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Abstract
Foundation models have gained growing interest in the IoT domain
due to their reduced reliance on labeled data and strong general-
izability across tasks, which address key limitations of traditional
machine learning approaches. However, most existing foundation
model based methods are developed for specific IoT tasks, making
it difficult to compare approaches across IoT domains and limiting
guidance for applying them to new tasks. This survey aims to bridge
this gap by providing a comprehensive overview of current method-
ologies and organizing them around four shared performance objec-
tives by different domains: efficiency, context-awareness, safety,
and security & privacy. For each objective, we review representa-
tive works, summarize commonly-used techniques and evaluation
metrics. This objective-centric organization enables meaningful
cross-domain comparisons and offers practical insights for select-
ing and designing foundation model based solutions for new IoT
tasks. We conclude with key directions for future research to guide
both practitioners and researchers in advancing the use of founda-
tion models in IoT applications.

CCS Concepts
• General and reference → Surveys and overviews; • Com-
puting methodologies→ Artificial intelligence; • Computer
systems organization→ Embedded and cyber-physical sys-
tems.
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1 Introduction
Machine learning (ML) models have been widely adopted in IoT
applications to enable more convenient, automated, and intelligent
solutions across diverse domains (e.g., smart cities [108, 149], au-
tonomous driving [15, 47, 57], smart agriculture [20, 95, 136], and
precision health [64, 78, 135]). However, existing approaches that
rely on traditional ML models (e.g., models trained on task-specific
datasets [171]; deep learning models are also considered as tradi-
tional ML in this work) face two key limitations: (C1) Dependence
on Labeled data: Most of proposed methods depend on supervised
learning, which require large volumes of labeled data to achieve
high performance [22, 25, 168]. However, IoT data are often not
human-interpretable, making it difficult to obtain sufficient high-
quality annotations. (C2) Poor Generalization Across Contexts:
Even when labeled data are available, IoT data are highly hetero-
geneous. As a result, models trained in one context (e.g., specific
environments or applications) often fail to generalize to others,
limiting scalability and cross-domain applicability [32, 79, 172].

In order to address these two challenges, foundation models
[23, 194] (e.g., large language models) have gained increasing at-
tention and adoption in the IoT domain. First, foundation models
(FMs) rely on self-supervised training instead of traditional super-
vised approaches, which addresses Challenge C1 by reducing the
dependency on large labeled IoT datasets. Second, the training data
for FMs typically span multiple domains and contexts, which al-
lows FMs to learn generalizable, context-invariant representations,
making them more adaptable to a wide range of downstream tasks.
This mitigates Challenge C2.

To advance the field and guide future research, prior surveys
[18, 21, 87, 133, 141, 171] have summarized FM-based approaches
for IoT tasks, alongwith evaluationmetrics and benchmark datasets,
primarily from the perspective of specific application domains (e.g.,
healthcare, robotics, smart homes). However, our review of the cited
papers reveals a key but previously overlooked insight: while tasks
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within the same domainmay require different techniques, similar tech-
niques can often be applied across domains to address shared objectives
(e.g., reducing training time, personalizing outputs). Organizing the
literature solely by application area obscures these cross-domain
goals and the research opportunities they present. Moreover, pro-
posed methods targeting the same objective are often evaluated on
different tasks, without comparison to other approaches targeting
the same objective. This inconsistent evaluation makes it difficult to
assess which approaches are most effective across different scenarios,
providing limited insights for addressing the same objective in new
tasks.

To address the limitations identified above, this paper catego-
rizes current research on FMs for IoT around four key performance
criteria that serve as shared objectives across diverse application
domains: (1) Efficiency, (2) Context-awareness, (3) Safety (dif-
ferent from Security in this paper. Please see Section 5 for more
details), and (4) Security and privacy. By organizing the literature
around these common objectives rather than specific tasks, we aim
to provide a clearer understanding of how foundation models are
being leveraged across the IoT landscape. This approach enables the
community to (i) identify shared performance objectives across di-
verse IoT tasks, (ii) facilitate meaningful cross-domain comparisons,
and (iii) promote the design of more generalizable and effective
solutions. To support this goal, we address the following research
questions:

(1) What methodologies have been proposed to improve each
performance criterion?

(2) What metrics are used to evaluate these criteria?
(3) What evaluation strategies are commonly adopted when ap-

plying FMs to IoT tasks?

Finally, based on our analysis, we identify additional gaps in the
literature and suggest future research directions to further advance
the field.

The structure of this paper is as follows: Section 2 introduces
three fundamental paradigms and frameworks for applying founda-
tion models to IoT tasks, providing essential background for readers
new to the field. Sections 3 through 6 examine the four key perfor-
mance criteria along with commonly used approaches to improve
each. Section 7 reviews the evaluation metrics used in the current
literature for each criterion and discusses the strategies employed
to assess FM-based solutions in IoT applications. Finally, Section
8 discusses existing research limitations and outlines future direc-
tions. Figure 1 presents a taxonomy of this paper and representative
techniques.

For readers who are already familiar with foundation models,
we recommend proceeding directly to the sections of interest. For
those who are familiar with IoT but new to foundation models, we
encourage a thorough reading of the entire paper, with particular
emphasis on Section 2, which introduces the essential background
relevant to this emerging area.

2 Foundations of FMs for IoT
In this section, we categorize existing approaches that leverage foun-
dation models into three core paradigms: prompt-based methods,
agent-based methods, and training-based methods. These approaches

are used to: (1) perform end-to-end processing by perceiving, rea-
soning over, and making decisions based on sensor data, currently
the primary focus of most reviewed studies, and (2) support rein-
forcement learning (RL) to improve policy learning for IoT tasks
(e.g., HVAC control [178], mobile health [82], beam management
[56]), an area that remains relatively underexplored. We then com-
pare these paradigms across key dimensions, highlight their re-
spective strengths and limitations, and provide practical guidance
for selecting the most appropriate approach for practitioners and
researchers.

2.1 Paradigm I: Prompt-Based Methods
Prompt-based methods leverage commercial or open-source pre-
trained large language models (LLMs) (e.g., GPT-4 [4], LLaMA-2
[148], DeepSeek-V2 [98]) to perform IoT tasks through textual in-
putswithout requiring additional training [103, 130]. These prompts
typically serve as task-specific instructions (e.g., “You are a knowl-
edgeable IoT expert. Please classify the human activity described by
the following IMU data.”), which the model interprets to generate
a response in the specified format [103, 130] (please refer to the
example prompt for using LLMs to address the IoT task in Appen-
dix A). Because prompt-based approaches rely solely on pretrained
models, they enable rapid prototyping and deployment, particularly
in settings with limited computational resources.

Prompt-based methods offer several advantages for applying
foundation models to IoT tasks: (1) Efficiency: Unlike training-
based methods that require substantial labeled data and computa-
tional power to update model parameters (see Section 2.3), prompt-
based approaches leverage already trained LLMs which exhibit
strong few-shot learning capabilities [24, 143], eliminating the
need for fine-tuning or retraining. This significantly reduces de-
ployment costs and time. (2) General Knowledge: LLMs trained
on large-scale web data possess extensive general and domain-
relevant knowledge, which can be leveraged to interpret IoT data
and support tasks (e.g., human activity recognition from IMU sig-
nals) [12, 13, 32, 36, 39, 69, 79, 116, 142, 167]. (3) Enhanced Reason-
ing: Prompting techniques like chain-of-thought (CoT) [160] and
program-of-thought (PoT) [31] can activate commonsense reason-
ing abilities in LLMs and improve their ability to interpret complex
or ambiguous IoT data. This has been shown to significantly boost
performance in tasks such as human activity recognition, industrial
monitoring, and sensor data analysis [87, 165]. (4) Flexibility with
Heterogeneous Data: Prompt-based methods can accommodate
both structured (e.g., tabular sensor readings) and unstructured data
(e.g., geospatial graphs) by explicitly specifying input and output
formats in the prompt [51, 197]. This flexibility makes them well-
suited to the diverse data types found in IoT systems. (5) Natural
Language Interfaces: LLMs can serve as intuitive interfaces for
querying or controlling IoT systems using natural language. This
lowers the barrier to entry for non-experts and enhances system
usability and accessibility. (6) Interpretability: Language-based
outputs, especially when coupled with reasoning prompts (e.g.,
“Explain your answer in a few sentences.”), enhance transparency
by revealing the model’s reasoning process. This allows users to
verify the outputs and increases trust in the system, unlike many
traditional ML models that operate as black boxes [37]. (7) Real-
Time Insights: Prompted LLMs are capable of processing large
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Foundation
(§2)

Prompt-Based (§2.1)

Xu et al. [167]; An et al. [12]; Ho et al. [69]; Ouyang and Srivastava [116]; Da et al. [39]; Ji et al. [79];
Cleland et al. [36]; Song et al. [142]; Xiao et al. [165] Chen et al. [32]; Arrotta et al. [13]; Yang et al. [178];
Guo et al. [62]; Nie et al. [113]; Sooriya Patabandige et al. [144]; Yang et al. [176]; Sun and Ortiz [145];
Li et al. [89]; Karine and Marlin [82].

Agent-Based (§2.2)
Rivkin et al. [128]; Yonekura et al. [185]; Liang and Tong [96]; Liu et al. [105]; Wang and Qin [156];
Wang et al. [155]; Cui et al. [37]; Huang et al. [75]; Abdallah et al. [2]; Cui et al. [38]; Liu et al. [102];
Yang et al. [175] Wen et al. [161]; Xu et al. [170]; Yang et al. [181]; Li et al. [93]; Wang et al. [152].

Training-Based (§2.3)

Ouyang et al. [117]; Mo et al. [109]; Chen et al. [30]; Xu et al. [168]; Kimura et al. [86]; Alikhani et al. [10];
Xiong et al. [166]; Yonekura et al. [185]; Xue et al. [172]; Ghassemi et al. [56]; Zhang et al. [189];
She et al. [137]; Wan et al. [151]; Yan et al. [174]; Weng et al. [163]; Aboulfotouh et al. [3]; Kimura et al. [85];
Kara et al. [80]; Fan et al. [51]; Liu et al. [104]; Liu et al. [100]; Imran et al. [76]; Zhuang et al. [195];
Rong and Rutagemwa [129]; Yang and Ardakanian [180]; Li et al. [94].

Criteria
(§3 - §6)

Efficiency (§3)

Efficient Prompting

Xu et al. [167]; Ho et al. [69]; An et al. [12]; Ho et al. [69]; Chen et al. [32];
Ouyang and Srivastava [116]; Yang et al. [175]; Sun and Ortiz [145]; Xiao et al. [165];
Li et al. [94]; Mo et al. [109]; Chen et al. [30]; Imran et al. [76]; Yonekura et al. [185];
Xue et al. [172]; Wan et al. [151].

Experience Archive Cui et al. [37]; Cui et al. [38]; Abdallah et al. [2].

Efficient Model Design Xu et al. [168]; Zhuang et al. [195]. Zhang et al. [189]. Kimura et al. [86];
Li et al. [94]; Liu et al. [104]; Xiong et al. [166]; Imran et al. [76].

Context
Awareness (§4)

Data Enrichment An et al. [12]; Ji et al. [79].

Fine-Tuning Guo et al. [62].

Contextual Inputs Nepal et al. [111]; Cui et al. [38]; Yang et al. [175].

Contextual Memory Yang et al. [175].

Active Sensing Cui et al. [38].

Iterative Self-Refinement Liu et al. [101]; Cui et al. [38]; Guo et al. [62].

Safety (§5)

Safety Requirement
Incorporation Xu et al. [170].

User Request Verification Cui et al. [37]; Xu et al. [170].

Post-Response Verification Xu et al. [170]; Yang et al. [181].

Interpretable
Decision-Making Cui et al. [37].

Iterative Self-Refinement Xu et al. [170]; Yang et al. [181].

Security and
Privacy (§6)

FMs for Anomaly
Detection

Almodovar et al. [11]; Aghaei et al. [6]; Diaf et al. [46]; Li et al. [93];
Wang et al. [152].

FMs for Data Obfuscation Ouyang and Srivastava [116]; Yang and Ardakanian [180]; Wang et al. [152].

Privacy Considerations Yang and Ardakanian [180]; Wang et al. [152]; Benazir and Lin [19].

Evaluation
(§7)

Strategy

Groundtruth

Kimura et al. [86]; Yang et al. [175]; Yang et al. [176]; Xu et al. [168]; Alikhani et al. [10];
Hesham et al. [66]; Chen et al. [30]; Liu et al. [101]; Xiong et al. [166]; Yan et al. [174];
Aboulfotouh et al. [3]; Sun and Ortiz [145]; Wan et al. [151]; Kimura et al. [85]; Nie et al. [113];
Zhang et al. [189]; Ho et al. [69]; Kara et al. [80]; Ghassemi et al. [56]; She et al. [137];
Liu et al. [104]; Liu et al. [100]; Zhuang et al. [195]; Yang and Ardakanian [180]; Wang et al. [152];
Li et al. [94]; Xue et al. [172]; Almodovar et al. [11]; Diaf et al. [46]; Xu et al. [168];
Aghaei et al. [6]; Li et al. [93].

Human Evaluation Guo et al. [62]; Yang et al. [177]; Xu et al. [169]; Englhardt et al. [50]; Nie et al. [113];
Imran et al. [76].

LLM-as-a-Judge Guo et al. [62]; Yang et al. [177]; Imran et al. [76]; Li et al. [94].

Real-World
Evaluation

Yang et al. [175]; Ouyang and Srivastava [116]; Abdallah et al. [2]; Song et al. [142]; Kara et al. [80];
Li et al. [89]; Imran et al. [76]; Cui et al. [38].

Metrics

Efficiency: Convergence speed [85, 86]; Inference latency [176]; Memory usage [164].
Context-Awareness: Executability rate [101]; Personalization score [175].
Safety: Safety rate [107].
Security and Privacy: Classification based metrics (e.g. accuracy precision recall) [6, 11, 46, 71, 93, 152, 180].

Figure 1: Taxonomy of Foundation Models for IoT. The structure of this paper is as follows: Section 2 introduces three
fundamental paradigms and frameworks for applying foundation models to IoT tasks, providing essential background for
readers new to the field. Sections 3 through 6 examine the four key performance criteria along with commonly used approaches
to improve each. Section 7 reviews the evaluation metrics used in the current literature for each criterion and discusses the
strategies employed to assess FM-based solutions in IoT applications. Finally, Section 8 discusses existing research limitations
and outlines future directions.
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streams of sensor data and producing actionable responses in real
time, making them suitable for rapid prototyping and deployment
in dynamic IoT environments [197].

2.2 Paradigm II: Agent-Based Methods
While prompt-based methods leveraging pretrained LLMs offer
a lightweight and accessible way to address IoT tasks, they face
several inherent limitations stemming from the constraints of the
underlying pretrained models:

(1)Hallucination and Knowledge Limitations: Despite being
trained on large-scale internet data, LLMs still suffer from hallu-
cination (i.e., generating responses that are factually incorrect or
nonsensical [73]). This issue arises from outdated or inaccurate
information in the pretraining corpus and is particularly problem-
atic in the IoT domain, where LLMs are rarely trained on sensor
data or task-specific information. As a result, they may struggle to
interpret some real-world signals and make accurate decisions in
high-stakes applications (e.g., healthcare or autonomous driving)
[5, 8, 48, 84, 153]. While embedding domain-specific knowledge
into prompts can help, it is often incomplete and difficult to scale or
adapt to dynamic user needs. Without access to accurate, up-to-date
external knowledge, prompt-based methods remain fundamentally
limited.

(2) Lack of Specialized Capabilities and Active Perception:
Although LLMs demonstrate strong zero- and few-shot generaliza-
tion, they often underperform relative to specialized modules on
complex, domain-specific tasks (e.g., object detection, wireless re-
source allocation, numerical reasoning) [2, 37]. Furthermore, LLMs
lack the ability to actively gather additional information when input
data is ambiguous or incomplete, limiting their ability to resolve
uncertainty and optimize task performance. This passivity contrasts
significantly with the dynamic nature of many IoT environments.

(3) Limited Reasoning and Planning for Complex Tasks:
Many IoT applications require multi-step reasoning and decision-
making beyond basic question-answering. For instance, predictive
maintenance in smart factories may involve interpreting sensor
data, diagnosing failures, ordering components, and scheduling re-
pairs. Solving such tasks requires the ability to decompose problems
into subtasks, reason about their dependencies, and interact with
external tools or systems [2, 37]. While prompt-based methods with
manually embedded task decompositions offer partial solutions,
they lack the adaptability and autonomy needed for real-time rea-
soning and planning across diverse scenarios, ultimately limiting
the system’s generalizability and effectiveness.

To overcome the limitations of prompt-based methods, LLM
agents [106, 154, 162], which augment pretrained language models
with additional modules: external memory, tool integration, and
planning capabilities, are gaining increasing adoption across various
IoT domains (e.g., smart homes [128, 185], industrial monitoring
[96, 105, 156], autonomous driving [37, 75, 155]). These agents
retain the strengths of prompt-based approaches while addressing
their key shortcomings:

(1) Access to External Knowledge: By integrating external
memory or online search tools, LLM agents can retrieve up-to-
date, task-relevant information beyond what is stored in their static

model parameters [88, 192]. This significantly mitigates halluci-
nation and improves decision-making accuracy, especially in fast-
evolving or safety-critical IoT applications.

(2) Advanced Reasoning and Task Execution: LLM agents
can autonomously decompose complex tasks into subtasks [7, 74,
91, 159], perform multi-step reasoning [53, 121, 160, 183, 191], and
invoke specialized tools or hardware systems as needed [126, 138].
This enables them to handle sophisticated IoT workflows (e.g., pre-
dictive maintenance or adaptive control) that go beyond the capa-
bilities of purely prompt-driven models.

(3) Adaptive Learning and Feedback Integration: Through
the use of external memory and feedback loops, LLM agents can
store and recall prior experiences to improve performance over
time. They can also adjust their outputs in response to real-time
feedback from humans or the environment, allowing them to learn
and adapt without retraining the base model [2, 37, 38].

By integrating the generalization capabilities of LLMswith domain-
specific knowledge, real-time interactivity, and advanced reasoning,
LLM agents offer a more robust and scalable solution for building
intelligent, adaptable, and context-aware IoT systems, particularly
for addressing complex tasks, that exceed the capabilities of prompt-
based methods.

2.3 Paradigm III: Training-Based Methods
Although prompt-based and agent-based methods demonstrate
promise in addressing IoT tasks, their effectiveness is limited by
the constraints of pretrained LLMs, which typically lack task- and
environment-specific knowledge [94, 109]. In contrast, training-
based methods can update model parameters using domain-specific
data, enabling higher accuracy and better adaptation to the target
IoT application.

Training-based methods of foundation models for IoT tasks in-
clude two stages: pretraining and fine-tuning.

Pretraining involves training a large model (often not limited to
language models) on extensive volumes of unlabeled data collected
from diverse devices and environments. In the IoT context, this
includes raw sensor data (e.g., vibration, acoustic, temperature
signals) collected from many devices and environments [30, 80,
85, 86, 94, 109, 117, 163, 168, 174, 185]. The objective is to learn
general, environment-invariant representations that are robust to
variations in deployment conditions and noise levels. In practice,
pretraining may not need to be performed from scratch if task-
relevant pretrained models are already available (e.g., LIMU-BERT
[168] for IMU data or VibroFM [85] for vibration signals).

Fine-tuning involves adapting the pretrained model to a specific
application by updating all or part of its parameters using a smaller,
labeled dataset relevant to the target task (e.g., fall detection within
a specific building). This process tailors the general representa-
tions learned during pretraining to the unique characteristics of
the application domain, sensor setup, or environmental context
[66, 76, 86, 104, 166].

Compared to prompt-based and agent-based methods that rely
on pretrained LLMs, training-basedmethods offer significant perfor-
mance improvements on IoT tasks by updating model parameters
and directly learning from raw sensor data. Also, unlike LLM-based
approaches, they do not depend on converting numerical sensor
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data into natural language tokens. This tokenization process can
introduce information loss or misinterpretation due to internal LLM
limitations (e.g., inconsistent tokenization) [12, 190] or prompt en-
gineering constraints (e.g., downsampling or quantization of long
sensor inputs) [69, 109, 167]. Additionally, training-based methods
can effectively leverage both labeled and unlabeled data, continu-
ously improving through exposure to new domain-specific inputs
by updating their internal representations.

2.4 Method Comparison
In this section, we compare the three most commonly used frame-
works for applying foundation models to IoT tasks: prompt-based
methods, agent-based methods, and training-based methods, as well
as traditional supervised learning methods. The comparison is made
across six dimensions: computation requirement (CR), error rate
on specific tasks (ER), task specificity (TS), development time (DT),
labeled data requirement (LDR), and unlabeled data requirement
(UDR). For training-based methods, we focus on models after fine-
tuning. Task specificity refers to the breadth of tasks a method can
address; a lower specificity indicates broader applicability. Based
on this comparison, we highlight the strengths and weaknesses
of each method and offer practical guidance to help researchers
and practitioners choose the most appropriate approach for their
specific IoT applications.

Table 1 summarizes the comparison results, highlighting the
strengths and limitations of each method. Prompt-based methods
offer rapid development, low computational and data requirements,
and easy adaptability to new or evolving IoT tasks. However, they
typically yield higher error rates on complex or domain-specific
tasks, which are limited by the fixed knowledge of the underlying
LLM, and cannot improve over time through additional data ex-
posure. Agent-based methods extend prompt-based approaches by
enabling more complex, multi-step, and multi-device workflows,
often achieving higher accuracy for orchestrated tasks without re-
quiring the computational demands of full model training. Nonethe-
less, like prompt-based methods, they remain constrained by the
static knowledge of the base LLM and cannot learn from new data.
Training-based methods achieve the high accuracy and robustness
for domain-specific IoT tasks, particularly when handling hetero-
geneous or noisy data. They can evolve through exposure to new
data via pretraining and fine-tuning. However, they are the most
resource- and time-intensive, requiring large volumes of unlabeled
and labeled data, substantial computational resources, and longer
training times. Compared to traditional ML methods, they often
require less labeled data due to their ability to leverage general-
izable knowledge from pretraining. Traditional ML methods are
efficient for narrow, well-defined tasks with sufficient labeled data
and offer low inference costs. However, they lack the flexibility and
adaptability of FM-based approaches.

In conclusion, we offer the following practical guidance for select-
ing methods based on task requirements and resource constraints:
use prompt-based methods for rapid prototyping or when compu-
tational resources and labeled data are limited; adopt agent-based
methods for complex, multi-step IoT workflows requiring tool or-
chestration; apply training-based methods when high accuracy and

robustness are critical, especially in domain-specific or mission-
critical settings with abundant unlabeled data; and rely on tradi-
tional ML approaches for simple, well-defined tasks with sufficient
labeled data and low computational demands. We also provide a de-
cision tree for method selection based on the evaluated dimensions
in Appendix B.

Note: The comparison in Table 1 does not account for security
and privacy constraints. We assume that all pretrained LLMs are de-
ployed in the cloud, computational resources are solely considered
from the user’s perspective, and inference costs on the cloud side
are ignored. Additionally, we assume low time requirements are
supported by high-speed network access. If these assumptions do
not hold, the comparison results may differ. For instance, in privacy-
sensitive applications (e.g., involving personal data), data may not
be allowed to leave local devices [165]. In such cases, LLMs must
be deployed locally, increasing the computational burden on edge
devices and raising the resource requirements for prompt-based
methods to a moderate level.

3 Criterion I: Efficiency
In the context of IoT tasks, efficiency in foundation models en-
compasses several key objectives: (1) reducing inference time, (2)
decreasing computational resources (e.g., memory) and energy con-
sumption, and (3) lowering network load.

Improving the efficiency of foundation models for IoT applica-
tions is essential due to their unique constraints of these environ-
ments. First, many IoT tasks (e.g., fall detection and autonomous
driving) demand fast inference to ensure real-time responsiveness
and prevent harmful delays [35, 40, 81, 110, 112, 173]. Second, most
IoT devices have limited memory and battery capacity, requiring
models to be both lightweight and energy-efficient [55, 119]. This
constraint becomes even more critical when data must be processed
locally on edge devices due to privacy and security concerns (e.g.,
in hospital settings where uploading sensitive patient data to the
cloud is not viable) [165]. Finally, even when cloud processing is al-
lowed, limited bandwidth in edge devices can introduce significant
upload delays, further increasing overall inference latency [9, 131].
These challenges underscore the importance of developing efficient
foundation models tailored to the IoT context.

To improve the efficiency of foundationmodels for IoT tasks, four
common strategies are identified in the surveyed literature: efficient
prompting, experience archive, and efficient model architecture design.

Efficient Prompting. Efficient prompting refers to minimizing
prompt length without significantly compromising the critical in-
formation it conveys when using LLM-based methods, which rely
on prompts as input. This is particularly important in IoT appli-
cations. When the LLM is hosted in the cloud, longer prompts
increase token count, leading to higher network load and longer
transmission times, which is an issue for IoT devices usually with
limited bandwidth, ultimately slowing inference. When the LLM is
deployed locally, processing longer prompts demand more memory
due to the Transformer-based architecture of current models. How-
ever, edge devices typically have constrained memory and cannot
efficiently process lengthy inputs. Therefore, efficient prompting is
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Table 1: Comparison of Different Approaches. The first three methods apply foundation models, while the last represents
traditional machine learningmodels with supervised learning. CR: computation requirement; ER: error rate; TS: task specificity;
DT: development time; LDR: labeled data requirement, UDR: unlabeled data requirement. For training-based methods, we
focus on models after fine-tuning.

Methods CR ER TS DT LDR UDR

Prompt-based Low High Moderate Low Low Low
Agent-based Moderate Moderate Low Moderate Low Low
Training-based High Low High High Moderate High
Traditional ML (supervised) Moderate High Low Moderate High Low

essential to ensure low-latency, resource-aware performance in IoT
environments.

When LLMs are used for sensor data analysis and reasoning,
which is the primary focus of most of the reviewed papers, the sen-
sor data itself forms part of the prompt. However, as previously dis-
cussed, IoT devices can only support prompts with a limited number
of tokens, which poses a major scalability challenge. For example,
long-term monitoring tasks (e.g., tracking an individual’s activity
over two weeks at one-minute intervals) can generate numeric
values far exceeding the input capacity of most LLM-based meth-
ods. Similarly, large-scale spatiotemporal data (e.g., those from air
quality monitoring networks) also surpass the manageable prompt
length [116]. These limitations restrict the direct application of
LLMs to many real-world IoT scenarios that involve continuous or
high-dimensional sensor streams.

To address the challenge of scaling LLMs to large-scale sensor
data, researchers have proposed several strategies to reduce the
volume of sensor data included in the prompt while preserving
inference efficiency and performance. In the following sections, we
review five key approaches that address this issue. For strategies
focused on optimizing other components of the prompt (e.g., such
as instructions or chain-of-thought (CoT) demonstrations [160]),
please refer to surveys such as Chang et al. [28].

Downsampling and Quantization. Downsampling (i.e., resam-
pling at a lower rate) and quantization (i.e., reducing data precision,
such as rounding to integers or two decimal places) are commonly
used to shorten the numerical sensor data [69, 167]. Quantization is
effective because floating-point numbers with many decimal places
are often split into multiple tokens by tokenization algorithms
(e.g., Byte Pair Encoding [54, 134]). Lowering precision reduces
the number of tokens generated by such decimal expansions [12].
However, quantization should be applied carefully, as discarding
high-precision values may eliminate information crucial to the tar-
get task. Similarly, downsampling must preserve critical features
to retain data utility [69]. For example, R peaks in ECG data must
be retained if the goal is to detect cardiovascular diseases based on
this feature.

Sliding Window. For long sensor data sequences, a common
strategy is to divide the data into smaller windows for sequen-
tial processing. However, this segmentation can lead to the loss
of important contextual information found before and after each
window. Preserving context is crucial for accurate interpretation
of sensor data. To mitigate this issue, overlapping sliding windows

are often used, allowing each segment to retain some information
from adjacent windows [32, 116].

Data Summarization. To reduce input volume, raw sensor data
can be summarized before being passed to the model. Three com-
mon approaches are used for summarizing numerical sensor data.
The first relies on external tools (e.g., calculators or Python scripts)
to extract high-level statistical features (e.g., mean, variance, or FFT-
based metrics) [12]. This method is particularly effective when
these features are directly relevant to downstream tasks (e.g., an
elevated average body temperature may indicate fever, suggesting
a potential health concern). The second approach leverages LLMs
or lightweight language models (e.g., DistillBert [132]) to gener-
ate natural language summaries of raw sensor data [116]. These
models have shown strong capabilities in identifying and articu-
lating key numerical patterns (e.g., trends and state changes) and
these summaries are typically much shorter than the original data
while preserving essential information. The third approach uses
task specific modules (e.g., rule-based methods or lightweight ML
models) to extract task related information (e.g., identifying indi-
viduals from vibration data or recognizing activities from audio
signals) [116, 145, 175]. Only the extracted outputs are passed to the
LLM when these simpler models are insufficient for completing the
task [116]. This approach reduces the LLM’s computational burden,
allowing it to focus on high-level reasoning and user interaction.

Critical Information Incorporation. The information contained in
the sensor data is often sparse, making it possible to significantly
reduce input length by including only components containing task-
relevant information. For example, in human activity recognition,
sensor readings frequently remain unchanged for long durations
(e.g., when a person is not present in a room). To eliminate redun-
dancy, prompts can be constructed using only state-change events
(i.e., time steps where sensor values change) [32]. In multi-modal
settings involving numerous sensor types, an initial summary cap-
turing sensor types, data formats, and the first and last readings
of each type can be used to prompt the LLM. The model can then
perform commonsense reasoning to identify which sensors are
most relevant to the downstream task, allowing only the data from
those critical sensors to be included in the final prompt [165].

Sensor Data Encoding. When fine-tuning is permitted, large-
scale sensor data can be efficiently compressed using a lightweight
neural encoder (e.g., an RNN for temporal data or a GNN for spatial
data). The encoder transforms the raw sensor input into one or
more compact embeddings, which are treated as special tokens and
concatenated with textual tokens in the prompt. These combined
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representations are then input into the trainable LLM, with both the
encoder and the LLM jointly optimized during training [30, 76, 94,
109, 151, 172, 185]. This approach addresses limitations associated
with treating numerical sensor data as textual input, which can
lead to information loss or misinterpretation due to internal LLM
constraints (e.g., inconsistent tokenization) or prompt engineering
challenges (e.g., downsampling or quantization of lengthy sensor
sequences).

Experience Archive. The experience archive serves as an external
memory (e.g., a database or cache) that stores historical interactions
between the LLM-agent and the user, including past plans, tool
and executor outputs, error messages from failed executions, and
prior contextual information and decisions [2, 37, 38]. By enabling
the agent to retrieve relevant past decisions and responses for
similar scenarios or user queries, the experience archive reduces
the need for repeated reasoning, planning, or replanning. This
significantly improves decision-making efficiency by minimizing
redundant computation and inference time.

Efficient Model Architecture Design. Efficient model architec-
tures are essential for applying foundation models to addressing
IoT tasks, since foundation models often contain a vast number
of parameters to encode general knowledge across large-scale di-
verse datasets. This complexity results in high computational costs
and prolonged inference time, making such models impractical
for deployment on typical IoT devices or in scenarios requiring
real-time responsiveness. In the following sections, we review sev-
eral techniques aimed at improving the architectural efficiency of
foundation models.

Efficient Transformer Architecture. The Transformer architecture
[150] has been widely adopted in the IoT domain to build founda-
tion models (e.g., IoT-LM [109] and LIMU-BERT [168]). However,
Transformers are known for their high computational complexity,
driven by three key factors: (1) the self-attention mechanism, which
scales quadratically with input length; (2) a deep multilayer architec-
ture with unshared trainable parameters across different layers; and
(3) fully-connected feedforward layers, which contain the majority
of the model’s parameters.

To address the computational challenges of self-attention, sparse
attention mechanisms [33, 34, 68, 146, 158] can be employed. Rather
than allowing each token to attend to all others, sparse attention
restricts attention to a limited set of positions, significantly reduc-
ing computational complexity. Additionally, attention mechanisms
can be optimized for hardware-specific constraints, such as GPU
memory and I/O throughput [41, 42]. To mitigate the overhead of
multi-layer architectures, LIMU-BERT [168] introduces cross-layer
parameter sharing, where only the first encoder layer is trained
and its parameters are reused across all subsequent layers. This ap-
proach drastically reduces the total number of parameters, improv-
ing efficiency and enabling deployment on resource-constrained
devices. Finally, to reduce the computational cost of fully connected
layers, Mixture-of-Experts (MoE) architectures [26] can be used.
MoE layers employ sparse gating to activate only a small subset of
expert sub-networks per token, rather than processing each token
through all experts. This design enables models to scale to billions
of parameters while maintaining efficient training and inference.

Recent work such as LiteMoE [195] further enhances the efficiency
of MoE-based architectures for the on-device deployment.

Architecture with Linear Complexity. To further address the qua-
dratic complexity of the self-attention mechanism and also a large
amount of parameters in the Transformer model, new architecture
has been proposed which has linear complexity, such as TNL [124],
HGRN2 [125], cosformer [123], and Mamba [58]. Those new archi-
tectures have already been applied in the IoT field. For example,
MambaReID [189] uses Mamba architecture to address Multi-modal
object re-identification task. Their experiments demonstrates that
their Mamba based model can achieve the similar accuracy on the
person and vehicle re-identification tasks but consuming much less
memory.

Adapter Layers. Adapter layers are parameter-efficient methods
during the fine-tuning [70]. In this method, only adapter layers,
which are simple added structures to the backbone foundation
model and have much smaller parameters than the backbone foun-
dation models, are updated during the fine-tuning, which saves a
lot of memory and time compared to fine-tuning the whole models
[86, 94, 104, 166]. Also low-rank adaptation (LoRA) [72], which is
the low-rank approximation architecture for the fully connected
adapter, can also be used to further reduce the number of parame-
ters of the adapter (e.g., used in LLM4WM [104], LLaSA [76]).

4 Criterion II: Context Awareness
Context awareness refers to a system’s ability to dynamically adapt
its behavior based on situational factors relevant to a specific task
[45, 120]. In the context of applying FMs to IoT tasks, contextual fac-
tors typically fall into two key categories: (1) environmental context,
which includes physical conditions (e.g., time, location, room bright-
ness, available IoT devices) [32, 38, 62] and virtual settings (e.g.,
accessible software applications) [101]; and (2) user-specific context,
which accounts for individual preferences, schedules, backgrounds,
and personalities.

Context awareness is critical for effectively applying FMs to IoT
tasks. First, it enables FMs to accurately interpret raw sensor data,
which typically consists of unstructured numerical values. Since
these values reflect real-world physical states, understanding their
meaning requires contextual metadata (e.g., sampling rate, sensor
placement, and measurement units). Without this information, FMs
struggle to infer the true significance of the data, impairing reason-
ing and decision-making [12]. Second, since FMs are pre-trained
on broad datasets to capture general patterns, they often overlook
context-specific cues essential for task performance in real-world
environments [122, 186]. For instance, LLMs may generate overly
generic outputs when they lack grounding in environmental context
(e.g., availability of physical objects or tools), which limits their abil-
ity to produce actionable, situation-appropriate responses. Third,
context-aware foundation models can dynamically adapt to diverse
IoT scenarios without requiring separate models for each specific
case. This adaptability is especially valuable in IoT environments,
where tasks are inherently context-dependent and conditions fre-
quently change. By enabling a single model to generalize across
varying situations, context awareness enhances system flexibil-
ity and automation, while also reducing the burden of developing
and maintaining multiple specialized models. Finally, incorporating
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user-specific context (e.g., location, activity, or preferences) allows
FM-based IoT systems to personalize services and interactions. This
not only improves usability but also enhances user engagement
and satisfaction [175].

The collected papers propose various methods to enable context
awareness in foundation models for IoT applications, which we
summarize below.
Data Enrichment. Data enrichment involves augmenting format-
ted and encoded sensor inputs with additional contextual infor-
mation to help foundation models more accurately interpret the
underlying physical meaning behind the data. Critical background
details (e.g., units of measurement, sampling rate, and device place-
ment) are essential, as identical sensor readings can have vastly
different meanings depending on the context [12, 79]. For instance,
sequences of the same length may reflect different durations de-
pending on sampling rates, and identical values could represent
entirely different phenomena (e.g., movement speed vs. body tem-
perature) based on the measurement unit. Without this contextual
information, foundation models may misinterpret the data and
make suboptimal decisions. Therefore, such metadata should be
included alongside raw sensor inputs when using prompt-based,
agent-based, or training-based approaches.
Fine-Tuning. One of the most effective ways to achieve context
awareness in foundation models, originally trained on general-
purpose datasets, is to fine-tune them using data specific to the
target environment, user, and task. This process adjusts the model’s
parameters to capture context-specific patterns while preserving
the general knowledge gained during pretraining. Fine-tuning sig-
nificantly improves the model’s ability to interpret and respond to
contextual cues. For instance, Guo et al. [62] fine-tuned an LLM
for an augmented reality (AR) system using user interaction and
feedback data, enabling the model to generate virtual scenes more
closely aligned with individual user preferences.
Contextual Inputs. While fine-tuning can significantly enhance
the context awareness of foundation models, it often requires sub-
stantial computational resources and large volumes of training data.
A more lightweight alternative when applying prompt-based or
agent-based methods is to incorporate environmental and personal
context directly into the model inputs as textual prompts. For exam-
ple, Nepal et al. [111] personalize a journaling system by embedding
user context, such as current mood, stress level, and summaries of
daily behavior (e.g., screen time, walking duration), into the prompt
before passing it to the LLM for reasoning. Similarly, LLMind [38]
incorporates user profiles (e.g., background and experience) into the
system prompt and leverages the LLM’s role-playing capabilities
[29] to generate tailored responses.

However, implementing context-aware personalizationmay raise
significant privacy concerns. Developers must be careful of these
issues and avoid intrusive practices (e.g., collecting personal infor-
mation from users’ social media without explicit consent) [175].

Contextual Memory. Contextual information can also be stored
in external memory to enhance the context awareness when ap-
plying agent-based methods. This external repository should be
updated in real time or at regular intervals to remain adaptive to
contextual changes.

Several studies have proposed storing environmental or personal
data in such memory structures. For example, Yang et al. [175] uses
an LLM to extract persona-related information (e.g., personal inter-
ests, experiences, and background) from conversations and stores
it in a persona database at the end of each interaction. For new
conversational partners, the extracted persona are directly regis-
tered into the memory. For known users or previously encountered
partners, they use the LLM to check for existing persona in the
database. If no conflicting or redundant information is found, the
extracted new persona are added. If the persona are semantically
similar to existing entries, they are merged. If contradictions are
detected, the old information in the database are replaced by the
new ones. The stored personal information can then be integrated
into the LLM’s reasoning, either by accessing it through external
memory during inference or by incorporating relevant context into
prompts, enhancing the model’s adaptability to individual users.
Active Sensing. In addition to passively receiving environmental
data (e.g., sensor data) or user information (e.g., through user in-
teractions), agent-based methods can also actively query physical
IoT devices (e.g., sensors, robots) to gather additional information
when the current context is insufficient for high-level reasoning or
decision-making. This is referred to as the active sensing capability.
For example, in the LLMind [38] paper, an agent-based check-in and
security system can prompt a robot to approach and identify a per-
son when the system cannot recognize them from low-resolution
images captured by a ceiling-mounted camera or due to occlusion.
Iterative Self-Refinement. For methods based on LLMs, due
to their non-deterministic nature, incorporating contextual infor-
mation into prompts does not always guarantee fully executable
responses or complete satisfaction of personalization requirements.
To address this, iterative self-refinement mechanism are proposed
to transforms LLMs into a closed-loop system [38, 62, 101]. Specif-
ically, the LLM’s output (e.g., a plan generated by an LLM-agent)
receives feedback from the environment or the user if the response
is not executable, possibly due to overlooked environmental or
user-specific factors. The LLM is then reprompted with informa-
tion about the execution error or user feedback, generating a revised
response. This process repeats until the generated response fully
meets the environmental and personalization requirements.

5 Criterion III: Safety
Safety in IoT systems refers to preventing the system and its compo-
nents from causing physical harm or posing threats, and to protect-
ing the surrounding environment from such risks [14]. It is worth
noting that in other related surveys (e.g., Ma et al. [107]), safety
may also encompass security, which refers to protecting models
from external threats such as adversarial, jailbreak attacks. In this
survey, we consider them differently as Shi et al. [140] and address
security separately in Section 6.

Safety is a critical concern in FM-based IoT systems, particularly
when model outputs can directly control or influence physical de-
vices (e.g., industrial robots, medical equipment, vehicles, or infras-
tructure). First, malfunctions, misuse, or insufficient safeguards of
FMs may lead to serious consequences, including accidents, equip-
ment failure, or environmental damage. Second, due to their proba-
bilistic nature, FMs may generate outputs that fail to consistently
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adhere to safety protocols [170, 181]. This risk increases when task
goals are specified at runtime by untrained users, whose instruc-
tions may unintentionally conflict with implicit safety constraints.
Third, FMs may generate overly general or context-agnostic re-
sponses that ignore critical environmental factors, potentially lead-
ing to harmful or catastrophic outcomes in the target task, even
though the same responses would be safe in other environments or
applications.

All studies reviewed in this survey focus on enhancing the safety
of LLMs; therefore, we summarize the commonly used techniques
for improving LLM safety in the context of IoT integration.
Safety Requirement Incorporation. Embedding safety require-
ments into LLM inputs, typically via system prompts, is a key
strategy for promoting safety awareness [170]. This approach re-
quires developers and domain experts to proactively identify poten-
tial risks and define appropriate constraints and mitigation strate-
gies prior to deployment. In agent-based systems, where exter-
nal information can be retrieved dynamically from online sources
or databases, environment- and task-specific safety requirements
can also be automatically incorporated into the prompt to ensure
context-aware and adaptive safety compliance.
User Request Verification. When presented with a task from
user requests, an LLM should reason over both the request and the
current environmental context to assess whether the task is safe
and compliant with predefined safety constraints. Context-aware
reasoning is essential, as high-level instructions may not be safe
to execute across all situations [37, 170]. For example, the model
should recognize and reject unsafe user requests, such as driving
at 200 miles per hour (322 km/h) on a snowy road.
Post-Response Verification. After the LLM generates the re-
sponse, it is crucial to verify that the output adheres to both gen-
eral and task-specific safety constraints, either manually or auto-
matically. Manual verification, however, can be time-consuming,
especially when domain expertise and complex reasoning are re-
quired. Therefore, automated verification methods are essential.
For example, Xu et al. [170] utilizes the Z3 Python API to check
safety constraints formulated as first-order logic (FOL) against LLM-
generated plans, which are expressed in formal languages such as
Linear Temporal Logic (LTL) [170, 181]. Alternatively, responses
can be validated through simulations to ensure safe and correct
execution before deployment in real-world environments.
Interpretable Decision-Making. When the LLM makes the deci-
sions or operates the physical devices, especially in the high-stake
scenarios (e.g., healthcare, autonomous driving), interpretability
of the final decision is very important. This means being able to
provide not only the final decision, but also the reasoning proce-
dure explicitly (e.g., reasoning chain in Chain-of-Thought). This
can help humans identify if the generated decision is correct and
avoid catastrophes if the LLM intermediate reasoning steps violates
the safety rules [37].
Iterative Self-Refinement. If an LLM output violates safety con-
straints, the model should be reprompted and required to regener-
ate the output iteratively, guided by feedback from either human
reviewers or automated verification systems, until the generated
response satisfies all predefined safety requirements [170, 181].

6 Criterion IV: Security and Privacy
Security and privacy refer to the protection of systems and data
from malicious attacks (e.g., jailbreak attacks, adversarial attacks,
PAII attacks) that may lead to unauthorized access, loss of system
control, or data leakage [14, 27]. As discussed in Section 5, we dis-
tinguish security from safety, which pertains to preventing harmful
outputs generated by the system. Notably, in this survey, security
and privacy are considered from the perspective of external attack-
ers, whereas safety concerns arise from the foundation model’s
internal probabilistic behavior. Therefore, even if an FM-based IoT
system is secure and private, it may still be unsafe.

Security and privacy are critical for IoT systems for several rea-
sons. First, the number of IoT devices is growing exponentially, and
attacks targeting these systems are becoming increasingly frequent
and sophisticated [93]. Second, IoT devices and networks often col-
lect and transmit sensitive data (e.g., personal health information,
location details, and business-critical metrics). Unauthorized access
to or manipulation of this data can result in serious consequences,
including identity theft, financial loss, and operational disruptions
[6, 11, 46, 152]. Finally, because IoT devices are typically networked,
compromising a single device can jeopardize the security of the
entire system.

In this section, we summarize approaches to enhancing IoT se-
curity and privacy with foundation models in two contexts: (1)
using foundation models to protect the security and privacy of
IoT systems without directly participating in downstream tasks
(e.g., human activity recognition, robot control), and (2) securing
FM-based IoT systems where the foundation model plays a central
role in downstream tasks.

FMs for Anomaly Detection. To enhance security and privacy,
LLMs have been employed to detect potential anomalies, such as
unusual activities in system or network logs and malicious sensor
data-sharing requests. LLMs are commonly used for anomaly de-
tection due to their ability to estimate the likelihood of a sentence
or paragraph based on their training data. Specifically, an LLM can
be trained on text-based datasets containing normal activity logs
or benign user requests. When the model encounters abnormal
behavior or malicious requests, it assigns a low probability to these
inputs, indicating potential anomalies [6, 11, 46].

However, defining normal activities or requests in IoT systems
based on pre-collected datasets is challenging, particularly in dy-
namic and heterogeneous environments where “normal” behavior
can evolve over time. As a result, LLMs trained on static datasets
may misclassify newly emerged benign activities as malicious. Such
misclassifications can deny service to legitimate users, reducing
system usability and potentially leading to financial losses.

To address this challenge, LLM agents are used to safeguard
IoT systems in dynamic environments due to their reasoning and
planning capabilities, as well as their ability to search and retrieve
relevant information from external sources (e.g., external memory
or the internet). These updatable resources allow the system to
adapt to previously unseen intrusion patterns, such as zero-day
attacks [93, 152].

FMs for Data Obfuscation. In addition to detecting and identify-
ing abnormal behavior, FMs can also protect security and privacy
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of IoT systems through data obfuscation, particularly for protecting
sensitive personal information.

Data obfuscation is a technique that transforms sensitive data
into a less meaningful or recognizable form to prevent unauthorized
access and ensure compliance with data protection regulations [16].
FMs can support data obfuscation in several ways: (1) identifying
and masking sensitive information, such as personally identifi-
able information (PII) [116]; (2) summarizing raw sensor data into
natural language descriptions [116]; (3) synthesizing realistic but
non-identifiable sensor data [180]; and (4) enabling LLM agents
to generate privacy-preserving data transformation pipelines (e.g.,
face blurring in video) by selecting tools from a library and planning
multi-step workflows [152].

When leveraging FMs for data obfuscation, two key consider-
ations must be addressed: (1) Privacy–utility trade-off : Excessive
obfuscation can make transformed data significantly different from
the original, making it difficult to recover critical information. This
degradation can negatively impact the performance of downstream
tasks [152, 180]. (2) Personalization: Rather than applying uniform
rules (e.g., masking biometric identifiers or common activity types),
obfuscation should account for individual user preferences regard-
ing what information can be shared. This user-controlled privacy
level, known as privacy preference, guides the filtering of data based
on specific needs [19, 152, 180]. Supporting personalized privacy
settings enhances system usability and can be achieved through
techniques discussed in Section 4.
Privacy Considerations for FM-based IoT system. Two tech-
niques are commonly used by the literature to protect privacy in
FM-based IoT systems: (1) Using less interpretable data modalities:
Selecting data types that are difficult for humans to interpret, such
as vibration data instead of video for tasks like human activity
monitoring, can improve privacy [175]. However, this approach
requires foundation models capable of understanding such non-
human-interpretable data, which is more challenging due to the
limited availability of labeled training datasets. (2) Data obfusca-
tion in edge–cloud architectures: When the edge-cloud collaboration
system [147, 182] is leveraged, data should be obfuscated on local
devices, using rule-based methods, machine learning models, or
lightweight foundation models, before being transmitted to the
cloud [19, 116, 187]. The cloud hosts more powerful FMs for task-
specific reasoning, but transmitting raw data increases exposure
to privacy risks during transit and in cloud environments, where
broader access makes data more vulnerable to attacks.

7 Evaluation
In this section, we examine how foundation models are evaluated
for IoT tasks. We review the metrics used for both downstream
task performance and the four key performance criteria discussed
earlier. Additionally, we summarize common evaluation strategies,
outlining their applicable scenarios, relevant criteria, and associated
advantages and limitations.
Metrics. Most evaluation metrics depend on the specific down-
stream task. We categorize them into four groups and summa-
rize the commonly used metrics for each: (1) Classification tasks
(e.g., beam prediction [10, 104, 139], human activity recognition
[3, 32, 36, 79, 117, 145, 163, 166, 174]): Accuracy, F1 score, precision,

recall, and specificity. (2) Regression tasks (e.g., channel prediction
[52, 99, 100, 104], air quality forecasting [51]): Mean Squared Er-
ror (MSE), Mean Absolute Error (MAE), Root Mean Squared Error
(RMSE), and Normalized MSE (NMSE). (3) Complex IoT tasks involv-
ing LLM agents (e.g., wireless network management): Success rate,
which measures the proportion of tasks successfully completed,
indicating whether the final objective was achieved [2, 101, 181]. (4)
Sensor QA tasks (e.g., sensor summarization, ECG report generation)
[30, 76, 94, 109, 151, 172, 185]: Natural language processing (NLP)
metrics such as BLEU [118], ROUGE [97], and METEOR [17].

We also summarize specific evaluationmetrics from the reviewed
papers for each performance criterion discussed in this work: (1)
Efficiency: Convergence speed (e.g., number of epochs to conver-
gence) assesses the training efficiency of fine-tuning-based methods
[85, 86]. Inference latency measures the time required for the FM-
based IoT system to complete a downstream task during inference
[176]. Memory usage measures the amount of memory consumed
during inference [164]. (2) Context-Awareness: Executability rate
evaluates how likely the model’s response can be executed in a spe-
cific environment [101]. Personalization score assesses howwell the
response is tailored to an individual’s unique characteristics (e.g.,
persona, background, schedule) [175]. (3) Safety: Safety rate quanti-
fies the likelihood that a model’s response violates predefined safety
constraints [107]. (4) Security and Privacy: For security, the common
task is anomaly detection and the corresponding metrics are classifi-
cation based metrics (e.g., F1, precision, recall) [6, 11, 46, 71, 93]. For
privacy, evaluation typically involves the attack accuracy, which
measures how accurately an adversarial model can recover sensitive
information that is intended to be protected [152, 180].

Strategies. Common evaluation strategies for foundation mod-
els in IoT tasks include: (1) ground-truth comparison, (2) human
evaluation, (3) LLM-as-a-judge, and (4) real-world evaluation. We
describe each approach in detail below.

Ground-Truth Comparison. The most common approach to eval-
uating foundation models for IoT tasks is to compare their outputs
against ground-truth labels using explicitly annotated datasets for
specific downstream tasks. Evaluation tasks typically fall into two
categories: (1) Closed-ended tasks: These tasks have unique ground-
truth labels. Common examples include classification (e.g., human
activity recognition [3, 32, 36, 79, 117, 145, 163, 166, 174], beam pre-
diction [10, 104, 139], disease detection [69]) and regression tasks
(e.g., PM2.5 prediction [51]). Performance is measured using metrics
such as accuracy for classification, or MAE and RMSE for regression,
which quantify the difference between the model’s predictions and
the true labels. (2) Open-ended tasks: These are typically found in
question-answering scenarios (e.g., “Please summarize the trend of
the sensor signal” or "Please generate a report for the ECG."), where
multiple valid responses may exist due to the inherent variability
in natural language [30, 76, 94, 109, 151, 172, 185]. In such cases,
natural language generation metrics like BLEU [118] and ROUGE
[97] are used to assess the semantic similarity between the model’s
output and a reference response, which serves as the ground-truth.

Among the performance criteria discussed in this survey, ground-
truth comparison is most commonly used in evaluating security
and privacy. This is because their tasks often involve classification,
such as determining whether a behavior is malicious or benign
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using foundation models. In contrast, ground-truth comparison is
less frequently used for evaluating context awareness and safety,
as these tasks are more subjective and influenced by individual
preferences and real-world variability, making it difficult to define
universally applicable labels.

Human Evaluation. Human evaluation is typically employed
in the following scenarios when addressing IoT tasks: (1) Open-
ended generation tasks: As noted earlier, open-ended tasks can have
multiple valid responses, while datasets usually provide only a
single reference answer. Relying solely on automated comparison
with a reference may result in incomplete or biased evaluation.
Human evaluation serves as the gold standard in these cases, al-
lowing assessment across multiple dimensions (e.g., fluency, co-
herence, and relevance). It also enables qualitative judgments in
situations where evaluation criteria cannot be easily formalized
mathematically. Humans may either compare different outputs or
assign scalar satisfaction scores to individual responses [76, 113].
(2) Real-world deployment evaluation: In practical IoT applications,
FM-based systems are often validated in real-world environments
where ground-truth labels are unavailable [50, 113, 177]. To bench-
mark performance in such settings, human judgment is essential. (3)
Usability evaluation: Human evaluation is also critical for assessing
the usability of FM-based IoT systems, particularly in personalized
applications (see Section 4) [62, 113]. User feedback and experience
play a key role in iterative development and refinement of these
systems.

Among the performance criteria discussed in this survey, hu-
man evaluation is most commonly used to assess context-awareness
and safety. These aspects are inherently subjective and heavily
influenced by human experience, as well as situational nuances.
For example, in an urban setting, a “safe” action might involve
abrupt braking to avoid hitting a pedestrian, while on a highway,
such behavior could increase the risk of a collision and be con-
sidered unsafe. The appropriate response depends on factors like
speed, traffic density, and road conditions. Due to this complexity,
single-label quantitative evaluations are often insufficient, making
automated assessment challenging and highlighting the need for
human judgment in evaluating these criteria.

However, human evaluation is generally slower and more costly
than automated methods, especially when complex reasoning or ex-
pert knowledge is required (e.g., in disease diagnosis). Furthermore,
to ensure meaningful and reliable results, evaluators must establish
clear annotation guidelines, evaluate inter-rater reliability, ensure
demographic diversity among annotators, and monitor consistency
throughout the evaluation process [63, 65].

LLM-as-a-Judge. To address the high cost and slow turnaround
of human annotation and evaluation, LLMs have gained popularity
as automated judges for open-ended tasks and real-world scenar-
ios. Trained on vast and diverse real-world data, LLMs possess
broad general and domain-specific knowledge, allowing them to
perform evaluations across a range of domains without task-specific
fine-tuning. This makes LLM-based evaluation significantly more
scalable and cost-effective [59, 90]. Moreover, LLM agents, aug-
mented with reasoning and planning capabilities, have recently
emerged as even more powerful evaluators [196]. In addition, many
state-of-the-art commercial LLMs have been aligned with human

preferences through reinforcement learning (e.g., RLHF [115]) or
alternative methods such as Direct Preference Optimization (DPO)
[127], making them more representative of human judgment. Thus,
context-awareness and safety can also be assessed by LLM judges.

Despite these advantages, using LLMs as judges comes with in-
herent limitations and biases, including position bias, length bias,
and output instability (e.g., flipping between responses) [157, 184,
193]. These issues must be carefully measured, mitigated, and mon-
itored to ensure fair and reliable evaluation outcomes. Addressing
these concerns is crucial for producing trustworthy evaluations that
can guide the development and deployment of foundation models
in real-world applications.

Real-World Evaluation. Real-world evaluation is essential for
training and deploying foundation models in IoT applications, as
these systems are ultimately intended for use in practical settings
such as smart homes, cities, transportation, and healthcare. Testing
in real-world environments allows researchers and developers to
identify system limitations across diverse scenarios and iteratively
improve performance.

During real-world evaluation, it is critical to assess not only the
performance criteria outlined in this survey, but also key properties
such as generalization (scalability), robustness, and usability in
varying levels of complexity. Moreover, such evaluations must be
conducted in a carefully controlled manner to ensure safety for both
humans and the environment.

8 Discussion
In this section, we discuss the limitations of current approaches
and propose future directions for more effective application and
evaluation of foundation models in IoT tasks.

Insufficient Evaluation. Current FM-based approaches for IoT
tasks often suffer from insufficient evaluation. Below, we highlight
this issue from both the general perspective as well as the specific
perspective from security and privacy.

Lack of Cross-Domain Comparison. As discussed in the Introduc-
tion (section 1), cross-domain comparisons are largely lacking in
current research. Many studies evaluate their proposed methods
only against simple baselines, neglecting comparisons withmore ad-
vanced techniques from other IoT domains. This limits our ability to
assess the relative strengths and weaknesses of different approaches
and hampers practitioners in choosing the most suitable methods
for new tasks. Additionally, no existing work evaluates all the per-
formance criteria identified in this survey, which are essential for
deploying foundation models in real-world IoT applications. To ad-
dress these gaps, we propose the following: (1)Cross-Domain Com-
parisons: Researchers should benchmark their methods not only
against basic baselines but also against advanced techniques from
other IoT subfields, particularly those highlighted in this survey.
(2) Generalization Evaluation and Leaderboard Creation: A standard-
ized evaluation framework should be established, incorporating
the performance criteria, methodologies, datasets, and sensor types
commonly used across IoT domains. Developing a shared leader-
board would promote transparent, comprehensive comparisons and
help identify the most effective methods for specific criteria, tasks,
and sensor modalities.
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Lack of Fine-Grained Evaluation. Many components in FM-based
IoT systems lack fine-grained evaluation. For example, agent-based
methods often involve multiple modules (i.e., tool use, memory,
and plan generation) but evaluations typically focus only on the
overall system performance. This overlooks critical questions (e.g.,
whether the agent selects the most appropriate tools, generates
accurate plans, or retrieves relevant knowledge for specific tasks
and user queries). Without fine-grained evaluation, it is difficult
to identify system bottlenecks or guide meaningful improvements.
Moving forward, component-level assessments using dedicated
metrics are essential to understand each module’s contribution to
overall performance and to inform more effective system design.

Lack of Real-World Evaluation. Many studies fail to evaluate
their methods in real-world environments using the full set of
performance criteria outlined in this survey. This is a significant
limitation, as IoT systems operate in complex and variable deploy-
ment settings that cannot be fully captured through simulation.
Without real-world validation, it is difficult to assess the generaliz-
ability, reliability, and robustness of FM-based IoT solutions. In the
future, we strongly recommend evaluating complete FM-based IoT
systems in real-world settings using the full set of criteria defined
in this survey. This is essential for identifying practical limitations,
informing future improvements, and guiding the development of
robust, deployable IoT solutions.

Lack of Security and Privacy Evaluation for FMs. While the meth-
ods discussed in Section 6 leverage foundation models (e.g., LLMs,
diffusion models [179]) to defend against security and privacy
threats (e.g., personal information inference attacks), the models
themselves are inherently vulnerable [1, 107]. Consequently, using
FMs in IoT security applications introduces additional risks. How-
ever, the real-world impact of these vulnerabilities in IoT settings
remains largely unexplored, and current research offers limited
guidance on mitigating such risks. Future work should include
more comprehensive evaluations and the development of bench-
mark datasets to assess security and privacy threats arising from
both pretrained and newly proposed FMs in IoT contexts.
Advanced FM Techniques for IoT. Advanced techniques in
foundation models remain underexplored in the context of IoT. In
this section, we highlight four such techniques related to LLMs and
LLM agents that have not been widely applied to IoT tasks: large
reasoning models, multi-agent system, human preference alignment,
and new model architecture and training objective.

Large Reasoning Model (LRM). LRMs (e.g., OpenAI’s o1 [77],
o3 [114], and DeepSeek-R1 [60]) are a class of LLMs designed
specifically for complex reasoning and planning, going beyond
the instruction-following and question-answering capabilities of
traditional LLMs. Many IoT applications—particularly those involv-
ing complex environments or high-stakes scenarios (e.g., healthcare
or autonomous driving) require strong contextual reasoning and
decision-making. LRMs, which emphasize logical inference over
surface-level statistical patterns, hold significant promise for ad-
dressing these challenges more effectively.

Multi-Agent System. A multi-agent system based on LLMs [61,
92] consists of multiple LLM agents, each equipped with distinct
capabilities defined by their roles, tools, and memory modules.

Compared to single-agent systems (as discussed in Section 2.2),
LLM-based multi-agent systems are better suited for complex and
dynamic IoT environments due to their enhanced scalability, adapt-
ability, fault tolerance, and collaborative capacity. First, multi-agent
systems integrate diverse skills and perspectives, making themwell-
suited for interdependent IoT scenarios that require coordination
and negotiation (e.g., smart cities or supply chain management).
Second, they can dynamically reallocate resources, adapt to new
devices, and respond in real time to changing conditions. These
capabilities that are difficult to achieve with a single agent make
them more effective in unpredictable IoT settings. Third, agents
can cross-validate each other’s outputs, reducing the risk of er-
rors and hallucinations, which is an especially valuable feature for
safety-critical applications. Finally, multi-agent systems can distrib-
ute complex or lengthy tasks across agents, preserving coherence
over time and across devices, thus overcoming the context window
limitations of single LLMs.

However, effective multi-agent deployment requires careful task
decomposition. Specifically, it is essential to determine how to parti-
tion the overall task into non-overlapping subtasks that align with
each agent’s strengths. Additionally, designing mechanisms for
inter-agent communication and collaboration is crucial for achiev-
ing coherent and coordinated outcomes. These communication
strategies should be compatible with the distributed and hierarchi-
cal nature of IoT networks, where each node may host a distinct
agent, and agents communicate over the network via node-to-node
connections.

Human Preference Alignment. Advanced human preference align-
ment techniques (e.g., Reinforcement Learning from Human Feed-
back (RLHF) [83, 115] and Direct Preference Optimization (DPO)
[127]) have not yet been widely applied to personalize LLMs for IoT
tasks. These alignment methods not only enhance personalization,
enabling the model to better reflect individual user preferences,
but also help embed socially and ethically appropriate behaviors.
For example, teaching a model to prioritize waiting for an elderly
person to cross the street rather than proceeding immediately can
significantly improve the safety and trustworthiness of LLM-based
IoT systems operating in real-world environments.

NewModel Architecture and Training Objective. Current FMs used
in training-based methods for IoT tasks are primarily based on the
Transformer architecture [150]. However, Transformers may not
be the most effective or efficient choice for processing sensor data,
even for time-series data [43, 188], despite their popularity in this
domain. This highlights the need for novel architectural designs and
training strategies tailored specifically to the characteristics of IoT
data. Below, we outline several key considerations for developing
such models.

Designing FMs for IoT applications requires careful considera-
tion of the unique characteristics of sensor data. Key considerations
include: (1) Architecture choice: model architecture should be tai-
lored to the unique properties or structures of sensor data. For
example, in geo-spatial applications like air quality monitoring
[49, 67], graph neural networks instead of Transformer may bet-
ter capture spatial dependencies. (2) Heterogeneous sensor types:
IoT networks often involve diverse sensor modalities. Designing
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models that can extract and integrate multi-modal information
remains an open challenge. (3) Sparse but salient signals: Sensor
data frequently contain sparse but crucial patterns. Incorporating
selective attention or filtering mechanisms may help models fo-
cus on high-value segments. (4) Metadata utilization: Contextual
information (e.g., sampling rates and device placements) should
be explicitly encoded and included alongside raw sensor inputs to
improve model understanding of the data collection process. How
to encode them effectively into the model architecture is an open
problem. (5) Efficiency and robustness: Models should be computa-
tionally lightweight for deployment on edge devices and robust to
common issues like missing or noisy data. (6) IoT-specific Training
Objective: Many existing pretraining tasks are directly adapted from
NLP (e.g., masked token prediction [44]), but these may not suit the
continuous, multi-modal nature of sensor data. There is a urgent
need to develop IoT-specific unsupervised learning objectives.

9 Conclusion
In this survey, we provide a comprehensive overview of research
leveraging foundation models for IoT tasks. We identify four shared
performance criteria across diverse IoT applications, outline three
key paradigms for applying foundation models, and examine cur-
rent evaluation strategies for both general performance and indi-
vidual criteria. Based on this analysis, we highlight several open
research challenges and propose future directions. Our work offers
guidance for more systematic evaluation, enables cross-domain
comparisons, and provides valuable insights for applying and as-
sessing foundation models in emerging IoT scenarios.
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A Example Prompt for Human Activity
Recognition Based on IMU Data
System Prompt

You are an IoT domain expert specializing in human activ-
ity recognition (HAR) using inertial measurement unit
(IMU) sensor data. Your goal is to accurately determine
whether the input IMU data corresponds to a specific
human activity, based on provided data and context.

The task involves:
• Understanding the sensor data (acceleration and
gyroscope) collected from wearable IMU devices.

• Using domain knowledge and context (e.g., units,
sampling rate, placement) to interpret sensor pat-
terns.

• Applying expert reasoning to infer human activity
based on motion patterns.

You will follow these decomposed steps:
(1) Analyze the time series patterns from the accelerom-

eter and gyroscope.
(2) Use context information to interpret the movement

(e.g., high acceleration with oscillation = running).
(3) Match the interpreted signal to the target activity

class.
(4) Provide the answer in the requested format.

You will be given a prompt that includes:
• A task description
• IMU data input
• Data collection context
• In-context demonstrations
• Output format constraints

You must strictly follow the output format provided in
the user prompt. Do not include any explanation, justifica-
tion, or additional content in your output.

User Prompt

Task: Determine whether the person is running based on
the provided IMU data segment.

Data Collection Context:
• IMU Device: Worn on the right ankle
• Sampling Rate: 50 Hz (i.e., 50 samples per second)
• Duration: 10 seconds
• Sensors:
– Accelerometer (X, Y, Z) in m/s2
– Gyroscope (X, Y, Z) in deg/s

• Units: All values are floating point with 2 decimal
places

• Format: Each row corresponds to one timestamp
In-Context Demonstration #1
Task: Is the person running?
IMU Segment:
Time | Acc_X | Acc_Y | Acc_Z | Gyro_X | Gyro_Y | Gyro_Z
-----|-------|-------|-------|--------|--------|--------
0.00 | 0.20 | 9.81 | 0.10 | 0.01 | 0.02 | 0.00
... | ... | ... | ... | ... | ... | ...
[brief burst of high-frequency, high-magnitude motion]
Answer: Yes

In-Context Demonstration #2
Task: Is the person running?
IMU Segment:
Time | Acc_X | Acc_Y | Acc_Z | Gyro_X | Gyro_Y | Gyro_Z
-----|-------|-------|-------|--------|--------|--------
0.00 | 0.01 | 9.80 | 0.00 | 0.00 | 0.01 | 0.01
... | ... | ... | ... | ... | ... | ...
[mostly flat and stable readings over time]
Answer: No

Your Task
Task: Is the person running?
IMU Segment:
Time | Acc_X | Acc_Y | Acc_Z | Gyro_X | Gyro_Y | Gyro_Z
-----|-------|-------|-------|--------|--------|--------
0.00 | 0.03 | 9.79 | 0.01 | 0.01 | 0.00 | 0.01
0.02 | 0.05 | 9.82 | 0.03 | 0.01 | 0.01 | 0.00
0.04 | 0.04 | 9.78 | 0.02 | 0.00 | 0.02 | 0.01
... | ... | ... | ... | ... | ... | ...

Output Format:
Please only respond with Yes or No. Do not include any
explanation or additional content.
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B Method Selection

Figure 2: Method selection decision tree. The decision tree
considers the three most commonly used frameworks for
applying foundationmodels to IoT tasks: prompt-basedmeth-
ods, agent-basedmethods, and training-basedmethods, as well
as traditional supervised learning methods. The selection is
guided by six key dimensions introduced in Section 2.4 com-
putation requirement (CR), error rate on specific tasks (ER),
task specificity (TS), development time (DT), labeled data
requirement (LDR), and unlabeled data requirement (UDR).
While the decision tree provides general guidance, practi-
tioners and researchers should adapt it to specific scenarios,
particularly when additional constraints such as security and
privacy are involved.
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