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Abstract

In this paper, we obtain the exact values of several domination parameters for the direct
product of a complete graph with a path or a cycle. Specifically, we determine the domina-
tion number, independent domination number, [1, 2]-domination number, secure domination
number, and 2-domination number for this family of graphs. We show that, in these graphs,
the independent domination number and the [1, 2]-domination number coincide with the
domination number, while the secure domination number coincides with the 2-domination
number. Additionally, as a consequence of our findings, we provide counterexamples to dis-
prove some erroneous results in the literature.

Keywords: Direct product graph, Domination number, Secure domination number In-
dependent domination, [1,2]-domination, 2-domination

1 Introduction

Consider an undirected finite simple graph G with vertex set V (G) and edge set E(G). A
set D ⊆ V (G) is called a dominating set of G if each vertex w ∈ V (G) \ D is adjacent to at
least one vertex v ∈ D. In this case, we say that v covers w. We let N(w) denote the open
neighborhood of w, that is, the set of vertices adjacent to w. The closed neighborhood of w is
N [w] = N(w)∪{w}. In other words, D is a dominating set, if for each vertex w,N [w]∩D is non-
empty. If A and B are subsets of V (G) we say that A dominates B if every vertex of B is adjacent
to at least one vertex in A or is a vertex of A. The domination number of a graph G is the smallest
cardinality of a dominating set and it is denoted by γ(G). A dominating set represents a solution
for numerous practical problems ranging from network science, to transportation streaming, to
biological networks, to communication networks. Particularly, dominating sets are prominently
used in the efficient organization of large-scale wireless ad hoc and sensor networks in the field of
communication. Consider the following scenario: suppose the vertices of a graphG denote different
locations and edges denote the link between them. We are interested in placing monitoring devices
on some locations in such a way that all locations are under observation. Clearly it is desirable
to do this with minimum number of devices.

Cockayne et al. [8] introduced the secure versions of dominating sets. A set S ⊆ V is called a
secure dominating set of G if it is a dominating set of G and if, for each w ∈ V \ S, there exists a
vertex v ∈ N(w)∩S such that the swap set (S \{v})∪{w} is again a dominating set of G. In this
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case, we say that v defends w. The smallest cardinality of a secure dominating set of G is called
the secure domination number of G and is denoted by γs(G). The name itself suggests that this
concept is related to security. We illustrate this by extending the above example. Suppose that
there is an attack at a location. If the location is placed on a device, then the device will resist the
attack. Otherwise, we will move an adjacent device to resist the attack. It is obviously desirable
that the devices can still monitor all locations after moving. Such a problem can be modeled as
the secure domination problem.

The notion of secure domination has been researched extensively. The decision version of
computing the secure domination number is an NP-hard problem even when restricted to bipartite
graphs, and split graphs [25], unit disc graphs [32]. On the positive side there are linear-time
algorithms for trees [5], block graphs [26], and cographs [16], [17]. Cockayne et al. [8] obtained
exact values of γs(G) for various graph classes, such as paths, cycles, complete multipartite graphs.
Rangel Hernández-Ortiz et al. [15] studied secure domination number of the rooted product
graphs. Valveny and Rodriguez-Velazquez [30] obtained the secure domination number of the
corona product of any graph with a discrete graph, the Cartesian product of two equal-sized stars,
and the Cartesian product of any clique other than K2, with either a path, cycle, or star. This was
extended by Haythorpe et al. [14] by determing the secure domination numbers of the Cartesian
products of P2, P3 with a path and a cycle, and for Mobius ladder graphs.

A subset of vertices is independent if no two vertices in it are adjacent. An independent
dominating set of G is a set that is both dominating and independent in G. The independent
domination number i(G) of G is the minimum size of an independent dominating set. It follows
immediately that γ(G) ≤ i(G). A subset of vertices is a [1, 2]-set if every vertex v ∈ V is either in
it or adjacent to at least one but no more than two vertices in it. The [1, 2]-domination number
of a graph G γ

[1,2]
(G) is the minimum cardinality of a [1, 2]-set of G. Obviously, any [1,2]-set is

also a dominating set, so γ(G) ≤ γ
[1,2]

(G). A vertex subset of a graph G is said to 2-dominate
the graph if each vertex of G is either in the given subset or has at least two neighbors in it. The
minimum cardinality of a 2-dominating set, denoted by γ2(G), is called the 2-domination number
of the graph G. A 2-dominating set is clearly a secure dominating set and so, γ2(G) ≥ γs(G).

Given two graphs G and H, the direct product G×H is the graph with vertex set V (G)×V (H)
where two vertices (g1, h1) and (g2, h2) are adjacent if and only if g1g2 ∈ E(G) and h1h2 ∈ E(H).
This product is also known as Kronecker product, tensor product, categorical product, cardinal
product, cross product, relational product and graph conjunction. The interest in direct product is
due to the fact that large networks such as the citation networks, neural networks, and internet
graphs with several hundred million hosts, can be efficiently modeled by the direct product [22].
For in-depth treatment of product graphs we refer the interested reader to book by Hammack et
al. [13]. Domination number of the direct product of graphs has been studied by a number of
researchers. Brevsar et al. [2] obtained an upper bound for the domination number of the direct
product of graphs viz.

γ(G×H) ≤ 3γ(G)γ(H).

Mekis [24] obtained a lower bound on the domination number viz.

γ(G×H) ≥ γ(G) + γ(H)− 1.

Gravier [11] studied the domination number of direct product of a path with complement of
another path. In this paper he presented a Vizing-like conjecture for direct product graphs, which
was refuted by Klavzar et al. [18]. Klobucar [20] [19], Cheriffi et al. [7] studied the domination
number of direct product of two paths. Mekis [24], Defant and Iyer [9], Burcroff [4] and Vemuri
[31] studied domination number of the direct product of finitely many cliques. In this paper, we
focus on domination and secure domination in the direct product of complete graphs with paths
or cycles.
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For a natural number n, let [n] denote the set {1, 2, ..., n}. Let Pn denote a path with vertex set
[n], Cn denote a cycle with vertex set [n] and Km denote a clique or a complete graph with vertex
set [m]. The graphs Pn × Km and Cn × Km have been of much interest. The total domination
number of Cn×Km and Pn×Km was obtained by El-Zahar [10] and Zwierzchowski [34] respectively.
In [23] Lu et al. studied the identifying codes in Cn×Km whereas in [27] Shinde et al. studied the
identifying codes in Pn×Km. Recently, Kuenzel and Rall [21] gave the exact value of independent
domination number of Cn ×Km and Pn ×Km. For undefined terminology and notation refer the
book by West [33].

Note that, the notion of secure domination as presented in this paper differs from the concept
of secure domination in graphs introduced by Brigham et al. [3].

1.1 Organization of the paper

In this paper, we study the domination and secure domination in Cn ×Km and Pn ×Km. In
Section 2, we discuss the notations and preliminaries. In Section 3, two basic lemmas are proved,
which are crucial in the proof of our main results. In Section 4, we produce minimal dominating
sets of Cn × Km and Pn × Km and determine exact values of γ(Cn × Km), γ(Pn × Km). The
dominating set constructed by us is an independent set as well as a [1,2]-set, so in turn, we obtain
a large family of graphs with equal domination number, [1,2] domination number and independent
domination number. The determination of the family of graphs G for which i(G) = γ(G) remains
an open problem, as discussed in [1]. Chellali et al. [6] posed the question of identifying a family
of graphs where γ(G) = γ

[1,2]
(G). We thus obtained a partial solution to these problems, distinct

from the previously explored case of claw-free graphs [1], [6]. It is shown that, our results provide
counterexamples to three erroneous claims in the literature about the domination numbers of
direct product with path [11], [29] and cycle [28]. Finally, in Section 5 we study the secure
domination in aforementioned family of graphs. We determine the exact values of γs(Cn ×Km),
and γs(Pn × Km). As a consequence, the exact value of 2-domination number of Cn × Km and
Pn ×Km is obtained.

2 Preliminaries

The vertex set of Pn ×Km and Cn ×Km is [n]× [m] and henceforth will be denoted by V . It
can be partitioned into disjoint arrays of vertices, hereafter referred to as columns and rows. A
column and a row of V are all the vertices with the same first and second coordinate, respectively.
For i ∈ [n], the ith column is Xi = {(i, j) | j ∈ [m]}. Similarly for j ∈ [m], the jth row is
Rj = {(i, j) | i ∈ [n]}. For both graph Pn ×Km, and Cn ×Km rows are presented horizontally
and columns are presented vertically. The following figure shows the graph P6 ×K5 and C6 ×K5.
Graph P6 ×K5 is a subgraph of C6 ×K5. The additional edges of C6 ×K5 are shown by dotted
line.

It is easy to observe that any two vertices of Pn ×Km are adjacent if and only if they belong
to different rows and consecutive columns. Also, Cn ×Km is a supergraph of Pn ×Km with same
vertex set and additional edges between first and last columns, X1 and Xn, respectively.
The following proposition was proved by Cockayne et al. [8].

Proposition 2.1 ([8] Theorem 12). a. For n ≥ 1, γs(Pn) =
⌈
3n
7

⌉
.

b. For n ≥ 4, γs(Cn) =
⌈
3n
7

⌉
.

c. γs(C2) = γs(C3) = 1.
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X1 X2 X3 X4 X5 X6

R1

R2

R3

R4

R5

(1, 1)

(1, 2)

(1, 3)

(1, 4)

(1, 5)

(2, 1)

(2, 2)

(2, 3)

(2, 4)

(2, 5)

(3, 1)

(3, 2)

(3, 3)

(3, 4)

(3, 5)

(4, 1)

(4, 2)

(4, 3)

(4, 4)

(4, 5)

(5, 1)

(5, 2)

(5, 3)

(5, 4)

(5, 5)

(6, 1)

(6, 2)

(6, 3)

(6, 4)

(6, 5)

Figure 1: Graph P6 ×K5 and C6 ×K5

The path, cycle and clique on two vertices are isomorphic. The direct product of a graph G
with K2 is called the bipartite double cover of G. We obtain the secure domination number of
bipartite double cover of Pn and Cn.

Proposition 2.2. For n ≥ 2,

1. γ(Pn ×K2) = 2
⌈
n
3

⌉
.

2. γ(Cn ×K2) =

{⌈
2n
3

⌉
, if n is odd;

2
⌈
n
3

⌉
, if n is even.

3. γs(Pn ×K2) = 2
⌈
3n
7

⌉
.

4. γs(Cn ×K2) =

{⌈
6n
7

⌉
, if n is odd;

2
⌈
3n
7

⌉
, if n is even.

Proof. The graph Pn × K2 is isomorphic to two disjoint copies of Pn. If n is even, the graph
Cn×K2 is isomorphic to two disjoint copies of Cn. If n is odd, the graph Cn×K2 is isomorphic to
C2n. Hence the proposition follows from Proposition 2.1 and the fact γ(Pn) = γ(Cn) =

⌈
n
3

⌉
.

3 Some Lemmas

In this section, we prove some essential lemmas which will be used in the proof of our main re-
sults appearing in the subsequent sections. For a dominating set D of either Pn×Km or Cn×Km,
and for i ∈ [n], let di denote the number of dominating vertice in Xi i.e. the cardinality of D∩Xi.
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Figure 2: Dominating Sets of Xi

In Pn ×Km, it is convenient to assume that X0 = Xn+1 = ∅ (i.e. d0 = dn+1 = 0), whereas in case
of Cn ×Km, we suppose Xn = X0 and Xn+1 = X1 (i.e. dn = d0 and dn+1 = d1).

Lemma 3.1. Let m ≥ 3 and n ≥ 2. Then for a dominating set D of Pn × Km or Cn × Km,
di−1 + di + di+1 ≥ 2, for 1 ≤ i ≤ n.

Proof. Let A be the subset of dominating set D which dominates the column Xi. Since A domi-
nates Xi, the vertex (i, 1) is either in A or there exists a vertex, say y, that covers (i, 1). Let vertex
y lies in the row Rj. Now, the vertex (i, j) is not dominated by either y or (1, j). So, there exists
another vertex in A which dominates (i, j). Hence |A| ≥ 2. Now, the column Xi is dominated
only by the vertices in (Xi−1 ∪Xi ∪Xi+1). So A = D ∩ (Xi−1 ∪Xi ∪Xi+1). It is easy to see that,
|A| = |D∩Xi−1|+ |D∩Xi|+ |D∩Xi+1| = di−1+di+di+1. Hence, we obtain, di−1+di+di+1 ≥ 2,
for 1 ≤ i ≤ n.

In the next lemma, we identify doubleton sets which dominate column Xi.

Lemma 3.2. Let A ⊆ V , say A = {a, b}. Then A dominates Xi if and only if

1. A ⊆ Xi−1 ∪Xi ∪Xi+1 with A ⊈ Xi; and

2. Vertices a, b lie in consecutive columns if and only if both of them lie in the same row.

Proof. (⇒)

1. Vertices in Xi are adjacent to vertices in Xi−1 and Xi+1 alone. As A dominates Xi, clearly
A ⊆ Xi−1 ∪ Xi ∪ Xi+1 by the adjacency relation. Since |Xi| = m ≥ 3, obviously A ⊈ Xi;
because otherwise A does not dominate vertices in Xi \ {a, b}.

2. Suppose a, b lie in consecutive columns Xi−1, Xi. Say a = (i − 1, p), b = (i, q). If p ̸= q,
then the vertex (i, p) is not dominated, so p = q must hold, i.e. a, b lie in same row. The
other case a, b lying in consecutive columns Xi, Xi+1 is similar.

Suppose a, b do not lie in consecutive columns. Then, either (a) they lie in same column or
(b) one vertex lies in Xi−1 and other vertex Xi+1. We consider cases (a) and (b) as follows.

(a) If A ⊆ Xi−1 or A ⊆ Xi+1, then obviously a, b do not lie in the same row.

(b) Without loss of generality, suppose a ∈ Xi−1 and b ∈ Xi+1. If a = (i − 1, p) and
b = (i+ 1, q) with p = q then the vertex (i, p) ∈ Xi is not dominated.

(⇐) This is easy to observe (see Figure 2).
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4 Domination Number of Cn × Km and Pn × Km

4.1 Domination Number of Cn × Km

In this section, we determine the domination number of the graph Cn ×Km. We do this by
obtaining an upper bound on γ(Cn×Km), by producing a dominating set. We subsequently prove
that the derived upper bound is, in fact, the domination number γ(Cn ×Km) by establishing it
as a lower bound on the size of dominating set of Cn ×Km.

The next proposition establishes an upper bound on γ(Cn ×Km), for n ≥ 6. The cases n ≤ 5 are
discussed at the end of this section.

Proposition 4.1. For m ≥ 3, n ≥ 6,

γ(Cn ×Km) ≤


2k, if n = 3k;

2k + 1, if n = 3k + 1;

2k + 2, if n = 3k + 2.

Proof. Consider the following cases. In each case, we produce a dominating set of the required
size by partitioning the vertex set, as shown in the following figure 4.1.

R1

R2

R3

...

Rm

X1 X2 X3 X4 X5 X6

. . .

. . .

. . .

X
3k−2

X
3k−1 X

3k
X

3k+1
X

3k+2

•

◦

◦

...

◦

•

◦

◦

...

◦

◦

◦

◦

...

◦

◦

•

◦

...

◦

◦

•

◦

...

◦

◦

◦

◦

...

◦

◦

◦

•

...

◦

◦

◦

•

...

◦

◦

◦

◦

...

◦

•

◦

◦

...

◦

•

◦

◦

...

◦

Figure 3: Dominating Sets of Cn ×Km

• Case 1. Let n = 3k.
In this case we partition the vertex set V as follows. Let Bi denote the block of three columns
(X3i−2 ∪X3i−1 ∪X3i).

Write, V =
k⋃

i=1

(X3i−2 ∪X3i−1 ∪X3i) =
k⋃

i=1

Bi.

From each Bi, with 1 ≤ k − 1, we choose two vertices (3i− 2, j), (3i− 1, j) where

j =

{
1 if i is odd

2 if i is even
.

and from Bk, we choose two vertices (3k − 2, 3), (3k − 1, 3), to get the set,

D3k = {(1, 1), (2, 1), (4, 2), (5, 2), . . . , (3k − 2, 3), (3k − 1, 3)} .

Observe that D3k is a dominating set of C3k ×Km. Hence, γ(C3k ×Km) ≤ 2k.
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• Case 2. Let n = 3k + 1.
Consider the set D3k+1 = D3k ∪ {(3k + 1, 1)}.
Observe that D3k+1 is a dominating set of C3k+1 ×Km.
Hence, γ(C3k+1 ×Km) ≤ 2k + 1.

• Case 3. Let n = 3k + 2.
Consider the set D3k+2 = D3k+1 ∪ {(3k + 2, 1)} = D3k ∪ {(3k + 1, 1), (3k + 2, 1)}.
Observe that D3k+2 is a dominating set of C3k+2 ×Km.
Hence, γ(C3k+2 ×Km) ≤ 2k + 2.

Therefore, the proposition is proved.

We now estalish a lower bound on γ(Cn × Km) by partitioning the vertex set into blocks
consisting of three consecutive columns and invoking inequality in Lemma 3.1.

Theorem 4.2. For m ≥ 3, n ≥ 6,

γ(Cn ×Km) =


2k, if n = 3k;

2k + 1, if n = 3k + 1;

2k + 2, if n = 3k + 2.

Proof. Let m ≥ 3, n ≥ 2 and D be a dominating set of Cn ×Km.

• Case 1. Let n = 3k.

|D| =
n∑

i=1

di =
k∑

i=1

(d3i−2 + d3i−1 + d3i).

Now, by Lemma 3.1, (d3i−2 + d3i−1 + d3i) ≥ 2, for 1 ≤ i ≤ k. Hence |D| ≥ 2k.

• Case 2. Let n = 3k + 1.
We prove that, if |D| ≤ 2k then D is not a dominating set. On the contrary, suppose D is
a dominating set such that |D| ≤ 2k.

Excluding the column Xj, partition the remaining vertex set V into k number of blocks of
three consecutive columns. So by Lemma 3.1, we get,(

3k+1∑
i=1

di

)
− dj ≥ 2k.

Now we have assumed that,

|D| =

(
3k+1∑
i=1

di

)
≤ 2k,

we get dj = 0. Since j is arbitrary, we arrive at a contradiction.
Hence, |D| ≥ 2k + 1.

• Case 3. Let n = 3k + 2.
We will prove that any set with cardinality less than or equal to 2k + 1 is not a dominating
set. On the contrary, suppose D is a dominating set such that |D| ≤ 2k + 1.

Excluding the two consecutive columns Xj and Xj+1, partition the remaining vertex set V
into k number of blocks of three consecutive columns. So by Lemma 3.1, we get,

7



(
3k+1∑
i=1

di

)
− (dj + dj+1) ≥ 2k.

Now we have assumed that,

|D| =

(
3k+1∑
i=1

di

)
≤ 2k + 1,

we obtain,
dj + dj+1 ≤ 1.

Similarly,
dj−1 + dj ≤ 1.

Therefore,
dj−1 + dj + dj+1 + dj ≤ 2

But by Lemma 3.1
dj−1 + dj + dj+1 ≥ 2.

So, we get that dj = 0. Since j is arbitrary, we arrive at a contradiction.
Hence, |D| ≥ 2k + 2.

Therefore, for m ≥ 3 and n ≥ 2

γ(Cn ×Km) ≥


2k, if n = 3k;

2k + 1, if n = 3k + 1;

2k + 2, if n = 3k + 2.

Now if we assume n ≥ 6, the theorem follows using Propositon 4.1.

In the next proposition we determine the value of Cn ×Km, for n < 6.

Proposition 4.3. For m ≥ 3

γ(Cn ×Km) =


2, if n = 2

3, if n = 3

4, if n = 4, 5.

Proof. The cycle graphs C2 and C3 are isomorphic to the complete graphs K2 and K3 respectively.
The domination number γ(K2 × Km) and γ(K3 × Km) are obtained by Mekis [Proposition 2.3,
[24]].

Consider C4 ×Km, the proof of Theorem 4.2 gives that γ(C4 ×Km) ≥ 3. We prove that set of
order three can not be a dominating set of C4 ×Km. Let, if possible, there exists a dominating
set D such that |D| = d1 + d2 + d3 + d + 4 = 3. Without loss, we assume that d4 = 0. Now, by
Lemma 3.1, d4+d2+d3 = d2+d3 ≥ 2. Similarly d3+d1 ≥ 2 and d1+d2 ≥ 2. But d1+d2+d3 = 3,
so we get d1 = d2 = d3 = 1. Let D = {(1, i), (2, j), (3, k)}. If all the three i, j, k are equal , then
the vertex (4, i) is not dominated. If all the three i, j, k are distinct, then the vertices (1, j), (3, j)
are not dominated. The last possibility is exacty two of i, j, k are equal, say i = j and i ̸= k, then
(3, i) is not dominated. Thus we get a contradiction. Therefore γ(C4 ×Km) ≥ 4. It is easy to see
that the first row R1 dominates C4 ×Km. Hence γ(C4 ×Km) = 4.

Consider C5 ×Km, the previous proof implies γ(C5 ×Km) ≥ 4. It is easy to see that the set
{(1, 1), (2, 1), (4, 1), (5, 1)} is a dominating set of C5 ×Km. Hence γ(C5 ×Km) = 4.
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4.2 Domination Number of Pn × Km

In this section, we determine the domination number of the graph Pn×Km. The idea is similar
to the one discussed in preceding section. The graph Pn × Km is a subgraph of Cn × Km with
vertex set V except edges drawn between first and last columns, X1 and Xn, respectively. As
noted previously, we suppose d0 = dn+1 = 0. As path and cycle on two vertices are isomorphic,
γ(P2 ×Km) is obtained in Proposition 4.3. So we can assume n ≥ 3.

First we establish an upper bound on γ(Pn ×Km).

Proposition 4.4. For m ≥ 3, n ≥ 3,

γ(Pn ×Km) ≤

{
2k + 1 if n = 3k,

2k + 2 if n = 3k + 1, 3k + 2.

Proof. Consider the following cases. In each case, we produce a dominating set of the required
size.

• Case 1. Let n = 3k + 1.
In this case we partition V as follows, shown in the figure 4.2 .

R1

R2

R3

...

Rm

X1 X2 X3 X4 X5 X6 X7 X8 X
3k

X
3k+1

◦

◦

•

...

◦

◦

◦

•

...

◦

◦

◦

◦

...

◦

•

◦

◦

...

◦

•

◦

◦

...

◦

◦

◦

◦

...

◦

◦

•

◦

...

◦

◦

•

◦

...

◦

. . .

. . .

. . .

◦

◦

•

...

◦

◦

◦

•

...

◦

Figure 4: Dominating Sets of P3k+1 ×Km

Let B0 = X1 ∪X2, Bi = (X3i ∪X3i+1 ∪X3i+2) for 1 ≤ i ≤ k − 1,

and Bk = X3k ∪X3k+1. So that, V =

(
k⋃

i=0

Bi

)
From B0 we choose vertices (1, 3), (2, 3). From each Bi, 1 ≤ i ≤ k−1 we choose two vertices

(3i+ 1, j), (3i+ 2, j) where j =

{
1 if i is odd

2 if i is even
.

From Bk we choose the vertex (3k, 3)(3k + 1, 3).

Using these vertices we obtain the set,

D3k+1 = {(1, 3), (2, 3), (4, 1), (5, 1), (7, 2), (8, 2), . . . , (3k, 3)(3k + 1, 3)}.

Observe that D3k+1 is a dominating set for P3k+1 ×Km.
Hence, γ(P3k+1 ×Km) ≤ 2k + 2.
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• Case 2. Let n = 3k + 2.
In this case we partition V as follows.

V =

(
k⋃

i=0

Bi

)
, where B0 = X1 ∪X2, and

Bi = X3i ∪X3i+1 ∪X3i+2 for 1 ≤ i ≤ k.
From B0 we choose vertices (1, 3), (2, 3). From each Bi, 1 ≤ i ≤ k−1 we choose two vertices

(3i+ 1, j), (3i+ 2, j) where j =

{
1 if i is odd

2 if i is even
.

From Bk we choose vertices (3k + 1, 3), (3k + 2, 3).

R1

R2

R3

...

Rm

X1 X2 X3 X4 X5 X6 X7 X8 X
3k

X
3k+1

X
3k+2

◦

◦

•

...

◦

◦

◦

•

...

◦

◦

◦

◦

...

◦

•

◦

◦

...

◦

•

◦

◦

...

◦

◦

◦

◦

...

◦

◦

•

◦

...

◦

◦

•

◦

...

◦

. . .

. . .

. . .

◦

◦

◦

...

◦

◦

◦

•

...

◦

◦

◦

•

...

◦

Figure 5: Dominating Sets of P3k+2 ×Km

Using these vertices we obtain the set

D3k+2 = {(1, 3), (2, 3), (4, 1), (5, 1), (7, 2), (8, 2), . . . , (3k + 1, 3), (3k + 2, 3)}
Observe that D3k+2 is a dominating set for P3k+2 ×Km.
Hence, γ(P3k+2 ×Km) ≤ 2k + 2.

• Case 3. Let n = 3k.
Similarly we obtain the set D3k as follows.

R1

R2

R3

...

Rm

X1 X2 X3 X4 X5 X6 X7 X8 X
3k−3

X
3k−2

X
3k−1 X

3k

◦

◦

•

...

◦

◦

◦

•

...

◦

◦

◦

◦

...

◦

•

◦

◦

...

◦

•

◦

◦

...

◦

◦

◦

◦

...

◦

◦

•

◦

...

◦

◦

•

◦

...

◦

. . .

. . .

. . .

◦

◦

◦

...

◦

◦

◦

•

...

◦

◦

◦

•

...

◦

◦

◦

•

...

◦

Figure 6: Dominating Sets of P3k ×Km
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D3k = {(1, 3), (2, 3), (4, 1), (5, 1), (7, 2), (8, 2), . . . , (3k − 2, 3), (3k − 1, 3), (3k, 3)} .
Observe that D3k is a dominating set for P3k ×Km.
Hence, γ(P3k ×Km) ≤ 2k + 1.

Therefore, the proposition is proved.

The next theorem proves that the dominating sets obtained above are in fact the minimum
dominating sets of Pn ×Km.

Theorem 4.5. For m ≥ 3, n ≥ 3,

γ(Pn ×Km) =

{
2k + 1 if n = 3k,

2k + 2 if n = 3k + 1, 3k + 2.

Proof. Let D be a dominating set of Pn ×Km. Using the fact, d0 = dn+1 = 0 with Lemma 3.1,
we get the following results related to the corner pair of columns.

1. d1 + d2 ≥ 2.

2. dn−1 + dn ≥ 2.

Consider the following cases.

• Case 1. Let n = 3k + 1.
Consider

|D| =
3k+1∑
i=1

di =
3k+2∑
i=0

di =
k∑

i=0

(d3i + d3i+1 + d3i+2) .

Now by Lemma 3.1, (d3i + d3i+1 + d3i+2) ≥ 2, for 0 ≤ i ≤ k.
Hence, |D| ≥ 2(k + 1).

• Case 2. Let n = 3k + 2.
Consider

|D| =
3k+2∑
i=1

di =
3k+2∑
i=0

di =
k∑

i=0

(d3i + d3i+1 + d3i+2) .

Again by Lemma 3.1, (d3i + d3i+1 + d3i+2) ≥ 2, for 0 ≤ i ≤ k.
Hence, |D| ≥ 2(k + 1).

• Case 3. Let n = 3k.
We claim that d3k + d3k−1 + d3k−2 + d3k−3 ≥ 3.
On the contrary, suppose d3k−3 + d3k−2 + d3k−1 + d3k < 3.
i.e. d3k−3 + d3k−2 + d3k−1 + d3k ≤ 2.
But by Lemma 3.1, d3k−3 + d3k−2 + d3k−1 ≥ 2, which implies d3k = 0.
Similarly d3k + d3k−1 ≥ 2, implies d3k−1 = d3k−2 = 0.
Now column X3k−1 is not dominated, which is a contradiction.
Hence, d3k + d3k−1 + d3k−2 + d3k−3 ≥ 3.
Again, d1 + d2 ≥ 2.
Also, d3i + d3i+1 + d3i+2 ≥ 2, for 1 ≤ i ≤ k − 2.
Adding all the inequalities above; we get
|D| ≥ 2 + 2(k − 2) + 3 i.e. |D| ≥ 2k + 1.

Hence the theorem is proved using Proposition 4.5.
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4.3 Independent Domination Number and [1,2]-domination number
of Cn ×Km and Pn ×Km

A subset of vertices is independent if no two vertices in it are adjacent. An independent
dominating set of G is a set that is both dominating and independent in G. The independent
domination number i(G) of G is the minimum size of an independent dominating set. It follows
immediately that γ(G) ≤ i(G). It is an open problem to characterize the graphs G such that
i(G) = γ(G). For more details on such graphs see [12] and references therein. A subset of vertices
is a [1, 2]-set if every vertex v ∈ V is either in it or adjacent to at least one but no more than two
vertices in it. The [1, 2]-domination number of a graph G γ

[1,2]
(G) is the minimum cardinality of

a [1, 2]-set of G. Obviously, any [1,2]-set is also a dominating set, so γ(G) ≤ γ
[1,2]

(G). Chellali et

al. [6] proposed the following problem: for which graphs is γ(G) = γ
[1,2]

(G)? Allan and Laskar [1]
have shown that claw-free graphs are graphs with equal domination and independent domination
numbers. Chellali et al.. [6] expanded on this by proving γ(G) = i(G) = γ

[1,2]
(G) for claw-free

graph G.

It is straightforward to verify that the dominating sets constructed by us are independent and
[1,2]-dominating. Hence the following proposition is an immediate consequence.

Proposition 4.6. For m ≥ 2, n ≥ 6

1. γ(Cn ×Km) = i(Cn ×Km) = γ
[1,2]

(Cn ×Km).

2. γ(Pn ×Km) = i(Pn ×Km) = γ
[1,2]

(Pn ×Km).

Hence, we get a large family of graphs with property domination number, independent domi-
nation number, and [1,2]-domination number being equal.

4.4 Erratum

In this section we address two mistakes that have appeared in the literature. T. Sitthiwirattham
studied the domination number of direct product of path and cycle in [29] and [28] respectively.
According to his claims, Theorem 2.3 in [29] and Theorem 2.3 in [28], for a graph G of order m,

γ(Pn ×G) = γ(Cn ×G) = min
{
nγ(G),m

⌈n
3

⌉}
.

His result gives γ(P6 ×K8) = 6 = γ(C6 ×K8). But γ(P6 ×K8) = 5 and γ(C6 ×K8) = 4. Also
notice that, γ(Pn ×Km) need not be equal to γ(Cn ×Km). Hence Sitthiwirattham’s claims are
found to be invalid.

We also briefly mention an error in a paper by Gravier and Khelladi [11].

Proposition 4.7 ([11], Proposition 2.3). For n > 1 and every graph G we have

γ(Pn ×G) ≤ 2γ(G)
(⌊n

4

⌋
+ 1
)

For n = 6, this gives us γ(P6 ×Km) ≤ 4. But, we have proved that γ(P6 ×Km) = 5.

12



5 Secure Domination Number of Cn × Km and Pn × Km

5.1 Secure Domination Number of Cn × Km

For a secure dominating set S of either Pn × Km or Cn × Km, and for i ∈ [n], let si denote
the cardinality of S ∩ Xi. As mentioned before, in Pn × Km, it is convenient to assume that
s0 = sn+1 = 0, whereas in case of Cn ×Km, we suppose s0 = sn and sn+1 = s1.

The next lemma is crucial in the proof of subsequent theorems.

Lemma 5.1. Let m ≥ 3, n ≥ 2. If S be a secure dominating set of either Cn ×Km or Pn ×Km,
then si−1 + si + si+1 ≥ 3, for 1 ≤ i ≤ n.

Proof. By Lemma 3.1, si−1 + si + si+1 ≥ 2. On the contrary, if possible, let si−1 + si + si+1 = 2.
This equation has six possible solutions. Let us analyze them one by one.

(i) Let si−1 = 0, si = 2, si+1 = 0.
This is not a dominating set since it violets condition (a) of Lemma 3.2.

(ii) Let si−1 = 0, si = 0, si+1 = 2.
In this case, swap any dominating vertex in Xi+1 with a vertex in Xi, which is not in the
same row as that of vertices in Xi+1. The new set after replacement is not a dominating set
by Lemma 3.2.

◦ • ◦◦◦◦

...
...

...

•◦◦

•◦◦

Initial dominating set of Xi

Xi+1XiXi−1

◦ ◦ ◦

...
...

...

◦ ◦ •

◦ ◦ ◦
Xi−1 Xi Xi+1

New sets after swapping

◦ • ◦

...
...

...

◦ ◦ ◦

◦ ◦ •
Xi−1 Xi Xi+1

Figure 7: Figure Corresponding to Case (ii)

(iii) si−1 = 2, si = 0, si+1 = 0.
This case is similar case (ii) above, obtained replacing (i+ 1) by (i− 1).

(iv) si−1 = 0, si = 1, si+1 = 1.
Swapping the dominating vertex in Xi+1 with any vertex in Xi, produces a new set, which is
a subset of Xi. The new set after replacement is not a dominating since it violets condition
(a) of Lemma 3.2.

(v) si−1 = 1, si = 1, si+1 = 0.
This case is similar case (iv) above, obtained replacing (i+ 1) by (i− 1).
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◦ ◦ ◦◦◦◦

...
...

...

◦◦◦

••◦

Initial dominating set of Xi

Xi+1XiXi−1

◦ ◦ ◦

...
...

...

◦ • ◦

◦ • ◦
Xi−1 Xi Xi+1

New sets after swapping

Figure 8: Figure Corresponding to Case (iv)

(vi) si−1 = 1, si = 0, si+1 = 1.
Swap any dominating vertex with a vertex Xi, which does not lie in same row as that of
dominating vertices. The resulting set is not dominating by Lemma 3.2.

◦ ◦ ◦◦◦◦

...
...

...

•◦◦

◦◦•

Initial dominating set of Xi

Xi+1XiXi−1

◦ • ◦

...
...

...

◦ ◦ ◦

• ◦ ◦
Xi−1 Xi Xi+1

New sets after swapping

◦ • ◦

...
...

...

◦ ◦ •

◦ ◦ ◦
Xi−1 Xi Xi+1

Figure 9: Figure Corresponding to Case (vi)

Thus, if S is a secure dominating subset of V then si−1 + si + si+1 = 2 is not possible. Hence,
si−1 + si + si+1 ≥ 3, for 1 ≤ i ≤ n.

We now state the main theorem of this section that determines the exact value of secure
domination number of Cn ×Km.

Theorem 5.2. For m ≥ 3, (i) γs(Cn ×Km) = n, if n ≥ 3.

(ii) γs(C2 ×Km) =

{
3 if m = 3,

4 if m ≥ 4.

Proof. (i) Let m ≥ 3, n ≥ 3. Consider the following cases.

• Case 1: Let n = 3k. By lemma 5.1, s3i−2 + s3i−1 + s3i ≥ 3 for i = 1, 2, · · · k. So |S| ≥ 3k

• Case 2: Let n = 3k + 1.
Let, if possible, assume that |S| ≤ 3k.
Now,

|S| =
3k+1∑
i=1

(s3i−2 + s3i−1 + s3i) ≤ 3k.

14



Choosing the three consecutive columns partition of C3k+1×Km that excludes Xj, by lemma
5.1 we get, (

3k+1∑
i=1

si

)
− sj ≥ 3k.

The two inequalities together imply sj = 0. Now, since j is arbitrary, we arrive at a
contradiction. So, |S| ≥ 3k + 1

• Case 3: Let n = 3k + 2.
Let, if possible, assume that, S is a secure dominating set such that |S| ≤ 3k + 1. Since
n = 3k + 2, excluding columns Xt+1 and Xt+2, group remaining 3k columns in triples of
three consecutive columns. Now, for each t ∈ [3k + 1], we have

|S| =
3k+2∑
i=1

si =

 3k+2∑
i=1

i ̸=t+1, t+2

si

+ (st+1 + st+2) =

 3k+2∑
i=1

i ̸=t+1, t+2

si

+ (st+1 + st+2 + st)− st,

By Lemma 5.1, |S| ≥ 3k + 3− st for each t ∈ [3k + 1].
In particular, since we assumed that |S| ≤ 3k + 1, there exists a j ∈ [3k + 1] such that sj =
0.This implies |S| ≥ 3k + 3, which is a contradiction to the initial assumption |S| ≤ 3k + 1.
So, |S| ≥ 3k + 2.

Therefore, in any case, γs(Cn ×Km) ≥ n.

Now, It is easy to see that the first row viz. R1 is a secure dominating set.
So, γs(Cn ×Km) ≤ n.

Hence, for m ≥ 3, n ≥ 3 the secure domination number, γs(Cn ×Km) = n.

(ii) Let m ≥ 3, n = 2. Now by Lemma 5.1, |S| = s1+s2 ≥ 3. If m = 3 then X1 is a dominating
set. So, γs(C2 ×K3) = 3. Now suppose, m ≥ 4. If s1 = 0 and s2 = 3, then the fourth vertex in
X1 is not dominated. If s1 = 1 and s2 = 2, then after swapping dominating vertex in X1, the new
set lies in X2 which is not dominating as before. The other two cases are similar. Hence there
does not exists a secure dominating set of cardinality 3. Now it is straighforward to verify that
R1 ∪R2 is a secure dominating set of C2 ×Km. So γs(C2 ×Km) = 4, if m ≥ 4.

Hence, γs(C2 ×Km) =

{
3 if m = 3,

4 if m ≥ 4.

5.2 Secure Domination Number of Pn × Km

In this section we study the secure dominating sets of Pn ×Km.

Lemma 5.3. For m ≥ 4, n ≥ 3, if S is a secure dominating set of Pn ×Km, then
(i) s1 + s2 + s3 ≥ 4.
(ii) sn + sn−1 + sn−2 ≥ 4.

Proof. (i)Since in Pn ×Km, s0 = 0, s1 + s2 ≥ 3, by Lemma 5.1. Also, s1 + s2 + s3 ≥ 3, by Lemma
5.1. Let, if possible, s1 + s2 + s3 = 3. So s1 + s2 = 3 and s3 = 0. The equation s1 + s2 = 3 has
four possible solutions.

• Case 1: s1 = 3, s2 = 0. In this case the fourth vertex in X1, other than the three in S, is
not dominated by S.
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• Case 2: s1 = 0, s2 = 3. In this case the fourth vertex in X2, other than the three in S, is
not dominated by S.

• Case 3: s1 = 1, s2 = 2. In this case, swap any vertex in X2, (other than two dominating
vertices), with dominating vertex in X1. The swap set does not dominate the fourth vertex
in X2, (other than the three in swap set).

• Case 4: s1 = 2, s2 = 1. In this case, swap any vertex in X1, (other than two dominating
vertices), with dominating vertex in X2. The swap set does not dominate the fourth vertex
in X1, (other than the three in swap set).

So, s1 + s2 + s3 = 3 is not possible. Hence, s1 + s2 + s3 ≥ 4.

(ii) The proof is same as above.

The lemmas 5.1 and 5.3 enables us to establish the main result of this section which determines
the exact value of secure domination number of Pn ×Km.

Theorem 5.4. Let n ≥ 3. (i) γs(Pn ×Km) = n+ 2 if m ≥ 4.

(ii) γs(Pn ×K3) =


3k if n = 3k,

3k + 3 if n = 3k + 1,

3k + 3 if n = 3k + 2.

Proof. (i) Let m ≥ 4. Consider the following cases.

• Case 1: Let n = 3k.
By Lemma 5.1,

k−1∑
i=2

(s3i−2 + s3i−1+ + s3i) ≥ 3(k − 2).

By Lemma 5.3, s1 + s2 + s3 ≥ 4 and s3k + s3k−1 + s3k−2 ≥ 4.
Adding three inequalities we get |S| ≥ 3k + 2.

• Case 2: Let n = 3k + 1.
By Lemma 5.1,

k−1∑
i=1

(s3i + s3i+1+ + s3i+2) ≥ 3(k − 2).

By Lemma 5.3, s1 + s2 ≥ 3 and s3k+1 + s3k ≥ 3.
Adding three inequalities we get |S| ≥ 3k + 3.

• Case 3: Let n = 3k + 2.
By Lemma 5.1,

k−1∑
i=1

(s3i + s3i+1+ + s3i+2) ≥ 3(k − 2).

By Lemma 5.3, s1 + s2 ≥ 3 and s3k+2 + s3k+1 + s3k ≥ 4.
Adding three inequalities we get |S| ≥ 3k + 4.

Therefore, in any case, γs(Pn ×Km) ≥ n+ 2.

Now it is easy to see that R1 ∪ {((2, 2), (n− 1, 2))} is a secure dominating set.
So, γs(Pn ×Km) ≤ n+ 2. Hence, γs(Pn ×Km) = n+ 2, whenever m ≥ 4.
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(ii) Consider the graph P3×K3. By Lemma 5.1, γs(P3×K3) ≥ 3. Now the middle column X2

is clearly a secure dominating set of P3 ×K3, gives us γs(P3 ×K3) = 3. We replicate this middle
column in block of three columns to get a dominating set.

• Case 1: Let n = 3k.
We divide the vertex set into blocks of three columns each we get, and choosing the middle
column from each block, we get a secure dominating set, Thus γs(P3k ×K3) ≤ 3k. But By
Lemma 5.1,

|S| =
k∑

i=1

(s3i−2 + s3i−1+ + s3i) ≥ 3k.

Thus γs(P3k ×K3) = 3k.

• Case 2: Let n = 3k + 1.
Except for the last column, we divide the vertex set into blocks of three columns each we
get, and choosing the middle column from each block along with the last column, we get a
secure dominating set, Thus γs(P3k+1 ×K3) ≤ 3k + 1.
Now, as s0 = s3k+2 = 0, by Lemma 5.1

|S| =
k∑

i=0

(s3i + s3i+1+ + s3i+2) ≥ 3(k + 1).

Thus γs(P3k+1 ×K3) = 3k + 3.

• Case 3: Let n = 3k + 2.
Except for the last two columns, we divide the vertex set into blocks of three columns each
we get, and choosing the middle column from each block along with the last column, we get
a secure dominating set, Thus γs(P3k+2 ×K3) ≤ 3k + 3. Now as s3k+3 = 0 by Lemma 5.1,

|S| =
k+1∑
i=1

(s3i−2 + s3i−1+ + s3i) ≥ 3(k + 1).

Thus γs(P3k+2 ×K3) = 3k + 3.

Hence the theorem is proved.

5.3 2-Domination Number of Pn × Km and Cn × Km

A vertex subset of a graph G is said to 2-dominate the graph if each vertex of G is either in
the given subset or has at least two neighbors in it. The minimum cardinality of a 2-dominating
set, denoted by γ2(G), is called the 2-domination number of the graph G. A 2-dominating set is
clearly a secure dominating set and so, γ2(G) ≥ γs(G). It is a natural to ask: for which graphs is
γ2(G) = γs(G)?

It is straightforward to verify that the secure dominating sets constructed by us are, in fact,
2-dominating. Hence the following proposition is an immediate consequence.

Proposition 5.5. For m ≥ 3, n ≥ 2

1. γs(Cn ×Km) = γ2(Cn ×Km).

2. γs(Pn ×Km) = γ2(Pn ×Km).

Hence, we get a family of graphs with equal 2-domination number and secure domination
number.

17



6 Conclusion

In this paper, we obtained the exact value of the domination number of the direct product of
a path or a cycle with a complete graph. The determination of the family of graphs G for which
i(G) = γ(G) remains an open problem, as discussed in [1]. Chellali et al. [6] posed the question
of identifying a family of graphs where γ(G) = γ

[1,2]
(G). Allan and Laskar [1] demonstrated that

claw-free graphs exhibit equal domination and independent domination numbers. Chellali et al.
[6] extended this result by proving γ(G) = i(G) = γ

[1,2]
(G) for claw-free graphs G. Chellali et al.

[6] asked to obtain family of graphs for which graphs is γ(G) = γ
[1,2]

(G). Allan and Laskar [1]
have shown that claw-free graphs are graphs with equal domination and independent domination
numbers. Chellali et al. [6] expanded on this by proving γ(G) = i(G) = γ

[1,2]
(G) for claw-

free graph G. For the family of graphs onsisting of direct product of a path or a cycle with a
complete graph, it is shown that the independent domination number and [1,2]-domination number
coincide with the domination number. We thus obtained a partial solution to these problems,
distinct from the previously explored case of claw-free graphs [6]. As a consequence of our work,
counterexamples are provided to disprove some erroneous results obtained by T. Sitthiwirattham
in [29] and [28]. Furthermore, we determined the exact values of the secure domination number
and the 2-domination number for the aforementioned graph family, establishing their equality.
Hence, we identified a family of graphs with equal 2-domination number and secure domination
number.
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