or non-zero (i.e., an attack, under H1).
Comparison includes three metrics: true positive rate, RTP,

detection time delay, ∆T , and the absolute error of recovered
position, µ. To perform a fair comparison between PADS
and the baseline methods, we assess three cases and PADS
variants: (i) exclusive utilization of network-based positioning
results (removing the constraints of (5), termed PADS-N), (ii)
sole reliance on onboard sensors (removing network positions
in (5), termed PADS-O), and (iii) combined usage of network
positions and onboard sensors (as (5), termed PADS-A).

C. Evaluation: True Positive Rate

We investigate RTP at different RFP to plot ROC curves3.
Our rolling window size is empirically set to w = 15 for
GNSS-provided and network-based positions, and we choose
κ = 1 in the kernel function Kloc.

PADS-N shares the same network conditions as Baseline 1.
As shown in Fig. 6, PADS-N exhibits a modest improvement,
at most 33%, when RFP < 15%. In Dataset A, it achieves
RTP of 81–96% when RFP is 5–15%, compared to 63–87%
for Baseline 1. In Dataset B, it achieves RTP of 36–54%
when RFP is 5–15%, similar to 33–57% for Baseline 1. When
RFP > 10%, PADS-N has at most 20% performance gain.
Furthermore, the performance with Dataset A is better than
that with B because network positions are much sparser and
noisier in Dataset B. In general, as RFP increases, RTP tends
to increase and converge for both PADS-N and SOP, both
methods detecting the attacks well and thus resisting gradual
deviation or position jumping spoofing.

PADS-O, KF (Baseline 2), and PF (Baseline 3) use GNSS
position, incorporating motion data from onboard sensors.

3All the work here is at the level of single-position detection, i.e., detecting
each GNSS position based on historical measurements of the trace. We did not
attempt to investigate whether a trace is under attack based on the spoofing
detections of the positions of the entire trace.
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Fig. 6. ROC curves for Dataset A (upper) and B (lower), i.e., RTP versus
RFP.

Fig. 6 illustrates RTP as a function of RFP. PADS-O and
Baseline 2 maintain relatively consistent and similar trends
of RTP. However, in both Dataset A and B, Baseline 2 and
Baseline 3 indicate relatively low RTP, even at higher RFP.
PADS-O outperforms them with at most a 44% RTP gain
in Dataset A and 23% in B, when RFP is 5–15%. This is
because the spoofed positions will influence the filters, while
the proposed scheme detects and screens the spoofed position
simultaneously. Furthermore, the regression in PADS-O can
not only deal with Gaussian noise but also general zero mean
noise, according to the least squares assumptions. Whenever
the noise is not zero mean, PADS-O detects it as an anomaly
caused by spoofing.

Compared to PADS-A, GLRT (Baseline 4) struggles due
to the absence of rolling window and motion-constrained
regression for position data, hindering the effective fusion of
heterogeneous data (i.e., positions, velocity, and acceleration).
When utilizing all available opportunistic information sources,
PADS-A consistently surpasses Baseline 4 across RFP.

When comparing PADS-N and PADS-A, incorporating IMU
results in a performance improvement of up to 7% with
Dataset A and 32% with Dataset B. IMU data is particularly
helpful when attack-induced position deviation grows fast. In
cases of subtle deviation changes, the effectiveness is relatively
low. PADS-A achieves higher RTP compared to PADS-N and
PADS-O, highlighting the performance gain resulting from
the fusion of network-based positioning results and onboard
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Fig. 7. ∆T versus RFP for Dataset A (upper) and B (lower).

sensor data. Considering PADS-O and other factors such as
cost, sensor availability, and system complexity, the filters—
Baseline 2 and Baseline 3—prove to be less effective com-
pared to PADS-N but are relatively easy to acquire. We also
observe that Baseline 2 and Baseline 3 perform much better
in Dataset B than in A. This is because Dataset B is collected
in a village without too many network infrastructures and the
network positions are very sparse, so network positions can not
produce high performance gain compared to onboard sensors.

D. Evaluation: Detection Time Delay

The detection time delay, ∆T , represents the duration
between the initiation of an attack and its detection. Given
the stealthy nature of spoofing attacks in GNSS traces, where
deviations from the actual position evolve, analyzing the time
delay in detecting such attacks is important. Our focus in
this context is on measuring ∆T , independent of computation
delays. This metric reflects how fast the schemes can identify
attacks, i.e., the sensitivity of the detection schemes. It is also
influenced by factors such as the rolling window size, which
will be investigated later.

Fig. 7 presents ∆T as a function of RFP for all three
cases, respectively. PADS-N exhibits performance curves with
similar shapes to Baseline 1 but mostly lower ∆T . We have
discovered that network-derived positions are inherently noisy,
and PADS-N possesses the capability to effectively smoothen
out this noise, resulting in a more accurate estimation of
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TABLE II
ABSOLUTE ERROR EVALUATION OF RECOVERED POSITION ACCURACY OVER DIFFERENT METHODS AND DATASETS.

Methods
Dataset A Dataset B

Mean Median Best 20% Worst 20% Mean Median Best 20% Worst 20%

PADS-N 2.45 1.57 0.48 3.77 243.82 30.90 8.48 260.36
PADS-O 11.43 2.02 0.59 5.00 276.61 35.87 9.32 350.17
PADS-A 2.92 1.87 0.83 4.22 260.61 35.62 9.31 345.05
SOP 5.87 4.80 2.42 8.85 544.91 298.14 283.60 655.61
KF 15.50 6.01 1.55 13.28 280.91 36.53 9.57 369.00
PF 64.11 24.11 6.92 81.96 266.64 48.52 9.00 275.06
GLRT 15.43 6.02 1.14 13.28 280.90 36.52 9.51 369.00

GNSS 30.21 22.33 13.74 41.41 370.53 169.93 17.34 479.69

the actual position. The improved accuracy, in turn, allows it
to detect spoofing and anomalies more quickly. Furthermore,
PADS-N demonstrates a more significant reduction in ∆T as
RFP increases to 15%, indicating a better trade-off between
false alarms and detection sensitivity.

PADS-O, KF (Baseline 2), and PF (Baseline 3) consistently
exhibit ∆T exceeding at most 5–12 seconds when RFP is 5–
15%, due to the necessity of updating posterior distributions
over sufficiently large time and accumulating deviation than
the detection threshold. Moreover, the filtering process is
influenced by the spoofed positions fed into the filter. In
contrast, PADS-O outperforms both Baseline 2 and Baseline
3 by data fitting with motion information constraints and
excluding spoofed positions before regression.

PADS-A showcases lower ∆T compared to GLRT (Baseline
4) and the aforementioned filter-based schemes at equivalent
RFP. It consistently exhibits faster detection times across dif-
ferent datasets and RFP. Additionally, PADS-A demonstrates
a more significant reduction in ∆T as RFP increases, high-
lighting its success in keeping a balance between minimizing
false alarms and reducing delay. Baseline 4 also performs
well, delivering competitive ∆T compared to other schemes,
especially at lower RFP < 5%.

When considering three cases in conjunction with others,
it is clear that better detection schemes and more precise
network-based position information contribute to lower ∆T .
A high RFP also leads to a low ∆T . Cases that give accurate
opportunistic information for making decisions are more likely
to catch spoofing attacks quickly. Conversely, methods that fail
to integrate this information tend to miss detections, resulting
in longer ∆T . The use of the detection for high RFP is at the
discretion of the method user, and we did not investigate how
to use several successive alarms under some high RFP.

E. Evaluation: Recovered Position Accuracy

The recovered position is defined as the mean of the
confidence intervals in (16). We consider all spoofed positions
and calculate the absolute error between the actual and the
recovered position. Table II showcases the worst 20% (i.e.,
20% of the errors are higher than this), best 20% (i.e., 20%
of the errors are lower than this particular), median, and mean
error of the distribution. The last row, GNSS, is the result of

positioning (p0 (t)) without any network signals and onboard
sensors, representing the raw spoofing distances. Baseline 1
has a relatively high worst 20% error compared to its mean
error, indicating a big fluctuation in its performance. Notably,
PADS-N demonstrates significantly lower error values than
Baseline 1, particularly in terms of the worst 20% error with
both datasets. While PADS-O has a much lower error, Baseline
3 also has a relatively good performance for the best 20% error.
Regarding the raw GNSS error during attacks, the average
distance is 30.21 meters in Dataset A and 370.53 meters in
Dataset B.

When considering the performance difference between
Dataset A and B, all four types of errors are much higher with
Dataset B than A. This is because the autonomous vehicle has
much more accurate onboard sensors and GNSS positioning
than the smartphones in the experiments. Also, autonomous
vehicles are used in the outdoor urban environment, whereas
smartphones are used in the village environment. As a result,
the former has higher-quality network positions than the latter.
Specifically, for the ratio of mean to median error, Dataset B is
much larger than A, which means that many spoofed positions
are not recovered, resulting in the mean being much larger
than the median. This can also be confirmed in the detection
accuracy of RFP and the worst 20% error. This is due to some
long-range absence of network positions in Dataset B, so these
spoofed positions are mostly not detected and recovered. We
also find the errors of filters and PADS-O are more similar in
Dataset B than A, which means smartphone IMU contributes
a lot in this experiment setting.

PADS has the lowest mean error, ranging from 19% to
98% of the mean absolute error (MAE) observed in other
methods, indicating better overall accuracy in estimation.
This notable accuracy is due to the effective combination
of various opportunistic information sources. While absolute
error is a critical metric, it is also important to consider other
related factors. They include consistency, reflecting whether
the position result is stable as dataset size or categories of
opportunistic information increase; variability, which denotes
the uncertainty size associated with the position result; and
specific application requirements, such as the types of sensors
available on the mobile platform.
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TABLE III
RTP UNDER DIFFERENT w AND κ VERSUS RFP .

RFP
w κ

5 10 15 20 25 30 35 0 0.5 1.0 1.5 2.0 2.5 3.0

5% 86.6% 90.3% 88.2% 89.0% 91.1% 91.3% 89.2% 55.4% 89.7% 88.2% 86.0% 85.5% 85.4% 86.0%
10% 98.9% 98.3% 98.7% 97.8% 96.8% 98.7% 97.8% 73.7% 98.9% 98.9% 97.8% 97.8% 97.8% 97.8%
15% 98.9% 98.9% 98.9% 98.9% 98.9% 99.8% 100% 84.9% 98.9% 98.9% 98.9% 98.9% 98.9% 98.9%
20% 98.9% 100% 100% 100% 100% 100% 100% 91.4% 100% 100% 99.5% 100% 100% 99.5%
25% 100% 100% 100% 100% 100% 100% 100% 91.4% 100% 100% 100% 100% 100% 100%

F. Effect of Rolling Window

We obtain some insights from the detection performance
for different choices of window size w and kernel parameter
κ in Sec. V-A. In this experiment, we use Dataset A, and the
settings are the same as the previous PADS-A, and RFP is 5–
25%, but w ranges from 5 to 35 samples and κ ranges from
0 to 3.0. The metrics for performance evaluation are the true
positive rate, RTP, shown in Table III.

Determining the appropriate w is a trade-off, as smaller
windows offer computational efficiency but potentially sacri-
fice detection accuracy. Conversely, larger window sizes may
lead to the processing of unnecessary historical data, resulting
in slower and less accurate detection. Moreover, assigning
weights to the data samples, which are controlled by κ in
the kernel function, is also important to make better use of
the historical data.
RTP in Table III reveals some rough “optimal” values for

w and κ, indicating that further increasing w or κ does not
significantly benefit detection performance. A small value of w
or κ leads to lower accuracy, whereas increasing them will also
increase RTP until they reach a sufficient size. This is because
an oversized rolling window includes unnecessary data and
gives too much weight, diminishing accuracy. RTP increases
as w increases, but the performance is stable after w ≥ 10. RTP
increases as κ increases, up until κ = 1.0. Beyond this point,
RTP starts to decrease again, as a value of κ ≥ 1.5 assigns
much higher weights to historical data, which can obscure the
current information. In terms of computational complexity, the
w directly influences the complexity, i.e., the bigger w comes
with the higher complexity, as explained in Sec. V-B. However,
the change of κ will not impact the complexity.

G. Discussion

PADS demonstrates much better performance compared to
baseline methods in Sec. VI due to its fusion of opportunistic
information over time and consideration of position corre-
lations. In most cases, by integrating data from all avail-
able sources, PADS-A naturally surpasses both PADS-N and
PADS-O variants in RTP and ∆T . Regarding the recovered
position accuracy, PADS-A is in the middle of PADS-N and
PADS-O. This highlights the difference between positioning
and spoofing detection; even if the MAE of the positioning
algorithm is excellent, it may not be good at detecting position
spoofing. Hence, each has its own focus, and designing a
detection-specific algorithm is important. Moreover, PADS-
A mitigates the impact of accumulated errors from onboard

sensors and one-time errors from network-based positioning,
addressing both long-term and short-term inaccuracies. By
incorporating uncertainty modeling (in Sec. V-B2), we get an
improved RTP compared to PADS without uncertainty.

Given that the proposed PADS can operate at a software
layer and does not rely on low-level hardware, its compatibility
with other signal-level or cryptographic anti-attack methods is
seamless. Incorporating this algorithm into existing consumer-
grade devices is easy, making it convenient for deployment
alongside other security measures to provide a multi-layer
defense. With positions and motion information as its only
inputs, both commonly available in consumer-grade mobile
platforms, the algorithm can opportunistically validate GNSS
positions whenever network-based positions are accessible,
providing a versatile and easily implementable solution for
GNSS attack detection. Also, the computational complexity of
PADS is adjustable, depending on the number of projection
vectors in the lightweight anomaly detector [25] and the
chosen window size in Algorithm 1.

VII. CONCLUSION

This paper presents an algorithmic framework for con-
structing confidence intervals for positions from opportunistic
information and integrates them to estimate the probability
of GNSS spoofing. It leverages both the motion dynam-
ics of the mobile platform and the statistical characteristics
of the positions. We employ a local polynomial regression
technique with motion constraints, which is mathematically
demonstrated to be convex for estimating and smoothing
the position. Then, using Gaussian process regression, we
capture the uncertainties inherent in position prediction and
combine them into a fused test statistic for an unsupervised
anomaly detector. The evaluation, based on both simulated
and real-world attack datasets collected on common mobile
platforms, shows significant improvements, including up to a
54% increase in the true positive rate. Specifically, when the
false positive rate is between 5% and 10%, we have a 7–48%
gain in the true positive rate.

APPENDIX A
PROOF OF THEOREM 1

Recall the problem formulation (5):

min
W

t∑
t′=t−w

[Wt′ − pm(t′)]TKloc(t
′ − t)[Wt′ − pm(t′)]

s.t. |p̂m(t)− p̃m(t)| ≤ ϵt
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where p̂m(t) = Wt and t is the vector [1, t, t2, ..., tn]T. W
contains the coefficients we need to find. The kernel Kloc(t

′−
t) assigns weights, and p̃m(t) is the motion-derived position
constraint.

To check for convexity, we take the second derivative of the
objective function with respect to W:

∇2fP(W) = 2

t′∑
t=t′−w

Kloc(t− t′) · (t′ · t′
T
)T ⊗ I

which is a positive definite matrix, as Kloc(t− t′) > 0 always
holds, and the matrix (t′ · t′T)T ⊗ I is positive semidefinite.
Thus, the objective function is convex. The constraints in (5)
are equivalent to{

Wt− p̃m(t) ≤ ϵt
Wt− p̃m(t) ≥ −ϵt

,∀t

which are the absolute difference between the fitted position
p̂m(t) = Wt and the motion-derived position p̃m(t), so
these are linear inequality constraints on W. The set of points
satisfying a system of linear inequalities forms a convex set.
Hence, (5) is a convex optimization problem. It is solvable
using Lagrange multipliers or the practical algorithms like
interior-point methods; thus, the estimator p̂m(t) can estimate
pm(t) in polynomial time.

APPENDIX B
PROOF OF THEOREM 2

Ordinary Gaussian process regression uses a linear unbiased
estimator for xm(t). We can use Lagrange multipliers to
extract the λi parameters from the optimization problem.

L(λ, µ) = V[x̂m(t)− xm(t)] + µ(

t−1∑
i=t−w

λi − 1)

= E[
t−1∑

i=t−w
λixm(i)− xm(t)]2 + µ(

t−1∑
i=t−w

λi − 1)

=

t−1∑
i=t−w

λiE[xm(i)− xm(t)]2

− 1

2

∑
i,j

λiλjE[xm(i)− xm(j)]2 + µ(

t−1∑
i=t−w

λi − 1)

where E[xm(i) − xm(t)]2 and E[xm(i) − xm(j)]2 are cal-
culated from a fixed covariance function K(xm(t),xm(t′)).
Then, we take the partial derivatives of L(λ, µ) and set them
to 0:

∂L(λ, µ)

∂λ
= 0 (18)

∂L(λ, µ)

∂µ
= 0 (19)

obtaining a system of w + 1 linear equations in the w + 1
unknowns (λ and µ). There exist several algorithms for
solving it, such as Gaussian elimination. The computational
complexity is dominated by the inversion or decomposition
of the (w + 1) × (w + 1) matrix, which takes approximately
O(w3) arithmetic operations.

APPENDIX C
PROOF OF THEOREM 3

Assuming independence among the random variables
Im(t), we consider the time slots from t − w to t, where
K(m, t) is determined by a kernel function to ensure that
K(m, t) from t−w to t sum to 1. Then, we use the moment-
generating function:

MIm(t)(s) = E[esIm(t)]. (20)

Recall that the weighted integral of Im(t) from t− w to t is

Z(m, t) =

∫ t

t−w
K(m, t′)Im(t′)dt′ (21)

practically utilized in discrete form:

Z(m, t) =

t∑
t′=t−w

K(m, t′)Im(t′). (22)

Its moment-generating function is

MZ(m,t) (s) = E
[
esZ(m,t)

]
= E

[
es

∑t
t′=t−w

K(m,t′)Im(t′)
]

=

t∏
t′=t−w

E
[
esK(m,t

′)Im(t′)
]

=

t∏
t′=t−w

MIm(t′) (K (m, t′) s) .

The moment-generating function of a Normal distribution,

N (µ, σ2), is given by exp(sµ+
1

2
σ2s2). Thus,

MZ(m,t) (s) =

t∏
t′=t−w

eK(m,t
′)p̂m(t′)s+ 1

2 [K(m,t
′)]

2
[σ̂m(t′)]2s2

= e
∑t

t′=t−w
K(m,t′)p̂m(t′)s+ 1

2

∑t
t′=t−w[K(m,t

′)]
2
[σ̂m(t′)]2s2 .

Z(m, t) follows a normal distribution,
N (
∑t
t′=t−wK (m, t′) p̂m(t′),

∑t
t′=t−w [K (m, t′)]

2
Σ̂m (t′)),

which means we compute the distribution Z(m, t) by taking
the weighted mean of distributions Im(t).

Let x ≜ p0(t), µ(m) ≜ µ (Z (m, t)), σ(m) ≜ σ (Z (m, t)),
and µ(0,1,...,M), σ(0,1,...,M) refer to the parameters of the
multiplied Gaussian functions. The multiplication of the first
two Gaussian functions, Λ0 (p0 (t))× Λ1 (p0 (t)) |H0, is

1∏
m=0

1

σ (Z (m, t))
φ

(
x− µ (Z (m, t))

σ (Z (m, t))

)

=

1∏
m=0

1

σ(m)
φ

(
x− µ(m)

σ(m)

)

=
1

2πσ2
(0)σ

2
(1)

exp

[
−
(x− µ(0))

2

2σ2
(0)

−
(x− µ(1))

2

2σ2
(1)

]

=
S(0,1)√
2πσ(0,1)

exp

[
−
(x− µ(0,1))

2

2σ2
(0,1)

]
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where φ (·) represents the standard normal PDF, S(0,1) is a
constant scaling value, 1

σ2
(0,1)

= 1
σ2
(0)

+ 1
σ2
(1)

and µ(0,1)

σ2
(0,1)

=
µ(0)

σ2
(0)

+
µ(1)

σ2
(1)

. Similarly, for mth Gaussian function, we have

1

σ2
(0,1,...,m)

=
1

σ2
(0,1,...,m−1)

+
1

σ2
(m)

µ(0,1,...,m)

σ2
(0,1,...,m)

=
µ(0,1,...,m−1)

σ2
(0,1,...,m−1)

+
µ(m)

σ2
(m)

This process can be extended to multiply M + 1 Gaussian
likelihoods. By mathematical induction, it follows that

1

σ2
≜

1

σ2
(0,1,...,M)

=
1

σ2
(0)

+
1

σ2
(1)

+ ...+
1

σ2
(M)

µ

σ2
≜
µ(0,1,...,M)

σ2
(0,1,...,M)

=
µ(0)

σ2
(0)

+
µ(1)

σ2
(1)

+ ...+
µ(M)

σ2
(M)

which is equivalent to (15) and (16). Note that the scaling
value

S =
(2π)−

M
2 σe(µ

2/σ2−
∑M

i=0 µ(Z(m,t))2/σ(Z(m,t))2)/2∏M
m=0 σ (Z (m, t))

2
(23)

and it will not change the optimum. Thus, it is feasible to
exclude this part from the calculation.
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