
Leveraging GPT-4 for Vulnerability-Witnessing Unit Test
Generation

Gábor Antal
gabor.antal@frontendart.com

antal@inf.u-szeged.hu
FrontEndART Software Ltd.

University of Szeged
Szeged, Hungary

Dénes Bán
zealot@inf.u-szeged.hu
University of Szeged
Szeged, Hungary

Martin Isztin
isztin@inf.u-szeged.hu
University of Szeged
Szeged, Hungary

Rudolf Ferenc
ferenc@inf.u-szeged.hu
University of Szeged
Szeged, Hungary

Péter Hegedűs
peter.hegedus@frontendart.com

hpeter@inf.u-szeged.hu
FrontEndART Software Ltd.

University of Szeged
Szeged, Hungary

Abstract
In the life-cycle of software development, testing plays a crucial
role in quality assurance. Proper testing not only increases code
coverage and prevents regressions but it can also ensure that any
potential vulnerabilities in the software are identified and effec-
tively fixed. However, creating such tests is a complex, resource-
consumingmanual process. To help developers and security experts,
this paper explores the automatic unit test generation capability of
one of the most widely used large language models, GPT-4, from the
perspective of vulnerabilities. We examine a subset of the VUL4J
dataset containing real vulnerabilities and their corresponding fixes
to determine whether GPT-4 can generate syntactically and/or se-
mantically correct unit tests based on the code before and after
the fixes as evidence of vulnerability mitigation. We focus on the
impact of code contexts, the effectiveness of GPT-4’s self-correction
ability, and the subjective usability of the generated test cases. Our
results indicate that GPT-4 can generate syntactically correct test
cases 66.5% of the time without domain-specific pre-training. Al-
though the semantic correctness of the fixes could be automatically
validated in only 7. 5% of the cases, our subjective evaluation shows
that GPT-4 generally produces test templates that can be further
developed into fully functional vulnerability-witnessing tests with
relatively minimal manual effort.

Therefore, despite the limited data, our initial findings suggest
that GPT-4 can be effectively used in the generation of vulnerability-
witnessing tests. It may not operate entirely autonomously, but it
certainly plays a significant role in a partially automated process.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
EASE 2025, Istanbul, Türkiye
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/2018/06
https://doi.org/XXXXXXX.XXXXXXX

CCS Concepts
• Software and its engineering→ Software post-development
issues; Software maintenance tools; Software testing and de-
bugging; • Security and privacy → Software security engi-
neering.

Keywords
unit test generation, large languagemodels, vulnerability-witnessing
tests, CWE, context levels
ACM Reference Format:
Gábor Antal, Dénes Bán, Martin Isztin, Rudolf Ferenc, and Péter Hegedűs.
2018. Leveraging GPT-4 for Vulnerability-Witnessing Unit Test Generation.
In Proceedings of The 29th International Conference on Evaluation and As-
sessment in Software Engineering (EASE 2025). ACM, New York, NY, USA,
10 pages. https://doi.org/XXXXXXX.XXXXXXX

1 Introduction
To this day, many software releases contain bugs and vulnerabilities.
Security issues that might make it to countless production servers
or consumer machines remain unnoticed until someone exploits
them. Unfortunately, even an experienced software engineer cannot
ensure the reliability of a program code just by visual inspection, as
a piece of code might be harmless in one environment but vulner-
able in another. Fixing such flaws requires significant time, effort
and financial resources. And even though these vulnerabilities can
be identified and mitigated with adequate testing, writing the tests
for them is itself a resource-intensive task.

To avoid the need for individual discovery, databases exist that
document commonly disclosed vulnerabilities. One of these is the
CVE (Common Vulnerabilities and Exposures) [6] database, contain-
ing information about cybersecurity vulnerabilities in real systems.
Each entry has an identifier representing one specific vulnerability.
A more general categorization of these vulnerabilities is done us-
ing CWE (Common Weakness Enumeration)[7] identifiers. Adapting
important domain knowledge from these databases would be a valu-
able addition to software testing, but it still requires significant man-
ual effort to do so. From an automation perspective, Large Language
Models (LLMs) have become widespread as productivity-enhancing

https://orcid.org/0000-0002-3002-8624
https://orcid.org/0000-0003-1019-7698
https://orcid.org/0000-0002-3002-8624
https://orcid.org/0000-0001-8897-7403
https://orcid.org/0000-0003-4592-6504
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

EASE 2025, 17–20 June, 2025, Istanbul, Türkiye Antal et al.

technologies, and due to the opportunities they offer, they are also
used in various areas, such as software development [12, 17]. Nu-
merous studies report on the automatic program-fixing capabilities
of this emerging technology [3, 8, 15, 25, 27], but there is little infor-
mation on generating unit tests to challenge these fixes – or, indeed,
any other manually created fixes for potential vulnerabilities.

This paper aims to generate unit tests for recognized vulnerabil-
ities in practice. Our goal, therefore, is not finding or even fixing
previously unknown vulnerabilities, but generating proofs (so called
vulnerability-witnessing test cases) for existing ones. The benefits
of being able to complement such vulnerability-fix pairs with cor-
responding tests would be two-fold. The developer community
could leverage this approach to semi-automatically generate regres-
sion tests for vulnerabilities they naturally encounter in their own
code. The research community could utilize it to annotate ex-
isting but untested vulnerabilities, thereby expanding the datasets
needed for benchmarking and evaluating new models.

For the evaluation, we used a subset of the VUL4J [4] dataset,
which contains information about vulnerabilities in real-world sys-
tems written in Java. The dataset includes the vulnerability fixes,
as well as the corresponding CVE (and often even the CWE) identi-
fiers. It has additional features, such as the ability to easily switch
between vulnerable and fixed versions of the projects with the
provided environment, access to the changes made for fixing the
vulnerabilities, and the original unit tests used in the project.

Our evaluation subset contains 50 entries selected to cover as
many types of vulnerabilities as possible. Each entry was divided
into focal contexts [22] consisting of four levels (referred to as L0-
L3). We then used one of the most well-known language models,
OpenAI’s generative pre-trained transformer model, GPT, specif-
ically the GPT-4 Turbo version to process these contexts. For the
model’s input text (i.e., the prompt), we provided the appropriate
source code segments from before and after the fix, plus a number
of other, potentially useful modifiers including:
• A role allowing the LLM to give more accurate and contextu-
ally appropriate responses; in our case, the model was asked
to act as a senior software tester,
• Emotional stimulation, which has been shown to be able
to influence the accuracy of an LLM’s response, and
• The relevant CWE identifier to check whether it helps gen-
erate better test cases (see Section 5.2).

After using an automated environment to produce the context
and the prompt, which was then passed along to the LLM, the
classification of the results was divided into two parts. First, our
framework processed and evaluated the response it received from
the LLM in an automated fashion. Second, we also manually re-
viewed the subjective usability of the generated code.

The research aims to answer the following questions:
• RQ1: What percentage of the generated unit tests code is
syntactically correct?
• RQ2: What percentage of the generated unit tests code is
semantically correct?
• RQ3: Based on the subjective evaluation, how useful are the
generated unit tests?
• RQ4: How does the context affect the accuracy of the gener-
ation?

Our results indicate that GPT-4 can generate syntactically cor-
rect test cases 66.5% of the time without any domain-specific pre-
training, which is encouraging considering that no technical back-
ground information was provided during prompting. Based on the
actual unit test execution, the generated test cases were also seman-
tically correct in 7.5% of the cases. However, during our subjective,
manual evaluation, we found that GPT-4 generated useful templates
for developers in 68.5% of cases. This demonstrates that, with suffi-
cient fine-tuning (either by manually modifying the source code or
presumably using a more refined prompt), large language models
can be beneficial in a (semi-)automated workflow.

The structure of the paper is as follows: Section 2 discusses
related work, followed by the research methodology in Section 3.
Section 4 presents our results in detail, Section 5 discusses special
cases and additional observations. Section 6 covers the limitations
and future possibilities, and finally, Section 7 concludes the paper.

2 Related Work
2.1 LLMs in vulnerability analysis
LLMs are already widely used in vulnerability analysis. One of
the potential directions is vulnerability detection where, according
to Zhou et al. [28], GPT-3.5 matches, while GPT-4 outperforms
state-of-the-art detection methods. One step beyond pure detec-
tion is automated program repair (APR), which falls closer to our
use-case of code generation, and is the subject of numerous stud-
ies. Zhang et al. [26] compared the APR capabilities of the VRe-
pair transfer-learning neural network model with several large
language models, including CodeBERT, UniXcoder, and CodeGPT.
Their main result revealed that large language models performed
repairs with an accuracy between 10.21% and 22.23%. In another
study, Fu et al. [9] specifically used ChatGPT to evaluate the model’s
APR capabilities on the Big-Vul dataset, which contains both vul-
nerable and fixed versions of C++ functions, along with CVE and
CWE identifiers and other related information.Without fine-tuning,
ChatGPT lagged behind code-specific models. Beyond GPT’s capa-
bilities, Alrashedy et al. [1] examined the CodeLlama model with a
Python vulnerability database, using feedback-driven vulnerability
fixing, where one instance of the model reviews the response of an-
other, and the answer is then further enhanced based on this review.
This approach yielded 5-10% better results than their baseline.

In a more loosely related experiment, Garg et al. [10] used µBERT
to mutate existing fixes from Vul4J to artificially simulate vulnera-
bilities, and then categorized these mutants based on how closely
they were coupled to the actual, real-world vulnerabilities by check-
ing whether they fail the same vulnerability-witnessing tests (and
whether the fail it for the same reason). They conclude that LLMs
are already capable of generating useful synthetic mutants in 39
out of the 45 cases they investigated. A relevant idea to our topic
is from Xia et al. [24], which validated the correctness of gener-
ated fixes with tests – only here, the tests were preexisting and the
fixes were the ones created via model output. In light of the wide-
spread applicability of large language models in this field, we also
target the topic of vulnerabilities using GPT-4. However, instead
of detecting, synthetically reproducing, or generating fixes for a
particular problem, we aim to verify the correctness of existing
fixes by generating the corresponding test cases.

Leveraging GPT-4 for Vulnerability-Witnessing Unit Test Generation EASE 2025, 17–20 June, 2025, Istanbul, Türkiye

2.2 LLMs in test case generation
Steenhoek et al. [20] used static metrics to fine-tunemodels and gen-
erate high-quality unit tests. They found that an unrefined model
generated syntactically incorrect tests 17% of the time, tests without
assertions 31% of the time, and failed to call the method under test
37% of the time. With reinforcement learning from static quality
metrics (RLSQM) and supervised fine-tuning, these numbers de-
creased to around 1%, 5%, and 10%, respectively. They used dynamic
context lengths similar to ours, including the entire file’s text, a
whole class, only the method headers, or the method itself.

Tufano et al. [22] also experimented with different focal context
levels during unit test generation. This approach is much closer to
the dynamic context we employed. Starting exclusively from the
focal method, they incrementally added the class name, constructor
headers, method headers, and finally, class fields. The model train-
ing was progressive, beginning with English-language pre-training,
followed by code-based training, and finally, the fine-tuned model
for test case generation. The generation process was interpreted as
a translation from the focal context to the test case, and the authors
concluded that the more focal context, the better the generation
tends to be (with up to 11% improvement).

An empirical study [19] explored the impact of context on test
generation, although the context played a different role. In their
work, they use different contexts, such as using only the method
under test, or the amount of JavaDoc documentation included in
the prompt. 40-70% of generated tests did not cause compilation
errors, and during subjective evaluation, this proportion was much
higher, between 75% and 100%. Generation was correct 50-80% of
the time, and code coverage was between 70-90%. Additionally,
preliminary work shows that LLMs perform better with weakly
typed languages.

A study by Meta [2] focused on improving existing human-
written tests rather than generating new tests. 75% of the improve-
ments were syntactically correct, 57% generated successful tests,
and 25% improved code coverage. Overall, 10% of the provided test
classes were improved, and 73% of the model’s recommendations
were later accepted by developers.

Mathur et al. [16] used the T5 and GPT-3 models to generate test
inputs and/or relevant natural language descriptions. Developers
described some preconditions or requirements, and the model’s
output was the relevant test cases that can be evaluated dynamically.

According to a research survey on software testing with large
language models [23], no one has approached model input format
the way we have. Typically, only the faulty function (either before
or after the fix) or description is provided for generating fixes
or tests. However, no one has attempted to pass both the faulty
and fixed code to generate test cases. The closest was a study by
Kang et al. [13] that used an input format providing a description
of the bug for test case generation. Although we also generate test
cases, our research does not aim to test a specific functionality for
better coverage like the studies mentioned above. Instead, we aim
to generate test cases that demonstrate the presence (or absence)
of vulnerabilities based on the before/after states of the affected
source code, showing failure in the vulnerable state and success in
the fixed state.

2.3 Test cases for vulnerabilities
The literature most similar to our study considers the intersection
of vulnerabilities and test cases. One instance is by Taneja et al. [21],
where unit test generation also occurs with the input containing
both the old and new versions of the code, but the actual generation
is based on instrumentation and path coverage. A more recent
example of a similar approach is by Chen et al. [5] where they use
genetic test generation to create test cases for library vulnerabilities
that have been proven to be reachable from the main application.

Our research also lies within this intersection, but unlike the
above, we use an emerging and increasingly promising large lan-
guage model to generate test cases as evidence of vulnerability
instead of using instrumentation and/or genetic algorithms.

3 Methodology
Our research process can be divided into three stages: one-time
data collection and environment preparation, automatic iteration,
and manual validation. A high-level overview of this process is
depicted in Figure 1.

Automatic iteration

Specific context

Prompt

Response

Evaluation results

Recombination

Prompt generation

Model polling

Automatic evaluation

Reprompt

with logs

One-time preparation

AST split

Raw vulnerability (before/after)

Context piecesTest environment

Docker setup

Manual validation

Figure 1: Overview of our methodology

3.1 One-time Preparation
To enable automatic evaluation at a later stage, we first needed to
collect and standardize the inputs of our framework.

EASE 2025, 17–20 June, 2025, Istanbul, Türkiye Antal et al.

Data Collection Our selection criteria were as follows: the
dataset should include vulnerable methods, their fixes, and an envi-
ronment in which these methods could be tested (i.e., the project
can be built, and the tests can be executed). Also, all vulnerabilities
should exist in real systems instead of being artificial examples.

The VUL4J [4] database, widely used in APR-related research,
met these requirements by containing real, certified vulnerabilities
from Java projects. This database provides a wide variety of use-
ful information, including vulnerability identifiers, program states
before and after fixes, GitHub commit references, and proof of vul-
nerability (i.e., vulnerability-witnessing) unit tests. Additionally,
it includes a Docker environment that significantly simplifies the
running of a software’s specific version.

The database includes vulnerabilities that can be fixed by modi-
fying one or more methods, potentially involving multiple class and
file modifications. To mitigate the risk of the model running out of
context, we decided to use only examples where the vulnerability
fix affects one single class and, in most cases, one single method.
This, combined with the 128k context window of GPT-4 Turbo,
prevented any obvious instance of forgetting in our experience.

Within these boundaries, we attempted to include as many dif-
ferent CWE-types of vulnerabilities in our set of 50 subjects as
possible to measure GPT-4’s unit test generation capabilities across
a wide spectrum.

AST Split Defining the appropriate amount of contextual in-
formation is essential for unit test generation, requiring not only
natural language but also the method to be tested. For this purpose,
we created context fragments [22] from all vulnerable classes in
the collected examples through static analysis and splitting parts
of the resulting ASTs (Abstract Syntax Trees) into different bins
representing an increasingly large neighborhood of the vulnerable
method:

• L0 includes the class’s package declaration, class declaration,
and the vulnerable method itself.
• L1 = L0 + the headers of the class’s constructors, if any.
• L2 = L1 + the headers of the class’s other methods.
• L3 = L2 + the fields declared in the class.

3.2 Automatic Iteration
Our automated framework1 had the most significant role in en-
abling the scope of this research as it seamlessly handled the con-
text slices and project paths, the communication with the API, the
execution of the generated responses, and the evaluation of the
results. This process can be summarized in several steps.

Recombination To create the textual code snippet for the cur-
rent round of prompting, we recombined the relevant context slices
according to the L0-L3 guidelines described above. We refer to this
snippet as the “focal context”. Each of the focal context levels was
used in a separate run during the evaluation, so it can be thought
of as a separate dimension, whose effects are analyzed in RQ4.

Prompt Generation As mentioned earlier, generating the unit
tests requires a sufficiently large and specific context – and not just
the code-based focal context. First, we gathered prompt references

1https://zenodo.org/records/14758148

You are a senior software tester and a cyber security ←↪
specialist .

You will be given the source code of a Java class where you ←↪
will find the context of a vulnerable method before and ←↪
after the patch .

Your task is to create a unit test that triggers the ←↪
vulnerability and fails before the patch and passes after ←↪
it . The class ' name should be the name of the class ←↪
appended with the string " Test " .

Use simple Java language features in the generated test !

{ focal context of the vulnerable code }

The method after patching the vulnerability :

{ patched method of vulnerable code }

It is very important for me , please create the unittest based ←↪
on your best knowledge in the given context .

Listing 1: The final prompt

from relevant literature [23] and then experimented with the differ-
ent prompts. Our final version is based on the experiences gained
from our initial runs.

According to the official OpenAI documentation2, specifying a
role for GPT helps it better understand the context. In our case, this
role is senior software tester, which is then included at the beginning
of our default prompt setup. Then, we describe the characteristics
of the input to be processed and the task the model will work on.

A common error in the generated unit tests is the lack of imports
for the functions and classes used. Also, most examples for eval-
uation have to be compiled with outdated Java versions. This led
to the model often generating code that was incompatible with a
specific Java language version (i.e., the generated code used features
that were introduced in a later version of the language). Therefore,
we decided to explicitly warn the model about these details during
prompting. The correspondence between the names of classes and
their tests also caused problems during automatic evaluation, so
we had to define their format in the prompt.

Next came the source code, which we have always added to the
prompt as part of the focal context. The vulnerable version of the
method first, with context appropriate for the current level (L0-L3),
and then the fixed version (without repeating the context to keep
the prompt concise and the model’s token usage in check).

Finally, we used emotional stimulation, stating the importance of
solving the task, which has been shown to yield better results [14].
The final prompt used for all examples in the main evaluation round
can be found in Listing 1.

Model Polling Once the prompt was complete, polling the GPT-
4 API was a practically independent and seamless step. We simply
submitted the prompt, parsed the response to extract pure Java
source code, then saved this code to a file, and placed it in the
project’s test environment (in a predefined location per project).

Automatic Evaluation The execution of the generated tests
was done using the Docker environment provided with the VUL4J
database, satisfying all necessary environmental requirements. How-
ever, instead of running the whole test bed, the framework ran only
the generated test class to reduce runtime.

First, we executed the generated test class on the vulnerable
version of the project (expecting it to fail), then the fixed version

2https://platform.openai.com/docs/guides/gpt/chat-completions-api

https://zenodo.org/records/14758148
https://platform.openai.com/docs/guides/gpt/chat-completions-api

Leveraging GPT-4 for Vulnerability-Witnessing Unit Test Generation EASE 2025, 17–20 June, 2025, Istanbul, Türkiye

(expecting it to pass), storing the execution logs both times. We
used these logs to automatically judge the quality of the tests. If it
produced the expected fail/pass pattern, it was accepted. Otherwise,
we proceeded with reprompting.

Reprompting Because of the frequent mistakes in model output,
– and because these mistakes could often be attributed to chance as
they disappeared when reprompting – we considered performing
multiple iterations during the automatic evaluation to avoid ran-
dom results and examine generation consistency. Instead of raw
reiterations, though, we decided to trigger a limited, feedback-based
refinement if the previous results did not match the expected pat-
tern (i.e., we either received compilation error(s) or the test results
did not match the current code variant’s vulnerability).

Since feedback occurs within the same, sufficiently large con-
versation context, and the model retains previously provided in-
formation (thereby making role and technical details redundant to
state again), different prompts were associated with these feedback
requests. In these, we provided simple, textual feedback to GPT-
4 on the violated criterion during test execution, along with the
generated log file if necessary. The three situations resulting in a
failing response (and their associated prompts) are the following:
• BEFORE_PASS - “The test you’ve provided should have
failed for the original version of the vulnerability before the
patch, but it passes. Please fix it and return the whole code.”
• AFTER_FAIL - “The test you’ve provided should have passed
for the patched version of the vulnerability, but it fails. Please
fix it and return the whole code.”
• ERROR - “The code you provided has errors in it: <log>.
Fix the error indicated by the compiler message, and answer
with the WHOLE fixed code only.”

Multiple such feedback iterations were initiated until either three
consecutive compilation errors occurred (which we took to mean
that the model could not generate a syntactically correct test file
in this scenario) or five generations elapsed with no compilation
errors but no improvement of the unexpected results either (i.e.,
the vulnerable code passed the test or the fixed version failed).

Evaluation Results Testing was first performed on the vulner-
able version (before patch), and then on the fixed version (after
patch) of each vulnerability. Each of these two versions had three
possible outcomes:
• PASS: The generated test ran successfully and passed.
• FAIL: The generated test ran successfully but failed.
• ERR: The generated test contained compilation errors.

In the end, the best generation was considered for each vulnera-
bility. This means that if a generated test case was compilable at
any point, the evaluator retained the resulting log files for that par-
ticular test execution, and this became the result we recorded in the
final tally (instead of reverting it back to an ERR when consequent
iterations yielded syntactically incorrect code, for example).

In Section 4, we will discuss some cases where these feedback
categories alone did not give the full picture about the results,
highlighting the importance of the manual evaluation.

3.3 Manual Evaluation
In addition to the fully automated and strict validation, two de-
velopers (one of them an author, the other an outside perspective)

performed a subjective, manual evaluation of the generated tests
as well to look for “usefulness”.

Our reasoning for this phase – apart from verifying the validity of
the automatic evaluation process – was that even a half-baked test
could be better than an empty canvas for a potential test developer
if said test was going in the right direction and only failed because
of some minor syntax error. After all, developers need extensive,
relevant background information to create even a runnable test for
a given program. Therefore, we decided to review the structure of
each test and manually assess its degree of semantic correctness to
evaluate its usefulness, even when the test contained errors. The
manual evaluation labeled each result as semantically correct (when
both reviewers agreed) or semantically incorrect. Naturally, cases
that produced correct outputs during strict validation were also
manually checked.

4 Results
Table 1 presents the detailed evaluation results: whether the entry
passed or failed the final test Before and After patching, and
whether theManual evaluation deemed it “useful”. All these for
each focal context level (L0-L3). In total, 200 result pairs were
generated during the automated evaluation.

4.1 Syntactic analysis
In the syntactic analysis, the question was whether GPT-4 could
generate a unit test universally applicable in a test environment
without any human intervention, provided that the model was in-
structed to use simple Java language features. There were instances
where the runtime environment would have required extra annota-
tions to be able to execute the test. Since these were missing, some
generated tests were not recognized as unit tests by the runtime
environment, although they were included in the project’s compi-
lation process. Based on this factor, such cases were also accepted
as syntactically correct results.

In some runs, where both the vulnerable and fixed versions
produced FAIL results, the issue was not necessarily with the test
result. There were also cases where the compilation did not fail,
but the symbols used in the test were unavailable due to missing
imports, which the model might have forgotten or which did not
exist.
Answer to RQ1: Excluding the manually reviewed cases from
the statistics, GPT-4 generated syntactically correct code in 35
out of 50 cases (70%) with L0 and L1 focal context. Furthermore,
L2 resulted in 31 correct generations (62%), and L3 produced
positive results in 32 cases (64%), for an overall accuracy of 66.5%.

4.2 Semantic Analysis
Of course, syntactic analysis alone is insufficient to determine the
generated tests’ correctness. In this section, we further filter the
syntactically correct cases and examine only the ones that met the
automatic validation criteria: the test failed for the pre-fix state
(FAIL) and succeeded for the post-fix state (PASS). Overall, this
occurred 15 times (7.5%).

These generated tests always deviated, even if only slightly, from
the unit tests included in the VUL4J dataset. To ensure the results’
correctness, we also manually evaluated whether they were actually

EASE 2025, 17–20 June, 2025, Istanbul, Türkiye Antal et al.

Table 1: The results of the separate runs

L0 L1 L2 L3

Vul4J ID Before After Manual Before After Manual Before After Manual Before After Manual

VUL4J-01 PASS PASS NO PASS PASS NO ERR ERR OK PASS PASS NO
VUL4J-02 ERR ERR NO FAIL FAIL NO ERR ERR OK ERR ERR OK
VUL4J-03 FAIL FAIL OK ERR ERR OK ERR ERR OK FAIL FAIL OK
VUL4J-04 ERR ERR OK ERR ERR OK ERR ERR OK ERR ERR OK
VUL4J-05 ERR ERR OK ERR ERR NO FAIL FAIL OK ERR ERR OK
VUL4J-06 FAIL FAIL NO FAIL FAIL OK FAIL FAIL OK FAIL FAIL NO
VUL4J-07 FAIL FAIL OK FAIL FAIL OK FAIL FAIL OK FAIL FAIL OK
VUL4J-08 FAIL FAIL OK FAIL FAIL OK FAIL FAIL OK FAIL FAIL NO
VUL4J-10 ERR ERR NO FAIL FAIL OK ERR ERR NO FAIL FAIL OK
VUL4J-12 PASS PASS OK PASS PASS NO FAIL FAIL NO ERR ERR NO
VUL4J-13 FAIL FAIL OK FAIL FAIL OK FAIL FAIL OK FAIL FAIL NO
VUL4J-16 FAIL FAIL OK FAIL FAIL NO FAIL FAIL OK FAIL FAIL NO
VUL4J-17 FAIL PASS OK FAIL PASS OK FAIL PASS OK FAIL PASS OK
VUL4J-18 ERR ERR OK ERR ERR OK ERR ERR OK ERR ERR OK
VUL4J-19 FAIL FAIL NO FAIL FAIL OK ERR ERR NO FAIL FAIL OK
VUL4J-20 PASS PASS NO ERR ERR OK FAIL PASS OK ERR ERR OK
VUL4J-22 FAIL FAIL OK FAIL FAIL NO FAIL FAIL OK FAIL FAIL OK
VUL4J-24 FAIL FAIL NO ERR ERR NO PASS PASS OK FAIL FAIL OK
VUL4J-25 PASS PASS OK PASS PASS NO FAIL FAIL OK ERR ERR OK
VUL4J-26 PASS PASS NO PASS PASS NO ERR ERR OK ERR ERR OK
VUL4J-30 PASS PASS NO PASS PASS OK ERR ERR OK PASS PASS OK
VUL4J-31 PASS PASS OK PASS PASS OK ERR ERR OK PASS PASS OK
VUL4J-33 ERR ERR OK PASS PASS NO ERR ERR OK PASS PASS NO
VUL4J-34 PASS PASS OK PASS PASS OK PASS PASS OK PASS PASS OK
VUL4J-39 FAIL PASS OK FAIL FAIL OK PASS PASS OK ERR ERR OK
VUL4J-40 ERR ERR NO ERR ERR OK FAIL FAIL NO FAIL FAIL NO
VUL4J-41 FAIL FAIL OK ERR ERR OK ERR ERR OK FAIL FAIL OK
VUL4J-43 PASS PASS OK PASS PASS OK PASS PASS OK PASS PASS OK
VUL4J-44 FAIL FAIL OK FAIL PASS OK PASS PASS OK FAIL PASS OK
VUL4J-45 FAIL FAIL NO FAIL FAIL NO PASS PASS NO FAIL FAIL NO
VUL4J-46 FAIL PASS OK FAIL PASS OK PASS PASS OK FAIL FAIL OK
VUL4J-47 ERR ERR NO PASS PASS OK PASS FAIL OK ERR ERR NO
VUL4J-48 PASS PASS NO ERR ERR OK PASS PASS OK ERR ERR NO
VUL4J-50 ERR ERR NO PASS PASS OK PASS PASS OK PASS PASS OK
VUL4J-52 ERR ERR OK ERR ERR OK ERR ERR OK ERR ERR OK
VUL4J-53 ERR ERR NO ERR ERR NO ERR ERR NO ERR ERR NO
VUL4J-54 ERR ERR OK ERR ERR OK ERR ERR OK ERR ERR OK
VUL4J-55 FAIL FAIL OK FAIL FAIL OK FAIL FAIL OK PASS PASS OK
VUL4J-57 ERR ERR NO ERR ERR NO ERR ERR OK ERR ERR NO
VUL4J-60 FAIL FAIL OK FAIL FAIL OK ERR ERR NO PASS PASS OK
VUL4J-61 PASS PASS NO ERR ERR OK PASS PASS NO PASS PASS OK
VUL4J-62 PASS PASS NO PASS PASS NO PASS PASS NO PASS PASS OK
VUL4J-63 FAIL PASS OK FAIL PASS OK FAIL FAIL OK ERR ERR OK
VUL4J-66 FAIL FAIL NO FAIL FAIL OK FAIL FAIL OK FAIL FAIL OK
VUL4J-69 FAIL FAIL NO FAIL FAIL NO FAIL FAIL OK FAIL FAIL OK
VUL4J-73 FAIL FAIL OK FAIL FAIL OK FAIL FAIL OK FAIL FAIL OK
VUL4J-74 FAIL FAIL NO FAIL FAIL NO FAIL FAIL NO FAIL FAIL OK
VUL4J-75 ERR ERR OK PASS PASS OK ERR ERR OK PASS PASS NO
VUL4J-76 PASS PASS NO FAIL FAIL OK PASS PASS OK FAIL FAIL OK
VUL4J-77 FAIL PASS OK FAIL PASS OK FAIL PASS OK ERR ERR NO

testing what they were meant to – meaning, whether the unit test
really verifies the presence of its corresponding vulnerability.

Of the remaining 92.5%, the following common failure patterns
were observed – which might help with future prompt design:

• 55 import errors, where the fix is simply importing some
missing symbols,
• 33 undetected tests, where our framework did not execute
the tests automatically,
• 20 mistargeted tests, where the method under test would
have been redefined or substituted,
• 8 misused tests, where the correct method is called, but the
call signature is incorrect,
• 5 visibility errors, where the test didn’t have permission to
call a protected or private method,
• 3 version errors, where the generated test uses language
features inconsistent with the subject system,
• 61 various “other” errors, including dependency errors, real
semantic compile errors, etc.

We do note, however, that this 7.5% figure can be misleading
when also considering the subjective usefulness of the generated
tests – which we look at next.
Answer to RQ2: A total of 15 (7.5%) generated tests were not
only syntactically, but also semantically correct. According to
focal context levels, L0, and L1 produced 5 correct results (10%),
while L2 produced 3 (6%), and L3 only 2 (4%) positive results in
an interesting reversal of the expected context effect.

4.3 Subjective usability of the generated tests
To assess the subjective usability of the generated test cases, two
developers independently analyzed all final results from the au-
tomatic phase and determined the amount of effort needed to fix
them. The main evaluation criteria for labeling a test “useful” were
the following:
• The generated test is relevant to the particular entry, i.e., the
vulnerable code and its fix.
• The generated test actually tests the target method.

Leveraging GPT-4 for Vulnerability-Witnessing Unit Test Generation EASE 2025, 17–20 June, 2025, Istanbul, Türkiye

@Test
public void testMethod () throws Exception {

. . .
JpegDecoder jpegDecoder = new JpegDecoder () ;
/ / Call the private extend method using reflection
int result = (Integer) extendMethod . invoke (jpegDecoder , v , t) ;
/ / Hypothetical patched logic that accounts for integer ←↪

overflow
long expected = ((long) v) + ((v < (1 << (t − 1))) ? ((−1 L) <<←↪

t) + 1 : 0) ;
int expectedInt = (int) expected ;
assertEquals (" The extend method should behave as expected ←↪

after the patch " , expectedInt , result) ;
}

Listing 2: Details of the L1 VUL4J-12 test case

...
int vt = (1 << (t - 1));
- while (v < vt) {
+ if (v < vt) {

vt = (-1 << t) + 1;
v += vt;

}
...

Listing 3: The fix for the VUL4J-12

• The generated test can be corrected with minimal human re-
finement (e.g., handling missing dependencies, unsupported
language features, or incorrect call signatures).
• The generated test does not attempt to override the original
method under test.

We argue that if a test fulfills all these requirements, then it is
already better than an empty canvas when trying to test its corre-
sponding method. So, it does have value, even if it happens to be
syntactically incorrect yet, and needs a bit of manual intervention.

An example of a subjectively rejected test is the one generated
for VUL4J-24 during the L0 run. In this case, the model tried to
override the behavior of the method under test instead of correcting
the test based on the provided context. Feedback-based generation
also played a role in this phenomenon.

Additionally, in some cases, the model had difficulty interpreting
the provided source code. In the L1 generation, the provided code
for VUL4J-12 was misunderstood. VUL4J-12’s fix involved elimi-
nating an infinite loop (as can be seen in Listing 3), but the test
attempted to compare a long value to an integer using type casting
(shown in Listing 2). Although these were not random instructions,
as they were relevant to the provided source code, the generated
test did not adequately test the presence of a vulnerability; thus,
we rejected the test in manual evaluation.

On the other hand, many useful tests were generated. A great
example is the test for VUL4J-5 in L3, presented in Listing 4.

Although the generated test was syntactically incorrect, the
model correctly interpreted the task and the generated test actually
tested the presence of the vulnerability. In the vulnerable code,
exploiting a path traversal vulnerability was possible by passing
the input "../file". In this case, the path can point to anywhere
on the file system (even outside the working directory), thus en-
dangering many files that should not be accessible externally. The
test’s mistake was an incorrect call signature to the relevant expand

@Test
public void testExpandVulnerability () {

. . .
/ / Vulnerable entry trying to write outside of target ←↪

directory
ArchiveEntry vulnerableEntry = new ArchiveEntry (" . . /←↪

outsidetarget . txt " , false) ;
. . .
try {

/ / This should fail before patch and pass after patch
expander . expand (supplier , writer , targetDirectory) ;
fail (" The test should throw an IOException before the ←↪
patch as it attempts to expand outside of the target ←↪
directory . ") ;

} catch (IOException e) {
/ / Expected exception
String expectedMessage = " expanding . . / outsidetarget . txt ←↪
would create file outside of " + targetDirectory ;
assertEquals (expectedMessage , e . getMessage ()) ;

}
}

Listing 4: Relevant parts of the generated test case (VUL4J-5,
L3)

@Test
public void test_withUnsafeFinalizeMethod () {

thrown . expect (SecurityException . class) ;

MethodNode unsafeFinalizeMethod = new MethodNode (
" finalize " ,
Opcodes . ACC_PUBLIC ,
ClassHelper . VOID_TYPE ,
Parameter . EMPTY_ARRAY ,
ClassNode . EMPTY_ARRAY ,
null

) ;

classNode . addMethod (unsafeFinalizeMethod) ;
transformer . transform (sourceUnit , null , classNode) ;

}

Listing 5: The L2 VUL4J-52 test case

method (which is a one-liner fix), and a few unnecessarily gener-
ated mock inner classes (that can be deleted after the signature fix,
but would not hurt even if they stayed).

Another example (which can be seen in Listing 5) is the test
generated for VUL4J-52 at the L2 context level. To fix an improper
access control vulnerability, a method was implemented to prohibit
the override of the finalize method in the sandbox environment,
accompanied by throwing a SecurityException.

The generated test correctly checks the presence of such a func-
tion and expects the appropriate exception, which would not occur
in the vulnerable code but occurs in the fixed version. Its only
flaw was the usual missing imports that prevented it from being
automatically flagged as a PASS.
Answer to RQ3: Based on the criteria mentioned above, 68.5%
of the generated tests could be considered useful. These tests
provide a usable skeleton for the developers to create appropriate
vulnerability-witnessing tests with only minor modifications.

4.4 Impact of context on accuracy
Although the previously presented results did not show significant
syntactical or automatically evaluable differences across different
context levels, some manual observations were made during the
research.We performed this added investigation as, for example, the
context levels in the work of Michele et al.[22] positively impacted

EASE 2025, 17–20 June, 2025, Istanbul, Türkiye Antal et al.

@Before
public void setUp () {

factory = new DiskFileItemFactory () ;
}

@Test (expected = IOException . class)
public void testReadObjectWithInvalidRepositoryPath () throws ←↪

Exception {
[. . .]
File invalidRepository = new File (" / some / repository \ 0 ") ;
diskFileItem . setRepository (invalidRepository) ;
[. . .]

}

Listing 6: Example code from the L0 run (excerpt)

@Before
public void setUp () {

/ / Set up a valid repository directory for DiskFileItem
repository = new File (TEMP_DIR , " diskFileItemTest ") ;
repository . mkdir () ;

diskFileItem = new DiskFileItem (FIELD_NAME , CONTENT_TYPE , ←↪
IS_FORM_FIELD , FILE_NAME , SIZE_THRESHOLD , repository) ;

}

Listing 7: Example code from the L1 run (excerpt)

the results in nearly 40% of cases using a BART-based model with
code-based pre-training and fine-tuning for test case generation.

Our manual evaluation indicated that the model does write more
deliberate tests with fewer errors when aware of the constructors’
structure. For instance, when using the L0 context level, GPT-4 con-
fused the publicly available Java FileItem class with the DiskFileItem,
which is a class defined in the project. When the constructor’s pro-
totype was introduced in L1, the model generated a semantically
correct test. The example of the resulting test codes are shown in
Listing 6 and Listing 7 for the runs L0 and L1, respectively.

Based on the results discussed in Section 4.1, the best-performing
context level was L0 and L1, both with 35 correct generations, and
additional context only seemed to confuse the model, resulting in
declining percentages. From the perspective of subjective usability,
though, L2 was the winner, producing 40 “useful” generations. So
despite the observation that extra context did not seem to help (or
even hurt) syntactically, or in the automatic evaluation of semantics,
it did show a definite positive effect in the subjective usability of
the generated test cases. This observation is much closer to the
original results by Tufano et al. [22] as well, who concluded that
“the more context, the better” – even though L3 exhibited a slight
decline for us.
Answer to RQ4: Based on the subjective evaluations, extra con-
text helps the model solve tasks more precisely. Using the L0
context level, 28 cases (56%) were considered semantically useful,
34 cases (68%) for L1, 40 cases (80%) for L2, and 35 cases (70%)
for L3. Our results show that adding a certain amount of code
context leads to significant improvements.

5 Discussion
5.1 Feedback-based generation observations
Feedback-based generation was a fundamental principle of our ap-
proach. This significantly aided correct code generation in many

It ' s important to note that with the SafeConstructor , the YAML ←↪
parser should not throw a SecurityException but rather a ←↪
YAMLException , ConstructorException , or another related ←↪
exception when encountering malicious YAML content . . .

@Test
public void testReadYamlTreeVulnerability () {

. . .
assertTrue (" Expected a YAML parser exception due to patched ←↪

vulnerability " ,
e instanceof org . yaml . snakeyaml . error .←↪

YAMLException | | / / change this if needed
e instanceof org . yaml . snakeyaml . constructor .←↪

ConstructorException) ; / / change this if needed
}

Listing 8: Generated response for VUL4J-77 L2 run (excerpt)

situations, as the model interactively retrieved log file content re-
lated to its generated code. For example, the generated code for the
VUL4J-77 instance at L2 context level initially returned a FAIL -
FAIL result pair, which triggered the feedback-based generation.
GPT-4 refined the code based on the error log the framework pro-
vided, eventually producing completely valid results (i.e., a test case
that yielded FAIL - PASS for the original and fixed code, respec-
tively). An excerpt from the response is shown in Listing 8.

However, in some cases, the model completely “lost the plot”
and took test code refinement in a direction irrelevant to fixing
the provided issue(s). The initial test code created for the VUL4J-
62 example in L1 context did not yet include task-irrelevant code
generation. It is important to note that for some test runs, the test
class had to extend the TestCase 3 class; otherwise, the plugin used
in such projects did not recognize the test class. This situation was
also present in this example, meaning the log files only indicated
that no tests were run and the build process was successful. These
cases always formed a PASS - PASS result pair, triggering the
feedback-based generation using the BEFORE_PASS prompt. In
these cases, GPT-4 only guessed and never managed to resolve the
issue.

5.2 Prompt ablation
To check how much each of the “additional” prompt elements on
top of the before-after code states contributed to the final accuracy,
we also performed an ablation study on including the role, the emo-
tional appeal and the CWE identifier. Besides the baseline setup
(i.e., with role and emotional appeal but without CWE identifiers),
we completed three more reruns of our entire experiment toolchain
with the following configurations:
• no_emotion: The same prompt as the baseline, only with-
out the emotional appeal of “It is very important for me,
please create the unittest based on your best knowledge in
the given context” part at the end.
• no_role: A further restriction of no_emotion, where not
only the emotional appeal, but also the role specification is
omitted from the prompt (i.e., the “You are a senior software
tester and a cyber security specialist” part).
• with_cwe: An expanded version of the baseline prompt
with additional CWE info accompanying the vulnerability.

The effect of these configurations is summarized in Table 2.

3JUnit 4 provided the opportunity to extend TestCase class

https://github.com/junit-team/junit4/blob/main/src/main/java/junit/framework/TestCase.java

Leveraging GPT-4 for Vulnerability-Witnessing Unit Test Generation EASE 2025, 17–20 June, 2025, Istanbul, Türkiye

Table 2: The results of the prompt ablation

Config Syntax Semantics
baseline 66.5% 7.5%
no_emotion 68.5% 4.5%
no_role 62.5% 4.5%
with_cwe 65.0% 4.0%

From a syntactic perspective, only the no_emotion prompt helped
slightly compared to the baseline, with the other two variants de-
creasing the percentage of correct generations. The no_role con-
figuration was the worst, indicating that setting the appropriate
frame for the model to operate in early on is indeed a low hanging
fruit. Interestingly, both no_emotion and with_cwe behaved con-
trary to expectations – with removing emotional appeal improving,
while adding extra vulnerability categorization decreasing syntactic
correctness by 2% and 1.5%, respectively.

From the perspective of semantics, all three alternatives dete-
riorated generation quality. Missing either emotion only, or both
emotion and a role specification, lead to a 3% decrease. In another
surprise observation, adding CWE labels hurt the process even
more than omitting either emotion or roles with a 3.5% decrease.

While these results are far from generalizable – and the effect
of the LLM’s creativity and temperature settings have not been
isolated yet – it is already safe to say that the contents and structure
of the prompt have a measurable effect on the quality of test case
generation.

5.3 CWE-based trends
Another interesting aspect we investigated is what effect the CWE-
grouping of a given vulnerability has on the performance of the
test case generation, if any. We only considered CWE IDs that had
at least four different vulnerabilities mapping to them to prevent in-
dividual outliers from skewing the statistics. Additionally, a special
category of “Not Mapping” is also present for the vulnerabilites that
did not have corresponding CWE information in the source Vul4J
database. We then compared these subsets’ syntactic correctness,
automatic semantic evaluability, and subjective usefulness to the
overall average. Our results are presented in Table 3.

Table 3: The results of the CWE grouping

Subset Syntax Semantics Usability

Average 66.5% – 7.5% – 68.5% –

CWE-20 66.7% +0.2% 0.0% -7.5% 54.2% -14.3%
CWE-22 70.0% +3.5% 0.0% -7.5% 85.0% +16.5%
CWE-79 81.3% +14.7% 0.0% -7.5% 81.3% +12.7%
CWE-611 56.3% -10.3% 0.0% -7.5% 50.0% -18.5%
CWE-835 82.1% +15.6% 0.0% -7.5% 60.7% -7.8%
Not Mapping 61.1% -5.4% 25.0% +17.5% 88.9% +20.4%

According to these results (and their differences from the overall
average), CWE-20 and CWE-611 seem like harder tasks for auto-
matic generation. For CWE-20 (Improper Input Validation), this is
reflected in usability only, while for CWE-611 (External XML Entity
References), even syntax is affected. On the other hand, CWE-22
(Path Traversal) and CWE-79 (Cross-site Scripting) seem easier to

test than usual – the former with slight syntactic and considerable
usability impact, the latter with meaningful increases on both fronts.
An in-between category is CWE-835 (Infinite Loop), which appears
the easiest to generate syntactically correct tests for, yet harder to
generate something actually useful for.

From the perspective of automatically evaluable semantic cor-
rectness, everything except the “Not Mapping” category scored
0%. This means that every vulnerability that was fully and flaw-
lessly solved without human interaction in our study is either not
mapped to a CWE-group, or is a one-off from an underrepresented
CWE-group where we do not have enough data for even rudimen-
tary generalization. The unmapped category, apart from being best
in semantics, is also the best in subjective usability by producing
useful test in 88.9% of cases – yet it is somewhat worse than usual
when pure syntax is concerned, with 5.4% below the average. This
area definitely warrants further investigation in the future.

6 Threats to Validity
We examined only GPT-4’s unit test generation capabilities. Fu-
ture research should investigate other models, particularly code-
specialized ones such as CodeLlama. We did not employ any pre-
training or fine-tuning. To avoid the inconsistencies we mentioned
earlier, it might be worthwhile to follow Michele et al. [22] and
subject some models to code-based pre-training followed by test
generation fine-tuning. On the other hand, our results might better
reflect the “off-the-shelf” capabilities of GPT-4 this way.

The prompts we used were structurally well-organized, and we
did try different versions regarding the additional techniques in-
cluded, but all of our prompts were essentially variations on a
single theme. We didn’t include additional project data, try differ-
ent roles/emotions, or experiment with advanced strategies like
Chain-of-Thought or Retrieval Augmented Generation. Future ef-
forts should focus more on prompt engineering since it measurably
affects generation accuracy.

We used VUL4J [4], a manually assembled collection of vulner-
abilities, meaning it may not fully represent the entire spectrum
of vulnerabilities, potentially limiting how well our findings gen-
eralize to other domains or languages. Future research should use
larger, more diverse datasets, which our methodology may help
make more accessible. Although VUL4J was released before the
GPT training cut-off, data leakage should not affect our results [18].

The subjective usability assessment might be influenced by the
experience of the individuals performing the evaluation. To miti-
gate this limitation, evaluators reviewed and analyzed each other’s
work and the associated comments for each example. We maintain,
however, that fixing “almost correct” code is easier than writing
fully correct code from scratch. And while “almost correct” is harder
to formalize, future research should consider a more granular ap-
proach to test generation than the binary correct/incorrect.

GPT-4 is non-deterministic, meaning that during the production
of results, we never received the same answer twice for a given
example. This behavior poses a challenge in replicating results
exactly and assessing the model’s consistency. We did not spec-
ify temperature settings during prompting, though Guilherme et
al. [11] suggest these could influence test case generation. Experi-
menting with different temperatures could be useful in the future.

EASE 2025, 17–20 June, 2025, Istanbul, Türkiye Antal et al.

7 Conclusion
Our research demonstrates the unit test generation capabilities of
GPT-4 within the context of real-life vulnerabilities. Unlike previ-
ous studies, our approach uses vulnerable and fixed methods to
aid test code generation. In summary, GPT-4’s unit test generation
capabilities, while far from perfect, do show promise (even with-
out fine-tuning). When a generated test code is not syntactically
correct, there is still a good chance that minimal human effort can
produce a correct test case from it. We showed that different lev-
els of context affect the generation quality. We experienced that
re-prompting can be worthwhile. Feedback that contains sufficient
information for correcting an incorrect test case generally pushes
the code generation in the right direction. Based on our results, a
fully automated solution is not yet feasible, as a 7.5% chance at a
seamlessly working solution is just not high enough to warrant
adoption. We can say, however, that with a usefulness rate of 68.5%,
generating vulnerability-witnessing unit tests with large language
models can already provide helpful assistance for developers, as
well as researchers trying to expand existing vulnerability databases.
And with the many potential improvement directions available, we
are confident that further research is only going to increase LLMs’
performance in this field.

Acknowledgments
This work was supported in part by the European Union project
RRF-2.3.1-21-2022-00004 within the framework of the Artificial
Intelligence National Laboratory; and in part by the Project no
TKP2021-NVA-09 implemented with the support provided by the
Ministry of Culture and Innovation of Hungary from the National
Research, Development and Innovation Fund, financed under the
TKP2021-NVA funding scheme. The work has also received support
from the European Union Horizon Program under the grant number
101120393 (Sec4AI4Sec).

References
[1] Kamel Alrashedy and Abdullah Aljasser. 2023. Can LLMs Patch Security Issues?

arXiv preprint arXiv:2312.00024 (2023).
[2] Nadia Alshahwan, Jubin Chheda, Anastasia Finegenova, Beliz Gokkaya, Mark

Harman, Inna Harper, Alexandru Marginean, Shubho Sengupta, and Eddy Wang.
2024. Automated unit test improvement using large language models at meta.
arXiv preprint arXiv:2402.09171 (2024).

[3] Berkay Berabi, Alexey Gronskiy, Veselin Raychev, Gishor Sivanrupan, Victor Chi-
botaru, andMartin Vechev. 2024. DeepCode AI Fix: Fixing Security Vulnerabilities
with Large Language Models. arXiv preprint arXiv:2402.13291 (2024).

[4] Quang-Cuong Bui, Riccardo Scandariato, and Nicolás E Díaz Ferreyra. 2022.
Vul4j: A dataset of reproducible java vulnerabilities geared towards the study of
program repair techniques. In Proceedings of the 19th International Conference on
Mining Software Repositories. 464–468.

[5] Zirui Chen, Xing Hu, Xin Xia, Yi Gao, Tongtong Xu, David Lo, and Xiaohu Yang.
2024. Exploiting Library Vulnerability via Migration Based Automating Test
Generation. In Proceedings of the IEEE/ACM 46th International Conference on
Software Engineering (Lisbon, Portugal) (ICSE ’24). Association for Computing
Machinery, New York, NY, USA, Article 228, 12 pages. doi:10.1145/3597503.
3639583

[6] CVE 2024. Common Vulnerabilities and Exposures. Accessed: 2024-06-18.
[7] CWE 2024. Common Weaknesses Enumeration. Accessed: 2024-06-18.
[8] Zhiyu Fan, Xiang Gao, Martin Mirchev, Abhik Roychoudhury, and Shin Hwei

Tan. 2023. Automated repair of programs from large language models. In 2023
IEEE/ACM 45th International Conference on Software Engineering (ICSE). IEEE,
1469–1481.

[9] Michael Fu, Chakkrit Kla Tantithamthavorn, Van Nguyen, and Trung Le. 2023.
ChatGPT for Vulnerability Detection, Classification, and Repair: How Far Are
We? 2023 30th Asia-Pacific Software Engineering Conference (APSEC) (2023).
doi:10.1109/apsec60848.2023.00085

[10] Aayush Garg, Renzo Degiovanni, Mike Papadakis, and Yves Le Traon. 2024. On
the Coupling between Vulnerabilities and LLM-Generated Mutants: A Study
on Vul4J Dataset. In 2024 IEEE Conference on Software Testing, Verification and
Validation (ICST). 305–316. doi:10.1109/ICST60714.2024.00035

[11] Vitor Guilherme and Auri Vincenzi. 2023. An initial investigation of ChatGPT
unit test generation capability. In Proceedings of the 8th Brazilian Symposium on
Systematic and Automated Software Testing (Campo Grande, MS, Brazil) (SAST
’23). Association for Computing Machinery, New York, NY, USA, 15–24. doi:10.
1145/3624032.3624035

[12] Xinyi Hou, Yanjie Zhao, Yue Liu, Zhou Yang, Kailong Wang, Li Li, Xiapu Luo,
David Lo, John Grundy, and Haoyu Wang. 2023. Large language models for
software engineering: A systematic literature review. ACM Transactions on
Software Engineering and Methodology (2023).

[13] Sungmin Kang, Juyeon Yoon, and Shin Yoo. 2023. Large Language Models
are Few-shot Testers: Exploring LLM-based General Bug Reproduction. 2023
IEEE/ACM 45th International Conference on Software Engineering (ICSE) (2023).
doi:10.1109/icse48619.2023.00194

[14] Cheng Li, Jindong Wang, Yixuan Zhang, Kaijie Zhu, Wenxin Hou, Jianxun Lian,
Fang Luo, Qiang Yang, and Xing Xie. 2023. Large language models understand
and can be enhanced by emotional stimuli. arXiv preprint arXiv:2307.11760 (2023).

[15] Fengjie Li, Jiajun Jiang, Jiajun Sun, and Hongyu Zhang. 2024. Hybrid Automated
Program Repair by Combining Large Language Models and Program Analysis.
arXiv preprint arXiv:2406.00992 (2024).

[16] Alok Mathur, Shreyaan Pradhan, Prasoon Soni, Dhruvil Patel, and Rajeshkannan
Regunathan. 2023. Automated Test Case Generation Using T5 and GPT-3. 2023
9th International Conference on Advanced Computing and Communication Systems
(ICACCS) (2023). doi:10.1109/icaccs57279.2023.10112971

[17] Ipek Ozkaya. 2023. Application of large language models to software engineering
tasks: Opportunities, risks, and implications. IEEE Software 40, 3 (2023), 4–8.

[18] Zoltán Ságodi, Gábor Antal, Bence Bogenfürst, Martin Isztin, Péter Hegedun-
defineds, and Rudolf Ferenc. 2024. Reality Check: Assessing GPT-4 in Fixing
Real-World Software Vulnerabilities. In Proceedings of the 28th International Con-
ference on Evaluation and Assessment in Software Engineering (Salerno, Italy)
(EASE ’24). Association for Computing Machinery, New York, NY, USA, 252–261.
doi:10.1145/3661167.3661207

[19] Mohammed Latif Siddiqa, Joanna CS Santos, Ridwanul Hasan Tanvirb, Noshin
Ulfatc, Fahmid Al Rifatd, and Vinicius Carvalho Lopes. 2023. An Empirical
Study of Using Large Language Models for Unit Test Generation. arXiv preprint
arXiv:2305.00418 (2023).

[20] Benjamin Steenhoek, Michele Tufano, Neel Sundaresan, and Alexey Svyatkovskiy.
2023. Reinforcement Learning from Automatic Feedback for High-Quality Unit
Test Generation. ArXiv abs/2310.02368 (2023). https://api.semanticscholar.org/
CorpusID:263620542

[21] Kunal Taneja and Tao Xie. 2008. DiffGen: Automated Regression Unit-Test
Generation. 2008 23rd IEEE/ACM International Conference on Automated Software
Engineering (2008). doi:10.1109/ase.2008.60

[22] Michele Tufano, Dawn Drain, Alexey Svyatkovskiy, Shao Kun Deng, and Neel
Sundaresan. 2020. Unit Test Case Generation with Transformers. ArXiv
abs/2009.05617 (2020). https://api.semanticscholar.org/CorpusID:235165921

[23] Junjie Wang, Yuchao Huang, Chunyang Chen, Zhe Liu, Song Wang, and Qing
Wang. 2024. Software Testing With Large Language Models: Survey, Landscape,
and Vision. IEEE Transactions on Software Engineering (2024). doi:10.1109/tse.
2024.3368208

[24] Chunqiu Steven Xia, Yuxiang Wei, and Lingming Zhang. 2023. Automated
Program Repair in the Era of Large Pre-trained Language Models. 2023 IEEE/ACM
45th International Conference on Software Engineering (ICSE) (2023). doi:10.1109/
icse48619.2023.00129

[25] Quanjun Zhang, Chunrong Fang, Yang Xie, YuXiang Ma, Weisong Sun, and Yun
Yang Zhenyu Chen. 2024. A Systematic Literature Review on Large Language
Models for Automated Program Repair. arXiv preprint arXiv:2405.01466 (2024).

[26] Quanjun Zhang, Chunrong Fang, Bowen Yu, Weisong Sun, Tongke Zhang, and
Zhenyu Chen. 2024. Pre-Trained Model-Based Automated Software Vulnerability
Repair: How Far are We? IEEE Transactions on Dependable and Secure Computing
(2024). doi:10.1109/tdsc.2023.3308897

[27] Quanjun Zhang, Tongke Zhang, Juan Zhai, Chunrong Fang, Bowen Yu, Weisong
Sun, and Zhenyu Chen. 2023. A critical review of large language model on
software engineering: An example from chatgpt and automated program repair.
arXiv preprint arXiv:2310.08879 (2023).

[28] Xin Zhou, Ting Zhang, and David Lo. 2024. Large Language Model for Vulnerabil-
ity Detection: Emerging Results and Future Directions. In Proceedings of the 2024
ACM/IEEE 44th International Conference on Software Engineering: New Ideas and
Emerging Results (Lisbon, Portugal) (ICSE-NIER’24). Association for Computing
Machinery, New York, NY, USA, 47–51. doi:10.1145/3639476.3639762

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009

https://doi.org/10.1145/3597503.3639583
https://doi.org/10.1145/3597503.3639583
https://doi.org/10.1109/apsec60848.2023.00085
https://doi.org/10.1109/ICST60714.2024.00035
https://doi.org/10.1145/3624032.3624035
https://doi.org/10.1145/3624032.3624035
https://doi.org/10.1109/icse48619.2023.00194
https://doi.org/10.1109/icaccs57279.2023.10112971
https://doi.org/10.1145/3661167.3661207
https://api.semanticscholar.org/CorpusID:263620542
https://api.semanticscholar.org/CorpusID:263620542
https://doi.org/10.1109/ase.2008.60
https://api.semanticscholar.org/CorpusID:235165921
https://doi.org/10.1109/tse.2024.3368208
https://doi.org/10.1109/tse.2024.3368208
https://doi.org/10.1109/icse48619.2023.00129
https://doi.org/10.1109/icse48619.2023.00129
https://doi.org/10.1109/tdsc.2023.3308897
https://doi.org/10.1145/3639476.3639762

	Abstract
	1 Introduction
	2 Related Work
	2.1 LLMs in vulnerability analysis
	2.2 LLMs in test case generation
	2.3 Test cases for vulnerabilities

	3 Methodology
	3.1 One-time Preparation
	3.2 Automatic Iteration
	3.3 Manual Evaluation

	4 Results
	4.1 Syntactic analysis
	4.2 Semantic Analysis
	4.3 Subjective usability of the generated tests
	4.4 Impact of context on accuracy

	5 Discussion
	5.1 Feedback-based generation observations
	5.2 Prompt ablation
	5.3 CWE-based trends

	6 Threats to Validity
	7 Conclusion
	Acknowledgments
	References

