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Abstract

The widespread adoption of outsourced neural network in-
ference presents significant privacy challenges, as sensitive
user data is processed on untrusted remote servers. Secure
inference offers a privacy-preserving solution, but existing
frameworks suffer from high computational overhead and
communication costs, rendering them impractical for real-
world deployment. We introduce SecONNds, a non-intrusive
secure inference framework optimized for large ImageNet-
scale Convolutional Neural Networks. SecONNds integrates
a novel fully Boolean Goldreich-Micali-Wigderson (GMW)
protocol for secure comparison — addressing Yao’s million-
aires’ problem — using preprocessed Beaver’s bit triples gen-
erated from Silent Random Oblivious Transfer. Our novel
protocol achieves an online speedup of 17x in nonlinear
operations compared to state-of-the-art solutions while re-
ducing communication overhead. To further enhance perfor-
mance, SecONNds employs Number Theoretic Transform
(NTT) preprocessing and leverages GPU acceleration for ho-
momorphic encryption operations, resulting in speedups of
1.6 on CPU and 2.2 x on GPU for linear operations. We also
present SecONNds-P, a bit-exact variant that ensures verifi-
able full-precision results in secure computation, matching
the results of plaintext computations. Evaluated on a 37-bit
quantized SqueezeNet model, SecONNds achieves an end-to-
end inference time of 2.8 s on GPU and 3.6 s on CPU, with a
total communication of just 420 MiB. SecONNds’ efficiency
and reduced computational load make it well-suited for de-
ploying privacy-sensitive applications in resource-constrained
environments. SecONNds is open source and can be accessed
from: https://github.com/shashankballa/SecONNds.

1 Introduction

Machine learning (ML) has become ubiquitous, with pre-
trained neural networks (NN) playing a pivotal role in nu-
merous applications that shape our daily interactions, such as
image recognition, natural language processing, and recom-
mendation systems. To handle the computational demands of
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Figure 1: Orthodox Outsourced Inference (left) vs. Secure
Inference (right)

these models, especially large ones such as Deep Neural Net-
works (DNN), it is common practice to outsource computa-
tions to remote cloud servers. This approach allows resource-
constrained devices, such as mobile and embedded systems,
to leverage powerful models by offloading the heavy compu-
tation and receiving the final result. However, this practice
presents significant privacy risks, as sensitive user data is
processed on remote servers that may not be fully trusted.

In response to these privacy concerns, the security and
privacy research community has introduced frameworks for
Secure Inference, illustrated in Figure 1. Using cryptographic
techniques, these frameworks ensure the protection of all pri-
vate data from all parties involved: users’ inputs and outputs
of the NN inference, and the proprietary model parameters of
the service provider. These solutions allow users to infer on
pre-trained NNs without ever exposing their data.

Neural networks are diverse in architecture, but are essen-
tially composed of an alternating series of multidimensional
linear operations and nonlinear operations which are mostly
unary. Convolutional Neural Networks (CNN) are one of the
most popular classes of architectures that have become essen-
tial for computer vision tasks. CNNs feature multidimensional
convolution operations to match learned spatial features with
the input image, ReLU operations to pick the task-related
matches, and pooling operations to downsample the matches.
CNNs started the deep learning era [45] with models growing
larger and larger in terms of parameters.
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For efficient and practical secure inference, it is crucial
to design computation algorithms for low-level neural net-
work operations with efficient cryptographic primitives that
provide privacy, considering the resource allocation of both
parties. Employing a zero-trust model for secure inference
requires that the framework does not reveal any private data
and involves only the user and the service provider, neces-
sitating a purely 2-party security model. This necessitates
cryptographic primitives for Secure 2-Party Computation
(2PC) protocols: Oblivious Transfer (OT) [57], Garbled Cir-
cuit (GC) [65], Goldreich-Micali-Wigderson (GMW) [27],
and Homomorphic Encryption (HE) [25].

OT allows for secure exchange of messages and enables
secure Look-Up Table (LUT) evaluations. Similarly to how
FPGA boards are programmed, OT is universal in its expres-
siveness and serves as a foundation for GC and GMW. GC is
a one-round protocol for securely evaluating boolean circuits
and was the first solution proposed for 2PC. GMW enables
secure evaluation of arithmetic circuits on fixed-point data
on top of boolean circuits, but it is a highly interactive pro-
tocol that requires constant communication between parties
for every operation. Both GC and GMW assume symmetric
resource allocation for both parties and necessitate an equal
amount of local computation on both ends.

HE is an encryption scheme that preserves some algebraic
structure in the encrypted data, allowing computations on ci-
phertexts that reflect as simple operations on the underlying
plaintexts. While partial HE schemes [55, 62] offer a lim-
ited set of operations, fully HE schemes [17,22,25] enable
arbitrary computations but are very slow.

Leveled HE schemes [12, 13, 16, 23] strike a good balance
by supporting arithmetic circuits (4, x) on fixed-point data
up to a fixed size (multiplicative depth) with usable perfor-
mance. The main advantage of HE is in securely outsourcing
computation; the user sends encryptions to the server, which
performs all computations and returns the encrypted result
to the user. This makes HE best suited to asymmetric scenar-
ios involving users with resource-constrained devices and a
service provider with a powerful cloud server.

2PC primitives (GC, GMW, HE) are tailored for fixed-point
circuits, so it is common to convert neural network operations
to fixed-point representations. This task has been thoroughly
researched in machine learning through Quantized Neural
Networks (QNN) [35]. QNN use fixed-point representations
for all data, including the trained model parameters.

Almost all of the trained parameters of a model belong
to its linear layers, and are only used for computing linear
combinations of the inputs. Therefore, the size of a model di-
rectly corresponds to the number of linear operations involved.
With GC or GMW, the communication footprint of linear lay-
ers scales with the number of total scalar multiplications. In
contrast, with HE, the communication footprint scales only
with the sizes of the input and output vectors. Today, leveled
HE outperforms any other 2PC primitive in evaluating high-

dimensional linear algebra operations on encrypted data [5].
Nonlinear operations make up the remainder of the com-
putation and are indispensable in neural networks. These
nonlinear operations involve comparisons, and in fact, this
was one of the first problems studied in secure computation by
Andrew Yao [65], who dubbed it the Millionaires’ Problem,
MILL = 1{iyp > i;} which returns 1 if party-0’s input (ip) is
greater than party-1°s input (i1). The bulk of online runtime of
these operations in state-of-the-art secure inference protocols
comes from the secure comparisons (Millionaires’ protocol).
Solving the Millionaires’ Problem involves securely eval-
uating boolean operations which requires GC or GMW. GC
involves a ciphertext expansion of O(Ab)' for comparing a
pair of b bit secrets. A GMW protocol initialized with Silent
OT Extension [11] performs the same task with an overhead of
only O(b), greatly propelling its performance over GC. How-
ever, existing GMW protocols still incur high computational
overhead, especially for large-scale datasets like ImageNet,
making them impractical for real-world applications.

Our Approach: We present SecONN(ds, a non-intrusive
secure inference framework that develops new algorithms for
the Millionaires’ Problem within the GMW protocol and en-
hances HE-based linear operations using Number Theoretic
Transform preprocessing and GPU acceleration. By holisti-
cally improving both nonlinear comparisons and linear com-
putations, SecONNds significantly boosts the performance of
secure inference, making it practical for large-scale applica-
tions like ImageNet. Our main contributions are as follows:
+ New solutions to the Millionaires’ Problem: We present
FmiLL for secure comparisons, a fully Boolean GMW pro-
tocol with Beaver’s bit triples (triples) [7] generated using
silent Random OT (ROT) [64] that achieves faster runtimes
and lower communication than prior work, and an alternate
variant that incurs only a logarithmic number of rounds, with
slightly higher computation and communication costs. Both
are further enhanced with an offline triple buffer and a chun-
ked generator optimized for silent OT.

+ Efficient protocols for neural network operations: We
develop new 2PC protocols for ReLU, Max Pooling, and Trun-
cation using Fu L with offline triples. For linear algebra op-
erations, we employ the BFV HE scheme [13, 23] featuring
one-time preprocessing with Number Theoretic Transform
(NTT) [5] and server-side GPU acceleration [46]. Our proto-
cols achieve online speedups of 17x for Max Pooling, 11x
for ReLLU, 2.1x for Truncation, and 2.2x for convolution
with HE on GPU, over prior art.

+ End-to-end implementation and evaluation: We eval-
uate our open-source implementation on a 37 bits quan-
tized SqueezeNet model [36] for ImageNet [20]. SecONNds
achieves an E2E runtime of just 2.8 seconds on GPU and
3.6 seconds on CPU for secure inference, involving 420 MiB
of total communication. Its E2E performance is 4.2 x faster

I\ is the computational security parameter, typically 128



online compared to the state-of-the-art. We also implement
SecONNds-P, a bit-exact variant that ensures full-precision,
verifiable results in secure computation compared to plaintext.

2 Background

2.1 Mathematical Notation

In this section, we introduce the mathematical notation used
throughout this paper. Integer vector fields are denoted by Zg
where N is the dimensionality of the vector space and Q is
the field modulus. Polynomial rings are denoted by R =
Zo[X] mod (X" + 1) for polynomials of degree less than N
with coefficients from Zg. Here N is the polynomial degree
modulus and @ is the coefficient modulus.

Scalars in Zy are denoted by normal text x or Y. Vectors
in Z}; are denoted by bold lowercase letters x, and matrices
in Z3? by bold uppercase letters X. A polynomial in ﬂ(g
is denoted by a bold lowercase letter with an overline p. A
HE plaintext encoding a secret m is denoted as pt,, and its
ciphertext is denoted as cty,.

Bitwise complement of a scalar x is denoted by x’. Oper-
ators @ and A are reserved for addition (XOR) and multi-
plication (AND) in Z,. For p€{0: Server, 1: Client}, party
P,’s linear secret share of i over Zy is denoted by <i>11\,’ ,l.e.
i = (i) + (i)Y mod N. The indicator function, returning 1 if
condition is satisfied or else 0, is denoted by 1{condition}.

2.2 Secure 2-Party Computation (2PC)

Secure 2-party computation enables two parties to jointly
compute a function over their private inputs while keeping
them confidential. Different cryptographic primitives support
2PC, each offering unique trade-offs in terms of efficiency,
communication overhead, and computational complexity.

Oblivious Transfer (OT) [57] is a cryptographic primitive
that allows a sender to transfer one out of many pieces of
information to a receiver without knowing which piece was
transferred, and ensuring nothing is learned about the other
pieces. There are various types of OT based on functionality.

Correlated OT (COT): In a Correlated OT, denoted by
COTyp, the sender inputs a b bit string m, and the receiver
obtains a b bit string m, = m+ ¢ -, where J is a fixed b
bit correlation known to the sender, and ¢ € Z, is the re-
ceiver’s choice bit. The outputs are correlated according to
the sender’s input 8. COT is a foundational protocol, com-
monly used for generating correlated randomness.

Random OT (ROT): In a Random OT, the sender’s messages
are randomly generated, and the receiver obtains one of them
based on its choice bit. In a (]Y )—ROTb, the sender obtains N
random b bit strings {ry, ...,7y—1 }, and the receiver obtains
one string r., where ¢ € Zy is the receiver’s choice bit. ROT
is often used for generating symmetric cryptographic keys or
masks in secure protocols.

Chosen OT: This is the most expressive form of OT and is
often simply referred to as OT. In a ()~OT), the sender in-
puts N messages {my, ...,my_1 }, and the receiver only learns
m. where ¢ € Zy is its choice. Chosen OT is essential when
one party needs to send specific messages to the other based
on the receiver’s choice. For example, to evaluate a secure
LUT, the sender sets the values of the LUT, the receiver in-
dexes with its private choice and only learns the output value.

These OT primitives can be implemented in various styles
based on the requirements. Efficient OT extension proto-
cols [11,37] offer the best communication performance. They
allow a large number of OTs to be generated from a small
number of base OTs, significantly improving efficiency. We
include a detailed discussion on OT extension in Appendix A.

Garbled Circuits (GC) [65] is a 2PC protocol where one
party (the garbler) encrypts a Boolean circuit, allowing the
other party (the evaluator) to compute it without learning
intermediate values or inputs. Each wire is assigned two A-bit
random keys (labels) for logical 0 and 1. The garbler encrypts
each gate’s truth table and sends it, along with the wire labels
of its own inputs, to the evaluator. The evaluator obtains the
wire labels for its inputs using COT,, ensuring the garbler
remains unaware of the evaluator’s inputs. It then uses these
labels to sequentially decrypt each gate, ultimately obtaining
the output wire labels. While GC provides security with a
single communication round, it can incur high computational
and communication costs due to the need to encrypt every
gate in the circuit and handle large garbled tables where each
bit is represented with a large A bit ciphertext.

Goldreich-Micali-Wigderson (GMW) [27] is an inter-
active protocol that can be built with Linear Secret Sharing
Schemes (LSSS) [18]. Each party P, holds a secret share <i>11¥
for every private input i in the circuit. For secure additions
(XOR gates), computation is performed locally without in-
teraction, while secure multiplications (AND gates) require
secure communication between the parties, by means of OT,
to obtain secret shares of the product. The communication
volume of GMW scales with the number of multiplication
operations, requiring one round per multiplication. However,
techniques such as circuit randomization and the use of corre-
lated pseudorandomness, specifically through Beaver’s triples,
can significantly reduce the round complexity.

Beaver’s Bit Triples [6,7] enable fast computation of an
AND gate without relying on Chosen OT during the online
phase. A Beaver’s bit triple consists of {(a)7,(b),(c)3}
where a and b are random bits, and ¢ = a A b. This can be gen-
erated offline using 2 calls to (%)—ROT]. During the online
phase, given secret-shared inputs (x)lz, and (y)f,, the parties
compute local corrections with the pre-shared triple values
and exchange these correction bits to adjust their output shares
(illustrated in Algorithm 4 of Appendix A.2).

While both GC and GMW offer the ability to perform any
computation, the primary challenge with them is the nearly
equal computational effort demanded from both parties, and



Table 1: 2PC Performance for N x N Matrix-Vector Product

2PC Offline Online
Protocol Rounds Comm. Comp. Rounds Comm. Comp.
GC 0 0 Server 1 O(MN?)  Client
GMW 1 O(N?)  Both 1 O(N?)  Both
HE 0 0 Server 1 O(N)  Server

hence they do not offer the ability to outsource computation.

Homomorphic Encryption (HE) allows clients to encrypt
data locally, outsource computation to a server that operates
on encrypted data, and then decrypt the results themselves.
This reduces communication overhead significantly, as only
input and output data are transferred, while the server han-
dles most of the computation. Fully Homomorphic Encryp-
tion (FHE), such as Gentry’s scheme [25], TFHE [17], or
FHEW [22], offers unlimited encrypted computation through
bootstrapping but incurs large runtimes. Leveled HE uses
large input ciphertexts and foregoes bootstrapping, which
limits encrypted computation and significantly improves run-
times. BGV [12], BFV [13,23], and CKKS [16] are popular
Leveled HE schemes based on the Ring Learning With Errors
(RLWE) [48] hard problem.

RLWE HE schemes support addition, multiplication, and
rotation operations on ciphertexts. HE multiplications have
large noise growth, affecting the amount of encrypted com-
putation, while additions and rotations have a negligible ef-
fect. In terms of runtimes, rotations are the slowest due to a
key-switching procedure with special public evaluation keys
ek, followed by multiplications which involve O(N?) con-
volution operations, while additions are relatively fast. HE
multiplications can be optimized using NTT, which reduces
its complexity to O(NlogN). We discuss more about RLWE
HE and the role of NTT in Appendix C.

2PC Cost Comparison. Table | highlights the costs of
different 2PC protocols — GC, GMW with Beaver’s triples,
and HE - for performing a secure matrix-vector product of
size N x N. In this setting, the client holds a private input
vector, and the server holds a private input matrix (e.g., trained
weights in a Support Vector Machine model). The goal is for
the client to obtain the output vector without revealing its
input or learning the server’s matrix.

GC requires the server to garble the circuit locally in the of-
fline phase, incurring computational costs. This offline phase
doesn’t require any communication. In the online phase, the
server sends the garbled circuit to the client, resulting in a
communication cost proportional to AN?, where A is the se-
curity parameter. Additionally, N Correlated OTs are used to
share the input wire labels corresponding to the client’s input
vector during the online phase. The client then evaluates the
garbled circuit using its input labels and learns the output.

GMW involves generating N> Beaver’s triples using 2N?
Random OTs during the offline phase, 1 triple per scalar mul-
tiplication required in the matrix-vector product. Both par-

ties incur symmetric computational and communication costs
during this phase. In the online phase, the parties exchange
correction bits in a single round of communication, leading
to a communication cost proportional to N> and maintaining
symmetric computation between both parties.

HE, during the offline phase, may involve the server prepro-
cessing its matrix with NTT [5]. In the online phase, the client
encrypts its input vector and sends it to the server. The server
performs the matrix-vector multiplication with HE using its
private matrix and returns the encrypted output vector to the
client. The communication cost is proportional to N, and the
computational burden is primarily on the server, which per-
forms the homomorphic operations locally.

2.3 Secure Inference Frameworks

Many major tech companies, such as Apple [3], Google [28],
Microsoft [52], and Amazon [2], are making a huge push into
privacy-focused solutions for Al inference, but they choose
to use Trusted Execution Environments (TEE). For example,
Apple’s Private Cloud Compute (PCC) uses a TEE built into
custom Apple silicon to protect user data during cloud-based
Al processing. PCC ensures data is processed securely and in
a stateless manner, reducing risks associated with data reten-
tion. The main issue with such outsourced inference systems
(depicted in the left half of Figure 1) is they protect the data
with encryption only during transit; the computation is still
performed in cleartext, albeit inaccessible due to hardware
privileges. Despite their secure design, limitations inherent
in TEEs, like potential side-channel vulnerabilities, hamper
their applicability to privacy critical applications [38,43,66].
2PC based cryptographic methods for secure inference (de-
picted in the right half of Figure 1) do not have any dependen-
cies and leverage strong cryptographic guarantees to protect
data in all phases (locations): rest (memory), transit (network)
and computation (processor). These frameworks enable neu-
ral network computations on private data, without revealing
any sensitive information to any participant. Over the years,
several frameworks have been developed, leveraging various
cryptographic techniques to balance efficiency and privacy.

CryptoNets [26] is the first secure inference framework
to run a Convolutional Neural Network on MNIST [21]. It is
constructed entirely with HE and performs secure inference
in 1 round. It uses arithmetized CNNss that are fine-tuned with
matrix multiplications and polynomial activations in place of
convolutions and ReLU, respectively.

MiniONN [47] is the first non-intrusive?, mixed-protocol
framework to perform inference on CIFAR-10 [44]. It uses
GC, GMW, and HE to implement protocols for most of the
popular CNN operations. It implements exact protocols for
(piecewise) linear functions like (ReLU) convolution, and
smooth functions are approximated with splines (piecewise
polynomials). MiniONN features an offline preprocessing

2Does not require any model customization or fine-tuning.



phase to set up Beaver’s bit triples [7] using HE. During the
online phase, which involves evaluating the inference result
of the private image, they use GMW with preprocessed triples
for all linear operations and GC for comparisons. MiniONN’s
novel mixed protocol design requires communication after
every layer, introducing additional communication rounds
and yet offers two orders of magnitude better performance
than CryptoNets. All later frameworks, strictly targeting E2E
performance, adhere to this mixed-protocol design.

Gazelle [40] implements the first purpose-built algorithm
for performing convolutions on 3-D data using HE. It com-
bines these HE protocols for linear layers with a GC protocol
for secure comparisons in Zp where P is a HE plaintext prime
modulus and shows an order of magnitude better performance
than MiniONN on CIFAR-10. This motivated a shift back to
HE for linear layers moving forward.

CrypTFlow2 [60] introduces a new protocol for the mil-
lionaires’ problem leveraging the state-of-the-art optimiza-
tions and techniques for IKNP-style OT extension [4, 42].
It features highly efficient OT-based implementations of all
nonlinear operations over Zp as well as Z,, using this mil-
lionaires’ protocol. The authors observe that protocols for Zp
are more expensive than the corresponding protocols for Z,s,
but in order to take advantage of the gains offered by HE, they
implement and integrate protocols for nonlinear operations
over Zp with Gazelle’s HE protocols. CrypTFlow?2 outper-
forms GC protocols for nonlinear operations in Zp and Z,
by an order of magnitude, and is the first to show inference on
ImageNet [20]. It employs faithful truncation which ensures
bit-exact results in secure computation compared to plaintext.

Cheetah [34] implements brand new algorithms for lin-
ear algebra operations over Z,, using HE. It builds on the
observation that HE multiplications, basically polynomial
multiplications, implicitly compute vector dot products over
the coefficients. To capitalize on this, Cheetah implements an
encoding scheme that bypasses the traditional encoding space
of schemes like BFV/BGYV and instead encodes messages
directly into the coefficients of the polynomials. The mes-
sages are placed strategically within the polynomials such that
one vector dot product is computed with a single polynomial
multiplication. This strategy results in a sparse output with
very few coefficients containing the actual result. Cheetah ad-
dresses this by extracting relevant coefficients from the output.
Cheetah’s protocols for linear algebra do not involve any HE
rotations (slowest HE operation) and outperform Gazelle’s
protocols by 5x in computation and communication.

Cheetah uses CrypTFlow2’s algorithms with silent OT
primitives derived from Ferret Silent OT [64] for its nonlinear
operations over Z,;. To alleviate the computation overhead of
silent OT, Cheetah implements a 1 bit approximate truncation
particularly optimized for scenarios where the secret value is
known to be positive. Truncation is delayed until after ReLU
instead of performing it right after convolution or matrix mul-
tiplication to take advantage of the new optimized protocol.

Cheetah achieves 3 x faster E2E runtimes with less than 10x
communication over CrypTFlow2.

HELIiKSs [5] is the latest in the line of works targeting se-
cure linear algebra operations for CNNs on high dimensional
data leveraging HE. It presents new protocols for secure linear
algebra operations HE over Zp that outperform correspond-
ing protocols in Cheetah in terms of both computation and
communication for the same precision, while strictly adhering
to the definitions of the HE schemes used. Cheetah’s HE pro-
tocols for linear operations generate very sparse HE results,
the coefficient extraction process deviates from HE scheme
definitions and the final outputs generated by the protocols
bear no similarity in structure compared to their correspond-
ing inputs. Cheetah’s HE results cannot be readily used by
the server for any subsequent HE operations (if need be).

HELiKs provides modular kernels that maintain the same
encoding format of the input in the output. The performance
of these kernels is significantly improved by taking advan-
tage of many HE and algorithmic optimizations, such as noise
growth reduction, 1-step rotations, NTT preprocessing, tiling
for large inputs, and symmetric key encryption. HELiKs uses
the secure computation protocols of CrypTFlow?2 for nonlin-
ear operations to perform secure inference.

Transformer Inference with 2PC has seen a huge push
in research recently with frameworks like, SIRNN [59],
Iron [30], BOLT [56], and BumbleBee [39]. All of these
transformer works reuse modules from the aforementioned
frameworks as foundation protocols and use them to build
higher-level operations, e.g. softmax, GeLU, attention, etc.

2.4 Computational Bottlenecks

Despite advancements, secure inference frameworks face sig-
nificant computational challenges, particularly in non-linear
operations involving secure comparisons. The Millionaires’
Protocol, which determines if one private value is greater than
another, is essential for activation functions like ReLU and
operations like Max Pooling. To quantify the overhead, we
evaluated the single-threaded runtime and communication
costs of CrypTFlow2, Cheetah, and HELiKs per protocol for
running a 37 bit SqueezeNet [36] model under the same com-
pute and network setup (described in Section 8). We used the
same Silent OT Extension [64] back-end for all frameworks.
The graph illustrated in Figure 2 shows the distribution of
total runtime and communication across each protocol: Mil-
lionaires’ (secure comparisons), Convolution, and Other.
Millionaires’ Protocol is the most significant contributor
to runtime across all frameworks, accounting for 61 —76%
of the total. CrypTFlow2 and HELiKs with faithful truncation
spend 140 seconds for secure comparisons, while Cheetah
reduces this to around 60 seconds by employing optimizations
like 1 bit approximate truncation and delayed computation.
However, even with these improvements, secure comparisons
remain the primary bottleneck due to their reliance on bit-



Millionaires’
Runtime: Communication:
61-81% 7-8%

=l
S
g
<
&
=
El
£
5
o

9 o
G S
X X

Convolution
Runtime: Communication:
10-30% 11-43%

Runtime
Runtime
Runtime

Other (B2A, etc,

0% Runtime: Commu

3-10%

CrypTFlow2 Cheetah HELiKs

Figure 2: Secure Inference costs per protocol.

level operations and multiple rounds of interaction. In terms
of communication, the cost from comparisons is very low
7 — 8%, with Cheetah requiring less than half of CrypTFlow?2.

Convolution Operations are the next major bottleneck,
with runtime contributions ranging between 17% and 30%.
Cheetah brings the convolution time down to 17 seconds,
compared to 70 seconds for CrypTFlow2 and 34 seconds
for HELIiKs. Its performance improves significantly with the
elimination of HE rotations and could further benefit from
the optimizations introduced by HELiKs like Number Theo-
retic Transform (NTT) pre-computation. Convolution opera-
tions also contribute to 11 —43% of the total communication.
HELiKs, with a communication cost of 124 MiB, outperforms
both CrypTFlow2 (217 MiB) and Cheetah (205 MiB), owing
to effective noise management during computation that results
in smaller ciphertext sizes.

Other Operations, including local plaintext operations
and binary-to-arithmetic share conversions (B2A), contribute
modestly to the runtime across all frameworks but impose
significant communication overhead. The B2A operations
have large communication costs since they involve translating
1 bit inputs to b bit field elements.

Implications for Transformers. The computational chal-
lenges posed by secure comparisons extend beyond basic
CNN operations to more complex architectures like transform-
ers. Recent transformer secure inference frameworks heavily
rely on the millionaires’ protocol for range checks in activa-
tion functions. Frameworks like SIRNN [59] and BOLT [56]
directly employ CrypTFlow2’s protocol with IKNP-style
OT extensions, while lron [30] and BumbleBee [39] use
Cheetah’s variant with silent-OT extension. While these
frameworks introduce novel methods for approximating non-
linear operations with splines — primarily focusing on reduc-
ing the number of polynomial segments and consequently the
calls to millionaires’ protocol — they maintain the fundamen-
tal comparison protocol unchanged. This widespread reliance
on existing comparison protocols, coupled with their signifi-
cant performance overhead shown in our analysis, highlights
a critical need for new approaches to secure comparisons in
privacy-preserving neural network inference.
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Figure 3: Millionaires’ protocol using LUT (Chosen OT).

3 Threat Model

SecONNds operates under a two-party semi-honest (honest-
but-curious) security model involving a client with private
input data and a server with a private model. The framework
assumes both parties execute protocols correctly but may
record all observed values, no collusion between parties exists,
and network adversaries can observe but not modify commu-
nications. Under this security model, the framework ensures:
(1) Client Privacy: Server learns nothing about the client’s in-
put image or inference result, (2) Model Privacy: Client learns
nothing about the model parameters beyond what can be in-
ferred from the output label, and (3) Computational Security:
128 bit security parameter based on standard cryptographic
assumptions. The model excludes active adversaries who may
deviate from the protocol.

4 Millionaires’ Protocol

The Millionaires’ problem was conceptualized by Yao [65]
as two millionaires who want to learn who is richer without
disclosing their wealth to each other. The solution for the mil-
lionaires’ problem corresponds to securely evaluating a com-
parison operation involving two parties with one private input
each. The current state-of-the-art algorithm for millionaires’
with OT based secure evaluation was presented by Rathee
et al. in CrypTFlow?2 [60]. The core part of this algorithm
comes from the work of Garay et al. [24], who proposed a
novel approach of decomposing the two large b bit inputs, x
of one party (%) and y of the other party (?,), into g = b/m
consecutive m bit segments each, {xo, ..., xg—1},{y0,-.-,Yg—1}
and computing the result with an arithmetic circuit over m bit
numbers. This algorithm is illustrated in Figure 3 for 8 bit
inputs (b = 8) with a segment size of m = 2 bits.

The computation begins with evaluating the inequality
Ity,;= 1{x;<yi}, and equality eqo ;= 1{x; =y;} results for all
segment-pairs i € [0,q). This is followed by an arithmetic
circuit that combines these results in a binary tree fashion
with depth [logg] — 1. The results of the ¢ inequality and
equality comparisons are laid out at the root level (j = 0), and
for every level, j > 1, two bits, I#;; and eq; ;, are computed



for all nodes i, following:

ltji=1tj12i+eqj—12 ¥ 1tj—12i+1 (D
eqji=eqj 12X eqj_12iy] ()

The equality comparison is skipped for the first node in
every level, and the inequality result of the highest node is
returned as the final output of the protocol. Garay et al. [24]
used arithmetic circuits due to their choice of encryption prim-
itives, such as the use of the Paillier cryptosystem [55] for
secure integer multiplications. Later, Blake et al. [8] showed
how integer comparisons could be evaluated using OT.

CrypTFlow2’s algorithm mixes the OT-based integer com-
parisons of Blake et al. [8] with the log-depth arithmetic
circuit of Garay et al. [24] for combining the results of the
integer comparisons. It improves the performance of the in-
teger comparisons by folding both the comparisons for one
pair, inequality and equality, into one call to (% )-OT, with
a total communication cost of g(A+2"*1) bits for the ¢
pairs. Since the results of the integer comparisons are se-
cret shared bits, a boolean version of the log-depth circuit of
Garay et al. [24] is implemented by replacing + with bit-XOR
() and x with bit-AND (A). The A—gates in this boolean
circuit are evaluated with a GMW protocol Fanp using bit
triples. It optimizes bit triple generation with correlated bit
triples, observing that for the nodes that output 2 bits (j > 1,
i > 1), the 2 calls to Fanp share one operand (eqo 3 in Fig-
ure 3). The total communication cost to generate the triples is
([logg] —1)(A+16)+ (g— [logg])(A+8), and the total cost
to evaluate the boolean circuit is the sum of the triple genera-
tion cost and 4(q — 1) +4(g — [logg]) to share the correction
bits (4 per Fanp)-

Cheetah optimized this by porting the OT primitives to
silent OT extension [64] which reduced the communication
cost to ¢ x (2! +m) for the ¢ calls to (%')-OT, and only
to 4(g—1) +4(g—[logq]) for the boolean circuit. It follows
the strategy presented by Asharov et al. [4] and generates a
bit triple with 2 calls to (%)—ROTl. Since these ROT's use

silent OT extension, (%)—ROTl is almost free in terms of
communication. Cheetah follows CrypTFlow?2 on setting the
segment size m=4 and using ('*)~OT) for the best perfor-
mance. For m=4, communication requires 9b bits for integer
comparisons and 2b+ 4— 4[logb] bits for the boolean cir-
cuit, totaling approximately 11b bits, while m=1 requires 5b
bits for comparisons and 85 — 4 — 4 [logb] bits for circuit
evaluation, totaling about 135 bits (an 18% increase). In our
evaluation with 2!3 comparisons of 32 bit numbers, while
(2;”)—OT2 operations take 90 ms for both settings, (%)—ROTI
operations vary drastically: 110 ms for m=1; 15 ms for m=4.

4.1 Fully-Boolean Algorithm

SecONNds features a fully-boolean GMW protocol FaiiL
shown in Algorithm [, that eliminates LUT evaluations (cho-
sen OTs). For segments of size m = 1, while prior works

employ heavy (3)-OT) for the simple task of comparing
a pair of bits, SecONNds builds on the observation that
H{xi=yi} = (1®x;) Dy and 1{x; < y;} = (1 D x;) Ay;. Eval-
uating the equality comparisons for the bit pairs is free, B
sets its share of the equals result (eq07i>% = 1®x; and P, sets
its share (eq0,i>% = y;, N0 communication is required. For in-
equalities, both parties make one call to Fanp for each bit
where %, inputs 1 @ x;, P inputs y; and set their shares of /7 ;
to the output of Fanp. This approach only uses (})-ROT;
(for triple generation) and takes less than 40 ms for 2'3 com-
parisons with 32 bit numbers. It requires a communication of
just 4 bits per Fanp and a total of 4b bits.

For the log-depth circuit, we get a total communication cost
of less than 125 bits for the millionaires’ protocol. Although
this is better than 16b in the case of using (21'" )—OT2 for
m = 1, it is still higher than 115 in the optimal setting of
m = 4. Observe that, alternately to the log-depth strategy, we
can also combine the integer comparison results serially in
the following manner:

Ity =1t;i_1 ®1ty,; P (eqo,i Nltoi—1) fori € [1,b) 3)

Following this linear strategy with /g = 0, the final result
is produced in the value /¢, 1, and the overall computation
requires only b — 1 calls to Fanp Which is roughly half of
2b—1—[logb] in the case of the log-depth strategy with
m = 1. This strategy incurs a communication cost of only
4(b—1) and brings the total communication footprint of the
millionaires’ protocol to under 8b bits which is 27% lower
than the 115 bits cost of the (')-OT, with m = 4.

The linear approach requires half as many calls to
G)—ROTl and takes less than 35 ms for 2'* comparisons
with 32 bit numbers. In Table 2, we show the total cost of
the millionaires’ protocol implemented in SecONNds, the
runtimes are reported for 2!3 runs with » = 32. The total
computation time for our new fully Boolean algorithm for
the millionaires’ protocol is under 75 ms with online triple
generation, which is 28% less than the (116) —OT, version with
m = 4. Note that while the linear strategy halves the commu-
nication footprint as well as the computation cost, it incurs
an exponential increase in the number of rounds. Application
developers can implement a simple toggle to switch between
both strategies depending on available network resources to
ensure the best quality of service. In the following section,
we show how to significantly lower the online runtime from
75 ms to under 5 ms with offline triple generation.

4.2 Offline Triple Generation

To efficiently generate bit triples with silent OT extension
and to safely shift the triple generation to the offline phase,
we implement an offline triple generator with an internal
buffer, inspired by the PRNG implementation in the crypto-
Tools library [61]. The triple generator automatically gener-
ates enough triples in chunks of fixed size to fill its buffer,



Algorithm 1: %y Millionaires’ in SecONNds
Input: Data bitwidth b; Inequality g:{0,1} —{<,>1};

Input i),

ob

Output: Output secret share (0);,

1 fori=0tob—1do

/* Bit Extraction & Share Generation */
2 | (bo)y= ((ip/Zi mod 2) @g') Ap/

3| (b= ((ip/Zi mod 2)€Bg>/\p

/*  Bit Equality & Inequality Comparisons  */
4 | (beq)p[i] = (bo); ® (b1);

s | (g2l = Fano ((bo)3, (01)3)

/* Combining Bit Results */

6 fori=0tob—2do
(Bana)y = Fanp ((beql>2[i+
(byg)5li+1] = (byg)3li+ 1] @

9 (o)} = (byg)p[b—1]

=

1], (byg)3li)
<band>127

oo

as soon as a network connection with a user is established.
When a query is requested, all underlying protocols make use
of the get functionality of the triple generator to access the
preprocessed triples. The triple generator automatically gen-
erates new triples and refills the buffer when it is exhausted
during the online computation. In case a protocol requests a
volume of triples larger than the buffer size, the buffer size
is incremented, and the generator generates new triples in
chunks of fixed size to fill the buffer.

Chunking increases the complexity of the communica-
tion for n calls to (%)—ROTl from O (logn) to a sublinear
O (£ logm) where m is the size of one chunk. For any large
m, the communication footprint of our chunking strategy
is fairly comparable to the naive approach of generating n
(%)—ROTl ’s in one shot. The real advantage of the chunk-
ing strategy comes in terms of computation time, which is
actually the main concern with silent OT. The computational
complexity involved in naively generating n (})-ROT’s is
O (n?), arising from the matrix multiplication involved in the
LPN encoding phase of silent OT. With the chunking strategy,
the computation complexity is significantly reduced to O (nm)
which is now linear in 7.

Table 2: Costs for Millionaires’ Protocol

Protocol Communication  Runtime (2'3 calls)
fffit?;’ 13b —4 —4[logb] ~ 200 ms
fflfiti)h 115 +4 —4[logb] ~ 105 ms
SecONNds — s < .(70+5) ms
(ours) Offline + Online

Algorithm 2: Fg. y ReLU

2b

Input: Input secret share (i);

2b

Output: Output secret share (0);,

1 MSB (<i>2") — (i) job!

2 |02 = (02— msB((12) -2

3 b = (<17 02|+ p- (21 = 1)

4 (W3 =P (b— 1,1, imin)

S aren)y =MSB((03) & (w)3 @ p/ // dReLU result
68=(1- <idrelu>?z)’<i>127b // Delta for COT

// Choice for COT

2

c= <idrelu>[2;
8 mg = COTp—send(8) ; m,=COT,-receive(c)

b anb .
(02 = ({02 -G +my —m,) mod 27

b=

5 Nonlinear Operations

In this section, we review the ReLU and Truncation protocols
in SecONN(ds for quantized CNNs. Max Pooling and Average
Pooling protocols are discussed in Appendixes B.1 and B.2.

5.1 ReLU

The function ReLU (Rectified Linear Unit) is a widely used
activation function in neural networks, defined as ReLU(i) =
max(0,i). In SecONNds, we employ Cheetah’s Silent OT-
based implementation of the CrypTFlow2 protocol with the
millionaires’ protocol described in Section 4. This protocol,
denoted as FreLu, is shown in Algorithm 2.

The protocol takes as input the secret shares of the activa-
tions entering the ReLU layer and returns the secret shares of
the ReLU result. The protocol first evaluates dReLU = 1{i >
0} and returns fresh secret shares of i if dReLU is 1 and se-
cret shares of 0 if dRelLU is zero. Observe that i > 0 in Zy



corresponds to i < 2°~!, which is equivalent to:
(MSB(<i>5") +MSB (<i>’f”)> 227+ @3 |+ [0 < 2

This inequality depends only on the sum of the absolute values
of the shares wrapping around the maximum absolute value
in the ring, 2b=1_ 1, denoted by the bit w in Algorithm 2, and
the equality of the most significant bits (MSB) of the shares.
Particularly, it holds only if w is 0 and both MSBs are the
same, or if w is 1 and both MSBs are different:

dReLU = MSB<<i>3b> ® Mss(mb) awlewiael

Here, the wrap bit w is securely computed using the mil-
lionaires’ protocol described in Section 4. After computing
dReL U, the protocol uses a secure multiplexer functionality,
MUX, realized with two calls to COT,. The dRelLU result
serves as the selection bit. If the dRelLU result is 1, the MUX
outputs new shares of the input; if the dReLU result is 0, the
MUX outputs shares of zero.

5.2 Truncation

In the context of fixed-point computation, truncation is a
crucial operation to prevent the data scale from escalating
after multiplications. We present the protocol employed in
SecONN(ds, denoted as Fryync, in Algorithm 3. The core con-
cept of this approach is to represent the data in its unsigned
form as follows:

{3 + @ >2" -1}
i= (@05 +(0)F —w-2’
i/2 % (03 /2 + (0] /2 = w20

w

This computation is approximate, as it does not account for
potential carries from the dropped portion of the secret shares.
However, this introduces an error only in the least significant
bit of the result, and previous work [19,34] has shown that
neural networks are highly tolerant to this particular 1 bit
error in truncation, with negligible impact on performance.
The wrap bit w is computed using FuLL, but when the sign
of the secret value is known, such as post-ReLU when the
values are positive, w = MSB <<i>3h> AMSB ((z)%b) and can
be computed with a single call to Fanp, both Fapy L and Fanp
use offline bit triples. In total, the main secure computation
operations in this protocol are 2b — 1 calls to Fanp for FmiLL
and one call to COT), to convert the secret shares of w from
binary to arithmetic, or just one Fanp and one COT), if the
MSB of the secret share is known.

Algorithm 3: ¥, Truncation

Input: Right shift amount s ;
Bit iy, indicating if MSB(i) is known;
Input secret share (i)lz,b where i < 207!

2b

Output: Output secret share (o),

1 MSB (<i>§f) — (i) j2b!

/* Wrap Bit Computation */

2 if i,pyy then
3 L <w>§=TAND<p-MSB(<i>,%b),p'.MSB(<i>,2f)>
+ else

o | o3 = (00 [0 0F 42 1)])

/* Wrap B2A Share Conversion */

6 if p =0 then
7 §=—2-(w)?
8 mg = COT,-send(9)

// Delta for COT

b
' | (w2 = (w)2 —my
10 else
u c= (w)f, // Choice for COT

12 my = COT p—receive(c)

B3| WY =W +m,
/* Final Truncation Result */
b Y] bomp_
14 <0>?, = <l>% /2S—<w>12, .Qb=s

5.3 Secret-sharing in Z,, vs. Zp

The choice of the ring for secret sharing, Z,» (a power of
two) or Zp (where P is prime), significantly influences the
implementation and performance of nonlinear operations. In
Zp, any protocol requiring a comparison (like wrap bit com-
putation) must also check if the secret overflows P and must
make provision for handling it. On the other hand, operations
in Z,» benefit from natural alignment with binary systems;
the boolean circuit in %y also handles only an explicitly
specified bitwidth and overflows naturally wrap around.
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Figure 4: Workflow of server (left) and client (right) setup in SecONNds.

6 Linear Operations

The typical linear layers in CNNs consist of the convolution
layers, fully-connected/matrix multiplication layers, and batch
normalization. The bulk of linear operations comes from con-
volutions with matrix multiplications that appear only at the
very end of the CNN. Batch normalization typically appears
after convolutions, and it is common practice to fuse batch
normalization with convolution [49] during inference.

6.1 HE Kernels

Linear algebra operations can be composed from vector multi-
plications, rotations, and additions, all of which are supported
by modern HE schemes for the plaintext space Zﬁ\f where P
is the HE plaintext modulus prime. HELiKs [5] offers state-
of-the-art kernels that compose these operations in the most
efficient manner. At the core of these protocols is an iterative
algorithm where each iteration involves a HE multiplication
of the input vector with the weights, accumulating the product
into the previous iteration’s result, and finally a HE rotation
to shift the accumulated value to adjust for the next itera-
tion. This strategy significantly reduces the number of HE
rotations required. HELiKs further boosts the performance by
preprocessing the weights with NTT which leads to a very
fast online runtime. Although HELiKs offers cutting-edge per-
formance for linear algebra operations, for secure inference,
it necessitates the use of Zp for nonlinear operations or the
use of a share conversion protocol to convert secret shares
from Zp to secret shares in Z.

Cheetah’s HE kernels operate in the plaintext space Z;Vb.
It encodes secret data into the polynomial coefficients, en-
abling polynomial multiplications and additions to secret data
through HE multiplications and additions. Cheetah’s HE ker-
nels compute the linear algebra operations purely through
iterative HE multiply-accumulate (MAC) operations without
any HE rotations. They produce sparse results in HE, and
then extract just the relevant coefficients from these results to
produce the final results for the linear algebra operation.
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6.2 NTT preprocessing

We optimize Cheetah’s HE kernels for ZQ{, with NTT-
preprocessing. HE multiplications involve polynomial mul-
tiplication, which is O(N?) in the computational complexity.
The polynomial degree modulus N is typically of the order
of thousands or higher and induces a very long runtime for
multiplication. HE libraries typically optimize this opera-
tion by transforming both operands with NTT, performing a
Hadamard product on the transformed operands, and trans-
forming the product back to its natural representation with
iNTT (inverse NTT). Every HE multiplication involves two
NTT operations and one iNTT operation, both involving a
complexity of O(NlogN).

Balla et al. [5] observed that, for linear algebra operations,
most of the calls to HE multiplication in the same query
reuse one of the operands (input vector) and the other operand
(weights) is reused over different queries and known to the
server (computing party). In SecONN(dSs, the weights are au-
tomatically preprocessed with NTT during encoding and are
always maintained in the NTT representations. During the
online query, on receipt of the input ciphertexts, the server
first transforms each ciphertext with NTT, performs all HE
MAC operations in NTT, and only transforms the final HE
results back from NTT. Since these HE results are sparse, only
coefficients that contain the elements of the output vector are
extracted and sent back to the client for decryption.

6.3 GPU Acceleration

HE operations are local and non-interactive, making them a
prime candidate for hardware acceleration. The one-ended
computation of HE protocols requires just the computing
party to have access to the hardware accelerator. In remote
cloud computation, it is very common for servers to possess
GPUs. Also, polynomial data types are represented with vec-
tors, which are perfect for GPU SIMD computation.

Troy [46] is a new software library that implements the
SEAL HE Library [51] in CUDA [54]. SecONNds employs



the HE evaluator from Troy for GPU implementations of the
server’s HE computation. All of the client’s computation is
performed with the standard SEAL Library; the new GPU im-
plementations do not handle any secret key related operations
and purely compute only on already encrypted data.

7 Framework Overview

SecONNds follows a modular design with distinct setup
phases for server and client, illustrated in Figure 4. The
server’s setup involves three key steps: (1) quantizing the
pre-trained model to fixed-point representation, packing and
encoding weights into HE plaintexts with NTT transforma-
tions for efficient polynomial multiplication, (2) compiling
the network architecture into configuration files specifying
protocol parameters including secret sharing bitwidth, Py
variant (log-depth/linear), NTT preprocessing settings for con-
volutions, and triple buffer configurations, and (3) generating
program files containing the complete computation graph and
layer-wise execution order for both server (SecNetS.prg)
and client (SecNetC.prg) implementations. This preprocess-
ing phase is query-independent and needs to be performed
only once unless the model parameters are updated.

A client requesting secure inference service first receives
the model-specific configuration and program files. Based
on these specifications, the client generates the necessary
number of Beaver’s bit triples using silent ROT, determined
by the model architecture and planned number of inferences.
The triple generation process, being input-independent, is
entirely preprocessing and can be performed offline before the
actual inference requests. These triples are stored in a buffer
that automatically refills when exhausted during computation,
with dynamic size adjustment capabilities to handle varying
protocol requirements.

The online inference protocol executes layer-by-layer with
both parties maintaining secret shares of intermediate activa-
tions throughout the network. Nonlinear operations (ReLU,
Max Pooling) employ GMW protocol with the preprocessed
triples, requiring interaction only for AND gates where parties
exchange correction bits. For linear operations (Convolution,
Fully Connected layers), the client encrypts and sends its ac-
tivation shares to the server, which adds its own shares to
these ciphertexts, performs linear operations using the NTT-
preprocessed weights, applies a random mask for security,
and returns the encrypted result to the client for decryption
into output shares. This mixed-protocol approach optimally
balances computation and communication overhead.

SecONNds ensures perfect security under the semi-honest
model - the client learns only the final classification label
while the server learns nothing about the input or intermediate
values. Its modular design allows for runtime protocol selec-
tion and parameter configuration through the configuration
files, enabling optimization for different network conditions
and performance requirements. For example, developers can
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toggle between log-depth and linear variants of % based
on network latency, or enable/disable NTT preprocessing for
convolutions depending on available computational resources.

8 Evaluation

SecONNds is implemented in the OpenCheetah [1] vari-
ant of the Secure and Correct Inference (SCI) Library [53].
We implement SecONNds for secret-sharing with Z,, and
SecONNds-P for Zp, where P is a BFV-SIMD plaintext prime
modulus. SecONNds uses 1-bit approximate truncation, while
SecONNds-P employs faithful truncation and returns bit-
exact results compared to the plaintext model. Both use the
fast version of Fy . with the linear strategy by default. If the
low-round variant is employed for a framework, it is denoted
by LR in parentheses, e.g., SecONNds (LR).

For all our evaluations, we outfitted all frameworks being
compared with: Ferret Silent OT Extension [64] from the
EMP-OT Library [63]; BFV HE scheme [13,23] from the
SEAL Library [51]; and server-side GPU acceleration with
the HE Evaluator from the Troy Library [46]. All CPU opera-
tions of both parties were performed on 16 threads of an Intel
Xeon Gold 6338 processor, supplemented by 1 TB of RAM
and utilizing both the AES-NI and AVX-512 instruction set
extensions. The server-side GPU evaluations were performed
on an NVIDIA RTX A6000 system.

We evaluate the performance of SecONNds on the pre-
trained SqueezeNet [36] CNN model from OpenCheetah [1].
The SqueezeNet model is uniformly quantized to fixed-point
with a bitwidth of 37 and 12 bits for scale, achieving 79.6%
Top-5 accuracy, the same as in prior works. SecONNds-P per-
forms bit-exact computations and produces the same output
logits as the cleartext model. SecONNds uses 1-bit approxi-
mate truncation; with just 0.0015% Mean Absolute Percent-
age Error (MAPE) in output logits, it bears no impact on
accuracy. We also evaluate a ResNet50 model [31], which
achieves 92.3% Top-5 accuracy with the same 37-bit setup
and 12-bit scale and present the results in Appendix C.2.

8.1 Offline Preprocessing

SecONNds performs NTT preprocessing on the model
weights for fast online HE computation. This process does not
require any secret key information and, moreover, it is com-
pletely query independent; no communication is required. For
SqueezeNet, SecONNds requires 0.73 seconds for NTT pre-
processing, while SecONNds-P requires 2.62 seconds with
HE operations in Zp from HELiKs. The server can reuse the
NTT preprocessed weights over multiple queries unless the
model parameters are updated or modified.

SecONNds also generates Beaver’s triples offline for each
query, which significantly improves the online performance
of nonlinear operations. SecONNds-P requires 2.4 x more
triples compared to SecONNdSs, due to the higher overhead



Table 3: Operation Runtimes (in seconds) and Communication (in MiB) for Nonlinear operations

Nonlinear CrypTFlow2 HELiKs Cheetah SecNN—P (LR)  SecONNds-P SecNN (LR) SecONNds
Operation Time Comm. Time Comm. Time Comm. Time Comm. Time Comm. Time Comm. Time Comm.
Truncation 4.65 307 4.65 307 0.12 4.86 0.81 284 0.51 267 0.07 4.79 0.06 4.62
ReLU 6.73 302 6.73 302 2.53 110 1.72 246 0.87 186 0.72 116 0.23 88.7
Max Pooling  7.10 398 7.10 398 4.34 154 2.04 326 1.03 247 0.89 151 0.26 117
Avg Pooling  0.03 4.19 0.03 4.23 0.06 4.43 0.02 4.20 0.02 4.19 0.06 4.42 0.05 4.45
Arg Max 0.06 0.21 0.06 0.19 0.02 0.11 0.02 0.19 0.02 0.20 0.01 0.11 0.01 0.11
Table 4: Offline Triple Generation costs Table 5: Costs for HE Convolution
Framework Triples Runtime (s) Comm. (MiB) Framework Offline (s) Online (s) Comm. (MiB)
SecONNds-P (LR) 1.2x10° 27.16 60.41 CrypTFlow2 0.00 11.59 217.10
SecONNds-P  8.2x108 2243 43.12 HELiKs 231 8.62 129.18
SecONNds (LR) ~ 4.9x 108 10.61 26.36 Cheetah 0.00 4.94 204.84
SecONNds-P/(LR) 2.62 8.47 129.18
SecONNds/(LR) 0.76 3.09 204.84
SecONNds (GPU) 0.72 2.26 204.84

associated with nonlinear operations in Zp. As mentioned in
Section 4.1, the log-depth variant of the Fy L (LR) involves
up to 2x more AND (A) gates. This leads to a larger volume
of communication in each round, resulting in a total communi-
cation increase of approximately 1.5x for all calls to FyL in
nonlinear operations, and longer runtimes by a factor of 1.6,
when compared to the faster L with the linear circuit.

8.2 Nonlinear layers

In Table 3, we show the cumulative performance of all non-
linear operations in a single secure inference on SqueezeNet:
ReLU, Max Pooling, Average Pooling, ArgMax, and Trun-
cation. SecONNds achieves substantial improvements over
Cheetah in nonlinear operations, with 17 faster Max Pool-
ing, 11 x faster ReLU, and 2 x faster Truncation. Additionally,
communication costs are reduced by up to 20%, with most
gains observed in ReLU and Max Pooling.

Compared to CrypTFlow2 and HELiKs, SecONNds-P
achieves significant runtime reductions — 8 x faster for ReL.U,
7x faster for Max Pooling, and 9x faster for Truncation.
Communication costs of SecONNds-P are lower by approx-
imately 27% relative to these frameworks. The LR versions
of SecONNds and SecONNds-P demonstrate increased run-
times and communication volumes due to the added A-gates,
and still offer competitive performance, making them suit-
able when balancing latency and communication for different
round complexities under different network conditions.

8.3 Linear Layers

The SqueezeNet model only consists of convolutions for lin-
ear layers, and was evaluated for both CPU and GPU execu-
tion. In Table 5, we show the performance of each framework
for all convolutions in the model. SecONNds demonstrates
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reduced online runtime compared to Cheetah due to NTT
preprocessing. On CPU, SecONNds achieves a runtime of
3.09 seconds, a 1.6x improvement over Cheetah’s 4.94 sec-
onds. With GPU, SecONNds reduces runtime to 2.26 seconds,
achieving a speedup of 1.4x over Cheetah (GPU). In terms of
communication, SecONNds achieves the same performance
as Cheetah for the convolution layers, with both requiring
204.84 MiB . However, HELiks and SecONNds-P show the
best communication efficiency, requiring only 130 MiB, ben-
efiting from improved noise management in HE operations.

8.4 E2E Evaluation

In the End-to-End (E2E) evaluations, shown in Figure 5,
SecONNds demonstrates the best performance in terms of
both runtime and communication efficiency, achieving to-
tal runtimes of 3.70 seconds on CPU and 2.87 seconds on
GPU. This is a significant improvement over other frame-
works, with a 3.24 x speedup compared to Cheetah on CPU,
which has an online runtime of 12 seconds. Even with GPU,
SecONNds exhibits a speedup of approximately 3.8 x com-
pared to Cheetah’s runtime of 10.79 seconds. For communi-
cation, SecONNds incurs a total of 420 MiB, showing a re-
duction of approximately 12% compared to Cheetah (478.93
MiB). SecONNds-P, which ensures bit-exact accuracy with
full-precision truncation, demonstrates superior performance
compared to HELiKs in both runtime and communication
metrics. SecONNds-P achieves an online runtime of 11.06
seconds, which is a 2.46x speedup over HELiKs, which has
an online runtime of 27.20 seconds. In terms of communi-
cation, SecONNds-P achieves a total of 834.17 MiB, a 27%
reduction from 1141.95 MiB required by HELiKs.

For the logarithmic-depth (LR) variants, both SecONNds
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Figure 5: End-to-end (E2E) runtime (left bar) and communication (right bar) performance of each framework for the Neural
Network (NN) operations in SqueezeNet, and a close up of nonlinear NN operations for variants of SecONNds on the right.

and SecONNds-P are designed to minimize the number of but rely on hardware trust assumptions and are vulnerable to
communication rounds at the cost of slightly increased compu- side-channel attacks [14, 15]. SecONNds leverages applied
tational and communication volume. Specifically, SecONNds cryptography and a mixed-protocol strategy that optimizes
(LR) achieves reduced communication rounds of 1084, while both linear and nonlinear operations, achieving practical per-
SecONNds-P (LR) operates with 1542 rounds. These figures formance without any dependence on trusted hardware.

represent a significant reduction compared to the non-LR ver-
sions of SecONNds and SecONNds-P, which require 4630

and 5800 rounds, respectively. Compared to Cheetah, which 9.3 Areas for Innovation

uses 900 rounds, the LR variants demonstrate competitive Potential enhancements for SecONNds could include inte-
performance with a trade-off involving much higher compu- grating neural network compression techniques such as prun-
tational effort and communication volume per round. ing [29], knowledge distillation [33], or newer approaches to

reduce model complexity and improve efficiency. Expanding
on the foundational protocols of SecONNdSs to higher-level
ones, say splines for the secure evaluation of complex nonlin-
e ear functions like GeLU [32] and Swish [58], would enable
9.1 System Limitations support for a broader range of neural network architectures.
Additionally, extending the security model to accommodate
malicious adversaries and further optimizing hardware ac-
celeration for composite operations could enhance both the
security and performance of secure inference tasks.

9 Analysis and Future Outlook

SecONNds operates under the semi-honest security model,
assuming honest protocol adherence, which restricts its use
in malicious adversarial settings without incurring additional
overhead. Additionally, secure inference still introduces con-
siderable computational overhead compared to plaintext in-

ference, which still poses challenges for real-time resource- 10 Conclusion
constrained applications. Although the GPU library Troy [46]
significantly accelerates elemental homomorphic encryption SecONNds advances secure neural network inference by ad-
operations, the performance improvements for higher-level dressing key performance bottlenecks and demonstrating
composite functions like convolutions are modest compared to practical applicability on large-scale datasets. It is ideal
highly optimized multithreaded CPU implementations. This for enabling privacy-sensitive ML applications in resource-
highlights the need for specialized hardware acceleration tar- constrained environments. It allows service providers to se-
geting composite operations (like linear algebra kernels) for curely outsource NN computation, delivering practical perfor-
comprehensive performance gains. mance with robust security and reduced computational load
for users. Moreover, being a non-intrusive framework, it of-
9.2 Alternate Solutions fers foundational mod.ules that apply to any n.eural network,
regardless of the media type, without requiring any model
In comparison to HE-only frameworks, which achieve secure fine-tuning, and cuts any reliance on training data. SecONNds
inference with minimal interaction but suffer from substan- is highly compatible — it is fully open-source, modular and
tial computational overhead due to FHE bootstrapping [25], dynamic, allowing for mixing between different preprocesses
SecONN(ds provides a more balanced solution by reducing and protocol optimizations at runtime, e.g., linear layers with
these costs. Trusted Execution Environments (TEEs) like Intel online/offline/no NTT preprocessing, toggling round com-
SGX [50] offer low-latency inference within secure enclaves plexity of Millionaires’ protocol, etc.
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Ethics considerations

The research adheres to ethical guidelines by ensuring privacy
preservation during outsourced neural network inference. The
cryptographic techniques employed guarantee that neither
the client nor the server can access each other’s private data,
including inputs, intermediate values, or model parameters.
The semi-honest security model excludes malicious adver-
saries, but potential misuse scenarios are minimized through
strict adherence to secure computation protocols. The work
does not involve human subjects or datasets that would raise
additional ethical concerns.

Open Science

The code and implementation details of SecONNds are
made openly available on GitHub at https://github.com/
SecONNds/SecONNds_1_25. This ensures transparency and
reproducibility of the results presented in the paper. All data
used, the ImageNet samples, and the pre-trained SqueezeNet
model are public resources from prior works that are also
directly available from the aforementioned GitHub repository.
The protocol procedures are thoroughly described in the pa-
per, and the source code is furnished with detailed comments
to facilitate replication. To support further research, detailed
configuration files and instructions are provided for deploying
the framework in various scenarios.
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A Oblivious Transfer

Oblivious Transfer (OT), first introduced by Rabin [57], is a
protocol that enables the exchange of secret messages be-
tween two parties. In a b bit n-choose-1 OT, denoted by
(1;/ )—OT;,, one party (sender) inputs a set of n b bit val-
ues {xp,x1,- ,X,—1}, and the other party (receiver) inputs
a choice ¢ € [0,n) corresponding to an element in the set.
The receiver learns only one of the sender’s inputs, x, corre-
sponding to its selection ¢, oblivious to the sender who does
not learn anything. Correlated OT (COT) and Random OT
(ROT) are two simpler types of OT that are powerful cryp-
tographic primitives. In COTp, the sender inputs a private b
bit correlation J, a b bit value m, and doesn’t learn anything,
while the receiver only learns b bit m+c- 8. In (%)—ROT;,,
the sender does not input anything and learns 2 random b bit
values {ro,r; } while the receiver learns only one of them, r,
for its input choice c.

Notice, a (%)—ROTb can generate a (%)—OTb, the server
uses rp and r| as one-time-pads to mask mg and m, sends
them to the receiver and the receiver uses r. to unmask and
learn m.. OT variants that assign random inputs are core to
generating correlated randomness for secure computation. In
a random-choice COT, the protocol automatically sets a ran-
dom choice ¢ € Z; and random message m, returns m to the
sender and the corresponding random string m, = r+c¢- 8 and
¢ to the receiver. A random-choice (1)-ROT) can be gener-
ated from a random-choice COT}, by using a cryptographic
hash function; the sender hashes m, m + & to obtain ry, r;
respectively and the receiver hashes its COT output to get r,.

Initial constructions of OT utilized public-key cryptography
which incurred large overheads in terms of both computation
and communication. OT extension protocols, first conceptu-
alized by Beaver [7] and later realized by Ishai et al. [37]
(IKNP), reduce this overhead by generating a O(n) OTs us-
ing lightweight symmetric key cryptographic operations from
O(n/k) public-key OTs (base OT) where k is a fixed con-
stant parameterized by the OT extension protocol. Recently,
Boyle et al. [11] devised a new OT extension protocol, namely
silent OT extension, which significantly reduces the number
of base OTs required to O(logn) at the expense of more local
computation.

A.1 Silent OT Extension

The core components of Silent OT Extension are Punctured
Pseudorandom Function (PPRF) and Encoding with Learning
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Figure 6: High-level illustration of Silent ROT protocol.

Parity with Noise (LPN). A Pseudorandom Function (PRF)
is a deterministic random function that maps random values
from a small domain to pseudorandom numbers in a larger
domain. A Punctured PRF (PPRF) [10,41] can be evaluated
on all points in the original PRF’s domain except o, where it
is punctured and returns O (zero).

The LPN (dual) assumption [9] states that (H,H - r) ~
(H,b): the product of a known code matrix H= G~ € z3**"
and a very sparse random vector r € Z%” is computationally
indistinguishable from a uniformly random vector b € Z5. In
Silent OT, LPN is used to compress f, ¢ and generate the n
COTs corresponding to the choice vector ¢. This involves
computing a matrix-vector product with a very large matrix
— nis in the order of 108 for secure inference. To convert the
COTs to ROTs, the sender computes two hashes of its output,
while the receiver computes one hash.

Overall, while silent OT offers significant gains in commu-
nication, it involves more intensive computation compared to
IKNP-style protocols. The primary bottleneck in the compu-
tation arises from LPN encoding which involves a complexity
of O(n?) that is quadratic in the size of the required number
of OTs, n.

A.2  Secure AND with Bit Triples

In secure multiparty computation, evaluating the logical
AND (A) operation securely is a fundamental primitive. One
efficient method to achieve this is by using Beaver’s bit
triples. A Beaver’s bit triple consists of shared random bits
(a}lz,, (b)f,, (c)i for each party P, (p € 0: Server, 1 : Client),
such that ¢ = a A b holds in the shared domain.

A bit triple can be constructed using two Random-Choice
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Algorithm 4: Faonp And with Beaver’s Bit Triples

Algorithm 5: Fyaxpool Max Pooling

Input: Input secret shares (x)?, and (y)?,

Output: Output secret share (z)7, s.t. z=xAy

/* Triple Retrieval */
1 {<a>,2,, (b2, <c>,2,} — TripleGen.get(1)

/* Correction bit Computation */
2 {e)} = (@), @& (x);
3= o),

/* Correction bit Reveal */

4 Send((e)lz,) ; Send((f}lz,)
5 (e)i, = Receive() ; <f>§, = Receive()

6 e= (@20 f= (N2 (N
7 (2= (P AenS) D (eA B @ (f A a)d) @ ()

ROTs (RC-ROT), where each is a (%)—ROT 1. The construc-
tion process is as follows:

1. First RC-ROT Instance:

 The server acts as the receiver, obtaining a random
choice bit d € Z; and the corresponding random
message .

* The client acts as the sender, obtaining random
messages ro and 7.

%:ro@rl.

» The server sets its share of a as (a)3 = d.

* The relationship 4 = ro @ ((a)3 A (b)?) holds.

* The client sets its share of b as (b)

2. Second RC-ROT Instance:

* The client acts as the receiver, obtaining a random
choice bit e € Z and the corresponding random
message Se.

» The server acts as the sender, obtaining random
messages so and s;.

*» The server sets its share of b as (b>% =s50Ds1.
* The client sets its share of a as (a)

e
* The relationship s, = so ® ({a)? A (b)3) holds.
3. Computing Shares of c:

“)
®)
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Input: Flattened window size w

b .
Input secret share array (1)12, of size w

2b

Output: output secret share (0);,

1 ()2 = @)2'[0]
2 fork=1tow—1do
3 L (0)?,}) = JReLU (<0>127b - <i>;2;b [k]) + <i>§h [K]

These computations ensure that when the parties combine
their shares, they obtain ¢ = a A b, while keeping their indi-
vidual inputs private.

Algorithm 4 presents the protocol for the secure AND func-
tionality. This algorithm is a straightforward implementation
of the GMW protocol [27] utilizing preprocessed Beaver’s bit
triples. Both parties first retrieve a preprocessed bit triple to
start the computation. They then compute local correction bits
by XORing () their input shares with the triple shares. These
correction bits are exchanged and combined to reconstruct
e and f. Finally, each party computes its output share <z>f,
using the reconstructed correction bits, the triple shares, and
the bit-complement of party index p’, i.e. p' = 1 — p, ensuring
that the underlying secret value in the shares is the logical
AND of the inputs.

This protocol allows the parties to compute the AND of
their secret-shared bits without revealing their private inputs,
forming a building block for more complex secure computa-
tions.

B Additional NN Operations

B.1 Max Pooling

Pooling is a fundamental operation in CNNs aimed at down-
sampling input feature maps to highlight dominant features.
Max Pooling achieves this by extracting the maximum value
from each specified segment of the input array. In SecONNds,
Max Pooling is implemented securely through a protocol
called Fmaxpool, Which is outlined in Algorithm 5.

The core functionality of the Fmaxpool protocol involves
taking secret shares of an input layer and securely determin-
ing the maximum values for designated regions or windows.
The protocol initializes the presumed maximum with the first
element of each window and securely iterates through the
remaining elements to find the actual maximum. Each com-
parison is performed with one call to Fre| y, totaling w calls to
compute one output element where w is the flattened window
size for pooling.



Algorithm 6: Fa,zpo0 Average Pooling

Input: Output size n ; Flattened window size w

b .
Input secret share array <I)127 of sizen x w

2b

Output: Flattened output secret share (0);,

1 for j=0ton—1do

2 | 021 = W20

3 end

4 fork=0tow—2do

5 for j=0ton—1do

o || @2= @20+ w2

7 end

3 end

9 <0>,21b = fDIV(<0>§baW)

B.2 Average Pooling

Average pooling is an operation commonly used in neural
networks to reduce the spatial dimensions of feature maps
while retaining important information. In a secure inference
setting, we need to perform average pooling on secret-shared
data without revealing the underlying values. Algorithm 6
presents the protocol for average pooling adapted from CrypT-
Flow2 [60], which is employed in our system.

The protocol operates on secret shares of the input and

produces secret shares of the output. The input matrix (I>[27b
contains secret shares of the input values, where b is the bit
width. The protocol initializes the output vector by assigning
the first element from each window. It then iteratively accumu-
lates the remaining elements in each window by performing
secure addition on the secret shares. Finally, the protocol per-
forms a division by the window size w using the DIV protocol
from CrypTFlow?2, which securely computes the division of
secret-shared values by a public constant.

The division protocol DIV takes as input secret shares of
the dividend and a public divisor and returns secret shares of
the quotient. This operation is performed securely without
revealing the intermediate sums or the final averaged values.
By employing this protocol, we securely compute the average
pooling operation on secret-shared data, which is essential for
privacy-preserving neural network inference.

C RLWE HE

Homomorphic encryption (HE) enables computations on en-
crypted data without requiring decryption keys or access to
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the original plaintext. This approach allows a client to encrypt
data, send it to a server for computation, and then decrypt
the results. In HE systems, encryption and decryption are
managed by the client, while the majority of the computa-
tional work is offloaded to the server. This division of labor
reduces communication overhead, with data transfer involv-
ing only input and output sizes. Fully Homomorphic Encryp-
tion (FHE) schemes, introduced by Gentry [25], support arbi-
trary encrypted computations through a bootstrapping process
but come with significant computational costs. Leveled HE
schemes improve computational efficiency by allowing a lim-
ited number of operations without bootstrapping, although
they increase ciphertext size. The capacity of these schemes
is determined by their multiplicative depth, which indicates
the maximum number of sequential multiplications.

The construction of most popular HE schemes, such
as BGV [12], BFV [13, 23], and CKKS [16], relies on
Ring Learning With Errors (RLWE) [48]. RLWE-based HE
schemes operate on polynomial rings, denoted as Rg, where
N represents the polynomial modulus degree and Q repre-
sents the coefficient modulus. In schemes such as BFV and
BGYV, plaintexts are elements of Kﬁ , with P (< Q) serving
as the plaintext modulus. In CKKS, plaintexts are elements
in R Y, without a plaintext modulus, facilitating approximate
arithmetic.

Encryption in RLWE-based schemes involves encoding a
secret vector m € Zg into a polynomial pt,,. The encryption
yields a ciphertext cty, = (a,b), where a is a random polyno-
mial in the polynomial ring Q{z, and b is a polynomial in Rg
s.t.:

b= (a-sk+3-pt,+e-€)

Here, sk € 9{{{\’_1.071} represents the secret key, which is
a polynomial with imiformly random ternary coefficients,
d,€ € Zg¢ are scheme-defined constants used to scale the plain-
text and control noise tolerance, respectively, and € € Rg is
a small error polynomial drawn from a zero-mean discrete
Gaussian distribution with standard deviation ¢. This small
error € is crucial for maintaining the hardness of the RLWE
problem, thus ensuring the security of the encryption.

In HE, operations are performed on the ciphertexts by ma-
nipulating the underlying polynomials. Addition, multiplica-
tion, and rotation are the key operations supported by RLWE
schemes. Addition and rotation lead to additive error growth,
whereas multiplication results in multiplicative error growth,
making parameter selection critical to control the error expan-
sion.

HE multiplication corresponds to computing a convolution
of the polynomial coefficients. Specifically, multiplying two
polynomials @ and b yields a result € = a x b, where each
coefficient ¢; is determined through the convolution of the
coefficients of a and b:



i
Ci = Zaj-b,-,j (mod Q)
j=0

This direct convolution has a quadratic complexity of
O(N?), which can be computationally prohibitive for polyno-
mials of high degree.

C.1 Number Theoretic Transform

To alleviate the aforementioned quadratic computational com-
plexity, the Number Theoretic Transform (NTT) is used,
which is analogous to the Fast Fourier Transform (FFT) but tai-
lored for modular arithmetic, suitable for cryptographic appli-
cations. The NTT allows polynomials to be transformed into a
point-value representation, where convolution is transformed
into pointwise multiplication. This reduces the complexity
of polynomial multiplication from O(N?) to O(NlogN). The
NTT uses a "primitive root of unity" under modulo Q, unlike
the FFT, which employs complex roots of unity.

NTT-based multiplication proceeds in three main steps.
First, both polynomials a and b are transformed using the
NTT, resulting in NTT(a) and NTT(b). The transformation
is applied to convert the polynomial from its coefficient rep-
resentation to a point-value representation in KZ. Second,
pointwise multiplication is performed — one scalar multiplica-
tion per coefficient:

NTT(c); = NTT(@);-NTT(b); (mod Q)

Finally, an inverse NTT is applied to obtain the product ¢ back
in the coefficient domain, € = NTT~! (NTT(c)).

The use of the NTT not only reduces computational costs
but also ensures that operations remain consistent with the
modular arithmetic required for cryptographic security. The
advantage of the NTT in HE is that it optimizes the core opera-
tion of polynomial multiplication, transforming the otherwise
convolution-heavy multiplication into a sequence of efficient
element-wise multiplications. Given that polynomial multipli-
cation is central to encrypted computation, this optimization is
essential for making homomorphic encryption schemes prac-
tical and efficient. The use of modular arithmetic throughout
ensures that all operations are secure and stay within the de-
fined finite field, which is critical for maintaining the integrity
and security of HE schemes.

C.2 ResNet50 Evaluations

In Figure 7 we show the results of our evaluations on the
ResNet50 model with 32 Threads. SecONNds significantly
outperforms existing frameworks in both runtime and com-
munication efficiency. Specifically, SecONNds achieves a
total runtime of 25 seconds, demonstrating a 1.9x speedup
over Cheetah’s 49 seconds and a substantial 7 x improvement

21

200
NN Operations:
175 Max Pooling 7

150 ReLU 6

Truncation
125 BatchNorm 5
Convolution 4
75 . = 3
50 m H m’
-

— 1

Runtime (s)
i
(=]
o
Communication (GiB)

0 0

CrypTFlow2  HELiKs Cheetah  SecNN-P  SecNN-P SecONNds SecONNds
(LR) (LR)

Figure 7: End-to-end (E2E) runtime (left bar) and communi-
cation (right bar) performance of each framework for Neural
Network operations in ResNet50.

compared to CrypTFlow2’s 180 seconds. In terms of commu-
nication volume, SecONNds reduces data transfer to 2061
MiB, marking an 8.5% decrease from Cheetah’s 2248 MiB.
The SecONNds-P variants maintain competitive perfor-
mance, balancing runtime and communication efficiency
across different configurations. These results underscore
SecONNds’ effectiveness in optimizing secure inference for
complex neural network architectures like ResNet50.
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