
An Efficient Hardware Implementation of Elliptic Curve
Point Multiplication over GF (𝟐𝒎) on FPGA

Ruby Kumari1, 2 [0000-0003-4739-2198], Tapas Rout2 [0009-0005-8331-7218], Babul Saini2 [0009-0003-

4834-7441], Jai Gopal Pandey1, 2 [0000-0001-9937-7438] and Abhijit Karmakar1, 2 [0000-0002-4681-1998]

1Academy of Scientific & Innovative Research (AcSIR), CSIR-CEERI Campus
2 CSIR – Central Electronics Engineering Research Institute, Pilani, India

ruby.ceeri20a@acsir.res.in,tapasrout.riscv@outlook.com,

babulsaini42@gmail.com,jai@ceeri.res.in,

abhijit@ceeri.res.in

Abstract. Elliptic Curve Cryptography (ECC) is widely accepted for ensuring

secure data exchange between resource-limited IoT devices. The National Insti-

tute of Standards and Technology (NIST) recommended implementation, such as

B-163, is particularly well-suited for Internet of Things (IoT) applications. Here,

Elliptic Curve Point Multiplication (ECPM) is the most time-critical and re-

source-intensive operation due to the finite field multiplier. This paper proposes

a new implementation method of finite field multiplication using a hybrid Kar-

atsuba multiplier, which achieves a significant improvement in computation time

while maintaining a reasonable area footprint. The proposed multiplier, along

with a finite field adder, squarer, and extended Euclidean inversion circuit, is

used to implement an architecture for ECPM using the Montgomery algorithm.

The architecture is evaluated for GF (2163) on the Xilinx Virtex-7, FPGA plat-

form, achieving a maximum frequency of 213 MHz and occupying 14195 Look-

up Tables (LUTs). The results demonstrate a significant speedup in computation

time and overall performance compared to other reported designs.

Keywords: Cryptography, ECC, Finite field, Modular arithmetic, ECPM, Kar-

atsuba Multiplier, FPGA.

1 Introduction

In present-day electronic systems cryptography has become vital to data communica-

tion for applications such as smartphones, web-based banking, personal digital assis-

tants, and smart cards. It ensures the confidentiality, integrity, and authenticity of data,

protects against unauthorized access and tempering, and enables the establishment of

secure communication channels and shared secret keys [1], [2]. Recently, Elliptic Curve

Cryptography (ECC) has proved to be a powerful cryptography approach that generates

security between key pairs for public key encryption by using the mathematics of ellip-

tic curves. It is an asymmetric cryptographic system that provides equivalent security

to the well-known RSA cipher [3]. In the current era, wireless networks facilitate com-

munication between billions of devices. However, the open and unsecured nature of the

internet architecture poses a significant risk of eavesdropping on private and confiden-

tial information.

mailto:ruby.ceeri20a@acsir.res.in
mailto:tapasrout.riscv@outlook.com
mailto:babulsaini42@gmail.com,jai@ceeri.res.in

2

 ECC is gaining popularity as it provides similar security to conventional RSA, with
smaller key lengths [4], [5]. For example, 163-bit ECC is similar to 1024-bit RSA [6],
[7], [8]. The ECC algorithm can be modelled in C language as in [9]. The features of
ECC algorithm make it suitable for applications in resource-constrained environments.
The use of Field-Programmable Gate Array (FPGA) [5] technology for hardware imple-
mentation of ECC is justified by the performance and cost efficiency of today’s FPGA
devices [5], as well as the ability of FPGA devices to easily update the cryptographic
algorithms [8]. The compute-intensive components are identified for their hardware im-
plementations by using residue number system (RNS) and projective coordinates.

 In elliptic curve cryptosystems, the fundamental operation is point multiplication
𝑄 = 𝑘𝑃, which resembles the multiplication of an elliptic curve point P by a scalar in-
teger k to provide the resulting point Q [10]. The point multiplication is performed by
calculating a series of point additions and point doublings [1] on the finite fields closed
under prime or irreducible polynomials; hence, requiring modular operations. ECC point
multiplication is a complex operation involving finite field multiplication, squaring, ad-
dition, and inversion. The performance and efficiency of the system rely significantly on
the characteristics of the finite field multiplier, especially for its area and delay. As a
result, researchers have developed various algorithms and architectures with the goal of
achieving rapid and effective finite field multiplication.

 For realizing finite field multiplication, the conventional Polynomial Algorithm [11]
and Karatsuba Algorithm [12] are the most commonly used. Polynomial Algorithm has
area efficiency and lower critical delay, particularly for lower bit sizes. However, as the
bit sizes increase, the Karatsuba Algorithm offers greater efficiency in terms of area uti-
lization, albeit at the expense of a higher critical path delay. This trade-off poses a chal-
lenge when seeking an optimal solution for larger bit sizes.

 To address this challenge, our paper introduces a hybrid version of Karatsuba multi-
plier that leverages small bit sized Polynomial multipliers as building blocks to construct
Karatsuba multipliers with larger bit size. By striking a balance between area and delay,
this hybrid multiplier architecture effectively mitigates the aforementioned trade-off and
provides an improved solution for elliptic curve point multiplication, particularly for
larger bit sizes.

 The proposed architecture for Elliptic Curve Point Multiplication (ECPM) integrates
the aforementioned hybrid Karatsuba multiplier with a finite field adder, squarer, and
Extended Euclidean inversion circuit [13]. The Extended Euclidean inversion algorithm
performs inversion in the least number of cycles, while the squaring circuit is based on
pre-computed equations and implemented using only XOR gates [14]. This makes the
squaring circuit faster and more area-efficient than implementing the squaring operation
using a multiplier circuit. The proposed architecture is evaluated in terms of area and

time complexities for GF (2163) on the Xilinx Virtex-7 FPGA platform and compared
against existing architectures in the literature.

2 Background

2.1 ECC Point Multiplication by Montgomery Method

Miller [15], [16], and Koblitz separately introduced elliptic curve encryption based on

the discrete logarithm problem in 1985. An elliptic curve, E over a binary field is de-

fined as

𝐸 ∶ 𝑦2 + 𝑥𝑦 = 𝑥3 + 𝑎𝑥2 + 𝑏 (1)

In ECC, point addition and point doubling are the two fundamental operations used to

perform arithmetic on points on an elliptic curve. These operations allow for the con-

struction of cryptographic algorithms such as key generation, key exchange, and digital

signatures.

The point multiplication 𝑄 = 𝑘𝑃, where the point 𝑃 = (𝑥, 𝑦) with 𝑥, 𝑦 ∈ GF (2𝑚)

is defined over the elliptic curve given by Weierstrass Equation as in Eq. (1).The prod-

uct 𝑘𝑃 is obtained by adding 𝑃 to itself k times and is called point multiplication, 𝑘𝑃 =
𝑃 + 𝑃 + ⋯ 𝑃(𝑘 times) [17]. Assuming that,

𝑘 = 𝑘𝑡−12𝑡−1 + 𝑘𝑡−22𝑡−2+ . . . + 𝑘121 + 𝑘020 = 𝑠𝑡 (2)

Here it may be written as,
𝑠𝑗 = 2𝑠𝑗−1 + 𝑘𝑡−𝑗 ∀𝑗 = 1, 2, . . . , 𝑡 (3)

The point multiplication can be efficiently computed using Montgomery algorithm, that

consists of computing at each step 𝑠𝑗𝑃 and (𝑠𝑗 + 1)𝑃 as a function of 𝑠𝑗−1 𝑃 and

(𝑠𝑗−1 + 1)𝑃 as follows [17]:

If 𝑘𝑡−𝑗 = 0 then

𝑠𝑗 𝑃 = 2(𝑠𝑗−1 𝑃) (4a)

(𝑠𝑗 + 1)𝑃 = (2𝑠𝑗−1 + 1)𝑃 = 𝑠𝑗−1𝑃 + (𝑠𝑗−1 + 1)𝑃 (4b)

and if 𝑘𝑡−𝑗 = 1 then

𝑠𝑗 𝑃 = (2𝑠𝑗−1 + 1)𝑃 = 𝑠𝑗−1 𝑃 + (𝑠𝑗−1 + 1)𝑃 (5a)

(𝑠𝑗 + 1)𝑃 = 2(𝑠𝑗−1 + 1)𝑃 (5b)

Initially we need to define 𝑠0𝑃 = ∞ and (𝑠0 + 1)𝑃 = 𝑃, and the algorithm for com-

puting point multiplication is given in Algorithm 1 that are based on Eqs. (4a), (4b),

(5a) and (5b).

The fact that at each step the values of both 𝑠𝑗𝑃and 𝑠𝑗𝑃 + 𝑃 are known, allows

simplifying the computation over GF (2𝑚). For simplified computation of the algo-

rithm, the following property is used: If A = (𝑥A, 𝑦𝐴) ≠ ∞ and B = (𝑥𝐵 , 𝑦𝐵) ≠ ∞ are

two different points on the curve and if A ≠ − B, then the x-coordinates 𝑥𝐴+𝐵 and 𝑥𝐴−𝐵

of A + B and A − B are related by the relation [17]:

𝑥𝐴+𝐵 = 𝑥𝐴−𝐵 + 𝑥𝐵(𝑥𝐴 + 𝑥𝐵)−1 + (𝑥𝐵(𝑥𝐴 + 𝑥𝐵)−1)2 (6a)

4

Algorithm 1. Montgomery Method (Q=kP).

Furthermore, if 𝐴 = 𝑠𝑗 𝑃 and 𝐵 = (𝑠𝑗 + 1)𝑃 for some j, then A - B = - P, 𝑥𝐴−𝐵 =

𝑥𝑃, and Eq. (6a) becomes [17],

𝑥𝐴+𝐵 = 𝑥𝑃 + 𝑥𝐵(𝑥𝐴 + 𝑥𝐵)−1 + (𝑥𝐵(𝑥𝐴 + 𝑥𝐵)−1)2 (6b)

If P is assumed to be different from ∞, 𝐴 = 𝑠𝑗 𝑃 and 𝐵 = (𝑠𝑗 + 1)𝑃 is always differ-

ent. If at some step 𝑥𝐴 = 𝑥𝐵 then 𝐴 = −𝐵 and 𝐴 + 𝐵 = ∞. Thus, we obtain [17],

𝑥𝐴+𝐴 = 𝑥𝐴
2 +

𝑏

𝑥𝐴
2 if 𝑥𝐴 ≠ 0 (7)

The Algorithm 1 can now be executed with the x-coordinates of the successive A and

B points. The final step will compute the missing y-coordinate of the result. If 𝑃 =

(𝑥𝑃, 𝑦𝑃), where 𝑥𝑃 ≠ 0, 𝑘𝑃 = (𝑥𝐴, 𝑦𝐴) and (𝑘 + 1)𝑃 = (𝑥𝐵, 𝑦𝐵), then 𝑦𝐴 can be com-

puted as,

𝑦𝐴 = 𝑥𝑃
−1(𝑥𝐴 + 𝑥𝑃)[(𝑥𝐴 + 𝑥𝑃)(𝑥𝐵 + 𝑥𝑃) + 𝑥𝑃

2 + 𝑦𝑃] + 𝑦𝑃 (8)

2.2 Realization of ECC Point Multiplication in Projective Coordinate

System

In ECC, the projective coordinate system is a mathematical representation used to per-
form efficient arithmetic operations on elliptic curve points. It allows for faster point
addition and doubling operations compared to using affine coordinates directly [17]. In
the projective coordinate system, a point P on the elliptic curve is represented by three
coordinates: (X, Y, Z). Here, X and Y are the projective coordinates representing the affine
coordinates, i.e., x and y coordinates of the point, whereas Z is an additional non-zero
element in the underlying field. The Algorithm 1 represents how point multiplication
using projective coordinate system is performed in Montgomery algorithm.

 The Montgomery method as described in Section 2.1 can be mapped into projective
coordinate system. It allows us to get rid of the inversion operation at each iteration of

Input: [kt-1, …, k1, k0], with kt-1 = 1,

P = (xP, yP), over Binary Field GF(2m).

Output: Q = kP

A = point at infinity; B = P;

for j in 1 ... t loop

if k(t-j) = 0 then

A = 2A, B = A+B;

else

A = A+B, B = 2B;

end if;

end loop;

return Q = A

Montgomery algorithm [17]. We use standard projective coordinates for our implemen-
tations. With the projective mapping 𝑥𝐴 = 𝑋𝐴/𝑍𝐴 and 𝑥𝑏 = 𝑋𝐵/𝑍𝐵, Eq. (6b) can be
written as,

𝑥𝐴+𝐵 = 𝑥𝑃 +
 𝑋𝐵𝑍𝐴

𝑋𝐴𝑍𝐵 + 𝑋𝐵𝑍𝐴

+ (
 𝑋𝐵𝑍𝐴

𝑋𝐴𝑍𝐵 + 𝑋𝐵𝑍𝐴

)
2

(9)

Assuming

𝑍𝐴+𝐵 = (𝑋𝐴𝑍𝐵 + 𝑋𝐵𝑍𝐴)2 (10)

From (9), XA+B can be re-written as,

𝑋𝐴+𝐵 = 𝑥𝑃𝑍𝐴+𝐵 + 𝑋𝐵𝑍𝐴(𝑋𝐴𝑍𝐵 + 𝑋𝐵𝑍𝐴) + (𝑋𝐵𝑍𝐴)2

= 𝑥𝑃𝑍𝐴+𝐵 + 𝑋𝐴𝑋𝐵𝑍𝐴𝑍𝐵 (11)

Also, Eq. (7) can be written in projective coordinate system as,

𝑥𝐴+𝐴 = (
𝑋𝐴

𝑍𝐴

)
2

 + 𝑏 (
𝑍𝐴

𝑋𝐴

)
2

=
𝑋𝐴

4 + 𝑏𝑍𝐴
4

(𝑋𝐴
2𝑍𝐴

2)
 (12)

Further, assuming

𝑍𝐴+𝐴 = 𝑋𝐴
2𝑍𝐴

2 (13)

XA+A can now be expressed in projective coordinate as

𝑋𝐴+𝐴 = 𝑥𝐴+𝐴𝑍 𝐴+𝐴 = 𝑋 𝐴
4 + 𝑏 𝑍𝐴

4 (14)

Finally, according to Eq. (8), we can express yA as

𝑦𝐴 = (𝑥𝑃 + 𝑋𝐴/𝑍𝐴)[(𝑋𝐴 + 𝑥𝑃𝑍𝐴)(𝑋𝐵 + 𝑥𝑃𝑍𝐵)

+ (𝑥𝑃
2 + 𝑦𝑃)𝑍𝐴𝑍𝐵](𝑥𝑃𝑍𝐴𝑍𝐵) −1 + 𝑦𝑃 (15)

The Montgomery algorithm as implemented in the projective coordinate system is

given in Algorithm 2. The scheduling scheme of each iteration of Step-2 is provided

in Table 1. The scheduling scheme for each iteration of the Montgomery algorithm in

Step-2 consists of 6 multiplications, 5 squaring and 3 additions. As we can see squaring

and addition operations are computationally much cheaper than multiplication, there-

fore, optimizing multiplication operation is critical for high performance ECPM.

Table 1. Proposed Scheduling Scheme for Point Multiplication.

Cycles Adder Multiplier Squarer

1 - X2Z1 X2
2

2 - X1Z2 Z2
2

3 X1Z2+X2Z1 X1Z1X2Z2 X1Z2+X2Z1→Z1

4 - Z1xP Z2
4

5 Z1xP+X1Z1X2Z2→X1 bZ2
4 X2

4

6 bZ2
4+X2

4→X2 X2
2Z2

2→ Z2 -

6

Algorithm 2. Montgomery Method using Projective Coordinate System (Q = kP).

3 Proposed Hybrid Karatsuba Multiplier

The Karatsuba algorithm is an efficient polynomial multiplication algorithm. This al-

gorithm is applied to larger degree polynomials based on splitting it into a lower and

an upper half, and performing the computations recursively with other requisite opera-

tions.

Two n-bit polynomials 𝑎(𝑥) = ∑ 𝑎𝑖𝑥𝑖𝑛−1
𝑖=0 and 𝑏(𝑥) = ∑ 𝑏𝑖𝑥

𝑖𝑛−1
𝑖=0 are split into

higher(𝐴𝐻 , 𝐵𝐻) and lower(𝐴𝐿 , 𝐵𝐿) significant halves as follows (with 𝑛 = 2𝑚) [12]:

Input: [kt-1, …, k1, k0], with kt-1 = 1,

P = (xP, yP), over Binary Field GF(2m)

Output: Q = kP = (x3, y3)

Step 1: Initialization of affine to

projective coordinate

X1 ← xP; Z1 ← 1; X2 ← xP
4 + b; Z2 ← xP

2

Step 2: Main loop: Projective point

addition and doubling

for i from (t − 2) downto 0

if ki = 1 then

R ← Z1; Z1 ← (X1Z2 + X2Z1)2

 X1 ← xPZ1 + X1X2R𝑍2

R ← X2; X2 ← X2
4 + bZ2

4; Z2 ← R2Z2
2

else

R ← Z2; Z2 ← (X1Z2 + X2Z1)2

X2 ← xPZ2+X1X2RZ1

R ← X1; X1 ← X1
4 + bZ1

4; Z1 ← R2Z1
2

end if

end for

Step 3: Post-process: Recover projec-

tive to affine coordinate

x3 = X1/Z1

y3 ←(xP+X1/Z1)[(X1+ xPZ1)(X2+ xPZ2)

+(xP
2+ yP)(Z1Z2)](xPZ1Z2)−1 + yP

return x3, y3

𝑎(𝑥) = 𝑥𝑚 ∑ 𝑎𝑚+𝑖𝑥
𝑖 +

𝑚−1

𝑖=0

∑ 𝑎𝑚𝑥𝑖

𝑚−1

𝑖=0

= 𝐴𝐻𝑥𝑚 + 𝐴𝐿 (16a)

𝑏(𝑥) = 𝑥𝑚 ∑ 𝑏𝑚+𝑖𝑥
𝑖

𝑚−1

𝑖=0

+ ∑ 𝑏𝑚𝑥𝑖

𝑚−1

𝑖=0

= 𝐵𝐻𝑥𝑚 + 𝐵𝐿 (16b)

Using Karatsuba Algorithm (KA),

𝑎(𝑥)𝑏(𝑥) = 𝑀2(𝑥)𝑥2𝑚 + [𝑀2(𝑥) + 𝑀1(𝑥) + 𝑀0(𝑥)]𝑥𝑚 + 𝑀0(𝑥) (17)

where, 𝑀2 = 𝐴𝐻𝐵𝐻 , 𝑀1 = (𝐴𝐻 + 𝐴𝐿)(𝐵𝐻 + 𝐵𝐿), 𝑀0 = 𝐴𝐿𝐵𝐿

Eq. (17) shows that three sub-multipliers are required in order to obtain the multiplica-

tion results using KA. The schematic realization of Karatsuba Algorithm is shown in

Fig. 1 that comprises of two main blocks. The first one includes splitting, sub-multipli-

cation and alignment stages, followed by an overlap circuit, i.e. the second block which

adds the common powers of x in the generated product.

(a)

(b)

Fig. 1. (a) Schematic realization of n = 2m bit Karatsuba Algorithm (KA) for polynomial multi-

plication (b) Overlap circuit.

8

For designing a 163-bit Karatsuba multiplier, a recursive multiplier technique is em-

ployed. For instances where the operand size is even, the operand 𝑎(𝑥) is partitioned

into two equal-sized components, namely 𝐴𝐻 and 𝐴𝐿. Conversely, in cases where the

operand size is odd, 𝐴𝐻 and 𝐴𝐿 do not possess equal sizes. To address this disparity, a

supplementary zero is appended at the Most Significant Bit (MSB) position. This re-

cursive process is iteratively applied to each stage of odd operand values. In this paper,

we present the implementation of a 163-bit Karatsuba multiplier using the aforemen-

tioned technique as shown in Fig. 2:

Fig. 2. Karatsuba multiplier for operand size 163.

Several observations can be derived from the utilization of this technique. Firstly, it

is evident that the number of stages exhibits a logarithmic growth pattern relative to the

size of the operand. For instance, in the case of 163-bit operand, it can be decomposed

into 21-bit operand within 3 stages. However, to further decompose these 21-bit oper-

ands, an additional number of 4 stages are necessary. Consequently, the increase in

number of stages leads to an increased delay. Another observation is the requirement

for zero padding in multiple stages. This contributes to an increase in the complexity of

the overall area required for the implementation.

The Karatsuba multiplier offers a significant advantage in terms of its low space

complexities, which simplifies the implementation of multipliers for large values of n.

However, it is important to note that in scenarios where the operand size is small, com-

putational delay becomes a critical factor to consider. Under ideal hardware conditions,

the number of gates and the delay equation for the Karatsuba multiplier are presented

below [12]:

𝐾𝑀𝑋𝑂𝑅(𝑛) = 6𝑛𝑙𝑜𝑔2 3 − 8𝑛 + 2 (18a)

𝐾𝑀𝐴𝑁𝐷(𝑛) = 𝑛𝑙𝑜𝑔2 3 (18b)

𝑇𝐾𝑀(𝑛) = 𝑇𝑎 + (3⌈𝑙𝑜𝑔2 𝑛⌉ − 1)𝑇𝑋 (18c)

where KMXOR(n) and KMAND(n) represent the number of XOR and AND gates respec-

tively and TKM denotes the critical delay of the Karatsuba multiplier implementation for

n-bit size. Here Ta and TX denote the delay of an individual AND and XOR gates re-

spectively.

It can be observed that the rate of increase in critical delay is inversely related with

the operand size. To illustrate this point, the critical delay difference for 32-bit and 16-

bit Karatsuba is only 3TX which is same as critical delay difference for 8-bit and 4-bit

Karatsuba multiplier. This makes it inefficient to implement large size Karatsuba mul-

tiplier using slow smaller-sized Karatsuba multipliers.

In this paper we have proposed a hybrid Karatsuba multiplier by utilizing the conven-

tional Polynomial multiplier in place of an intermediary Karatsuba stage, thus requiring

no further Karatsuba decompositions. This is shown in Fig. 3 where a 41-bit Polynomial

multiplier is utilized to achieve this. The analysis behind the choice of 41-bits for our

purpose is presented subsequently.

Fig. 3. Proposed 163-bit hybrid Karatsuba multiplier.

Assuming ideal hardware condition, the equations for number of gates and critical

path delay for Polynomial multiplier are given below [11]:

𝑃𝑀𝑋𝑂𝑅(𝑛) = (𝑛 − 1)2 (19a)

𝑃𝑀𝐴𝑁𝐷(𝑛) = 𝑛2 (19b)

𝑇𝑃𝑀(𝑛) = 𝑇𝑎 + ⌈𝑙𝑜𝑔2 𝑛⌉𝑇𝑋 (19c)

where PMXOR(n) and PMAND(n) represent the number of XOR and AND gates respec-

tively and TPM denotes the critical delay of the Polynomial multiplier implementation

for n-bit size.

A comparison between the set of equations in (18) and (19) shows that area com-

plexity for Karatsuba is of order 𝑛1.58 which is better than Polynomial multiplier whose

area complexity is of order 𝑛2. However, the critical delay for Karatsuba is three times

greater than Polynomial multiplier of same size. Therefore, a tradeoff between area and

delay is required in order to know at which stage of the Karatsuba multiplier a replace-

ment with Polynomial multiplier is required for maximum performance.

If Polynomial multiplier is implemented after ‘k’ stages of Karatsuba multiplier then

the number of gates and delay equation for hybrid multiplier is found as below:

𝐻𝑀𝑋𝑂𝑅(𝑛) = 3𝑘 (
𝑛

2𝑘
− 1)

2

+ 8𝑛 ((
3

2
)

𝑘

− 1) − 2(3𝑘 − 1) (20a)

10

𝐻𝑀𝐴𝑁𝐷(𝑛) = 3𝑘 (
𝑛

2𝑘
)

2

(20b)

𝑇𝐻𝑀(𝑛) = 𝑇𝑎 + 3𝑘𝑇𝑋 + ⌈𝑙𝑜𝑔2 (
𝑛

2𝑘
)⌉ 𝑇𝑋 (20c)

To determine the most suitable size of the Polynomial multiplier for our proposed

hybrid scheme, we conducted an analysis of LUT utilization, Delay, and Area-Delay

Product (ATP) for various operand sizes comparing Karatsuba and Polynomial multi-

pliers. Our findings are shown in Table 2 and Table 3. They indicate that the Polynomial

multiplier and Karatsuba multiplier exhibit similar LUT utilization up to an operand

size of 41 bits. However, as the operand size increases, the Polynomial multiplier re-

quires significantly higher number of LUTs compared to the Karatsuba multiplier. No-

tably, a 163-bit Karatsuba multiplier requires approximately 22% fewer LUTs than the

Polynomial multiplier. Comparison analysis of Karatsuba and Polynomial multipliers

in terms of LUT, Delay and ATP as a function of operand size, implemented on the

Xilinx Virtex-7 platform is given in Table 2 and Table 3.

Table 2. Karatsuba Multiplier Implemented on the Xilinx Virtex-7 FPGA.

Operand Size LUT Delay (ns) ATP

6 16 6.002 96.03

11 58 7.059 409.42

21 206 9.083 1871.10

41 695 10.562 7340.59

82 2306 13.280 30623.68

163 7762 20.282 157428.88

Table 3. Polynomial Multiplier Implemented on the Xilinx Virtex-7 FPGA.

Operand Size LUT Delay (ns) ATP

6 15 5.718 85.77

11 49 6.363 311.79

21 185 8.116 1501.46

41 694 9.655 6700.57

82 2599 12.031 31268.57

163 9982 18.129 180963.68

Furthermore, it is worth noting that, on average, the Polynomial multiplier outper-

forms the Karatsuba multiplier by around 12% in terms of delay (Table 2 and Table 3).

To compare the efficiency of both the algorithms at each operand size, we calculated

the area-delay product as the product of LUT utilization and delay. Since a lower value

of the area-delay product indicates better performance, the algorithm with the lower

ATP is considered to be superior.

Based on our analysis, we observed that the Karatsuba multiplier exhibits greater

efficiency than the Polynomial multiplier for operand sizes larger than 41 bits. How-

ever, for operand sizes of 41 bit and smaller, the Polynomial multiplier proves to be

more efficient. For instance, the Polynomial multiplier demonstrates around 9% lower

ATP than the 41-bit Karatsuba multiplier.

Considering these factors, we have proposed utilizing a 41-bit Polynomial multiplier

as the fundamental building block for constructing a 163-bit multiplier using the Kar-

atsuba algorithm. This approach leverages the efficiency of the Polynomial multiplier

for smaller operand sizes, while benefiting from the reduced LUT utilization of the

Karatsuba multiplier for larger operand sizes.

4 Results

In our study, we have conducted the implementation of ECPM on the Xilinx Virtex-7
xc7v585tffg1761-3 device on FPGA, focusing specifically on the binary curve NIST
B-163 as defined by the National Institute of Standards and Technology (NIST) [18].
The specific curve parameters for NIST B-163, essential for this implementation, are
presented in Table 4 for comprehensive reference.

Table 4. NIST Standard Parameters over GF (2163) [18].

Parameter Value

m 163

F(x) 𝑥163 + 𝑥7 + 𝑥6 + 𝑥3 + 1

a 001

b 20a601907b8c953ca1481eb10512f78744a3205fd

G 3f0eba16286a2d57ea0991168d4994637e8343e36,

00d51fbc6c71a0094fa2cdd545b11c5c0c797324f1

n 040000000000000000000292fe77e70c12a4234c33

The hardware computation flow for ECPM was implemented in accordance with

Algorithm 2. The implementation utilized the proposed hybrid Karatsuba multiplier as

the modular multiplier, accompanied by the modular squarer and inversion circuit over

the finite field.

Squaring circuit was realized following the approach described in [14]. Although

squaring could have been implemented using the available multiplier circuit, our paper

opted for an alternative method utilizing precomputed equations and exclusively XOR

gates. This approach resulted in a squaring circuit with significantly reduced critical

delay and improved area utilization compared to the multiplier circuit. Both the multi-

plier and squaring operations were executed within a single cycle.

12

For the inversion circuit, the Extended Euclidean Algorithm (EEA) was employed,

following the methodology as described in [13]. The implementation of the Inversion

circuit requires a maximum of 2m cycles, where ‘m’ represents the degree of the

irreducible polynomial of GF(2m). Thus, for GF (2163), the execution of the inversion

process necessitates a maximum of 326 cycles. It is important to note that this design

choice resulted in a trade-off, as the circuit is aimed for lower latency at the expense of

increased area utilization.

The results of the experiments conducted in this study are presented in Table 5,

which compare the area utilization, frequency of operation, clock cycle time, total com-

putation time, and the area-time product of the proposed design as well as three refer-

enced works [19-21]. In [19], the authors have employed a bit-serial multiplier, thereby,

optimizing LUT usage at the cost of increased execution cycles. Further, in [20], the

authors have segregated adder, squarer, and multiplier into separate cycles, neglecting

hardware parallelism, during the implementation of point multiplication. Where as in

[21], a 3-bit parallel multiplier has been utilized for point multiplication, thus, curtailing

cycles but inflating LUT consumption, culminating in a higher area-time product.

Table 5. Comparison of Proposed Method with Previous Implementations of ECPM (Q=kP)

over GF (2163).

Design Area

(LUTs)

Freq.

(MHz)

Clock

Cycles

Time

(µs)

Area-Time

Product (X 1000)

Nyugen [19] 3806 800 52012 65.0 247.39

Imran [20] 10128 135 3426 25.4 257.25

Khan [21] 41090 159 450 2.83 116.28

This Work 14195 213 1298 6.09 86.45

Our proposed design was realized using 14195 LUTs which is relatively higher in

comparison to [19] and [20]. However, it achieved a significantly higher operating fre-

quency of 213 MHz, with respect to [20] and [21]. Consequently, the total computation

time was reduced to 6.09 microseconds, showcasing the improved efficiency (in terms

of lower ATP) of our design, compared to [19], [20], and [21].

Moreover, when considering the area-time product which is a parameter of overall

efficiency, our proposed design achieved a substantially lower ATP value of 86.45

X1000 LUT-µs, indicating a favorable balance between area utilization and computa-

tion time. Further, the proposed ECPM design was subjected to power analysis, provid-

ing an estimate of 0.98 watts of power dissipation. These results demonstrate the effec-

tiveness and competitiveness of our design in terms of performance and efficiency com-

pared to the referenced works.

5 Conclusion

In this paper a hybrid Karatsuba multiplier has been implemented that utilizes small

bit-sized conventional Polynomial multipliers. It provided an improved solution for

larger bit sized modular multipliers by effectively balancing area efficiency and critical

path delay. The hybrid Karatsuba multiplier is integrated with a finite field adder,

squarer, and Extended Euclidean inversion circuit to implement Elliptic Curve Point

Multiplication (ECPM) utilizing projective coordinate-based Montgomery algorithm.

The architecture demonstrated superior performance for ECPM computation on the

Xilinx Virtex-7 FPGA platform. The evaluation results showcased optimized trade-off

between area utilization and computation time, resulting in enhanced efficiency com-

pared to existing architectures. Overall, the proposed hybrid Karatsuba multiplier offers

a promising and efficient solution for ECPM computation.

References

1. Stallings, W.: Cryptography and Network Security Principles and Practices, Fourth Edition.

2005

2. Kumari, R., Pandey, J.G., Karmakar, A.: An RTL Implementation of the Data Encryption

Standard (DES). arXiv preprint arXiv:2301.05530. 2023 Jan 13,

https://doi.org/10.48550/arXiv.2301.05530

3. Rivest, R., Shamir, L.A., Adleman, L.: A method for obtaining digital signatures and public-

key cryptosystems. Communications of the ACM 21.2 (1978): 120-126,
https://doi.org/10.1145/359340.359342

4. Lenstra, A.K., Verheul, E.R.: Selecting Cryptographic Key Sizes. Lecture Notes in Com-

puter Science, pp. 446–465, Jan. 2000, https://doi.org/ 10.1007/978-3-540-46588-1_30

5. Rodriguez-Andina, J.J., Moure, M.J., Valdes, M.D.: Features, design tools, and application

domains of FPGAs. IEEE Transactions on Industrial Electronics, vol. 54, no. 4, pp. 1810–

1823, Aug. 2007, https://doi.org/10.1109/TIE.2007.898279

6. Koblitz, N., Menezes, A., Vanstone, S.: The State of Elliptic Curve Cryptograph. Designs,

Codes and Cryptography. 19, 173–193 (2000). https://doi.org/10.1023/A:1008354106356

7. Sutter, G.D., Deschamps, J.P., Imana, J., Imana, L.: Efficient elliptic curve point multipli-

cation using digit-serial binary field operations. IEEE Transactions on Industrial Electronics,

vol. 60, no. 1, pp. 217–225, 2013, https://doi.org/10.1109/TIE.2012.2186104

8. Sutter, G.D., Deschamps, J.P., Imana, J.L.: Modular multiplication and exponentiation ar-

chitectures for fast RSA cryptosystem based on digit serial computation. IEEE Transactions

on Industrial Electronics, vol. 58, no. 7, pp. 3101–3109, Jul. 2011,

https://doi.org/10.1109/TIE.2010.2080653

9. Pandey, J.G., Mitharwal, C., Karmakar, A.: An RNS implementation of the elliptic curve

cryptography for IoT security. 2019 First IEEE International Conference on Trust, Privacy

and Security in Intelligent Systems and Applications (TPS-ISA). IEEE, 2019,

https://doi.org/10.1109/TPS-ISA48467.2019.00017

10. Guide to Elliptic Curve Cryptography. (2004). In Springer Professional Computing.

Springer-Verlag. https://doi.org/10.1007/b97644

https://doi.org/10.48550/arXiv.2301.05530
https://doi.org/10.1109/TIE.2007.898279

14

11. Kumar, H.M., Rashid, B., Alhomoud, A., Khan, S.Z., Bahkali, I., Alotaibi, S.S.: A Scalable

Digit-Parallel Polynomial Multiplier Architecture for NIST-Standardized Binary Elliptic

Curves. Applied Sciences (Switzerland), vol. 12, no. 9, May 2022, https://doi.org/

10.3390/app12094312

12. Fan, H., Sun, J., Gu, M., Lam, K.-Y.: Overlap-free Karatsuba–Ofman polynomial multipli-

cation algorithms. IET Information Security, vol. 4, no. 1, p. 8, Jan. 2010,

https://doi.org/10.1049/iet-ifs.2009.0039

13. Rashidi, B., Sayedi, S.M., Farashahi, R.R.: Efficient implementation of bit‐parallel fault tol-

erant polynomial basis multiplication and squaring over GF(2m). IET Computers and Digital

Techniques, vol. 10, no. 1, pp. 18–29, Jan. 2016, https://doi.org/10.1049/iet-cdt. 2015.0020

14. Rashidi, B.: Efficient hardware structure for extended Euclidean‐based inversion over. IET

Computers & Digital Techniques 13.4 (2019): 282-291, https://doi.org/10.1049/iet-

cdt.2018.5077

15. Miller, V.S.: Use of elliptic curves in cryptography. In Conference on the theory and appli-

cation of cryptographic techniques (pp. 417-426). Berlin, Heidelberg: Springer Berlin Hei-

delberg (1985, August)

16. Koblitz, N.: Elliptic curve cryptosystems. Mathematics of computation, 48(177), 203-209,

(1987), https://doi.org/10.1090/s0025-5718-1987-0866109-5

17. Deschamps, J.P., Imana, J.L., Sutter, G.D.: Hardware implementation of finite-field arith-

metic. McGraw-Hill Education (2009)

18. Standard curve database, B-163, Centre for research on cryptography and security.

https://neuromancer.sk/std/ NIST/B-163

19. Nguyen, T.T., Lee, H.: Efficient Algorithm and Architecture for Elliptic Curve Crypto-

graphic Processor. Journal of Semiconductor Technology and Science, 16, 118-125 (2016)

20. Imran, M., Shafi, I., Jafri, A.R., Rashid, M.: Hardware design and implementation of ECC

based crypto processor for low-area-applications on FPGA. In IEEE ,2017 International

Conference on Open-Source Systems & Technologies (ICOSST) (pp. 54-59)

21. Khan, Z.U., Benaissa, M.: High-Speed and Low-Latency ECC Processor Implementation

Over GF(2m) on FPGA, In IEEE Transactions on Very Large-Scale Integration (VLSI) Sys-

tems, vol. 25, no. 1, pp. 165-176, Jan. 2017, https://doi.org/10.1109/TVLSI.2016. 2574620

https://doi.org/10.1109/TVLSI.2016.%202574620

