arXiv:2506.12100v1 [cs.CR] 12 Jun 2025

LLM Embedding-based Attribution (LEA): Quantifying Source
Contributions to Generative Model’s Response for Vulnerability Analysis

Reza Fayyazi
Rochester Institute of Technology
Rochester, NY, USA
rfl679@rit.edu

Abstract—Security vulnerabilities are rapidly increasing in
frequency and complexity, creating a shifting threat land-
scape that challenges cybersecurity defenses. Large Lan-
guage Models (LLMs) have been widely adopted for cy-
bersecurity threat analysis. When querying LLMs, dealing
with new, unseen vulnerabilities is particularly challenging
as it lies outside LLLMs’ pre-trained distribution. Retrieval-
Augmented Generation (RAG) pipelines mitigate the prob-
lem by injecting up-to-date authoritative sources into the
model context, thus reducing hallucinations and increasing
the accuracy in responses. Meanwhile, the deployment
of LLMs in security-sensitive environments introduces
challenges around trust and safety. This raises a critical
open question: How to quantify or attribute the generated
response to the retrieved context versus the model’s pre-
trained knowledge? This work proposes LLM Embedding-
based Attribution (LEA) — a novel, explainable metric to
paint a clear picture on the ‘percentage of influence’ the
pre-trained knowledge vs. retrieved content has for each
generated response. We apply LEA to assess responses
to 100 critical CVEs from the past decade, verifying
its effectiveness to quantify the insightfulness for vul-
nerability analysis. Our development of LEA reveals a
progression of independency in hidden states of LLMs:
heavy reliance on context in early layers, which enables
the derivation of LEA; increased independency in later
layers, which sheds light on why scale is essential for
LLM’s effectiveness. This work provides security analysts
a means to audit LLM-assisted workflows, laying the
groundwork for transparent, high-assurance deployments
of RAG-enhanced LLMs in cybersecurity operations.[T_]

Index Terms—LLM, Vulnerabilities, RAG, Hidden States,
Linear Independency, CVE, Rank, Embeddings, LEA.

1. Introduction

Security professionals and vendors rely on vulner-
ability intelligence to defend against evolving threats.
However, the threat landscape is becoming increasingly

1. Code and data: https://github.com/RezzFayyazi/LEA

Michael Zuzak
Rochester Institute of Technology
Rochester, NY, USA
mjzeec @rit.edu

Shanchieh Jay Yang
Gonzaga University
Spokane, WA, USA
yangj@ gonzaga.edu

dynamic, with a sharp rise in both the volume and
complexity of vulnerabilities [1]. The CVE framework
[2] has cataloged over 300,000 vulnerabilities since
1999, creating challenges in identifying patterns, as-
sessing risks, and deploying timely mitigations. Public
databases like NIST NVD [3] are essential for sharing
this information, but rely heavily on manual analysis
- an approach that is slow and prone to delays in
recognizing and responding to emerging threats [1].

Large Language Models (LLMs) have been widely
adopted for cybersecurity threat analysis and deploy-
ment of mitigations in enterprise systems [4]—[14].
They have been particularly effective in cyber threat
intelligence analysis [7], [8]], LLM-assisted attacks [6],
[91, [10], log-based anomaly detection [[11], [[14]], and
vulnerability detection [4], [S[, [12], [[13]. LLMs are
inherently constrained by their training data, which is
time-gated — meaning their knowledge reflects only
what was available up to a fixed cutoff date. Meanwhile,
thousands of new CVEs are disclosed each year. This
creates a persistent out-of-distribution problem: LLMs
lack awareness of emerging vulnerabilities that appear
after their training cutoff. In cybersecurity, where timely
and accurate threat intelligence is critical, this gap can
have serious consequences. This issue is especially
pressing as more organizations integrate LLMs into
their SECDEVOPS pipelines [15]], [[16], and addressing
this knowledge gap is essential for a safe and effective
use of LLMs in real-time cybersecurity operations.

Retrieval-Augmented Generation (RAG) pipelines
address the out-of-distribution shortfall by injecting
up-to-date, authoritative data directly into the model’s
context. RAG grounds outputs in verifiable evidence,
which significantly reduces the likelihood of halluci-
nations [17], [18]]. Given the rapid evolution of threats,
analysts will continue to rely on RAG pipelines for real-
time access to current information about vulnerabilities.
New models have added automatic RAG capabilities
to help address this. However, over reliance on re-
trieved knowledge can still cause hallucinations, either
due to ambiguous queries, or a low-quality knowledge
base [[19]. In addition, the deployment of LLMs in

https://github.com/RezzFayyazi/LEA
https://arxiv.org/abs/2506.12100v1

security-sensitive environments introduces new chal-
lenges around trust, interpretability, and safety. For ex-
ample, inaccurate or hallucinated code suggestions can
lead to insecure configurations or flawed mitigations.
Thus, beyond retrieval, it is essential to measure and
communicate the confidence and source attribution of
LLM-generated responses.

Since vulnerabilities are often novel, nuanced, and
evolve rapidly, distinguishing between retrieved factual
content and internal model reasoning is critical in cy-
bersecurity, where inaccuracies can result in security
breaches. This leads us to a critical question: Can we
quantify the degree to which an LLM’s response relies
on retrieved knowledge versus its internal parameters
— particularly in the context of novel vulnerabilities?
In other words, when an LLM generates a response,
how can we determine how much of that output is
grounded in retrieved and factual content, and how
much stems from the model’s pre-trained (internal)
knowledge? Quantifying this dependency is essential
for building transparent, auditable AI systems that se-
curity analysts can trust in high-stake environments.

One way to quantify this can be with token-level
probability differences. However, as vulnerability jar-
gon often has multiple forms for the same concept,
e.g., ‘Cross-Site Scripting’ vs. its abbreviation ‘XSS’
or ‘SQL Injection’ vs. ‘SQLi’. An LLM can assign
different token-level probabilities even though these
pairs convey identical meaning. For this reason, the
vulnerability analysis problem is unique from broader
retrieval tasks. Researchers have observed that trans-
former weight matrices often have redundant or low-
information directions, which can be exploited to reduce
model size [20]]. Low-Rank Adaptation (LoRA) [20] is
a parameter-efficient fine-tuning method that injects a
pair of learnable low-rank update matrices into each
transformer layer to fine-tune large models like Gemma-
3 [21]l, Deepseek-R1 [22]. This shows that LLMs exhibit
substantial linear redundancy — many weight vectors are
linearly dependent. From a theoretical perspective, the
embedding vectors inhabit nearly the same subspace,
so one can be expressed as a linear combination of the
other. The ‘rank’ of a matrix reflects the number of lin-
early independent vectors it contains, offering a measure
of the ‘unique’ or ‘non-redundant’ information present.
If a vector can be expressed as a linear combination
of others, it contributes no new information, indicating
redundancy. Conversely, a set of linearly independent
vectors implies that each vector adds distinct value to
the representation space.

Built upon the above insights, we introduce a novel,
explainable metric — LEA — based on the linear depen-
dency of hidden state representations within LLMs. By
measuring the rank of a matrix constructed from both
retrieved-augmented representations and the latent hid-
den states of the LLM, we can quantitatively assess the
relative contribution (percentage of influence) of each

source to the final output. In fact, we show that LLMs
exhibit strong context dependence in the early layers
of the hidden state, which enables the construction of
LEA to examine the linear dependencies of the gen-
erated tokens against the retrieved context vs. LLM’s
internal knowledge. This approach provides a transpar-
ent view into the influence balance between externally
retrieved evidence (e.g., RAG) and the model’s internal,
pre-trained knowledge, and thus a principled way to
disentangle genuine knowledge injection from mere
rephrasing in RAG-enhanced cybersecurity workflows,
improving trust and interpretability in model outputs.

We curated 100 critical and high severity CVEs
between 2016 to 2025, and conducted a thorough anal-
ysis across the layers of four instruction-tuned LLMs
of varying sizes: Gemma-3-27B-IT (21|, Mistral-Small-
24B-Instruct-2501 [23||, DeepSeek-R1-Distill-Llama-8B
[24], and LLaMA-3.2-3B-Instruct [25]]. Our results re-
veal a common trend across all evaluated models: as
long as the generated response captures the factual,
verified content from RAG, LEA shows a relatively bal-
anced distribution between the retrieved context and the
LLM’s internal knowledge. Conversely, when the model
disregards verified RAG embeddings and generates a re-
sponse with little to no alignment with the retrieved con-
text, LEA exhibits significantly low percentage value
associated with the RAG. Furthermore, by analyzing
the LEA distributions for the CVE analysis from 2016
to 2025, we discover the limitations of generic use of
LLMs in memorizing the vast majority of documented
CVEs. This indicates the inherent constraints of re-
lying solely on foundational (internal) knowledge for
comprehensive and up-to-date threat intelligence. We
summarize our contributions as follows:

« Explainable Metric: A novel metric, LEA, is
developed to reveal how LLM generated responses
depend on the foundational knowledge versus re-
trieved context by exploiting the inherent trans-
formers architecture.

« Verifiable Uses for Vulnerability Analysis: We
apply LEA to verify that LLM-generated responses
for vulnerability analysis are insightful, by show-
casing the expected distribution of the responses
when applied with verifiable sources, using 100
critical CVEs over a 10-year period.

« Dependency Progression in Hidden States: We
demonstrate that LLMs show context dependence
in early layers (especially layer-0), but increasingly
treat tokens independently in the middle to final
layers, indicating why large model sizes are needed
to capture complex interdependencies.

2. Preliminaries

2.1. Large Language Models

The remarkable progress in LLMs is due to the
adoption of the Transformers architecture [26]. State-

of-the-art models such as OpenAI’s GPT series [27]
and Deepseek-R1 [22] exemplify this advancement.
Their ability to tackle a wide range of complex natural
language tasks has been well documented in recent
studies [28]], [29]]. However, despite their effectiveness,
LLMs remain susceptible to hallucinations [15], [16].
This issue is often rooted in the models’ reliance on
their static pre-trained knowledge, which introduces a
critical limitation, and that is the knowledge cutoff of
the training data. As a result, LLMs may struggle to
reason about or accurately respond to emerging events
or newly discovered vulnerabilities.

To mitigate these shortcomings and enhance factual
accuracy, RAG techniques were introduced [17]. RAG
combines traditional information retrieval techniques
with LLM prompting by incorporating relevant, up-to-
date external content at inference time, thereby ground-
ing model outputs with relevant context. Building on
this foundation, several advanced RAG techniques have
been proposed to further improve precision, adaptabil-
ity, and robustness in response generation [30]—[32].

However, excessive reliance on retrieved knowledge
can still lead to hallucinations — particularly when the
input queries are ambiguous or when the retrieved
information comes from a low-quality knowledge base
[19]. This raises the need to quantify how much the
models depend on the retrieved tokens when generating
a response.

2.2. LLMs in Vulnerability Analysis

Several recent studies have explored the integration
of LLMs into vulnerability analysis workflows [4], [5]],
[13], [33]. Cheshkov et al. [5] applied GPT-based mod-
els to detect Common Weakness Enumeration (CWE)
vulnerabilities in Java code, uncovering that LLMs of-
ten struggle with reliably identifying vulnerable pat-
terns—especially in complex or obfuscated codebases.
In contrast, Khare et al. [4]] demonstrated that LLMs can
outperform traditional deep learning models in vulner-
ability detection when guided by well-crafted prompt
strategies, which indicates the critical importance of
prompt engineering in effectively leveraging LLMs for
cybersecurity tasks.

Extending these efforts, Du et al. [[33] introduced
Vul-RAG, a retrieval-augmented framework that con-
structs a multi-dimensional knowledge base from his-
torical CVE reports and integrates it with LLMs to
improve contextual understanding during vulnerability
analysis. ChatNVD [13]] leverages the NVD as an exter-
nal knowledge source and utilizes a GPT-4 variant to
generate concise, human-readable summaries of CVE
entries. This system aims to help practitioners rapidly
understand a vulnerability’s nature, exploitation poten-
tial, and impact without having to parse through dense
technical descriptions.

Despite these promising advances, none of these
works quantified the degree to which an LLM’s output

relies on retrieved knowledge versus its internal rep-
resentations. This lack of quantification constitutes a
significant gap in explainability and trust, particularly in
cybersecurity domain, where understanding the prove-
nance of generated content is essential for reliable and
auditable decision-making.

3. Motivation to use Linear Independence

To better understand the influence of the RAG con-
text on the generation process, we begin by analyzing
the differences in token-level probabilities before and
after incorporating RAG. This analysis reveals how
RAG affects the model’s confidence in generating spe-
cific tokens and provides insight into the contextual
dependencies introduced by the retrieved information.
Figure [I] illustrates how the token-level probabilities
in the generated response shift when RAG-provided
context is incorporated. Notably, the probabilities of key
tokens related to CVE-2025-30066 exhibit substantial
changes, which indicates the influence of the retrieved
context on the model’s output.

However, while informative, token-level probabil-
ity changes alone do not offer a principled or quan-
tifiable measure of how much the model relies on
retrieved information. One limitation arises from the
linguistic variability inherent in cybersecurity jargon.
For instance, terms such as “malicious commit” and
“backdoor commit” may be semantically equivalent,
yet the model may assign distinct token probabilities
to each. This semantic ambiguity complicates efforts
to attribute generation influence based purely on token
probability shifts.

To overcome this challenge, we introduce a more ro-
bust and interpretable approach grounded in the internal
structure of the model’s hidden representations. Prior
work has shown that transformer models often exhibit
redundancy in their weight matrices and hidden states,
with many directions in these high-dimensional spaces
contributing little unique information [20]], [34], [35].
One notable method that capitalizes on this property
is LoRA [20]. LoRA has gained widespread adop-
tion for fine-tuning LLMs as it achieves performance
comparable to full fine-tuning while requiring updates
to only a few million parameters. Model pruning is
another prominent area where the concept of linear
dependence is exploited. Pruning techniques aim to
remove redundant parameters or structures—such as
attention heads or neurons—based on the insight that
many components in LLMs learn features that are linear
combinations of others, and thus do not contribute
uniquely to model output. Recent research in attention
head pruning has shown that a substantial number of
attention heads can be removed with minimal impact on
performance [34], [35]]. This insight motivates the use of
matrix rank—specifically, the rank of hidden-state ma-
trices—as a metric to assess linear independence and in-
formation diversity across layers. The rank of a hidden-

Token Probabilities gemma-3-27b-it for CVE-2025-30066

, 100 e :
2ors
5050

- —e— probs_x_theta_y
—e— probs x_y
0.00 . *

SN

An
attacker
can
exploit
CVE
discover
secrets
Versions

>4 >%m -0 -~

I

</

Response
>>

@

£° 39
S S
o

£

compromised
malicious
commit
containi
facilit:

Response Tokens

Figure 1: The probability differences for the RAG-generated response of CVE-2025-30066 before and after
including RAG tokens (refer to Table |I| for the terms).

ye CVE-2025-30066 \\

\

<<LLM Knowledge> >

992, [
3°

<</LLM Knowledge> >

<<Question>>

You are a cybersecurity expert. How can an attacker exploit CVE-
2025-30066? Do not be verbose and answer carefully.

<</Question>>

<<RAG>>

tj-actions changed-files before 46 allows remote
attackers to discover secrets by reading actions logs. (The tags v1
through v45.0.7 were affected on 2025-03-14 and 2025-03-15
because they were modified by a threat actor to point at commit
0e58ed8, which contained malicious updateFeatures code.)

<</RAG>>

<<RAG Response> >

An attacker can exploit CVE-2025-30066 by reading the ‘tj-actions’
action logs to discover secrets. Versions v1-v45.0.7 were

|| compromised to point to a malicious commit (Oe58ed8) containing

\ code that facilitates this log access.

<</RAG Response>>

Figure 2: LEA’s dependency distribution of the
Response with respect to the model’s knowledge,
RAG context, and the Question.

state matrix quantifies the number of linearly indepen-
dent vectors, effectively capturing the dimensionality
of the informative subspace in a given layer. A lower
rank implies redundancy or strong dependency among
token representations, while a higher rank suggests that
the tokens are contributing distinct information to the
representation space. By computing the rank at each
transformer layer, we gain visibility into how token
interactions evolve with depth, and how the presence
of RAG-derived context modulates these interactions.
This leads us to consider how the concept can
be applied in the analysis of vulnerabilities to detect
which token generations in the responses were from
the retrieved context (i.e., RAG). In this setting, rank-
based analysis can help determine whether the model’s

response about a CVE (e.g., its exploitability, impact, or
mitigation strategies) is primarily grounded in retrieved
evidence or generated using internal knowledge. If to-
ken representations introduced by RAG significantly
affects the rank of hidden states, this suggests that
the retrieved content is actively enriching the model’s
representational space and guiding generation. Con-
versely, if the model’s internal representations already
exhibit high rank without RAG context, it may indicate
that the model possesses intrinsic understanding of the
vulnerability and is less reliant on external information.

Figure [2] illustrates the dependency distribution de-
rived from our proposed metric (LEA) for CVE-2025-
24472. In this example, 26% of the generated content is
attributed to the model’s pre-trained knowledge, while
13% and 61% are influenced by the user query and
retrieved documents, respectively. This percentage of
influence is critical for downstream cybersecurity tasks.
If the dependency distribution with retrieved tokens
closely mirrors that seen in the absence of retrieval, it
could indicate that the model possesses internal insights
about the CVE and retains semantically relevant asso-
ciations from its foundational knowledge. In contrast,
when the model overlooks verified RAG embeddings
and produces responses with minimal alignment to the
retrieved context, it could indicate hallucination or a
generic generation. In the context of vulnerability anal-
ysis, a poorly aligned response can result in misleading
interpretations or a lack of actionable insights. There-
fore, detecting and filtering poorly grounded responses
is essential before dissemination to ensure the reliability
of Al-assisted cybersecurity workflows.

4. LEA: Theory and Derivation

In this section, we show how the proposed LEA
metric works based on the linear dependency of hid-
den state representations within LLMs. By measuring
the rank of a matrix constructed from both retrieved-
augmented representations and the latent hidden states
of the LLM, we can quantitatively assess the relative
contribution of each source to the final output. To under-
stand this, we first need to discuss how text progresses
through the transformers architecture.

Let a prompt be tokenized in the ordered sequence T' =
(t1,t2,...,tr) of length L.

Layer0

Token-1

x Token-2

== (] :
(Retrieved Context] —> @ —> [

Positional
RAG Response Encoding

Token k-1
Tokenk

[}

Token n-1
Tokenn

y

Vo Ve Vo

nxd

Token-1

H —
Token n-1
Token n

Transformer

——————p layers1..n

Token-2 Transformer

—————————p Layers1..n

Token Probabilities for the

Token-1 Response Generations

Tokgn-z 0.80.02...
0.010.9....

Token k-1

—

|

Token k

i

0 } ;z::’;:“'H Linear H SoftMax

nxd

Hidden States

Token Probabilities for the
Response Generations

Token-1
Token-2

i

Input
X
— () —
! { *e Response

nxd

TT

Token n-1 .
Token n H Linear H SoftMax

nxd

Hidden States

Figure 3: The step-by-step of getting the hidden state progression and probability differences.

1) Token embedding. Each discrete token ¢; is mapped
to a continuous vector via an embedding matrix
E e RVIxd,

e, = E[tz] S Rd,

where d is the model (hidden) dimension and V is
the vocabulary.

2) Positional encoding. Because the self-attention
mechanism is permutation invariant, positional in-
formation must be injected. For position ¢ we add
a vector p; € R? (either a fixed sinusoidal code or
a learned embedding):

XEO) = e + Py

i=1,...,L.

The matrix X = [x{”, ... x!¥] € REx con-
stitutes the layer-0 hidden state. It encodes both
lexical identity and position.

3) Stack of Transformer blocks. For { = 1,..., N
(where N is the number of layers) the hidden state
is updated by a residual sublayer comprising multi-
head self-attention (MHA), feed-forward network
(FFN), and layer normalisation (LayerNorm):

X0 = x=1) 4 MHA(Layeerorm(X(E_l)))7
X®O=x® 4 FFN(LayerNorm(X(f))),

yielding X(©) € RL*?, the layer-{ hidden state.
Each row xy) is a context-dependent representa-
tion of the i-th token, refined through ¢ rounds of
self-attention and nonlinear mixing.

4) Output (logits). After the final layer N, the hidden
state X(™) is projected back to vocabulary space
through a linear map (often the transpose of E)
followed by a soft-max:

Z = XN Wy + boy € RV
P = softmax(Z2)

yielding for every position i a probability distribu-
tion P; . over the next token. During autoregressive
generation the model typically uses only the last
row of X&) (the most recent token) to predict the
next token in the sequence.

Therefore, every Transformer layer re-encodes the en-
tire prompt, allowing each token’s representation to
attend to, and hence depend on, all other tokens. Conse-
quently the hidden states evolve from locally grounded
embeddings (e;) to highly contextual vectors XE—N) (hid-
den states) that capture syntax, semantics, and long-
range dependencies of the prompt.

Now, to understand how we can get a representation
of these highly contextual vectors, we need to discuss
about linear independency. A set of vectors is linearly
independent if no vector in the set can be expressed
as a linear combination of the other vectors in the set.
In simpler terms, this means that the vectors are not
“redundant” or “dependent” on each other, and hence,
adding ‘new information’. Let {vy,va,...,v,} be a set
of vectors in a vector space V. The vector v; is said to
be linearly independent of the remaining vectors if

n
Zajvj = v = a; =0 forallj#i.
Jj=1
J#i

Equivalently, there are no scalars «; (not all zero) with
j # i such that a linear combination of the other vectors
equals v;.

The ‘rank’ of a matrix is how many vectors are
needed to describe the original matrix. Let A € F™*"™
be a matrix over a field F: For A € F™*" the rank of
A, written rank(A), is the dimension of its row-space

row(A) =span{Ai.,...,An .} CF".

By equality of row- and column-rank this equals the
dimension of the column-space

col(A) =span{A.;,..., A ,} CF™

In other words, rank(A) counts the number of fun-
damental directions needed to reconstruct every row
(or, equivalently, every column) of A. Any additional
vector lying in the span of those directions adds no
new information.

Duplicate information. If rank(A) = r < m, then
exactly m — r rows are redundant. Each redundant row
can be written as a linear combination of r independent

rows:
-
Aj,: = Zai Aki,:a
i=1
where kq,...,k, index linearly independent rows and
at,...,on €.

Therefore, this concept can be applied in the context
of LLMs, as each token has a vector representation.
More specifically, a prompt is converted into an em-
bedding matrix representing the tokens in the prompt,
with the dimension of RL*4 where L is the number of
tokens and d is the dimension of the model. As E prop-
agates through the model’s Transformer blocks, self-
attention and feed-forward layers iteratively refine these
vectors, producing a sequence of hidden states—one
per token—that captures progressively richer semantic
and syntactic context. Because decoder-only LLMs are
trained with a causal mask, the hidden state at position
t is conditioned exclusively on tokens 1,...,t — 1,
ensuring the model’s predictions remain autoregressive.

This structural property opens a pathway for fine-
grained attribution analysis: by examining how hidden
states evolve in the presence of retrieved context re-
garding new vulnerabilities, we can quantify the extent
to which specific token generations in the model’s
output are influenced by the retrieved evidence. To do
so, we first concatenate the original question (x) with
the RAG-generated response (y) to form the combined
sequence xy, and we compare with adding the retrieved
context (0) to get the sequence xfy. Figure [3| show
how these representations progress in the transformers
architecture. We then evaluate the contextual depen-
dency of each token within this sequence. Specifically,
we compare the token-level dependency annotations
before and after incorporating . Table [1| provides a
brief description of the terms used in the paper.

In Table 2| we provide the evolution of the de-
pendency patterns across transformer layers for a vul-
nerability (CVE-2025-30066). As can be seen, when
the model progresses through the intermediate layers,
a shift occurs: tokens are increasingly treated as inde-
pendent variables, and the trend continues until the final
layers. This likely arises from the attention mechanism’s
independent token weighting, which encourages treating
tokens in isolation and may explain why LLMs must be

TABLE 1: Brief description of the used terms
throughout the paper

Term Description

T main question of the prompt

0 retrieved context (RAG)

Y RAG-generated response

y' base response (no RAG involved)

Ty concatenation of the question and RAG-generated response

z6y concatenation of the question, retrieved context, and RAG-
generated response

zy’ concatenation of the question and base-generated response

z6y’ concatenation of the question, retrieved context, and base-

generated response

so large to capture complex interdependencies. Inter-
estingly, we observe that Layer-0, which includes both
token embeddings and positional encodings, provides
a signal of how dependent the model is on the input
prompt. At this layer, the model’s representations reflect
meaningful contextual relationships between tokens.
This indicates that Layer-0 can be especially useful for
discerning how the model interprets and distinguishes
between question tokens and retrieved content. In Ap-
pendix [Al we show how these dependencies follow
the same trend with another CVE and more analysis.
Therefore, we define the LEA metric as the transition
of the dependency from zy to x6y at Layer-0. The
progressive transformation from independent to depen-
dent in the responses at layer-0 serves as a measure
in understanding the foundational behavior of LLMs in
vulnerability analysis. The dependency transitions are
summarized in Table [3] and in Sec. [5.2] we explain on
how the interpretation of these transitions are derived.

5. Experimental Design

5.1. Dataset

We curated a dataset of CVEs with high or critical
severity reported in the past 10 years. We focused on
CVEs with a Common Vulnerability Scoring System
(CVSS) score of 7.0 or higher. In total, the curated
dataset comprised of 100 CVEs from 2016 to 2025. For
each year, we curated 10 CVEs to see how the models
perform when dealing with the most recent vs. the older
ones. For each CVE, we assumed an ideal RAG pipeline
that returned only the most relevant, non-redundant,
and verified information from authoritative web sources.
What this indicates is that we only provided the most
relevant information for the CVE in question from the
NVD website [3]]. Moreover, since the selected LLMs
have a training cut-off up until mid-2024, we expect
them to rely more heavily on RAG for the 2025 CVEs.
However, older vulnerabilities are not guaranteed to
appear in the pre-training corpora of models, therefore,
some years may exhibit a similar distribution of RAG-
generated tokens (especially since we are only putting
the CVE-ID in the question).

TABLE 2: Layer-by-layer rank evolution for each model for CVE-2025-30066

Llama-3.2-3B-Instruct

DeepSeek-R1-Distill-Llama-8B Mistral-Small-24B-Instruct-2501

Gemma-3-27b-it

28 Layers 32 Layers 40 Layers 62 Layers
Layer 0 Layer 0 Layer 0 Layer 0

rank z6y 48% 13% 48% 47%
rank xy 50% 12% 57% 64%

Layers 1-2 Layers 1-24 Layers 1-5 Layers 1-23
rank z6y 98% 79% 95% 88%
rank xy 98% 78% 98% 94%

Layers 3-27 Layers 25-31 Layers 6-39 Layers 24-61
rank z6y 100% 100% 100% 100%
rank zy 100% 100% 100% 100%

TABLE 3: Independency conditions, their
interpretations, and corresponding LEA values

Ty z0y Interpretation Abbr.
True True Foundational Knowledge LEA(fnd)
True False Retrieved Context LEA(rag)
False False Question LEA(q)
False True Invalid —

It is worth noting that we conducted our experiments
on a system equipped with two Intel Xeon E5-2650
CPUs, 256 GB of RAM, two NVIDIA Tesla P40 GPUs,
and one NVIDIA Tesla V100 GPU.

5.2. Experimental Settings

For our experiments, first, we will design a prompt
to ask about exploitation of different CVEs, along with
the retrieved context, to obtain the generations. We will
test on 4 different LLMs of varying sizes: Gemma-
3-27B-IT, Mistral-Small-24B-Instruct-2501, DeepSeek-
R1-Distill-Llama-8B, and LLaMA-3.2-3B-Instruct. Note
that for the generations, we get the highest probable
token (i.e., the token with the highest logit value) to
get the most deterministic responses from the LLM.
The designed prompt is as follows:

You are a cybersecurity expert. How can an attacker exploit
CVE-xxx-xxx? Do not be verbose and answer carefully.

<<RAG>>
Retrieved Context
<</RAG>>

<<Response>>

We put each CVE-ID in the question, and we will
put the retrieved context in RAG. After getting the
generations, we now have the question (), the retrieved
context (6), and the generated response (y).

Our investigation into linear dependence at layer-0
stage aims to determine whether the model inherently
relies on this raw contextual information for subsequent
token generation. This layer is critical because it di-

rectly processes the input embeddings augmented by
positional encodings, which reflects the model’s initial
view of token identity and order.

Figure [4] and Table [3] show how we quantify the
dependency of the generated tokens in our proposed
metric using LEA(fnd), LEA(rag), and LEA(q). A to-
ken initially marked as independent (i.e., True) that
becomes dependent (i.e., False) after adding 6 indicates
that the retrieved context introduced a new dependency
(LEA(rag)). In this case, 6 contributes meaningful con-
textual information influencing that token. Conversely,
if a token remains independent both before and after
adding 6, it suggests that the token’s interpretation is
self-contained within the original question and unaf-
fected by the retrieved content LEA(fnd). If a token
remains dependent (i.e., False to False), this implies
that the dependency is solely attributed to the informa-
tion present in the original input x, and the retrieved
content did not alter this relationship LEA(q). Lastly,
if adding 6 changes a token from False (dependent)
to True (independent), this suggests an inconsistency.
A token initially identified as dependent should not
become independent with the addition of more context.
Such a transition may indicate invalid behavior, as
it undermines the stability of the token’s contextual
dependency assessment.

6. Usage of LEA for CVE Analysis

As outlined in Sec.[5] LEA quantifies an LLM’s re-
liance on retrieved context when generating responses.
To validate its utility and robustness, we present four
complementary sets of results. First, we will get the
LEA distribution over the entire response. Next, we
compare the distribution with a generic RAG. Third,
we will apply some filtering to focus on content-bearing
tokens. Finally, we compare these LEA distributions of
RAG-response with a Base-response (i.e., no retrieval).

6.1. Full-Response Dependency Distribution

In Figure [5] we summarize our findings for CVEs
spanning several years and evaluated across multiple

N
/)

Latent Representation for
the RAG Response Tokens

-]

Retrieved Context

RAG Response

}

-

nxd

\
J

Latent Representation for
the RAG Response Tokens

RAG Response

. Linearly =
Independent?

<
A S e LG

}

p

xd
2 ;r—/y

—+ True/False

(n-y)xd

— True/False

(n-y)xd

Figure 4: The process to derive LEA with the dependent vectors with (top) and without (bottom) retrieved context.

state-of-the-art LLMs. For every token in each RAG-
generated answer, we calculate the linear dependence
of its layer-O representation on the embedding sets
of (i) the user query and (ii) the retrieved passages,
following the workflow depicted in Figure This
token-level analysis quantifies how strongly the model’s
output leans on newly retrieved evidence versus its
internal knowledge. The results reveal a broadly dis-
tributed dependency of tokens across all the years and
the models. From the results, we can see that, first,
the smaller model (Llama-3.2-3B-Instruct) exhibits a
greater reliance on its LEA(fnd) compared to the larger
models. This suggests that, despite its limited capacity,
the smaller model tends to utilize pre-trained knowledge
more than retrieved context. Second, across all models,
we observe a greater dependence on LEA(rag) context
when responding to CVEs from 2023 and 2025. This
trend likely reflects the fact that these CVE identifiers
are relatively recent and may not have been present
during the pre-training phase; therefore, the models lean
more heavily on retrieved information to compensate for
the lack of prior exposure.

Moreover, it is important to note that in the ex-
periments, the question is only asking about the CVE
ID (e.g., CVE-2025-30066) without additional context.
Given that the global CVE database contains over
300,000 unique IDs, it is highly improbable that any
LLM could memorize and internalize detailed knowl-
edge for each ID. Thus, the relatively uniform distri-
bution of dependency across CVE years is expected,
which justifies the reliance of LLMs on external re-
trieval knowledge bases in cyber operations to provide
accurate and contextually grounded responses for most
CVEs. Next, we test with a generic RAG to measure
what might change with LEA.

6.2. Generic RAG Context Evaluation

To assess the sensitivity and effectiveness of our
metric, we test the model’s response behavior when pro-

vided with a generic or weakly relevant RAG context.
Here is the text for the generic RAG:

CVE, short for Common Vulnerabilities and Exposures, is
a list of publicly disclosed computer security flaws. When
someone refers to a CVE, they mean a security flaw that’s
been assigned a CVE ID number.

J

The results are presented in Figure [6] Compared to
Figure[5] we observe a significant decrease in LEA(rag).
This decline supports the validity of our approach by
demonstrating that the proposed LEA metric is sen-
sitive to the informativeness of the retrieved context.
In other words, when meaningful retrieval is absent,
the model exhibits a measurable drop in LEA(rag) —
reinforcing our metric’s utility in distinguishing context-
driven generation from reliance on internal knowledge.
The results also show that LEA(q) remains consistent
(refer to Figure[5). This is expected — since the question
is unchanged, the influence of its tokens remains stable.
However, when presented with a more generic RAG
input, we observe that the models tend to rely more
heavily on their foundational knowledge, i.e., higher
LEA(fnd). Moreover, note that not all tokens are equally
informative — common stop words like ‘on’ or ‘the’
carry little semantic value and may skew aggregate
metrics. Therefore, in the next section, we refine our
analysis by focusing on content-bearing tokens and
examining how the distributions shift.

6.3. Stop-word Filtering and Thresholding

To refine our analysis and focus on semantically
meaningful content, we apply stopword filtering (e.g.,
removing tokens such as “on”, “the”) and introduce
a probability-based thresholding mechanism. This dual
filtering ensures that our metric emphasizes content-
bearing tokens that meaningfully contribute to the
model’s output, while minimizing noise introduced by

m Found. Knowledge mm RAG V72 Question

Gemma-3-27B
100
80
3
S 60
0)
s
ﬁ 404
-
20
0 f u
2019 2020 2021 2022
Years (10 CVEs per year)
Mistral-24B
100
80
S
< 60
0)
s
5 404
-
20
0
2019 2020 2021 2022
Years (10 CVEs per year)
DeepSeek-8B
100
80
R
S 60
0)
=
5 404
-
20
0
2019 2020 2021 2022
Years (10 CVEs per year)
Llama3.2-3B
100
80
S
S 60
Q
=
5 404
-
20

2019 2020 2021 2022 2023
Years (10 CVEs per year)

Figure 5: The LEA distribution for verified
RAG-based CVE queries across four LLMs

high-frequency but low-informational words. For ex-
ample, the following Table 4 shows the token-level
probability deltas (Ap = x0y — xy), where p; and po
represent token probabilities before and after removing
the RAG context, respectively. Filtering out these non-
informative tokens results in a noticeable decrease in
the proportion of LEA(q), as shown in Figure [7] This
outcome is expected, as the question tokens primarily
consist of the CVE identifier (e.g., CVE-2025-30066),
which remain invariant with or without RAG context.

@ Found. Knowledge mm RAG V73 Question

Gemma-3-27B
100
80
3
S 60
(]
=
ﬁ 40
-
20
0
2019 2020 2021 2022
Years (10 CVEs per year)
Mistral-24B
100
80
S
S 60+
3
]
ﬁ 40
-
20
0 T T . 7
2019 2020 2021 2022
Years (10 CVEs per year)
DeepSeek-8B
100
80
2
S 60
[
£
g 40
'}
20
0 7 7 f v
2019 2020 2021 2022
Years (10 CVEs per year)
Llama3.2-3B
100
80
g
S 60
(]
s
5 40
= |
204
0

2019 2020 2021 2022
Years (10 CVEs per year)

Figure 6: The LEA distribution for generic
RAG-based CVE queries across four LLMs

TABLE 4: Token-level probability deltas
(Ap = z0y — xy) with and without RAG context

Token Text zly Ap (z0y — zy)
257 attacker 1.000 0.0000
258 exploits 0.770 0.7695
259 CVE 1.000 0.0000

260 - 1.000 0.0000
261-264 2025 1.000 (each) 0.0000 (each)

B Found. Knowledge mm RAG 72 Question
Gemma-3-27B
100
80
5
S 60
Q
=
5 40
-
20
0 Mo D9 [ew) F3%S (7% : %
2019 2020 2021 2022 2025
Years (10 CVEs per year)
Mistral-24B
100
80
S
S 60
U
s
5 40
)
20
0
2019 2020 2021 2022
Years (10 CVEs per year)
DeepSeek-8B
100
80
9
S 60
Q
£
< 40
)
20
= - 2 Vew'| Pao’| V2% V79
ol Lol % R [0 () (7%) (7
2019 2020 2021 2022
Years (10 CVEs per year)
Llama3.2-3B
100
80
R
S 60
Q
=
5 40
-
20

2019 2020 2021 2022 2023
Years (10 CVEs per year)

Figure 7: The LEA distribution of verified RAG-based
CVE queries across four LLMs with Stop-word
Filtering & Thresholding

While these identifiers are syntactically important,
they carry minimal semantic weight in guiding genera-
tion. From a practical standpoint, security analysts are
less concerned with surface-level identifiers and more
interested in whether and how the retrieved context
influences the model’s substantive understanding of the
vulnerability.

When comparing these results with those in Fig-

@ Found. Knowledge mEm RAG
Gemma-3-27B

V73 Question

100

80
3
S 60
Q
=
ﬁ 40
-
20
o ;
022
Years (10 CVEs per year)
Mistral-24B

LEA (Mean %)

2019 2020 2021 2022
Years (10 CVEs per year)

DeepSeek-8B

LEA (Mean %)

2019 2020 2021 2022
Years (10 CVEs per year)

Llama3.2-3B

1001

[=)) 2]
S o o

LEA (Mean %)

N
o

el N

2019 2020 2021 2022 2023 2024 2025
Years (10 CVEs per year)

6%

2016 2017

Figure 8: The LEA distribution of Base-generated (y')
Responses with Stop-word Filtering and Thresholding

ure EI, we observe a relative increase in LEA(rag).
This shift reinforces the value of our filtered metric:
it demonstrates the extent to which informative con-
tent—rather than syntactic tokens—relies on external
retrieval. Moreover, by analyzing tokens with significant
Ap values, such as ‘exploits’ in the example above, we
can precisely identify which parts of the model’s output
are context-dependent versus internally derived (refer to
Figure [2). Overall, this demonstrates the effectiveness

TABLE 5: Specific examples of RAG-generated (y) vs. Base-generated (') responses for old and new CVEs

CVE-2016-8655 Gemma-3-27B Output

Base—Response

CVE-2016-8655 is a vulnerability in the Microsoft Graphics Component. An attacker can exploit it by crafting a malicious image file

(e.g., TIFF, JPEG, PNG) that, when opened by a vulnerable application (like Windows Photo Viewer, or an application using the graphics
component), allows for remote code execution. The attack requires user interaction 2013 the user must open the crafted image.

RAG-Response

An attacker with ‘CAP_NET_RAW' can exploit CVE-2016-8655 by rapidly changing a packet socket’s version while the kernel is processing

it. This race condition leads to a use-after-free vulnerability. Successful exploitation can result in privilege escalation or a denial of service.

CVE-2025-24472 Gemma-3-27B Output

Base—Response

CVE-2025-24472 is a critical remote code execution vulnerability in the widely used LibImagelibrary. It stems from a heap buffer overflow

during the processing of malformed TIFF images. **Exploitation:** 1. **Craft Malformed TIFF:** Create a TIFF image with specifically
crafted, oversized tag data. 2. **Trigger Processing:** Deliver the image to an application using LibImage (e.g., image viewer, editor,
server). 3. **QOverflow & Control:** The overflow overwrites adjacent heap metadata, allowing control of program execution.4. **RCE:**
Redirect execution to shellcode injected within the image or existing code. Successful exploitation leads to arbitrary code execution with

the privileges of the affected application.

RAG-Response

An attacker can exploit CVE-2025-24472 by crafting malicious CSF proxy requests. These requests bypass normal authentication checks,

granting the attacker super-admin privileges on vulnerable FortiOS and FortiProxy systems. This allows full control of the device.

of our stopword-filtered and thresholded analysis in sur-
facing meaningful differences in generation behavior,
making it more aligned with real-world interpretability
needs in cybersecurity applications.

6.4. LEA of RAG-Gen. vs. Base-Gen. Response

So far, our analysis has focused on the LEA distribu-
tion in RAG-generated responses to quantify how much
the model relies on the retrieved context. However, an
important complementary question arises: How does
the model perform when asked directly about a CVE
without access to retrieved context? To explore this, we
generate a baseline response 3’ from the model using
only the question (i.e., no RAG), and then assess the
extent to which this response aligns with the verified
retrieved content.

Figure [§] illustrates this alignment by showing the
dependency of tokens in the y’ response with respect
to the verified source context (#). As can be seen,
the LEA(rag) significantly decreases when using the
y' response (compared to y). This analysis serves as
a proxy for what an insightful, contextually relevant
response should look like, and highlights how the model
internally reasons about a vulnerability when retrieval
is not available. If the dependency distribution for g’
resembles that of Figure [7/|— where the model meaning-
fully engages with retrieved tokens — it suggests that the
model has internal insights about that CVE and retains
some semantically relevant associations from its inter-
nal knowledge. Conversely, if the response is entirely
ignoring the verified RAG embeddings, it suggests that
the model either hallucinated or produced a response
with minimal factual relevance, which indicates the ne-
cessity of retrieval for reliable and informative outputs
in cybersecurity applications.

Table [5] provides illustrative examples of this
behavior. Across both recent and older CVEs, the
model frequently hallucinates or fails to generate re-
sponses grounded in factual detail when retrieval is
disabled. This is expected: given the existence of over

300,000 CVEs, it is unreasonable to assume that a
language model can memorize or accurately recall
all of them—particularly when prompted with only
a CVE identifier. Unlike a search engine, the model
lacks indexed recall capabilities, further emphasizing
the limitations of relying solely on internal knowledge.
These findings underscore two important takeaways:
(1) retrieval is indispensable for producing informative,
trustworthy outputs in vulnerability analysis, and (2)
the proposed LEA metric offers a robust measure for
quantifying model-context reliance, which allows for
informed decision-making when interpreting responses
about unseen or complex vulnerabilities.

7. Conclusion

We developed a novel, explainable metric called
LEA to reveal how LLM generated responses depend
on the foundational knowledge versus retrieved context
by exploiting the inherent transformer architecture. We
demonstrated its verifiable use for vulnerability analysis
to show LLM generated responses are insightful by
quantifying the expected distribution when properly
retrieved from verifiable sources. We tested on 100
critical and high-severity CVEs across 10-year span.
We also demonstrated that LLMs in layer-0 show de-
pendency on the retrieved context, however, they tend
to treat every token as an independent variable as they
progress through middle layers until the final layers.
This inherently showcases the model’s tendency to treat
tokens independently, and hence, possibly explaining
why LLMs need to be very large to effectively capture
complex interdependencies. Finally, as LLMs become
more deeply integrated into cybersecurity workflows,
LEA offers a transparent, trust-building mechanism for
interpreting model outputs and supporting informed
decision-making.

Acknowledgment

This material is based upon work supported by the
National Science Foundation under Grant No. 2344237

and No. 2228001.

Ethics Statement

This work introduces an explainable metric (LEA)
to quantify the extent to which LLM-generated re-
sponses rely on foundational knowledge versus re-
trieved context in the domain of cybersecurity vulner-
abilities. The research poses no ethical concerns, as
it does not reveal or facilitate the exploitation of any
new or existing vulnerabilities. Instead, it focuses on
analyzing internal model representations to assess the
insightfulness/accuracy of responses. As LLMs are fur-
ther integrated into cybersecurity systems, LEA serves
as a mechanism to enhance trust and interpretability.

References

[1] A. Okutan, P. Mell, M. Mirakhorli, I. Khokhlov, J. C. San-
tos, D. Gonzalez, and S. Simmons, “Empirical Validation of
Automated Vulnerability Curation and Characterization,” IEEE
Transactions on Software Engineering, vol. 49, no. 5, pp. 3241-
3260, 2023.

[2] MITRE, “CVE - Common Vulnerabilities and Exposures,”
https://cve.mitre.org/, 2024, accessed: 2024-11.

[3] NIST, “National Vulnerability Database (NVD),” \https://nvd.
nist.gov/, 2024, accessed: 2024-11.

[4] A. Khare, S. Dutta, Z. Li, A. Solko-Breslin, R. Alur, and
M. Naik, “Understanding the Effectiveness of Large Language
Models in Detecting Security Vulnerabilities,” arXiv preprint
arXiv:2311.16169, 2023.

[5] A. Cheshkov, P. Zadorozhny, and R. Levichev, “Evaluation of
ChatGPT Model for Vulnerability Detection,” arXiv preprint
arXiv:2304.07232, 2023.

[6] G. Deng, Y. Liu, V. Mayoral-Vilches, P. Liu, Y. Li, Y. Xu,
T. Zhang, Y. Liu, M. Pinzger, and S. Rass, “PentestGPT: Eval-
uating and Harnessing Large Language Models for Automated
Penetration Testing,” in 33rd USENIX Security Symposium
(USENIX Security 24). USENIX Association, 2024.

[71 S. Mitra, S. Neupane, T. Chakraborty, S. Mittal, A. Piplai,
M. Gaur, and S. Rahimi, “LOCALINTEL: Generating Orga-
nizational Threat Intelligence from Global and Local Cyber
Knowledge,” arXiv preprint arXiv:2401.10036, 2024.

[8] F. Perrina, F. Marchiori, M. Conti, and N. V. Verde, “AGIR:
Automating Cyber Threat Intelligence Reporting with Natural
Language Generation,” in 2023 IEEE International Conference
on Big Data (BigData). 1EEE, 2023, pp. 3053-3062.

[9] P. Sharma and B. Dash, “Impact of Big Data Analytics and
ChatGPT on Cybersecurity,” in 2023 4th International Confer-
ence on Computing and Communication Systems (I3CS). 1EEE,
2023, pp. 1-6.

[10] M. Gupta, C. Akiri, K. Aryal, E. Parker, and L. Praharaj,
“From ChatGPT to ThreatGPT: Impact of Generative Al in
Cybersecurity and Privacy,” IEEE Access, 2023.

[11] E. Karlsen, X. Luo, N. Zincir-Heywood, and M. Heywood,
“Benchmarking Large Language Models for Log Analysis, Se-
curity, and Interpretation,” Journal of Network and Systems
Management, vol. 32, no. 3, p. 59, 2024.

[12] S. Ullah, M. Han, S. Pujar, H. Pearce, A. Coskun, and
G. Stringhini, “LLMs Cannot Reliably Identify and Reason
About Security Vulnerabilities (Yet?): A Comprehensive Eval-
uation, Framework, and Benchmarks,” in IEEE Symposium on
Security and Privacy, 2024.

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

S. Chopra, H. Ahmad, D. Goel, and C. Szabo, “ChatNVD:
Advancing Cybersecurity Vulnerability Assessment With Large
Language Models,” arXiv preprint arXiv:2412.04756, 2024.

J. Qi, S. Huang, Z. Luan, S. Yang, C. Fung, H. Yang, D. Qian,
J. Shang, Z. Xiao, and Z. Wu, “LogGPT: Exploring ChatGPT
for Log-Based Anomaly Detection,” in 2023 IEEE International
Conference on High Performance Computing & Communica-
tions, Data Science & Systems, Smart City & Dependability
in Sensor, Cloud & Big Data Systems & Application (HPC-
C/DSS/SmartCity/DependSys). 1EEE, 2023, pp. 273-280.

L. Huang, W. Yu, W. Ma, W. Zhong, Z. Feng, H. Wang,
Q. Chen, W. Peng, X. Feng, B. Qin e al., “A Survey on Halluci-
nation in Large Language Models: Principles, Taxonomy, Chal-
lenges, and Open Questions,” arXiv preprint arXiv:2311.05232,
2023.

V. Rawte, S. Chakraborty, A. Pathak, A. Sarkar, S. Tonmoy,
A. Chadha, A. P. Sheth, and A. Das, “The Troubling Emergence
of Hallucination in Large Language Models—An Extensive Def-
inition, Quantification, and Prescriptive Remediations,” arXiv
preprint arXiv:2310.04988, 2023.

S. Borgeaud, A. Mensch, J. Hoffmann, T. Cai, E. Rutherford,
K. Millican, G. B. Van Den Driessche, J.-B. Lespiau, B. Damoc,
A. Clark et al., “Improving Language Models by Retrieving
from Trillions of Tokens,” International Conference on Machine
Learning, pp. 2206-2240, 2022.

Y. Gao, Y. Xiong, X. Gao, K. Jia, J. Pan, Y. Bi, Y. Dai,
J. Sun, H. Wang, and H. Wang, “Retrieval-Augmented Gen-
eration for Large Language Models: A Survey,” arXiv preprint
arXiv:2312.10997, vol. 2, no. 1, 2023.

W. Zhang and J. Zhang, “Hallucination Mitigation for Retrieval-
Augmented Large Language Models: A Review,” Mathematics,
vol. 13, no. 5, p. 856, 2025.

E. J. Hu, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang,
W. Chen et al., “LoRA: Low-Rank Adaptation of Large Lan-
guage Models,” 2021.

Google, “Introducing Gemma 3: The Most Capable Model
You Can Run on a Single GPU or TPU,” |ttps://blog.google/
technology/developers/gemma-3/, 2025, accessed: 2025-04.

D. Guo, D. Yang, H. Zhang, J. Song, R. Zhang, R. Xu, Q. Zhu,
S. Ma, P. Wang, X. Bi er al., “Deepseek-R1: Incentivizing
Reasoning Capability in LLMs via Reinforcement Learning,”
arXiv preprint arXiv:2501.12948, 2025.

Mistral Al, “Mistral Small 3, |https://mistral.ai/news/
mistral-small-3, 2025, accessed: 2025-03.

HuggingFace, “DeepSeek-R1-Distill-Llama-8B.” hitps:
//huggingface.co/deepseek-ai/ DeepSeek-R1-Distill- Llama-8B,
2025, accessed: 2025-03.

Meta, “Llama 3.2: Revolutionizing edge AI and vision
with open, customizable models,” https://ai.meta.com/blog/
llama- 3-2- connect-2024-vision-edge-mobile-devices/, 2025,
accessed: 2025-01.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and I. Polosukhin, “Attention Is All You
Need,” Advances in Neural Information Processing Systems,
vol. 30, 2017.

OpenAl, “Models-OpenAl,” https://platform.openai.com/docs/
models/gpt-3-5, 2024, accessed: 2023-11.

B. Min, H. Ross, E. Sulem, A. P. B. Veyseh, T. H. Nguyen,
O. Sainz, E. Agirre, I. Heintz, and D. Roth, “Recent Advances
in Natural Language Processing via Large Pre-trained Language
Models: A Survey,” ACM Computing Surveys, vol. 56, no. 2,
pp- 1-40, 2023.

W. X. Zhao, K. Zhou, J. Li, T. Tang, X. Wang, Y. Hou,
Y. Min, B. Zhang, J. Zhang, Z. Dong et al., “A Survey of
Large Language Models,” arXiv preprint arXiv:2303.18223, 3
2023. [Online]. Available: https://arxiv.org/abs/2303.18223v10

https://cve.mitre.org/
https://nvd.nist.gov/
https://nvd.nist.gov/
https://blog.google/technology/developers/gemma-3/
https://blog.google/technology/developers/gemma-3/
https://mistral.ai/news/mistral-small-3
https://mistral.ai/news/mistral-small-3
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-8B
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-8B
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
https://platform.openai.com/docs/models/gpt-3-5
https://platform.openai.com/docs/models/gpt-3-5
https://arxiv.org/abs/2303.18223v10

[30] S. Jeong, J. Baek, S. Cho, S. J. Hwang, and J. C. Park,
“Adaptive-RAG: Learning to Adapt Retrieval-Augmented Large
Language Models through Question Complexity,” arXiv preprint
arXiv:2403.14403, 2024.

[31] A. Asai, Z. Wu, Y. Wang, A. Sil, and H. Hajishirzi, “Self-
RAG: Learning to Retrieve, Generate, and Critique through Self-
Reflection,” The Twelfth International Conference on Learning
Representations, 2023.

[32] J. Kim, J. Nam, S. Mo, J. Park, S.-W. Lee, M. Seo, J.-W.
Ha, and J. Shin, “SuRe: Summarizing Retrievals using Answer
Candidates for Open-domain QA of LLMs,” arXiv preprint
arXiv:2404.13081, 2024.

[33] X. Du, G. Zheng, K. Wang, J. Feng, W. Deng, M. Liu, B. Chen,
X. Peng, T. Ma, and Y. Lou, “Vul-RAG: Enhancing LLM-
based Vulnerability Detection via Knowledge-level RAG,” arXiv
preprint arXiv:2406.11147, 2024.

[34] X. Ma, G. Fang, and X. Wang, “LLM-Pruner: On the Structural
Pruning of Large Language Models,” Advances in neural infor-
mation processing systems, vol. 36, pp. 21 702-21720, 2023.

[35] X. Ding, Y. Zhu, Y. Zhang, and C. Xie, “A Sliding Layer
Merging Method for Efficient Depth-Wise Pruning in LLMs,”
arXiv preprint arXiv:2502.19159, 2025.

Appendix

1. The Independency in LLMs’ Hidden States

In Table [2] we showed that the LLM for CVE-2025-
30066 (with and without RAG) increasingly treats each
token as an independent variable as depth grows, with a
notable degree of independence already present in the
earliest layers. To support the generality of this phe-
nomenon across different vulnerabilities, we included
Table [6] for CVE-2025-24472, which demonstrates a
similar pattern and thus reinforces our original obser-
vation. Additional tests on various other CVEs further
confirmed the consistency of this trend. As the input
propagates through successive transformer blocks, the
model increasingly treats tokens as independent vectors,
suggesting that deeper layers re-encode representations
in ways that abstract away initial inter-token depen-
dencies. We hypothesize that this behavior stems from
the attention mechanism itself, which is designed to
assign independent attention weights to each token. This
mechanism inherently encourages the model to treat
tokens independently, which could partly explain why
LLMs need to be so large to effectively capture complex
interdependencies and deliver strong performance.

TABLE 6: Layer-by-layer rank evolution for each
model for CVE-2025-22472

(a) Llama-3.2-3B-Instruct (28 Layers)

28 Layers
Layer 0
rank x60y 54%
rank 67%
Layers 1-3
rank z6y 97%
rank 99%
Layers 4-27
rank x0y 100%
rank zy 100%

(b) DeepSeek-R1-Distill-Llama-8B (32 Layers)

32 Layers

Layer 0

rank x0y 14%
rank x, 15%
Layers 1-14

rank z6y 78%
rank 80%
Layers 15-31

rank z6y 100%
rank zy 100%

(c) Mistral-Small-24B-Instruct-2501 (40 Layers)

40 Layers
Layer 0
rank z6y 48%
rank xy 68%
Layers 1-5
rank z0y 96%
rank xy 98%
Layers 6-39
rank x6y 100%
rank xy 100%

(d) Gemma-3-27b-it (62 Layers)

62 Layers
Layer 0
rank x0y 45%
rank x, 65%
Layers 1-28
rank x0y 86%
rank 94%
Layers 29-61
rank z6y 100%

rank xy 100%

	Introduction
	Preliminaries
	Large Language Models
	LLMs in Vulnerability Analysis

	Motivation to use Linear Independence
	LEA: Theory and Derivation
	Experimental Design
	Dataset
	Experimental Settings

	Usage of LEA for CVE Analysis
	Full-Response Dependency Distribution
	Generic RAG Context Evaluation
	Stop-word Filtering and Thresholding
	LEA of RAG-Gen. vs. Base-Gen. Response

	Conclusion
	References
	Appendix
	The Independency in LLMs' Hidden States

