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Abstract— Instance segmentation of ships in synthetic aperture
radar (SAR) imagery is critical for applications such as maritime
monitoring, environmental analysis, and national security. SAR
ship images present challenges including scale variation, object
density, and fuzzy target boundary, which are often overlooked
in existing methods, leading to suboptimal performance. In this
work, we propose O2Former, a tailored instance segmentation
framework that extends Mask2Former by fully leveraging the
structural characteristics of SAR imagery. We introduce two key
components. The first is the Optimized Query Generator (OQG). It
enables multi-scale feature interaction by jointly encoding shal-
low positional cues and high-level semantic information. This
improves query quality and convergence efficiency. The second component is the Orientation-Aware Embedding Module
(OAEM). It enhances directional sensitivity through direction-aware convolution and polar-coordinate encoding. This
effectively addresses the challenge of uneven target orientations in SAR scenes. Together, these modules facilitate
precise feature alignment from backbone to decoder and strengthen the model’s capacity to capture fine-grained
structural details. Extensive experiments demonstrate that O2Former outperforms state-of-the-art instance segmentation
baselines, validating its effectiveness and generalization on SAR ship datasets.

Index Terms— Synthetic aperture radar, ship instance segmentation, query learning, orientation aware.

I. INTRODUCTION

SYNTHETIC Aperture Radar (SAR) plays a crucial role in
fishery management, maritime surveillance, and national

defense [1], [2], [3], [4] due to its exceptional capability to
acquire high-quality imagery under extreme weather condi-
tions, operating effectively both day and night [5], [6]. As
one of the fundamental applications of SAR imagery, instance
segmentation of ships in SAR images has garnered significant
attention in recent years [7], [8], [9]. With the advancement of
deep learning [10], numerous deep neural network frameworks
have been widely applied in the field of image segmentation.
However, in the context of maritime vessel detection using
SAR imagery, several challenging factors complicate accurate
segmentation. Fig. 1 shows the segmentation difficulties in
SAR images. These challenges include the diverse scale vari-
ations and orientation diversity of target vessels. Furthermore,
the imaging of inshore ships is often affected by coastal
metallic equipment, making precise segmentation particularly
challenging [11], [12], [13]. Additionally, vessels in port areas
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are frequently arranged in compact formations, leading to
potential issues such as missed detections and false alarms
in these dense scenarios.

Mask2Former [14], developed by Facebook, represents a
universal instance segmentation model that employs a set of
learnable queries to interact with encoded image features,
where each query directly generates an instance. This mask
generation approach has demonstrated excellent performance
in multi-object scenarios. However, when applied to SAR
ship imagery, the model exhibits limitations in detecting small
targets and achieving clear boundary segmentation. To address
these limitations, this paper aims to design an improved model
that better captures and utilizes the unique characteristics of
SAR imagery to achieve superior segmentation performance.
Our research focuses on enhancing the model’s capability to
handle the specific challenges posed by SAR ship detection,
including scale variations, dense object scenarios, and bound-
ary clarity.

To address these challenges, we propose O2Former, a
novel high-resolution SAR image instance segmentation net-
work that integrates an orientation aware embedding mod-
ule (OAEM) and an optimized query generator (OQG). Our
approach significantly improves boundary segmentation accu-
racy while maintaining robust performance on small targets.
Existing query-based instance segmentation methods, such as
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Mask2Former, rely on zero-initialized queries, which may lead
to suboptimal feature alignment between the convolutional
backbone and the Transformer decoder. This misalignment
can result in inefficient semantic information propagation and
slower model convergence. To overcome this limitation, we
introduce OQG, which generates query embeddings with rich
semantic information by leveraging multi-scale features from
the backbone network. This optimization ensures better feature
alignment and enhances the model’s ability to capture dis-
criminative ship representations, leading to faster convergence
and improved segmentation accuracy. In addition, the imaging
mechanism of SAR images results in a strong correlation
between the backscattering characteristics and direction of ship
targets. Targets in different directions may exhibit different
intensity distributions and shape characteristics. If the network
cannot capture changes in directional features, it will be
difficult to accurately extract the boundaries and texture details
of ships. Ships may be distributed at any angle in the ocean,
and SAR images can also introduce angle differences in the
imaging direction of ships. The diversity in this direction
makes it difficult for traditional method [15], [16], [17], [18]
to capture the global features of the target, which may lead to
inconsistent segmentation results. This makes precise instance
segmentation particularly challenging. To address these issues,
we propose the OAEM. This model can explicitly model
the directional information of ship targets. It combines this
information with segmentation networks. This approach solves
the problem of SAR ship instance segmentation from multiple
levels. It enhances the ability to capture target boundaries and
directional features. The direction-aware module can extract
features of the target in different directions. It dynamically
captures important information in the direction by constructing
direction-aware convolutions and polar coordinate encoding.

The main contributions of our research are summarized as
follows:

• A SAR ship instance segmentation framework has been
designed that combines the advantages of orientation
information enhancement methods and query based
methods. This framework processes multi-scale features
through two components, enabling queries to learn in-
stance information at multiple scales which accelerate
convergence speed. And the directional information from
multiple angles is polarized and encoded, making the
model more robust to the directional changes of SAR
ship targets.

• We have designed an optimized query generator (OQG)
that learns efficient semantic information from feature
maps by learning a fixed number of query embeddings.
This architecture helps queries learn the most informative
visual features and generate more accurate masks.

• In order to enhance the directional feature extraction
capability of the model, we have designed a orientation
aware embedding module (OAEM), which can explicitly
model the directional features of ships. By using direc-
tion aware convolution or direction sensitive attention
mechanisms, the network can capture features in different
directions, enhance its adaptability to changes in back

(b)(a)

(d)(c)

Fig. 1: The challenge of ship segmentation in SAR images.
(a) shows a scene of direction change. (b) shows a scene
of dense distribution. (c) and (d) shows the offshore multi-
scale object scene. The ship within the red rectangular box
is affected by scattering, resulting in blurred boundaries. The
ships in the blue box are too close, complicating boundary
segmentation. The small ships in the yellow box are prone to
missed detections.

scattering, and thus improve its robustness to changes in
ship direction.

The rest of this article is divided into four parts. Section
II describes the related work. Section III details the method-
ology of this article. Section IV describes the experiments
conducted on the polygon segmentation SAR ship detection
dataset (SSDD) [19] and high-resolution SAR images dataset
(HRSID) [20]. Section V concludes this article.

II. RELATED WORKS

A. Instance Segmentation

Convolutional neural network (CNN) based approaches
leverage the hierarchical feature extraction capabilities of con-
volutional networks. These methods [21], [22] make improve-
ments based on Mask R-CNN [23] and feature pyramid net-
work (FPN) [24] to make network focus more on small objects
and object variations. Mask R-CNN pioneered the integration
of region proposal networks with mask prediction, becoming
a baseline for SAR ship segmentation. Cascade Mask R-CNN
[25] is an enhanced version of Mask R-CNN that employs
a multi-stage approach for instance segmentation. It uses
several cascaded detectors to progressively refine predictions,
improving accuracy and handling of complex objects. This
results in better segmentation quality and robustness in difficult
scenarios. MS R-CNN [26] integrate multi-stage refinement
and mask quality learning. Subsequent works like SOLO [27]
introduced grid-based segmentation to avoid region proposals,
while Yoalct [28] combined prototype masks with instance-
aware coefficients. For SAR image segmentation, HQ-ISNet
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[29] was proposed for remote-sensing image instance seg-
mentation. They have evaluated HQ-ISNet using optical and
SAR images but have not considered the characteristic of the
targeted SAR ship task, e.g., ship aspect ratio, cross sidelobe,
speckle noise, etc. Only generic tricks were offered, still
with great obstacles, to further improve accuracy. SISNet [30]
focuses on solving scale change problems in remote sensing
semantic segmentation tasks. However, due to its insufficient
robustness in complex backgrounds, it may misjudge similar
texture regions. CATNet [31] introduces hierarchical context
aggregation for remote sensing, while generalist models like
SAM [32] demonstrate strong transferability via large-scale
pretraining.

Transformer-based approaches have emerged as a power-
ful solution to these challenges by leveraging self-attention
mechanisms. The pioneering vision transformer (ViT) [33]
laid the foundation for subsequent developments, including
the detection transformer (DETR) [34], which opened the
era of query based object detection. Building upon this
framework, MaskFormer [35] revolutionized segmentation by
reformulating per-pixel classification as mask classification.
This advancement was further enhanced by Mask2Former
[14], which integrated masked attention mechanisms with
multi-scale feature representation, achieving remarkable per-
formance in visual recognition tasks. Inspired by these break-
throughs, our study explores the potential of an enhanced
query based model for segmenting complex SAR imagery.
Segmenter [36] and SegFormer [37], further boost segmen-
tation performance by leveraging global attention. Recently,
remote-sensing-specific methods like RSPrompter [38] and
EISP [39] incorporate prompt tuning or hierarchical fusion
to address densely distributed and small object segmentation.
However, most segmentation models overlook the directional
priors inherent in SAR images. Moreover, vision-language
pretrained models, such as IMAGGarment-1 [40], have show-
cased how structured conditioning and layout alignment can
boost fine-grained localization and serve as transferable priors
for design-aware segmentation tasks.

B. Query-Based Learning

Transformer queries have redefined detection and segmen-
tation. This type of method introduces a set of queries,
which are learnable vectors or representations that can extract
information from input data. Each query generates an instance
mask, and the model determines the instance corresponding
to each query by calculating the similarity between the query
and image features. DETR [34] eliminated anchor design via
end-to-end set prediction, followed by variants like DAB-
DETR [41] and DINO [42], which refine query initializa-
tion and convergence. Mask2Former [14] unifies semantic,
instance, and panoptic segmentation under a query-driven
mask classification framework. Works such as FastInst [43]
show that lightweight decoders and guided queries can balance
accuracy and efficiency. In SAR segmentation, query-based
methods remain underexplored. However, query-guided gen-
eration has shown promise in related domains. For instance,
IMAGDressing-v1 [44] employs condition-aware generation

through learned queries across vision and text, while IMAG-
Pose [45] formulates generation as query-based structure
alignment, offering insights into how pretrained queries can
drive both segmentation and synthesis tasks. Additionally,
consistent query behavior in long-term video generation has
been successfully applied in [46], suggesting transferability to
temporal segmentation scenarios.

C. Orientation-Aware Modeling

Orientation-aware modeling is a method used in instance
segmentation tasks to enhance the model’s understanding of
target shape and direction. Explicitly or implicitly modeling
the directional characteristics of the target can enable the
model to more accurately capture the boundaries and shapes
of the target when segmenting directional targets. Orientation-
aware mechanisms have shown notable success in optical
tasks like rain removal [47] and crowd counting [48], en-
hancing robustness to spatial variations. In remote sensing,
DiResNet [49] and direction-aware attention modules [50]
integrate geometric priors into segmentation. For SAR-specific
applications, KL-divergence-based ship detection [51] and
directionally guided networks capture ship orientations more
effectively. While SAR imaging is inherently directional due to
its side-looking geometry, orientation priors are often ignored
in segmentation networks. Inspired by progress in direction-
aware vision modeling and structured cross-modal genera-
tion [52], we aim to embed orientation-awareness directly
into feature extraction. Furthermore, leveraging rich contextual
priors [53], our design bridges visual semantics and directional
consistency for complex SAR ship segmentation tasks.

III. METHODOLOGY

In this section, we will introduce our proposed O2Former,
which is a learning approach based on the Mask2Former
framework specifically designed for segmentation in SAR im-
ages. This section will cover the following aspects: optimizing
query generation and orientation aware embedding module.

A. Overview

As illustrated in Fig. 2, O2Former consists of five modules:
backbone, pixel decoder, optimization query generator, orien-
tation aware module and Transformer decoder.

Our model feeds an input image I ∈ RH×W×3 to the
backbone and obtains four feature maps C2, C3, C4, and
C5, of which the resolutions are 1/4, 1/8, 1/16, and 1/32
of the input image, respectively. We input four feature maps
into the OQG and OAEM, respectively. The pixel decoder
aggregates contextual information and outputs enhanced multi-
scale feature maps calculated by sparse attention mechanism.
It should be noted that A2 output from the pixel decoder does
not calculate sparse attention mechanism. It will be added
to the upsampled enhanced 1/8 feature map to participate in
the calculation of foreground probability. At the same time,
the features output by the backbone network will be mapped
to OQG to obtain Q ∈ RN×256 . The transformer decoder
takes the total query Q and flattened high-resolution pixel



4 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2024

Backbone(ResNet-50)

C2

C3

C4

C5

Pixel Decoder

OAEM

OQG

... ...

F
eature m

ap

Transformer Decoder

Class Head

Mask Head

Dot product Transformer Block

... Query

C

C Concat

Fig. 2: The overall framework of O2Former. The multi-scale features C2, C3, C4 and C5. C2-C5 extracted from SAR images
by the CNN backbone network will enter OQG to generate queries. The feature enhancement is performed through OAEM in
C2-C4, and the pixel decoder receives the enhanced features and interacts with queries containing multi-scale ship information
in the Transformer decoder to generate the final prediction mask.
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Fig. 3: The details of the OQG. The multi-scale features
are C2, C3, C4 and C5 from the backbone. Ship prototype
is randomly initialized. The optimized queries will generate
a mask through encoding feature calculation in Transformer
Decoder

features as inputs, represented as X ∈ RLi×256(i = 1, 2, 3),
where Li = H/2i × W/2i. Then predict the category and
segmentation mask at each transformer decoder layer.

B. Optimized Query Generator
In instance segmentation tasks, the initialization of queries

and feature interaction are key factors that affect model
performance. Traditional query initialization methods often
lack effective modeling of multi-scale information, resulting
in limitations in capturing target features, especially when
dealing with scenarios with significant scale changes and com-
plex backgrounds. This deficiency may lead to missed targets
and slow model convergence speed. To compensate for the
shortcomings of query generation methods, we designed OQG,
whose core idea is to integrate multi-scale information into the
query initialization process through context aware initialization
mechanism, thereby generating query representations contain-
ing multi-level feature information. The detailed structure of

OQG is shown in the Fig. 3. A set of randomly initialized ship
prototypes and multi-scale features X ∈ RLi×256(i = 1, 2, 3),
where Li = H/2i × W/2i will be used as inputs for OQG.
The channel numbers of the four scale feature maps are 256,
512, 1024, and 2048, respectively. Before inputting into OQG,
all channel numbers will be mapped to 256 (not shown in
the figure) for subsequent processing. Then, the four feature
maps will be globally average pooled to the same size, and
be flattened for adding scale embedding in the future. The
operation can be formatted as follows:

F̃i = Flatten(GlobalAvgPooling(Featurei)) + Ei). (1)

F = Stack([F̃1, F̃2, F̃3, F̃4], dim = 1). (2)

Global average pooling unifies different feature maps to
the same size, preserves global information at each scale, and
adds scale embedding Ei to enable the model to distinguish
and utilize information at different scales, enhancing feature
expression ability. Ei is learnable embeddings for each scale
and Flatten is responsible for transforming Featurei from a
spatial tensor to a vector with a length equal into the number
of channels C = 256. Afterwards, stack the features to ensure
their hierarchical and complete nature. F ∈ RB×N×C is the
feature after stacking. B is batch size and N = H ∗ W .
Attention weights can ultimately be expressed as follows:

wi = softmax(Linear(F)). (3)

Feature∗ =

4∑
i=0

wi · F̃i. (4)

Then we use the learnable ship prototype and the encoded
multi-scale features to calculate similarity scores, and update
the ship prototype with a weight of 0.1 multiplied by this score
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Fig. 4: Orientation Aware Embedding Module. N is the preset
number of angle convolutions, and the module is divided into
three parts: (1) The orientation feature extraction. (2) Polar
embedding, (3) Dynamic feature fusion.

to obtain an adaptive query. Cosine similarity can be formatted
as follows:

S = Feature∗ · PT . (5)

The calculation of similarity S can evaluate the degree of
matching between the initial prototype and the fused features,
thereby guiding the update direction of the query. PT is initial
ship prototype and Feature∗ is weighted fusion features. The
Qfinal can be expressed as follows:

Qfinal = Linear(P + ηST ). (6)

η is similarity scaling factor. The context aware initialization
of OQG used for queries will integrate multi-scale information
and ultimately initialize a set of multi-level query representa-
tions containing multi-scale feature information. This design
can enrich the prior information of queries, enabling better
interaction between queries and pixel decoder features, and
enhancing the ability of queries to capture features. In addition,
using query vectors that have received feature information can
also improve the convergence speed of the model.

C. Orientation Aware Embedding Module
The diversity of target orientations and the complexity of

imaging conditions present significant challenges for achieving
accurate instance segmentation in SAR images. This direc-
tional diversity complicates the ability of deep learning models
to extract stable and robust features. Furthermore, the presence
of strong scattering effects and blurred edges exacerbates the
difficulty of segmentation tasks, as these phenomena obscure
object boundaries and degrade feature clarity. Existing models,
such as Mask2Former, fail to adequately address these chal-
lenges when calculating query and input features, particularly
in scenarios involving directional diversity. Additionally, prior
segmentation approaches have predominantly focused on se-
mantic features during direction-sensitive experiments, often
neglecting the critical role of geometric features in repre-
senting spatial relationships. This oversight limits the models’
ability to fully capture the structural and spatial characteristics
necessary for precise segmentation in SAR imagery. We have
designed OAEM to address the aforementioned difficulties.

OAEM mainly consists of three parts: 1) Orientation feature
extraction. Perform multi angle rotation sampling on input
features and extract direction sensitive features through inde-
pendent angle branch convolution. Each angle corresponds to

a dedicated set of convolution kernels that explicitly capture
different directional patterns such as edges and textures. 2)
Polar embedding. Convert Cartesian coordinates to polar co-
ordinates, encoding the direction and distance information of
spatial position. Encode geometric priors of polar coordinates
through lightweight convolution. 3) Dynamic feature fusion.
Combine direction sensitive features with polar coordinate
features and generate the final direction aware embedding
through a fusion layer. The method maintains standard CNN
compatibility while enhancing rotation equivariance, as shown
in Fig. 4.

Given input feature map X ∈ RC×H×W . For N predefined
angles θi =

iπ
N , i = 0, 1, ..., N − 1 :

Xrot
i = GridSample(X,AffineGrid(Ri)) ∈ R(C/N)×H×W ,

(7)
Ri is the rotation matrix for θi. AffineGrid is used to generate
a rotated sampling grid. Xrot

i explicitly encodes the local
structure of input features in terms of angles. Next, we use
parallel convolution branches to process the rotation feature
Xrot

i .
Fi = Convi(X

rot
i ), i = 0, ..., N − 1. (8)

Convi is the convolution operation corresponding to the angle
and the dimension remains unchanged. The final feature with
angle information will be represented as

Forient = Concat(F0, F1, ..., FN−1)) ∈ RC×H×W. (9)

In order to encode directional features in polar coordinates,
it is necessary to convert the Cartesian coordinate system into
a polar coordinate representation:{

r =
√
x2 + y2

θ = atan2(y, x)
. (10)

For numerical stability, we normalize the polar coordinates{
rnorm = r/

√
2 ∈ [0, 1]

θnorm = θ+π
2π ∈ [0, 1]

, (11)

and stack the normalized (r, θ) to form a new tensor Fpolar,
which simply encodes geometric properties.

Fpolar = Stack(rnorm, θnorm) ∈ R2×H×W . (12)

The θ of polar coordinates directly encodes directional in-
formation, allowing the convolution kernel to explicitly learn
rotation patterns. When an object rotates, its polar coordinates
only change by θ, while r remains unchanged. The radius r
distinguishes the central and edge regions of the feature map,
making it suitable for detecting targets of different scales.
Finally, dynamic feature fusion is performed, which weights
direction sensitive features and polar coordinate features by
generating weights Wfusion.Firstly, concatenate the direction
sensitive features and polar coordinate features.

Fconcat = Concat(Forient, Fpolar). (13)

Generate fusion weights through dynamic fusion module:

Wfusion = Softmax(Conv(Fconcat)). (14)
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Finally, use weights to weight and fuse the two features.

Ffusion = Forient⊙Wfusion+Fpoalr⊙(1−Wfusion). (15)

⊙ is element wise multiplication. The integration of directional
sensitive features with polar coordinates offers a powerful
approach to enhancing the robustness of ship instance seg-
mentation in SAR images. Directional sensitive convolutions
capture semantic features that are crucial for understanding
the shapes and patterns of ships, while polar coordinates
provide essential geometric priors that help in accurately repre-
senting spatial relationships. Dynamic feature fusion enables
the model to adaptively select the contributions of direction
sensitive features and polar coordinate features during feature
fusion, thereby improving the performance of the model in
handling different targets and scenes. This dynamic weighting
mechanism is the key to achieving efficient feature fusion.By
combining these methodologies, the module effectively ad-
dresses the challenges posed by varying orientations in SAR
imagery. The orientation-sensitive processing allows the model
to adapt to different ship headings, ensuring that it can rec-
ognize and segment ships regardless of their position or angle
in the image. Meanwhile, the polar coordinate transformation
enriches the feature representation by encoding direction and
distance information, which is vital for distinguishing between
closely situated objects. The dynamic feature fusion process
further enhances the model’s performance by integrating the
semantic and geometric features, resulting in a more com-
prehensive understanding of the scene. This synergy not only
improves the accuracy of ship instance segmentation but also
increases the model’s generalizability across diverse scenarios.
In summary, the combination of orientation-sensitive process-
ing, polar coordinate transformation, and dynamic feature
fusion creates a robust framework for ship instance segmenta-
tion in SAR images, effectively overcoming the limitations
associated with directional diversity and enhancing overall
model performance.

IV. EXPERIMENTS

A. Datasets

To validate the proposed O2Former method’s superiority, it
is compared with multiple state-of-the-art instance segmenta-
tion approaches on two SAR ship datasets, namely SSDD and
HRSID. The SSDD [19] dataset is a publicly available SAR
ship image dataset designed. Due to subsequent extensions by
researchers, it is also referred to as PSeg-SSDD or SSDD++.
The dataset consists of 1,160 ocean SAR images with resolu-
tions ranging from 1 to 15 meters. These images were captured
by different sensor models and polarizations, containing a total
of 2,587 ships. In our experiments, we followed the official
release standards of PSeg-SSDD, dividing the dataset into 928
training images and 232 test images. The test set includes 46
images from offshore scenes and 186 images from nearshore
scenes.

The HRSID [20] dataset consists of 138 panoramic SAR
images with resolutions ranging from 1 to 5 meters. Addi-
tionally, it includes 5,605 image slices, each with a resolu-
tion of 800×800 pixels, representing diverse imaging modes,

TABLE I: MS COCO METRICS

Metrics Meaning

APm IoU=0.50:0.05:0.95

AP 50
m IoU=0.50

AP 75
m IoU=0.75

APS
m AP of small objects: area < 322

APM
m AP of medium objects: 322 < area < 642

APL
m AP of large objects: area > 642

polarization techniques, and resolutions. The dataset contains
annotations for 16,951 ships, with a balanced distribution of
object sizes: 9,242 small targets, 7,388 medium-sized targets,
and 321 large targets. Following the official release standards
of HRSID, we divided the dataset into 3,642 training images
and 1,962 test images to evaluate the performance of each
model across various scenarios.

B. Evaluation Metric
Microsoft Common Objects in Context (MS COCO) evalu-

ation metric [54] is the most common performance evaluation
metric in the field of instance segmentation. The core of MS
COCO is the intersection ratio of the mask prediction to the
mask ground truth. Based on the IoU threshold, the precision
and recall of the target can be calculated

presion =
TP

TP + FP
, (16)

and
recall =

TP

TP + FN
, (17)

where TP is the number of true positives, FP is the number
of false positives, and FN is the number of false negatives.
According to precision and recall, the average precision (AP )
can be calculated as follows:

AP =

∫ 1

0

p(r)dr. (18)

Here r represents the recall rate and p(r) represents the
precision when recall rate is r. The mean average precision
(mAP ) represents the AP of multiple categories. In the field
of SAR ship detection, there is only one category, which is
the ship, so AP and mAP are equal.

According to different IoU thresholds and object pixel areas,
MS COCO has various evaluation metrics to comprehensively
evaluate the accuracy of object detection. Table I lists these
evaluation metric.

C. Implementation Details
The proposed method was tested on SSDD as well as

HRSID, initialized on HRSID using ResNet-50 pretrained
weights on the ImageNet dataset and fine-tuned on SSDD us-
ing weights on the HRSID. The experiments are implemented
on PyTorch 3.8 and CUDA 12.2 with Nvidia Geforce RTX
4090 GPU. The dataset is partitioned using random sampling
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TABLE II: INSTANCE SEGMENTATION PERFORMANCE OF DIFFERENT METHODS ON THE PSeg-SSDD.

Method
Offshore scene (%) Inshore scene (%)

APm AP50
m AP75

m APS
m APM

m APL
m APm AP50

m AP75
m APS

m APM
m APL

m

Mask R-CNN [23] 64.4 97.9 78.6 64.7 64.5 70.0 41.9 68.8 47.4 47.4 29.8 14.2

Cascade Mask R-CNN [25] 64.6 98.5 79.1 64.3 66.8 70.0 45.1 73.9 52.2 49.5 35.3 50.0

Yolcat [28] 61.4 95.8 75.2 61.6 62.4 70.0 35.3 61.0 40.4 39.9 25.8 4.1

CondInst [55] 58.0 97.3 68.2 54.2 72.0 60.0 42.1 83.0 36.5 39.2 49.0 90.0

RTMDet [56] 60.3 98.1 73.8 57.1 71.7 70.0 41.5 83.0 36.0 34.2 60.3 40.0

HQ-ISNet [29] 66.6 98.6 82.0 65.5 70.5 28.3 45.5 75.9 52.9 45.3 47.4 40.0

AFSS-Inst [57] 65.9 98.6 82.7 63.4 75.1 60.0 45.5 81.5 47.7 45.2 47.7 36.7

SRNet [58] 66.1 97.9 82.8 64.0 73.7 70.0 44.2 76.6 47.7 44.0 45.3 60.0

Mask2Former [14] 67.2 94.0 83.2 65.3 77.8 60.0 52.5 83.0 59.9 51.4 56.7 90.0

DiffSARShipInst [59] 70.6 98.8 90.8 69.1 78.1 60.0 56.2 89.7 67.1 53.4 64.4 90.0

O2Former (Ours) 71.9 98.0 92.9 70.8 78.7 90.0 63.2 91.6 81.2 59.5 73.9 90.0

TABLE III: INSTANCE SEGMENTATION PERFORMANCE OF DIFFERENT METHODS ON THE HRSID.

Method
Offshore scene (%) Inshore scene (%)

APm AP50
m AP75

m APS
m APM

m APL
m APm AP50

m AP75
m APS

m APM
m APL

m

Mask R-CNN [23] 65.3 95.8 83.4 64.5 72.5 50.0 34.0 56.5 38.3 31.0 54.9 33.4

Cascade Mask R-CNN [25] 67.4 96.8 85.7 66.7 74.3 41.3 35.6 59.1 40.1 32.6 55.6 33.6

Yolcat [28] 58.6 95.6 71.0 58.0 68.3 35.6 27.2 61.8 18.7 25.8 41.9 9.6

CondInst [55] 60.7 97.6 74.8 59.7 70.3 61.3 32.0 71.6 24.2 30.0 50.3 13.5

RTMDet [56] 67.4 97.7 83.7 66.8 74.9 33.6 40.4 75.9 38.7 39.3 53.0 10.1

HQ-ISNet [29] 67.9 97.5 87.1 66.5 73.8 46.8 39.6 72.5 41.0 39.0 49.7 9.5

AFSS-Inst [57] 65.2 96.4 83.4 67.3 61.1 10.3 28.2 51.8 28.0 28.0 33.5 3.1

SRNet [58] 67.7 96.9 86.0 74.9 59.5 22.3 39.5 71.6 40.6 16.2 14.7 8.2

Mask2Former [14] 60.6 95.2 74.9 59.5 73.2 73.2 17.9 36.9 16.2 14.7 41.8 31.1

DiffSARShipInst [59] 70.9 97.8 90.0 70.3 77.5 73.2 42.6 76.1 44.1 40.3 58.7 43.6.

O2Former (Ours) 71.7 97.5 91.0 71.1 79.4 74.9 43.1 69.5 45.9 39.9 58.8 50.6

and the batch size is set to 8. The learning rate decreasing
method is used with the multi step function. The optimizer
is AdamW. Data enhancement methods such as random flip,
random scale, and cropping are used, and the initial learning
rate is set to 0.0001. The training epoch is 500 and learning
rate reduced by a factor of 10 at epochs 300 and 400.

D. Experimental Results

To verify the effectiveness and robustness of our method,
we implement experiments on two datasets of PSeg-SSDD and
HRSID. APm, AP 50

m , AP 75
m , APS

m, APM
m , and APL

m are used
to evaluate the performance of different methods, i.e., Mask R-
CNN [23], Cascade Mask R-CNN [25], Mask Scoring R-CNN
[26], Yolact [28], CondInst [55], RTMDet [56], HQ-ISNet
[29], AFSS-Inst [57], SRNet [58], Mask2Former [14] and
DiffSARShipInst [59]. We conduct our experiments according
to the division of inshore and offshore scenes. Table II and
Table III demonstrates the quantitative performance of differ-
ent methods. Our proposed O2Former demonstrates superior
performance in ship instance segmentation across both the
PSeg-SSDD and HRSID datasets, consistently outperforming
existing state-of-the-art methods in most evaluation metrics.

An analysis of the experimental results is provided as follows.

1) Comparisons on PSeg-SSDD: O2Former has achieved
significant improvement in instance segmentation performance
on the PSeg SSDD dataset and has significant advantages
compared to existing methods. As shown in Table II, in the
offshore scenario, the APm of O2Former is 71.9%, which
is 7.5%, 7.3%, 10.5%, 13.9%, 11.6%, 5.3%, 6.0%, 5.8%,
4.7%, and 1.3% higher than the previous methods Mask
R-CNN, Cascade R-CNN, Yolcat, CondInst, RTMDet, HQ-
ISNet, ASFF-Inst, SRNet, Mask2Former and DiffSARShipInst
on the APm, respectively. For inshore scenario, this improve-
ment is more pronounced, with O2Former achieving an APm

of 63.2%, significantly better than all previous methods, and
7.0% higher than the highest performance DiffSARShipInst
(56.2%). Compared to the baseline Mask2Former, adding
OQG and OAEM modules has greatly improved its perfor-
mance in inshore scenarios. In APm, AP 50

m and AP 75
m ,

there have been improvements of 10.7%, 8.3% and 21.3%
respectively. This is because OQG allows queries to learn
the features of ships of different sizes before entering the
Transformer decoder, enabling better information exchange
with pixel features and optimizing segmentation performance.
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Fig. 5: Instance segmentation results of different methods
on PSeg-SSDD. (a) Ground truth. (b) Mask2Former. (c) Our
method. (d) Mask RCNN. (e) Cascade Mask RCNN. (f)
Yolact. (g) CondInst. (h) RTMDet. The yellow rectangular
box represents false alarms, and the green rectangular box
represents missed detections.

At the same time, OAEM can autonomously perceive different
angles of the ship, which can to some extent suppress the
impact of scattered noise and better complete the task in the
case of uneven distribution of ship angles.

2) Comparisons on HRSID: HRSID has a more complex
background clutter and a large number of small ships, making
it more challenging. But the experiments on the HRSID
dataset still validate O2Former’s effectiveness. In the offshore
scenario, the APm of O2Former is 71.7%, which is 6.4%,
4.3%, 13.1%, 11.0%, 4.3%, 3.8%, 6.5%, 4.0%, 11.1%, and
0.8% higher than the previous methods Mask R-CNN, Cas-
cade R-CNN, Yolcat, CondInst, RTMDet, HQ-ISNet, ASFF-
Inst, SRNet, Mask2Former and DiffSARShipInst on the AP,
respectively. Except for AP 50

m which is slightly inferior to
DiffSARShipInst, all others have the highest performance. For
inshore environments, our method achieved a performance of
45.9% under high IoU threshold AP 75

m , leading all methods in
the table. And the segmentation effect for medium and large
targets has also reached SOTA. This indicates that O2Former
can still generate high-quality prediction masks on challenging
datasets such as HRSID. This is attributed to the directional
convolution introduced in OAEM, which enables the model to
perceive the directional features of boundaries more clearly.

Fig. 5 presents the visualization results of Mask2Former,
O2Former, Mask R-CNN, Cascade Mask R-CNN, Yolact,
CondInst, and RTMDet on the PSeg-SSDD dataset. As shown
in Fig. 5, Cascade Mask R-CNN and Yolact exhibit significant
omissions in detecting small offshore targets, while Mask

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Fig. 6: Instance segmentation results of different methods on
HRSID. (a) Ground truth. (b) Mask2Former. (c) Our method.
(d) Mask RCNN. (e) Cascade Mask RCNN. (f) Yolact. (g)
CondInst. (h) RTMDet. The yellow rectangular box represents
false alarms, and the green rectangular box represents missed
detections.

R-CNN, Yolact, and RTMDet are prone to false positives
when processing nearshore targets. In contrast, O2Former
outperforms other methods in handling small targets, which
can be attributed to the multi-scale feature fusion capability of
the OQG module. By integrating multi-level global and local
information into the query generation process, OQG enriches
the feature representation, enabling the model to capture fine-
grained details of small offshore targets and significantly
reducing missed detections. From the perspective of fine-
grained segmentation, Mask R-CNN and CondInst are affected
by the scattering characteristics of SAR images, leading to
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over-segmentation of targets. The OAEM module, through its
orientation-sensitive convolution, extracts features containing
directional information, allowing the model to better adapt
to ships with varying orientations, especially in offshore
scenarios with diverse directional distributions. Compared to
other methods, O2Former demonstrates higher robustness in
handling targets with varying orientations in offshore scenes.
Additionally, as shown in the second and third images of
Fig. 5 (c), O2Former excels in segmenting closely located
targets. This is primarily due to the following reasons: OQG
provides rich multi-scale features and contextual information,
which serve as high-quality input for OAEM. OAEM further
optimizes the queries generated by OQG through orientation-
aware and geometric modeling, enabling the queries to better
adapt to directional diversity and complex scenarios. The
combination of the two modules achieves dynamic fusion of
semantic and geometric features, forming a comprehensive
feature representation framework for O2Former.

Fig. 6 presents the visualization results of Mask2Former,
O2Former, Mask R-CNN, Cascade Mask R-CNN, Yolact,
CondInst, and RTMDet on the HRSID dataset. As shown
in Figure 6, Mask R-CNN, Cascade Mask R-CNN, and
RTMDet are prone to false positives in complex backgrounds,
where some background regions are mistakenly segmented
as targets. Additionally, Mask2Former and RTMDet exhibit
limited capability in representing target boundaries, with some
targets being segmented into multiple instances. In the second
column of Fig. 6, only O2Former successfully detects the
small target at the stern on the far left, while all other
methods fail, resulting in missed detections. This success
is attributed to the orientation-sensitive features introduced
by OAEM, which help the model more accurately capture
the boundary information of closely packed targets, thereby
reducing target adhesion. The polar coordinate geometric
priors further enhance the model’s ability to distinguish targets
from the background, resulting in more precise boundary
representations in complex backgrounds. O2Former signifi-
cantly reduces missed detections of small targets in offshore
scenarios, producing more complete segmentation results. In
nearshore scenarios, O2Former effectively reduces false posi-
tives, while also addressing issues of target adhesion and over-
segmentation. The combination of OQG and OAEM provides
complementary semantic and geometric features, enabling the
model to achieve stronger robustness and generalization in
complex scenarios.

E. Ablation Experiment
To demonstrate the effectiveness of each part proposed

in this article and quantitatively evaluate its improvement,
we conducted ablation experiments on SSDD using OQG
and OAEM modules. Tables IV show the results of the
OQG module and OAEM ablation experiments, respectively.
By comparing the model maps, we can draw the following
conclusions.

The ablation experiment results in Table IV indicate that
the independent application of OQG leads to a 2.3% and
3.1% increase in APm for both offshore and nearshore ar-
eas, respectively. Meanwhile, the independent application of

TABLE IV: Results of Ablation Experiments on the SSDD

OQG OAEM Scene AP AP50 AP75 APS APM APL

- -
offshore 0.672 0.940 0.832 0.653 0.778 0.600

inshore 0.525 0.830 0.599 0.514 0.567 0.900

✓ -
offshore 0.695 0.965 0.896 0.679 0.781 0.700

inshore 0.556 0.851 0.647 0.515 0.683 0.900

- ✓
offshore 0.710 0.962 0.930 0.698 0.783 0.600

inshore 0.552 0.851 0.631 0.540 0.606 0.900

✓ ✓
offshore 0.719 0.980 0.929 0.708 0.787 0.900

inshore 0.632 0.916 0.812 0.595 0.739 0.900

OAEM will increase APm by 4.8% and 2.7% for both offshore
and nearshore areas, respectively. It can be seen that the
two modules mainly improve the segmentation accuracy of
medium and small targets in the PSeg-SSDD dataset. During
the process of generating queries, OQG continuously learns
multi-scale information from features, enhancing the initial
query’s perception of targets of different sizes. It has achieved
2.6%, 0.3%, and 10.0% improvements in far-field scenarios
for APS

m, APM
m , and APL

m. OQG increased APm by 11.6% in
nearshore scenarios. OAEM focuses on extracting directional
information, including ship orientation and target scattering
characteristics. There were 4.5% and 0.5% improvements
in far-field scenarios and 2.6% and 3.9% improvements in
nearshore scenarios for APS

m and APM
m , respectively. Due

to the extremely small proportion of large targets in the
PSeg-SSDD dataset. The number of large targets in nearshore
and offshore scenarios is 19 and 52, respectively, accounting
for only 3.58% and 2.54% of the total number. Therefore,
the imbalance of data results in the two modules allocating
more attention to small and medium-sized targets, making it
extremely difficult to improve the enhancement of large targets
due to data distribution issues. But overall, both modules have
made significant contributions to improving network accuracy.
By comparing the improvements of the two modules, it can
be observed that OQG and OAEM have improved AP 75

m by
6.4% and 9.8% respectively under the condition of high IOU
threshold on the far shore, indicating that the insertion of OQG
enhances the ability to capture global contextual information,
while OAEM enhances the ability to capture boundary details.
The two modules start from both global and local perspectives,
complementing each other to further improve the segmentation
performance of the network.

In order to verify the effectiveness of OAEM more clearly
and intuitively, this paper chose the shallower feature C2 out-
put from the backbone network for visualization. The specific
results are shown in Fig. 7. It covers three representative
scenarios:

1. Multi directional distribution of ship scenes. In the feature
map without OAEM (Fig. 7 (g)), the model extracts blurry fea-
tures for ships in different directions, especially for important
directional structures such as bow and stern, which are difficult
to express clearly. The boundary information of the ships is
also incomplete, and some ships in certain directions have even
experienced severe feature loss. After adding OAEM (Fig. 7
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 7: Visualization of directional feature enhancement re-
sults. The first line represents the original SAR image, the
second line represents the feature map enhanced by OAEM,
and the third line represents the feature map without OAEM.
(d) Enhancement effects in scenes with the multi orientation
distribution of ships. (e) Enhancement effects in scenes with
complex environmental backgrounds. (f) Enhancement effects
in scenes with the dense distribution of ships.

(d)), the ship boundaries in the feature map became clearer,
especially for ships in different directions, and their structural
features were significantly enhanced. Direction sensitive con-
volution effectively captures the directional features of ships,
enabling the model to more accurately identify and segment
targets with different orientations.

2. Complex coastal environment background scene. In the
feature map without OAEM (Fig. 7 (h)), the ability to dis-
tinguish features between ships and complex nearshore back-
grounds is limited. Due to the strong scattering interference in
the nearshore area of SAR images, models without OAEM
are prone to confuse the prominent features of ships with
the background, resulting in blurred target boundaries or even
missed detections. After adding OAEM (Fig. 7 (e)), the ship
features in the feature map become more prominent, and
the separation from the background is significantly improved.
Especially in complex backgrounds, OAEM enhances the
ability to extract geometric and semantic features of ships,
making the expression of targets in the feature space clearer.

3. Dense distribution of ship scenes. In the feature map
without OAEM (Fig. 7 (i)), densely distributed ship features
are prone to overlap and confusion, resulting in some target
features being ignored or fused together. The boundaries of
ships in the feature map appear blurry, making it difficult to ac-
curately distinguish adjacent targets. After adding OAEM (Fig.
7 (f)), the densely distributed ship features were significantly
enhanced. The features of each vessel are more independent,
the boundaries are clearer, the segmentation between adjacent
vessels is significantly improved, and the detailed features of

the target are better preserved.
The ablation experiment shows that OAEM significantly

improves the performance of the model in SAR ship instance
segmentation tasks through the organic combination of direc-
tion sensitive feature extraction, polar geometric priors, and
dynamic feature fusion. Its design solves the segmentation
problems of directional diversity, complex background inter-
ference, and dense scenes, providing an efficient and robust
solution for SAR image ship instance segmentation.

V. CONCLUSION
In this study, we propose O2Former, a new framework

for ship instance segmentation in SAR images, aimed at
addressing the challenges of multi-scale, dense objects, and
fuzzy target boundary. In order to overcome the problems in
SAR ship instance segmentation tasks, we propose OQG to
integrate multi-scale features into the query vector, making the
entire set of queries more sensitive to ships of various sizes.
In addition, to adapt to the multi directionality of ships on
the sea surface, we propose OAEM, which captures different
directional features through adaptive directional convolution,
enriching the features of pixel decoders. The experimental
evaluation of the public datasets SSDD and HRSID confirmed
the superior performance of the model, especially in detecting
small objects and maintaining high localization accuracy un-
der complex background conditions. The adaptability of this
model in different scenarios highlights its practical deployment
potential in maritime surveillance and related applications.
Future work will focus on further optimizing computational
efficiency and expanding its applicability to other remote
sensing tasks.
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