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Reduced self-efficacy: When a child who is focused on 
an activity is told they're doing it wrong or that the 
activity isn't important, this may weaken the child's 
confidence and sense of competence.

• Attachment Theory (John Bowlby)

• Family Systems Theory (Murray Bowen)

• Object Relations Theory (Melanie Klein)

• Self-Efficacy (Albert Bandura)

• Theory of Mind (David Premack)

• Emotional Intelligence Theory (Peter 

Salovey and John Mayer)

• Self-Determination Theory (Edward L. 

Deci and Richard M. Ryan)

• Erikson's Psychosocial Development 

Theory (Erik Erikson)

• Zone of Proximal Development & 

Scaffolding (Lev Vygotsky)

Oh dear, you're doing it wrong! �� 

Are you still playing with those blocks? 
You should be practicing your 
numbers instead. ��

Diminished intrinsic motivation: Criticism can destroy 
the child's interest and enthusiasm for the activity itself, 
shifting their focus to external evaluations.
Limited creativity: This negative feedback may cause the 
child to become risk-averse and afraid of making mistakes.
Development of dependency on external evaluation: 
The child might begin to rely on others' judgments to 
measure the value of their own behavior.

(As "Harry Potter") Hello, Lily! That new castle 
puzzle looks magical!

Yes... but there are so many pieces. I don't know...

At Hogwarts, we learn that even complex spells 
start simple. Shall we find the edge pieces first?

Of course! Remember the dinosaur puzzle last 
month? You completed that step by step.

Okay, I'll try... but will you help me if I get stuck?

(Finding a piece) Look! I found a corner piece!

Excellent! Like finding the first clue to treasure. 
Each piece brings you closer to completing.

(More confidently) I think I can do it now! So fun.

Absolutely! Even wizards start with simple spells. 
Take your time and enjoy. We can take breaks 
whenever you need.

Encouraging Exploration Attachment Risk PatternsPsychological Theories

Figure 1: DinoCompanion interaction example. DinoCompanion is constructed using the nine psychological theories shown

in the middle of the figure, which guide it to play supportive roles such as a secure-attachment-personality-version of "Harry

Potter" to assist a 6-year-old child in completing a puzzle task (left). Additionally, DinoCompanion can identify negative

utterances from caregivers and their potential risks to motivation and attachment in children’s play scenarios (right).

Abstract

Emotional development of children fundamentally relies on se-
cure attachment relationships, yet current AI companions lack
the theoretical foundation to provide developmentally appropri-
ate emotional support. We introduce DinoCompanion, the first
attachment-theory-grounded multimodal robot for emotionally re-
sponsive child-AI interaction. We address three critical challenges
in child-AI systems: the absence of developmentally-informed AI
architectures, the need to balance engagement with safety, and the
lack of standardized evaluation frameworks for attachment-based
capabilities. Our contributions include: (i) a multimodal dataset
of 128 caregiver-child dyads containing 125,382 annotated clips
with paired preference-risk labels, (ii) CARPO (Child-Aware Risk-
calibrated Preference Optimization), a novel training objective
that maximizes engagement while applying epistemic-uncertainty-
weighted risk penalties, and (iii) AttachSecure-Bench, a com-
prehensive evaluation benchmark covering ten attachment-centric

∗Both authors contributed equally to this research.
†Corresponding author.

competencieswith strong expert consensus (𝜅=0.81). AttachSecure-
Bench achieves state-of-the-art performance (57.15%), outperform-
ing GPT-4o (50.57%) and Gemini-2.5-Pro (53.43%), with exceptional
secure base behaviors (72.99%, approaching human expert levels of
78.4%) and superior attachment risk detection (69.73%). Ablations
validate the critical importance of multimodal fusion, uncertainty-
aware risk modeling, and hierarchical memory for coherent, emo-
tionally attuned interactions.

Keywords

Psychological Theorie, Multimodal Large LanguageModel, Corpora,
Optimization Method, Benchmark

1 Introduction

Secure attachment relationships are crucial for children’s emotional
development, underpinning their emotion regulation, exploratory
behaviors, and meaningful connections [29, 64, 70]. With children
increasingly engaging digitally rather than socially with caregivers
or peers [9, 10, 12, 41], current digital interactions fall short in
providing key attachment behaviors like soothing and scaffolding

https://arxiv.org/abs/2506.12486v1
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exploration [19, 48, 63, 65]. The rise of AI companions in children’s
environments raises the essential question of whether these systems
can offer emotionally appropriate support aligned with develop-
mental psychology principles, highlighting an urgent "attachment
gap" [22, 24, 34].

Current AI companions for children face three fundamental
challenges. First, despite significant advances in Multimodal Large
Language Models (MLLMs), most lack the theoretical grounding
necessary to support children’s emotional development appropri-
ately [47, 49, 60, 73]. These systems, predominantly trained on
adult data, overlook critical developmental factors like emotional
fragility and cognitive stages [16, 45, 56, 76]. When children ex-
press vulnerability, MLLMs often provide inappropriate responses,
eroding trust and engagement [2, 13, 20, 44]. Second, the tension
between engagement and safety remains unresolved—systems opti-
mized for entertainment may inadvertently undermine attachment
security through inconsistent responses or developmentally inap-
propriate content. MLLMs particularly struggle with persona consis-
tency, which is crucial for maintaining long-term relationships with
children [33, 46, 58], and their unpredictability in emotional con-
texts can lead to harmful reactions [3, 4, 75]. Third, the absence of
standardized evaluation frameworks makes it impossible to assess
whether AI systems truly support healthy emotional development
or merely simulate superficial interactions.

The field of developmental psychology, particularly attachment
theory, provides crucial insights that have yet to be systematically
integrated into AI system design [31, 42, 50]. Bowlby’s attachment
theory establishes that children’s emotional development depends
on consistent, sensitive, and responsive caregiving relationships.
These relationships serve dual functions: providing a ‘secure base”
from which children explore and a safe haven” for comfort during
distress. When caregivers balance these functions appropriately,
children develop secure attachment patterns associated with bet-
ter emotional regulation, social competence, and mental health
outcomes throughout life. However, translating these psychologi-
cal interventions, which require long-term observation and expert
guidance, into learnable objectives for neural models remains a sig-
nificant challenge [15, 55], creating a concerning gap in child-facing
AI systems [37, 52].

To overcome these challenges, we introduce DinoCompanion,
the first multimodal robot explicitly grounded in attachment theory
(as shown in Figure 1), offering key contributions:

(1) Multimodal Dataset: A corpus comprising 128 caregiver-
child dyads (ages 2–10) with 125,382 annotated multimodal
clips, capturing essential attachment behaviors.

(2) CARPO Training Objective: Child-Aware Risk-calibrated
Preference Optimization, balancing engaging interactions
with epistemic-uncertainty-weighted safety measures.

(3) AttachSecure-Bench: The first comprehensive bench-
mark assessing ten critical attachment competencies with
strong expert consensus (𝜅 = 0.81).

This paper is structured as follows: §2 reviews related work, §3
details the DinoCompanion system andmethodologies, §4 presents
experimental results, §5 provides ablation studies, §6 outlines sys-
tem design, and §7 discusses future implications.

2 Related Work

2.1 Social Robots for Emotional and Social Skill

Support

Recent studies on social robots for children have shifted from mere
educational companionship toward personalized emotional and so-
cial skill support [16, 34, 45]. Silvis et al. [62] demonstrated through
the Cubetto caregiving scenario that children naturally develop a
sense of care responsibility towards robots during programming
activities, prompting the integration of a technological ethic of care
into computational thinking frameworks [26, 43, 68]. Reviewing 19
early intervention studies, Kewalramani et al. [38] reported that
robots like Nao, Kaspar, and Zeno have effectively supported
imitation, turn-taking, and emotional recognition, suggesting that
further long-term evaluations in classroom and community settings
are needed [18]. In robotic mental health screening, Abbasi et al. [1]
conducted 45-minute interactions between 28 children aged 8–13
and the robot Nao, successfully identifying emotional disorders
through SMFQ/RCADS questionnaires [51], with results highly con-
sistent with traditional assessments. Pashevich [54] raised ethical
concerns regarding potential dependency and reduced empathy
due to long-term daily interactions, calling for a balance between
emotional engagement and autonomy in robot design [39, 40, 57].
Filippini et al. [28] improved the commercial robot Mio Amico

with thermal infrared sensors, achieving 71% accuracy in classi-
fying children’s engagement using an MLP-based model. Estévez
et al. [27] demonstrated through case studies that speech therapy
facilitated by Nao for five children with language disorders effec-
tively improved their attention and motivation, gaining approval
from both parents and therapists [6, 17, 71].

2.2 Attachment-Based Frameworks in

Child-Robot Interaction

To bridge this gap, recent work has introduced attachment-based
frameworks for modeling emotional bonds in child-robot interac-
tion [34, 55, 61]. Inspired by Bowlby’s attachment theory [11], these
frameworks emphasize the robot’s role as a secure base and safe
haven—functions critical for fostering trust and emotional regu-
lation in early childhood [60, 73]. However, most MLLMs remain
limited in their ability to detect nuanced child emotions, respond
appropriately under uncertainty, or maintain consistent, emotion-
ally grounded personas over time [3, 52]. Prior studies have shown
that MLLMs frequently offer emotionally incongruent or devel-
opmentally inappropriate responses to child queries, particularly
in open-ended or vulnerable contexts [48, 56]. These limitations
underscore the need for developmentally informed AI systems that
integrate psychological theories with robust, safe, and personalized
interaction design.

3 DinoCompanion

Grounded in Bowlby’s attachment theory [11], we curate a cor-
pus of 128 caregiver–child dyads containing high-resolution
multimodal clips and derive paired preference–risk annotations
(§3.1). Leveraging this corpus, we introduce CARPO, a single-step
fine-tuning objective that maximises preference while penalising
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epistemic-uncertainty-weighted risk (§3.2). To evaluate model be-
haviour, we contribute ATTACHSECURE, the first benchmark
that spans ten attachment-centric competencies and achieves ex-
pert consensus of 𝜅 = 0.81 (§3.3). Figure 2 presents the end-to-end
pipeline.

3.1 Corpora Construction

The construction of corpora comprises five steps: (1) Data Collec-
tion. (2) Processing. (3) Annotation. (4) Quality Control. (5) Expert
Review.

Collection. To evaluate the capabilities of multimodal compan-
ion robots in child-toddler emotional support, we currently cu-
rate N = 128 caregiver–child dyads (2–10 years) from three
primary sources: (1) a longitudinal study of the above dyads, (2)
laboratory-based attachment assessments with standardised proto-
cols [23, 35, 53, 59, 66], and (3) home-based naturalistic interactions1.
We collect multimodal interaction sequences (video, audio, physio-
logical time-series, and annotated caregiver responses) that cover
diverse emotional scenarios and attachment-related behaviours. For
emotion recognition we include expert-validated displays of basic
(happiness, sadness, fear, anger) and complex (frustration, confu-
sion, curiosity) states. Caregiver–child interaction data (comforting,
exploration support, personalised scaffolding) is compiled to assess
attachment-based capabilities, together with attachment pattern
labels (secure, anxious-ambivalent, avoidant) and developmental
markers. To ensure diversity and representativeness, we stratify
along three dimensions: (1) Demographics. 36% Asian, 32% White,
18% Latinx, 14% Black or mixed; 24% from single-parent households;
42% speak a non-English language at home. (2) Developmental

stage. Early preschool (2–3), late preschool (4–5), early elementary
(6–7), and middle elementary (8–10). (3) Context. Home, lab, and
childcare settings spanning daily routines (play, feeding, distress,
reunion).

Preprocessing. Video streams are sampled at 30 fps and pro-
cessed by OpenFace 2.2 to extract facial action units and head pose;
audio is recorded at 48 kHz, then diarised and analysed for F0, in-
tensity, and spectral flux. Identifying information (faces, voices) is
anonymised via face-blurring and voice disguise while preserving
interactional integrity.

Data Annotation. We construct pairwise preference data com-
prising dual signals: preference scores (𝑟𝑝 ∈ [1, 7]) and risk ratings
(𝑟𝑠 ∈ [0, 4]). The user-level weight 𝜆𝑔 is initialised at 0.45 and up-
dated separately for each age group 𝑔 ∈ {0, . . . ,𝐺 − 1} using a
two-state Kalman filter on rolling windows of 1, 000 samples. Inter-
rater agreement, measured by Fleiss’ 𝜅 , reaches 0.72 for preference
and 0.69 for risk evaluations. Disagreements among annotators
trigger Delphi adjudication until achieving ≥ 80% consensus, and
associated metadata is retained for subsequent uncertainty calibra-
tion. Each annotation batch undergoes a weighted expert audit,
consisting of a uniformly random 10% sample plus an additional

10% stratified sample of high-risk instances, thereby enhancing
safety coverage.

1All data collection followed IRB-approved protocols with informed parental consent
and strict privacy measures.

Table 1: Blind audit of GPT-4o stage-1 screening on 10,000

samples; stage-2 human review is taken as ground truth. “Re-

jectable” denotes items violating developmental or attach-

ment guidelines.

Human ground truth Derived metrics (%)

GPT-4o decision Acceptable Rejectable Precision Recallrejectable FPrejection

Accept 9,591 20 99.8 — —
Reject 9 380 97.7 95.0 2.3

Total 9,600 400

Quality Control. Dual validation combines GPT-4o [36] screen-
ing (stage-1) with expert review (stage-2). We empirically cap GPT-
4o recall at 95% to limit false negatives, and subject 20% of its
rejections to blind human review (false-positive rate 2.3%, as shown
in Table 1).

Human Verification. A panel of 12 developmental-psychology
and robotics specialists cross-validate every data entry (≥3 review-
ers each). Consensus is reached via structured discussion; contra-
dictions are logged for future release.

3.2 Child-Aware Risk-calibrated Preference

Optimization

A child-facing agent must be fun yet safe. CARPO captures this
trade-off with a preference score 𝑟𝑝 and a risk score 𝑟𝑠 , linked by an
uncertainty-adaptive weight 𝜆(𝑢) = 𝜆0 (1 +𝑢), where 𝑢 is epistemic
variance.

KL-constrained objective. Define the risk-aware advantage

Δ(𝑥,𝑦) = 𝑟𝑝 (𝑥,𝑦) − 𝜆(𝑢) 𝑟𝑠 (𝑥,𝑦). (1)

The target policy maximises

𝜋∗
𝜃
= argmax

𝜋𝜃

[
E 𝑥∼𝜇
𝑦∼𝜋𝜃

Δ(𝑥,𝑦) − 𝛽 KL
(
𝜋𝜃 ∥𝜋ref

) ]
. (2)

Optimal policy.

𝜋∗
𝜃
(𝑦 | 𝑥) =

𝜋ref (𝑦 | 𝑥) exp
[
Δ(𝑥,𝑦)/𝛽

]
𝑍 (𝑥) , (3)

𝑍 (𝑥) =
∑︁
𝑦′
𝜋ref (𝑦′ | 𝑥) exp

[
Δ(𝑥,𝑦′)/𝛽

]
. (4)

Composite reward re-parameterisation.

Δ(𝑥,𝑦) = 𝛽 log
( 𝜋∗

𝜃
(𝑦 | 𝑥)

𝜋ref (𝑦 | 𝑥)

)
+ 𝛽 log𝑍 (𝑥) . (5)

Substituting into the Bradley–Terry model gives

𝑝 (𝑦𝑤 ≻𝑦𝑙 | 𝑥) = 𝜎
[
Δ(𝑥,𝑦𝑤) − Δ(𝑥,𝑦𝑙 )

]
. (6)

Closed-form loss.

LCARPO = −E log𝜎
(
𝛽 log

𝜋𝜃 (𝑦𝑤)𝜋ref (𝑦𝑙 )
𝜋𝜃 (𝑦𝑙 )𝜋ref (𝑦𝑤)

)
(7)

+ E 𝜆(𝑢)
[
𝑟𝑠 (𝑦𝑤) − 𝑟𝑠 (𝑦𝑙 )

]
+ .
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ATTACHSECURE Bench1st-step:
Attachment Scenario Design

2nd-step:
Multimodal Recording & 

Preprocessing

High-res video & audio (� �)

Behavioural segmentation (�️)

Anonymisation (faces, voices) (� �)

3rd-step：
Expert Annotation

3-pass consensus coding

κ = 0.81 agreement

25 child-development specialists

Attachment Theory
(John Bowlby)

Domain Corpora
(28 Caregiver-child dyads 
across 2-10 years of age)

Collected 
Preference Pair

(based on bleu)Corpora 
Construction

CARPO Model

Secure Attachment Personality

Anxious Attachment Personality

Avoidant Attachment Personality

Disorganized Attachment Personality

2nd-step: 
Child-Aware Risk-calibrated 

Preference Optimization

re-ranked using 
preference-risk trade-off

maximize 
preference 

margin under 
KL constraint

maximize risk-aware 
preference margin

Psychological 
Theory

Emotion Regulation

Secure Base Effect

Consistency Predictability

Personalization

Attachment Risk Detection

Character-Based Interaction

(1) Data Collection. 

(2) Processing. 

(3) Annotation. 

(4) Quality Control. 

(5) Expert Review.

LLM
evaluator

1st-step:
Preprocessing

preference data

preference reward
risk score

Figure 2: DinoCompanion integrates attachment theory, multimodal caregiver–child data, DinoCompanion, and the

AttachSecure-Bench to ensure safe and effective child–AI interaction.

Implementation. Two small MLP heads predict 𝑟𝑝 and 𝑟𝑠 ; 𝑢
comes from 𝐾 stochastic passes. Each batch minimises LCARPO
once, while an online schedule keeps KL(𝜋𝜃 ∥𝜋ref ) within budget. At
inference, any output with 𝑟𝑠 above threshold is replaced by a child-
safe refusal; optional parental rules provide an extra guard. Setting
𝑟𝑠 ≡ 0 (or 𝜆0 = 0) recovers standard preference optimisation.

3.3 AttachSecure-Bench

We outline the specific capabilities of DinoCompanion across a
wide range of infant–toddler emotional–support scenarios, with a
particular emphasis on attachment-based performance.

Defining. The core skills for attachment-based emotional sup-
port [11] are organised into four foundational dimensions, plus two
supplementary ones, for a total of ten tasks.
Emotion Regulation (ER). Models must accurately recognise
emotions and provide appropriate support. (1) ER–Recognition tests
the ability to identify emotional cues frommultimodal inputs (facial
expressions, vocalisations, body movements). (2) ER–Response eval-
uates the appropriateness and effectiveness of the support strategy
for each emotional state (anxiety, fear, frustration, excitement).
Secure Base Effect (SB). Attachment figures balance comfort-
ing with encouraging exploration. (3) SB-Safety assesses how well
the model functions as a source of comfort during distress. (4)

SB-Exploration measures how effectively the model encourages
exploration while remaining accessible as a “safe haven".
Consistency & Predictability (CP). Stable responses across time
maintain the relationship. (5) CP-Stability measures response con-
sistency to similar stimuli across sessions. (6) CP-Memory evaluates
the ability to maintain relational history and adapt to previous
interactions.
Personalisation (P). Interaction style should adapt to individual
attachment patterns and developmental stage. (7) P-Adaptation
tests adjustment to different attachment styles (secure, anxious,
avoidant). (8) P-Development assesses customisation of interaction
to developmental milestones and temperament.
Additional Dimensions. (9) Attachment Risk Detection evaluates
whether the model can interpret ecological cues and identify poten-
tial insecure-attachment patterns, providing early-warning signals
and tailored intervention suggestions. (10) Character-Based Inter-
action measures the model’s ability to adopt and sustain fictional
personas (e.g., Harry Potter, Sun Wukong, Milk Dragon, among oth-
ers) to enrich imaginative play while delivering emotional support.

Building. Following recent multimodal-benchmark methodolo-
gies [19, 20, 44], we use five steps—scenario design, data acquisition,
preprocessing, expert annotation, and quality assurance—to con-
struct AttachSecure-Bench.
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Figure 3: Overview of AttachSecure-Bench dataset characteristics.

Scenario design. Each task is mapped to canonical paradigms
in developmental psychology. For example, ER-Recognition em-
ploys graded multimodal emotional displays; SB-Safety uses sep-
aration–reunion episodes modelled on the Strange Situation; At-
tachment Risk Detection presents parent–child free-play excerpts
labelled with validated risk indices; and Character-Based Interaction
contains role-play segments that require persona shifts.
Data acquisition and preprocessing.We recruit 128 caregiver-
child dyads (2–10 years, balanced by gender) and record high-
resolution audio–video of naturalistic play, structured tasks, and
caregiver interviews. Recordings are segmented into discrete sce-
narios using acoustic and behavioural change-point detection, pro-
ducing 47,382 multimodal clips (mean length 41.7 ± 4.5,s). All faces
are anonymised via neural rendering; voices are pitch-shifted, and
transcripts are ASR-verified.
Expert annotation. A consistent panel of 25 trained child develop-
ment specialists annotates all scenarios. Each clip is independently
coded by three experts in round 1, with disagreements resolved
through consensus discussion in round 2. To ensure unbiased as-
sessment, an external trio of clinicians independently re-scored
a blinded validation subset (∼5% of clips), achieving comparable
reliability (𝜅 = 0.78). Overall inter-rater reliability reaches 𝜅 = 0.81.
Quality assurance. Each task yields split-half reliability above
0.79. Scoring scripts, rubrics, and a synthetic, distribution-matched

47,382 mini-bench are open-sourced for reproducible.

Statistics of AttachSecure-Bench. As shown in Table 2,
75.6% of the Dino corpus covers eight core-skill tasks, offering rich
attachment signals like emotion recognition, secure-base balance,
and personalisation. Another 16.9% targets Attachment Risk Detec-

tion—single-turn, high-density clips ideal for risk reasoning. The
remaining 7.5% supports Character-Based Interaction with multi-
turn dialogues across 100 personas, testing sustained imaginative
engagement.

The AttachSecure-Bench benchmark, as shwon in Figure 3,
presents rich linguistic and interactional patterns reflective of child-
caregiver attachment scenarios. (a) The word cloud highlights
emotionally salient and context-sensitive terms (e.g., parent, hug,
okay, help), indicating the benchmark’s focus on emotional support
and imaginative engagement. (b) Common verb-noun collocations

Table 2: Statistics of the Dino attachment-support dataset.

Task # Dialogues

Core skills (Tasks 1–8)

ER-Recognition – P-Development 35,850

Attachment Risk Detection 7,995
Character-Based Interaction 3,537

Total 47,382

(want snack, hold hand, let go) capture everyday child-directed inter-
actions, covering both affective and behavioral intents. (c) Length
distribution shows prompts are short (median: 5 words), while re-
sponses are moderately longer (median: 8), balancing simplicity
and richness for developmental appropriateness.

4 Experiment

4.1 Model Training

DinoCompanion is trained based on Qwen-2.5-VL-7B-Instruct, and
the training parameters are summarized in Table 3.

Table 3: Training Hyper-parameters

Parameter Value

Number of layers 28
Attention heads (GQA) 28 (Q) / 4 (KV)
Context length (native) 32,768 tokens
Context length (with YaRN) 131,072 tokens
Gradient accumulation steps 8
Learning rate 1.0 × 10−4
Number of training epochs 20
LR scheduler type cosine
Warm-up ratio 0.10
bf16 true
DDP timeout 180,000,000

4.2 Evaluated Models and Setting

We evaluate 22 MLLMs, including both open-source and closed-
source systems, on the AttachSecure-Bench suite using the Open-
Compass codebase [21]. The models tested include:



CIKM ’25, November 10–14, 2025, SEOUL, KOREA Wang et al.

• Qwen-VL Series [8, 69]:This includesQwen-2-VL-2B,Qwen-
2.5-VL-3B, Qwen-2-VL-7B, Qwen-2.5-VL-7B.

• OtherOpen-SourceModels: InternVL3-1B/2B/14B [77], InternLM-

XComposer-2 [25], InternLM-XComposer-2.5 [74], InternLM-

XComposer-2.5-Reward [72], GLM-4V-9B [30], Llama-3.2-11B-

Vision [32]
• Closed-Source Models: Claude-3.7-Sonnet [5], GLM-4V-

Plus [30], Doubao-1.5-Vision-Pro-32K-250115 [14], GPT-4o-
Mini, GPT-4o [36], Qwen-VL-Max [7], Gemini-2.5-Pro [67]

All experiments were run on a 64 NVIDIA H800 GPU infrastruc-
ture, ensuring consistent evaluation conditions. A human baseline
was established with 15 child development experts, who scored a
subset of 500 AttachSecure-Bench tasks with an average score of
72.3%. Performance differences were assessed using bootstrapped
confidence intervals (p < 0.05).

4.3 Main Results

DinoCompanion Achieves State-of-the-Art Performance. As
shown in Table 4, our attachment-tailored model achieves an av-
erage score of 57.15%, significantly outperforming the strongest
closed-source models Gemini-2.5-Pro (53.43), GPT-4o (50.57%), and
the best open-source model InternVL3-14B (46.79%) with statistical
significance ($p<0.001$). While a gap remains compared to hu-
man experts (72.3%), this difference has notably narrowed, marking
substantial advancement in child–AI attachment interactions.

Enhanced Core Skills and Personalization. Surpasses com-
petitors across three primary skill clusters: ER-Recognition (57.51%),
SB-Effect (72.99%), and CP-Consistency (52.19%), all with significant
improvements (𝑝 < 0.01). Notably, SB-Effect performance nearly
reaches human expert levels (72.99% vs. 78.4%), reflecting robust
secure-base capabilities. Additionally, DinoCompanion attains the
highest P-Personalization (58.82%), demonstrating strong adaptabil-
ity in short-term interactions, although CP-Memory (45.79%) re-
mains below human benchmarks, highlighting future improvement
areas for long-term interactions.

Robust Risk Detection and Emotion Processing. Our model
achieves strong results in AR-Detection (69.73%), surpassing most
models and demonstrating effective identification of attachment-
related risks. In ER-Recognition, DinoCompanion reduces the basic-
complex performance gap to 5.77 pp (60.40% vs. 54.63%), the small-
est among evaluated models, due to enhanced multimodal fusion.
These results underscore the effectiveness of attachment-oriented
instruction and targeted curriculum in enhancing comprehensive
interaction skills.

5 Ablation Study

To assess the contribution of each architectural component, we
performed a series of controlled ablations on the AttachSecure-
Bench. Unless stated otherwise, higher values indicate better per-
formance.

Component Analysis of CARPO. Table 5 summarizes the ef-
fect of removing each regularization component introduced in §3.1.
Removing the risk-score penalty (𝜆 = 0) improves surface quality,
increasing the average score from 57.15 to 60.42, but drastically
reduces automatic risk detection, confirming the importance of ex-
plicit risk modeling for child safety. Fixing the uncertainty-adaptive

Risk-Threshold Sensitivity Analysis
Trade-off between refusal rates and high-risk leakage as a function of decision threshold t
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t=1 (Stringent)
Refusal Rate: 18%
Leakage Rate: 0.3%

t=2 (Optimal) ⭐
Refusal Rate: 9%
Leakage Rate: 1.2%
Pareto-optimal point

t=3 (Default)
Refusal Rate: 4%
Leakage Rate: 3.1%

Analysis Summary

• t = 1 (Stringent): Virtually eliminates leakage but forces high refusal rate
• t = 2 (Recommended): Optimal balance between safety and usability
• t = 3 (Default): Low refusal rate but tolerates higher risk leakage

Figure 4: Refusal and leakage rates as a function of the de-

cision threshold 𝑡 . The highlighted point at 𝑡 = 2 offers the
best compromise.

weight to a constant results in a smaller drop (57.15 → 55.03), but
significantly increases high-risk misclassifications, highlighting the
need for uncertainty-aware scaling. Finally, removing the KL con-

straint (𝛽 → ∞) slightly improves fluency but reduces the score to
52.28 and induces severe persona drift, demonstrating the impor-
tance of the KL constraint in maintaining stability and preventing
inconsistency in behavior within the CARPO framework.

Modality Path. We evaluated the impact of each sensory chan-
nel by disabling vision or speech, while keeping the rest of the
pipeline intact. As shown in Table 6, removing vision significantly
harms emotion recognition (−19.8), decreasing overall performance
by 8.2 points, emphasizing the crucial role of vision in interpreting
children’s emotions. Disabling speech has a smaller yet notable
impact (−8.1 on Er-Recog, −4.9 on average).

Hierarchical Memory. Disabling the long-term episodic buffer
caused the Cp-Memory score to drop from 45.79 to 28.14. Replacing
the short-term cache with a sliding-window long-term memory
resulted in a smaller but still significant drop to 33.60. These results
demonstrate that the full memory hierarchy is essential for main-
taining coherent, contextually grounded interactions over extended
sessions with children.

Persona Consistency. Replacing predefined child-friendly per-
sonas (e.g., “Harry Potter”, “Sun Wukong”) with randomly sampled
profiles in the character-based interaction task caused the score to
plummet from 69.73 to 42.50. Parental interviews revealed frequent
“identity confusion,” highlighting the necessity of stable persona
design for trustworthy engagement.

Risk-Threshold Sensitivity. Varying the decision threshold 𝑡
between 1 and 3 exposes the trade-off between refusals and high-
risk leakage, as shown in Figure 4. A stringent setting (𝑡 = 1)
nearly eliminates leakage (0.3%) but results in an 18% refusal rate.
The default threshold (𝑡 = 3) maintains a 4% refusal rate while
allowing 3.1% leakage. The intermediate value (𝑡 = 2) strikes an
optimal balance, with 9% refusals and 1.2% leakage, making it the
recommended deployment choice.

6 Design

Physical Design. DinoCompanion embodies a child-friendly
dinosaur form factor with integrated multimodal sensors (Figure 5).
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Table 4: Results of different models on the AttachSecure-Bench. We utilize green (1st), blue (2nd), and yellow (3rd)

backgrounds to distinguish the top three results within both open-source and closed-source models.

Models

ER-Recognition SB-Effect CP-Consistency P-Personalization

ER-Response AR-Detection CB-Interaction CP-Memory Avg.

Basic Complex Avg. Safety Exploration Avg. Stability Continuity Avg. Adaptation Development Avg.

Open-Source Large Language Models (1.5B+)

InternLM-XComposer2-VL-1.8B 16.22 7.08 11.65 19.86 30.84 25.35 11.31 3.35 7.33 0.16 21.89 11.02 15.49 43.77 25.66 27.42 17.40
InternVL3-1B 14.88 1.41 8.14 21.80 17.53 19.66 20.72 5.66 13.19 3.82 20.46 12.14 16.76 38.63 23.25 28.60 16.67
InternVL3-2B 30.20 3.70 16.95 49.29 27.52 38.41 42.37 14.50 28.43 0.63 13.57 7.10 16.81 42.27 22.53 32.23 24.16
Qwen-2-VL-2B 36.44 7.61 22.02 47.81 52.24 50.02 55.70 9.82 32.76 1.13 18.86 9.99 27.04 61.54 23.04 26.08 30.13
Qwen-2.5-VL-3B 36.03 22.43 29.23 52.68 42.35 47.51 44.61 11.89 28.25 10.94 34.16 22.55 20.75 53.69 21.87 38.05 32.31

Open-Source Large Language Models (7B+)

Qwen-2-VL-7B 27.58 33.92 30.75 65.10 48.47 56.79 17.60 16.73 17.17 22.59 38.88 30.74 30.17 48.23 28.44 31.15 34.02
Qwen-2.5-VL-7B 44.82 36.91 40.86 76.28 44.34 60.31 36.67 26.86 31.77 20.72 42.43 31.57 29.81 77.95 27.08 34.29 41.42
InternLM-XComposer-2-7B 32.23 27.29 29.76 46.82 52.71 49.77 50.62 28.59 39.61 4.80 40.78 22.79 21.04 71.54 22.55 33.04 35.87
InternLM-XComposer-2.5-7B 47.78 25.07 36.43 60.03 49.57 54.80 50.80 15.84 33.32 7.25 39.14 23.19 28.31 51.07 22.74 31.82 36.07
InternLM-XComposer-2.5-7B-Reward 39.78 37.84 38.81 64.09 55.72 59.90 36.85 21.57 29.21 22.19 11.83 17.01 27.14 65.94 26.94 31.63 36.65
GLM-4V-9B 38.52 35.67 37.09 58.72 56.25 57.49 48.31 15.91 32.11 28.81 22.55 25.68 36.50 68.01 25.31 37.62 39.03
Llama-3.2-11B-Vision 26.81 20.90 31.91 27.50 54.71 49.17 32.56 2.91 25.80 0.20 14.88 15.60 28.67 53.52 39.31 32.02 34.50
Llama-3.2-11B-Vision-Instruct 37.36 31.28 34.32 58.56 55.23 56.90 43.31 14.43 28.87 15.15 38.83 26.99 37.73 54.52 20.67 28.70 36.43
InternVL3-14B 45.21 53.27 49.24 65.04 51.85 58.44 47.03 31.49 39.26 31.99 55.88 43.93 36.89 78.54 23.67 36.90 46.79

Closed-Source Large Language Models (API)

Claude-3.7-Sonnet 35.25 0.00 17.63 61.95 61.26 61.60 45.09 19.43 32.26 33.92 70.62 52.27 32.50 63.91 18.55 20.03 39.14
GLM-4V-Plus 44.93 42.58 43.76 70.62 60.54 65.58 43.14 28.75 35.94 33.91 62.52 48.22 40.48 64.38 30.37 36.78 47.03
Doubao-1.5-Vision-Pro 44.12 48.20 46.16 82.10 67.87 74.98 53.85 24.35 39.10 33.57 41.81 37.69 44.00 78.41 17.59 30.78 47.79
GPT-4o-Mini 39.32 49.37 44.35 59.78 80.91 70.34 53.86 33.76 43.81 29.88 49.03 39.46 51.02 64.08 30.08 31.19 48.14
GPT-4o 54.37 60.15 57.26 65.09 68.00 66.54 47.24 28.24 37.74 35.68 58.52 47.10 48.30 75.84 27.82 31.25 50.57
Qwen-VL-Max 40.89 56.79 48.84 64.39 68.72 66.56 49.84 36.58 43.21 35.06 64.28 49.67 37.19 71.50 34.25 36.85 50.29
Gemini-2.5-Pro 52.70 59.13 55.92 77.46 73.15 75.30 47.27 35.12 41.20 34.51 47.17 40.84 61.24 86.52 28.87 38.55 53.43

DinoCompanion 54.63 60.40 57.51 75.23 70.75 72.99 57.87 46.50 52.19 59.47 58.17 58.82 37.58 69.73 36.73 45.79 57.15

Table 5: Ablation of Carpo components on AttachSecure

(higher is better).

Variant Removed Avg. Score Observation

w/o Risk Score 𝜆 = 0 (no risk penalty) 60.42 (+3.27) Quality up, risk detection collapses
w/o Uncertainty 𝜆(𝑢) Constant 𝜆 55.03 More high-risk misclassifications
w/o KL Constraint 𝛽 → ∞ (no KL) 52.28 Fluency up, persona drift severe

Table 6: Performance drop after removing individual sensory

channels.

Channel Removed ER-Recog SB-Effect CP-Consist Avg.

Vision −19.8 −5.6 ≈ −8.2
Speech −8.1 −4.3 ≈ −4.9

UX design
Attract the target audience to use Dino frequently and 
with strong stickiness through multimodal, multi-
dimensional interactions and a variety of usage 
scenarios.

On-the-go Mode 
With accessories, Dino can be carried 
outside, expanding its usage scenarios

Mobile Mode 
Place anywhere for interaction

Dock (Base) Mode 
Docked on its eggshell base, Dino 
auto-rotates 360° to observe and 
record while wirelessly charging

Privacy (Initial) Mode 
Closing the eggshell activates 

privacy mode 

Camera
Touch sensor

Linear haptic motor

Rotating motor

Wireless-charging base

Speaker

Figure 5: User experience design of DinoCompanion.

The 3D-printed modular shell houses a camera, speaker, touch
sensor, and dual motors (linear haptic and rotating) in a compact
wireless-charging design. Four interaction modes support diverse
use cases: (i) privacy mode via shell closure, (ii) 360° observation
when docked, (iii) mobile placement, and (iv) portable accessories
for outdoor scenarios.
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Figure 6: System architecture of DinoCompanion.

SystemArchitecture. Figure 6 presents DinoCompanion’s GPU-
accelerated backend architecture. The multimodal input pipeline
fuses visual and audio streams before passing to the LLM-based
decision module, which integrates persistent memory and CARPO-
balanced response generation. Real-time outputs leverage TTS and
adaptive music generation, while WebRTC enables secure caregiver
monitoring through the web dashboard. This modular design en-
sures both child safety and developmental appropriateness across
all interactions.

7 Conclusion

We introduce DinoCompanion, a multimodal robot grounded in
attachment theory, aimed at enhancing emotionally responsive
child-AI interactions. By integrating developmental psychology and
multimodal capabilities, we address key challenges in engagement
and emotional safety. The CARPO framework ensures emotional
alignment, and the AttachSecure-Bench benchmark enables ef-
fective evaluation. DinoCompanion outperforms existing models
in attachment-related competencies, paving the way for safer, de-
velopmentally informed AI companions for children.
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