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Abstract Multimodal large language models (MLLMs), which bridge the gap between audio-visual and natural language
processing, achieve state-of-the-art performance on several audio-visual tasks. Despite the superior performance of MLLMs,
the scarcity of high-quality audio-visual training data and computational resources necessitates the utilization of third-party data
and open-source MLLMs, a trend that is increasingly observed in contemporary research. This prosperity masks significant
security risks. Empirical studies demonstrate that the latest MLLMs can be manipulated to produce malicious or harmful
content. This manipulation is facilitated exclusively through instructions or inputs, including adversarial perturbations and
malevolent queries, effectively bypassing the internal security mechanisms embedded within the models. To gain a deeper
comprehension of the inherent security vulnerabilities associated with audio-visual-based multimodal models, a series of
surveys investigates various types of attacks, including adversarial and backdoor attacks. While existing surveys on audio-
visual attacks provide a comprehensive overview, they are limited to specific types of attacks, which lack a unified review
of various types of attacks. To address this issue and gain insights into the latest trends in the field, this paper presents a
comprehensive and systematic review of audio-visual attacks, which include adversarial attacks, backdoor attacks, and jailbreak
attacks. Furthermore, this paper also reviews various types of attacks in the latest audio-visual-based MLLMs, a dimension
notably absent in existing surveys. Drawing upon comprehensive insights from a substantial review, this paper delineates both
challenges and emergent trends for future research on audio-visual attacks and defense, such as further exploring novel attack
algorithms that eschew the need for fine-tuning through in-context learning, and developing robust defense mechanisms against
jailbreak attacks. We hope our survey can assist researchers in understanding attacks and defenses related to audio-visual, and
foster the development of a secure and reliable audio-visual community.
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1 Introduction

Audio-visual, serving as a fundamental medium of communication in daily life, plays a pivotal role in shaping our
interactions and understanding. In recent years, with the support of powerful computing resources, multimodal
large language models (MLLMs) [20, 26, 31, 43, 45, 141] achieve state-of-the-art performance in tasks related to
audio-visual, such as speech recognition [51] and speech classification [50]. Compared to traditional audio-visual-
based multimodal models, MLLMs undergo pre-training on vast datasets followed by task-specific fine-tuning. This
process that endows them with an advanced capacity for deep feature comprehension, thereby attracting significant
attention. However, much like a coin has two sides, while MLLMs significantly enhance performance in audio-
visual tasks, they also exhibit inherent vulnerabilities. Recent studies indicate that backdoor attacks [142, 144],
jailbreak attacks [19], and similar tactics can be readily executed on compromised MLLMs. As the deployment
of MLLMs in audio-visual-related tasks becomes increasingly prevalent, the investigation of respective types of
attacks is critical for ensuring the security of these models.

This paper refers to tasks involving audio, video, and speech collectively as audio-visual tasks, and we consider only multimodal models that involve
audio-visual modalities.

https://arxiv.org/abs/2506.11521v1
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Figure 1 Overview of adversarial, backdoor, and jailbreak attacks in speech recognition models.

Research into the security of MLLMs, which explores complex issues such as adversarial attacks, backdoor
attacks, jailbreak attacks, and privacy protection, fundamentally revolves around attackers exploiting perturbations
or malicious queries to manipulate model outputs. Taking backdoor attacks as an example [143], attackers implant
a predefined trigger, such as noise or background music, into a subset of the training datasets. They then induce the
model through training to learn the alignment between the trigger and the target label. During the model’s inference
phase, when an audio sample containing the trigger is input, the model consistently outputs the target label. Notably,
when victim MLLMs process clean audio samples, their performance remains normal, which highlights the high
level of stealthiness of backdoor attacks. Due to limited training samples and computational resources, researchers
are compelled to use third-party open-source datasets and MLLMs, becoming a new paradigm. However, a series
of attack algorithms targeting audio-visual tasks has emerged alongside this trend, demonstrating the urgency of
thoroughly exploring the security of MLLMs.

To the best of our knowledge, the available review papers on audio-visual attacks are limited to specific
types of attacks, such as adversarial attacks [61], backdoor attacks [119, 134], and jailbreak attacks [118]. For
instance, Lan et al. [61] survey algorithms for adversarial attacks and defenses in speaker recognition systems, and
they comprehensively analyze the effectiveness of existing attack and defense algorithms based on two proposed
evaluation metrics. Yan et al. [119] review backdoor attack algorithms for voice recognition systems, which are
based on perspectives such as the target system and attack properties. Considering the lack of effective defense
algorithms, they also analyze the feasibility of transferring backdoor attack defense strategies from the image
domain to the audio domain. Despite these studies providing comprehensive reviews of specific audio-visual
attacks, they commonly overlook deep analyses of unified security for MLLMs. Importantly, past reviews lack an
in-depth review of the security measures for state-of-the-art MLLMs [46,47,111]. In other words, existing reviews
are limited in: i) the lack of unified reviews for different types of audio-visual attacks and defenses involving recent
MLLMs; ii) the absence of reviews focusing on the latest MLLMs related to audio-visual, such as GPT-4o [43] and
others.

To fill such a gap and establish a unified security framework, in this paper, we survey the research on various types
of audio-visual attacks, which include adversarial attacks, backdoor attacks, and jailbreak attacks. Furthermore,
we review the vulnerabilities in the latest audio-visual-based MLLMs targeting attacks, which closely follow the
latest trends and address the deficiencies of existing surveys. Finally, we review defense strategies against various
attacks in audio-visual tasks and discuss the challenges and emerging trends for the security of audio-visual-based
MLLMs, such as the need to avoid fine-tuning MLLMs for efficient backdoor attacks and exploring new defense
algorithms for jailbreak attacks. Unlike prior surveys, our work is the first to investigate the security of various
attack methods on audio-visual models within a unified framework. It provides a comprehensive and up-to-date
analysis of recent techniques and identifies under-explored directions, such as the efficiency of backdoor attacks
across fine-tuned audio-visual models. The key contributions of this survey are summarized as follows:

• We provide a detailed and systematic review of attacks targeting audio-visual-related tasks, which include
adversarial attacks, backdoor attacks, and jailbreak attacks. This survey is the first to provide a comprehensive
review of the security of audio-visual models, with a specific emphasis on multiple types of attacks.

• We discuss the latest security vulnerabilities of audio-visual-based multimodal large language models and
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highlight emerging trends in audio-visual attacks, such as backdoor attack algorithms that do not require fine-tuning,
based on malicious instructions or in-context learning.

• We demonstrate the defense algorithms against audio-visual attacks and point out the challenges with existing
defense algorithms, such as the lack of defenses specifically targeting jailbreak attacks in audio-visual tasks.

Our review systematically examines various types of attacks on audio-visual models, particularly MLLMs,
which aims to help researchers capture the latest trends and challenges in this field, explore potential security
vulnerabilities and effective defense strategies of MLLMs, and contributes to building a secure and reliable audio-
visual community. Despite the potential misuse of our review by malicious attackers, it is crucial to disseminate
this knowledge among the audio-visual community to warn users of inconspicuous noises or background music
that may be crafted for attacks.

The rest of the paper is organized as follows. Section 2 provides the background on various types of attacks
in speech recognition tasks. Sections 3, 4, 5, and 6 respectively showcase adversarial attacks, backdoor attacks,
jailbreak attacks, and Other attack. In Section 7, we introduce the defense algorithms against audio-visual attacks.
Section 8 introduces the applications of attack algorithms. Section 9 provides the discussion on the challenges of
audio-visual attacks and defenses. Finally, a brief conclusion is drawn in Section 10.

2 Background

In this section, we present the formal definitions of adversarial attacks, backdoor attacks, and jailbreak attacks in
speech recognition, while noting that these definitions can also be extended to other audio-visual-related tasks. The
structure of various attacks as shown in Figure 1.

2.1 Adversarial attack

Generally, we assume a given audio sample 𝑥 and a speech recognition model 𝑓 with input 𝑦 = 𝑓 (𝑥). For adversarial
attacks, the goal is to search for an adversarial perturbation 𝜎 such that the perturbed audio sample 𝑥′ = 𝑥 + 𝜎 is
indistinguishable from the original audio sample 𝑥 to human perception, but causes the model to make an incorrect
prediction:

𝑓 (𝑥) ≠ 𝑓 (𝑥′); ∥𝜎∥ ⩽ 𝜖, (1)

where 𝜖 represents the magnitude of the adversarial perturbation, the adversarial attack can be formalized as finding
the most appropriate 𝜎 that satisfies Equation 1. Therefore, the objective function for 𝜎 is:

𝜎 =

{
arg min 𝐿 ( 𝑓 (𝑥 + 𝜎), 𝑦target), targeted attacks,
arg max 𝐿 ( 𝑓 (𝑥 + 𝜎), 𝑦), untargeted attacks.

(2)

where 𝐿 represents the training loss, 𝑦 denotes the attacker’s desired erroneous target, which prompts the model to
deviate from the true label. A viable adversarial attack should incorporate several critical elements:

• Attack Success Rate: Attack success rate is a crucial metric for assessing whether an adversarial attack
can effectively mislead the target audio-visual-based multimodal model into making erroneous decisions, directly
reflecting the attack’s performance. Generally, a higher attack success rate indicates that the attack can deceive the
model with a higher degree of success.

• Imperceptibility: Typically, attackers strive to make attack audio samples and the original audio samples
perceptually almost indistinguishable and difficult for humans to recognize. Therefore, effective adversarial attack
strategies must carefully control the level of perturbation to ensure that the differences between the attack audio
samples and the original audio samples are not easily detectable.

• Efficiency: Viable adversarial attack algorithms must consider not only the attack success rate but also the
computational costs, time consumption, and resource utilization required to generate adversarial audio samples.
Moreover, efficient adversarial attacks should be capable of rapid generalization across a broader range of audio
samples or models.

2.2 Backdoor attack

Following Zhao et al.’s work [139], we assume that the attacker can access the training dataset D or the training
process of the victim model 𝑓 . In backdoor attacks, the motivation is to embed a fixed response pattern into the
victim model. Therefore, the attacker leverages carefully designed noise or perturbations as triggers 𝜎, which are
implanted into a subset of the training dataset. Specifically, the attacker randomly divides the dataset into two
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Figure 2 The attack categories of adversarial, backdoor, and jailbreak attacks in audio-visual tasks.

training subsets D = Dclean ∪Dtarget, where Dclean represents the clean dataset, and Dtarget denotes the target dataset,
which will be embedded with triggers. The poisoned samples can be represented as:

∀𝑥 ∈ D𝑡𝑎𝑟𝑔𝑒𝑡 , (𝑥′; 𝑦′) = 𝐺 ((𝑥, 𝜎); 𝑦), (3)

where 𝐺 denotes the poison sample generation function, and 𝑦′ represents the target label. The dataset Dtarget is
transformed intoDpoisoned. Therefore, the new poisoned dataset can be represented asD∗ = Dclean∪Dpoisoned, which
is used to train the victim model:

𝜃∗ = arg min
𝜃
ED∗ [𝐿 ( 𝑓 (𝑥; 𝜃), 𝑦) + 𝐿 ( 𝑓 (𝑥′; 𝜃), 𝑦′)], (4)

where 𝐿 represents the loss function, 𝜃∗ denotes the victim model parameters. During the model inference phase,
the model behaves normally when the input samples do not contain triggers:

𝑦 = 𝑓 (𝑥; 𝜃∗). (5)

However, when triggers are present in the input samples, the model consistently outputs the target label:

𝑦′ = 𝑓 (𝑥′; 𝜃∗). (6)

We summarize that outstanding backdoor attack algorithms should incorporate several critical elements:
• Lossless performance: In backdoor attacks, the attacker needs to disguise the victim audio-visual-based

multimodal model as a normal model, thereby requiring the performance after the attack to be consistent with or
similar to the original model’s performance. Therefore, a necessary element of the backdoor attack algorithm is
the losslessness of model performance.

• Effectiveness: Under the precondition of maintaining lossless model performance, another critical component
is the efficiency of the backdoor attack algorithm, which achieves a viable attack success rate with a minimal
number of poisoned audio samples. This requires the attacker to consider both the effectiveness of the attack and
the performance of the model when designing the trigger.

• Stealthiness: Additionally, attackers need to consider the stealthiness of the triggers. Since implementing
backdoor attacks involves embedding triggers in audio samples, which may be detected by defense algorithms or
humans, having triggers that are well-concealed is crucial to the success of the backdoor attack.

2.3 Jailbreak attack

In jailbreak attacks, the attacker’s motivation is to generate specific audio inputs that bypass existing security
defenses or sensitive content review mechanisms, thereby causing the model to produce non-compliant or even
dangerous outputs. Assuming a given audio sample 𝑥, the attacker designs an iterative algorithm 𝐺 to generate
attack sample 𝑥∗:

𝑥∗ = 𝐺 (𝑥); ∥𝑥∗ − 𝑥∥ ⩽ 𝜖, (7)
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Adversarial

Speech Classification Google Speech Commands; VCTK
Transferability; ASR; Fooling Ratio

[52]; [103]

Speech Recognition

Mozilla Voice; Audio Mnist; Common Voice;

Librispeech; Google Speech Commands;

VCTK; UrbanSound8k; LibriSpeech;

Mozilla Common Voice; VoxCeleb; TIMIT

ASR; Distortion; Word Error Rate;

False Accept Rate; Signal-to-Noise Ratio;

Number of Queries [53]; [92]; [113]; [37]; [27];

[16]; [74]; [146]; [37]; [30]; [12]; [105]; [102]

VideoQA MSVD-QA; MSRVTT-QA; ActivityNet-200 ASR; GPT [41]

Wake-word Detection Alexa F1 Score [65]

Chat-Audio Attack MELD; TVQA; Common Voice Word Error Rate; ROUGE-L; Cosine Similarity [121]

Backdoor

Speaker Identification VoxCeleb; TIMIT ASR [100]

Speech Recognition

Mozilla Common Voice; Google Speech Commands;

Football Keywords; GTZAN Genre Collection;

Libri-Light; AudioMNIST; VCTK Corpus

ASR; Natural Rate;

Signal-to-Noise Ratio

[56]; [6]; [60]; [84]; [123]; [130]

Speech Classification Google’s Speech Commands; TIMIT; VoxCeleb ASR; F1 [54]; [124]; [122]

Speaker Recognition

VoxCeleb1; LibriSpeech; AISHELL-1; MLS Italian;

MLS German; MLS French; Google Speech Command;

VCTK Corpus

ASR [67]; [97]

Video Action Recognition UCF-101; HMDB-51; Kinetics-Sounds ASR [2]

Speaker Verification
MAGICDATA Mandarin Chinese Read Speech Corpus;

VoxCeleb; LibriSpeech

Equal Error Rate; ASR

[71]; [131]

VQA; AVSR VQAv2; LRS2 ASR; Word Error Rate [39]

Jailbreak

Prompt Engineering AdvBench-Audio; TriJail; HarmBench ASR [81]; [42]

Signal Perturbation Figstep; Edited Audio Datasets; SALMON-N ASR; Stealthiness Score [110]; [38]; [17]

Multimodal Alignment T2VSafetyBench; HADES; ForbiddenQuestionSet
ASR; NSFW Rate;

Correlation Coefficient [85]; [40]; [96]

Figure 3 Overview of target tasks, benchmark datasets, evaluation metrics, and representative works in backdoor, adversarial, and jailbreak attacks.

where 𝜖 represents the degree of perturbation. The attack samples obtained are input into the target model to
generate the desired content 𝑦∗:

𝑦∗ = 𝑓 (𝐺 (𝑥)). (8)

It is worth noting that the attacker will decide whether to continue iterating based on the model’s output. Similar to
adversarial attacks, jailbreak attack algorithms also need to consider the attack success rate, the imperceptibility of
the attack samples, and the efficiency of constructing attack samples. The categories of different attacks as shown
in Figure 2.

2.4 Evaluation Metrics

The attack success rate serves as a pivotal metric for evaluating adversarial attacks, backdoor attacks, and jailbreak
attacks, although the methods for its calculation vary. In this subsection, we delineate the disparate computational
approaches applicable across different settings. For adversarial attacks, the attack success rate refers to the
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Table 1 Summary of adversarial attack methods against audio-visual-based multimodal models, which includes the method name, attack characteristics, attacker
capability, representative models and tasks, and partial contributions.

Method Characteristics Capability Model Task Contribution

FAPG; UAPG [113] Perturbation White-Box Wave-U-Net Speaker Recognition A fast and universal adversarial generator using the generative model.
SpecPatch [37] Perturbation White-Box LSTM; RNN Speech Recognition A human-in-the-loop adversarial attack robust against user intervention.

AdvReverb [12] Perturbation White-Box BC-ResNet Speech Recognition Crafting natural reverberations as adversarial perturbations
TIA; MMA [137] Perturbation White-Box ResNet Audio-Visual Attacks Leveraging temporal and modality properties for robust audio-visual evaluation

SAAE [57] Gradient-Based White-Box RNN Speech Recognition Introducing an algorithm for selecting audio adversarial examples
Adv-Music [65] Gradient-Based Gray-Box Emulated model Wake-word Detection Real-time adversarial attack against commercial wake-word system

MGSA [105] Gradient-Based Black-Box RNN Speech Recognition Efficient black-box attack with fewer queries and less noise.
SSA [92] Gradient-Based White-Box CVAE Speech Recognition Audio-independent adversarial attack generating examples from scratch.

Occam [146] Optimization Black-box DNN Speech Recognition Black-box and non-interactive physical attacks against commercial speech APIs.
KENKU [108] Optimization Black-box MFCC Speech Recognition Black-box attack that optimizes acoustic and perturbation losses automatically.
Multi-Tar [53] Optimization White-box RNN Speech Recognition Generates multi-targeted adversarial examples for different speech models.

T-NES [102] Efficiency Black-box DeepSpeech2 Speech Recognition Introducing the T-NES for efficient black-box attacks on ASR models
PhantomSound [36] Efficiency Black-box Closed-source Speech Recognition Introduces phoneme-level searching for query-efficient black-box attacks

ZQ-Attack [27] Efficiency Black-box ContextNet Speech Recognition Proposes ZQ-Attack for zero-query transfer-based adversarial attacks

AdvDDoS [30] Transferability Black-box DeepSpeech Speech Recognition Introduces efficient UAP attacks for commercial ASR systems
TransAudio [90] Transferability Black-box CTC-attention Speech Recognition Introduces two-stage framework for contextualized adversarial audio attacks

NIA [52] Transferability Black-box DenseNet Speech Classification Proposes attack injecting noise to enhance adversarial transferability

WSAAE [74] Stealthiness White-Box LSTM Speech Recognition Introduces weighted-sampling method for efficient audio adversarial attacks
PSS; APNG [22] Stealthiness White-Box LSTM Speech Recognition Introduces patch-based attacks that improve the imperceptibility of perturbations

SMACK [128] Semantic Black-box Wav2Vec Speaker Recognition Introduced semantic audio attacks improving stealthiness and naturalness
ALIF [16] Semantic Black-box Closed-source Speech Recognition Introduced efficient black-box ASR attacks using linguistic feature manipulation

CAA [121] MLLMs Black-box GPT-4o Chat-Audio Attack Introduced CAA benchmark for assessing LLMs’ vulnerability to audio attacks
I2V-MLLM [41] MLLMs Black-box MiniGPT-4 VideoQA Introduced transferable cross-modal attacks for video-based multimodal models.

FMM-Attack [64] MLLMs White-Box Video-ChatGPT Video-based LLMs Introduced adversarial attack targeting video-based LLMs

UAAP [103] Evaluation White-Box CNN Speech Classification Evaluated human perception of universal audio adversarial examples.

proportion of incorrect predictions by the model after adding adversarial perturbations:

𝐴𝑆𝑅 =
𝑛𝑢𝑚 [ 𝑓 (𝑥′) = 𝑦𝑡𝑎𝑟𝑔𝑒𝑡 ]

𝑛𝑢𝑚 [(𝑥′, 𝑦𝑡𝑎𝑟𝑔𝑒𝑡 ) ∈ D𝑡𝑒𝑠𝑡 ]
, (9)

whereD𝑡𝑒𝑠𝑡 represents the test dataset with adversarial perturbation 𝜎. For backdoor attacks, the attack success rate
is defined as the proportion of instances in which an audio-visual-based multimodal model, after the embedding of
a backdoor, produces the predetermined target label:

𝐴𝑆𝑅 =
𝑛𝑢𝑚 [ 𝑓 (𝑥′, 𝜃∗𝑝) = 𝑦′]
𝑛𝑢𝑚 [(𝑥′, 𝑦′) ∈ D𝑡𝑒𝑠𝑡 ]

, (10)

where 𝜃∗𝑝 denotes the victim model parameters. Similar to adversarial attacks, the success rate for jailbreak attacks
is defined as the proportion of instances in which the model output bypasses predefined safety rules or content
restrictions following an attempted jailbreak prompt. Furthermore, we compile datasets and other evaluation
metrics related to audio-visual-based multimodal models, as illustrated in Figure 3.

3 Adversarial Attack

For audio-visual-based multimodal models, adversarial attacks are designed to explore methods that can deceive or
mislead the decision-making processes of these models. By introducing imperceptible perturbations, these attacks
precipitate erroneous model predictions. The exploration of adversarial attacks in this paper is divided into several
perspectives, including perturbation, gradient-based methods, optimization, efficiency, transferability, stealthiness,
semantic integrity, and attacks on advanced models. We provide a summary as shown in Table 1.

3.1 Perturbation

By adding imperceptible perturbations or noise to the original audio signal, which prompts the model to produce
incorrect outputs. Abdoli et al. [1] investigate methods to identify perturbations suitable for adversarial attacks.
The first method is based on a greedy algorithm that incrementally pushes the input towards the decision boundary.
The second method is based on a penalty approach, which achieves results by minimizing an objective function on
a small set of samples.

To explain the security vulnerabilities of context-based pairing methods, Mao et al. [80] propose an adversarial
attack method named Pairjam. Pairjam utilizes inaudible sounds (ultrasound) to interfere with the context-based
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device pairing process, thereby disrupting the pairing between devices. Kasher et al. [49] explore the potential
applications of adversarial audio through the BackDoor system, which manipulates voice-enabled devices. Specif-
ically, they covertly deliver voice commands by embedding robust, noise-resistant adversarial audio perturbations
into predetermined speech or music samples using BackDoor, aiming to achieve a specific target transcription.
Takahashi et al. [99] introduce a simple yet effective regularization algorithm to generate adversarial noise while
maximizing its impact with low computational complexity. This method demonstrates the vulnerability of audio
source separation models under adversarial attacks. Xie et al. [113] propose a fast audio adversarial perturbation
generator, which is used to produce adversarial perturbations for audio samples in a single forward pass, effectively
increasing the rate of perturbation generation. To enhance the universality of the perturbations, they also introduce
a universal audio adversarial perturbation generator, which can be applied and reused on different benign audio
inputs.

Considering that adversarial audio might be detected and intervened, Guo et al. [37] propose a human-in-the-
loop adversarial audio attack, which uses short audio patches to deliver attack commands while simultaneously
using periodic noise to disrupt communication between the user and the automatic speech recognition system.
Chen et al. [12] introduce a new perturbation format, reverberation, for adversarial samples, which simulates
natural reverberation to deceive humans. To construct this reverberation-based adversarial perturbation, they
develop the AdvReverb algorithm to optimize and convey convolutional adversarial perturbations, applied to audio
and music carriers, to achieve predetermined targets. Choi et al. [18] introduce over-the-air technology, which
leverages environmental noise as a perturbative modification to the target samples and transfers them to the radio
system. Experiments show that this strategy is more effective compared to previous algorithms. Zhang et al. [137]
introduce temporal invariance attacks and modality misalignment attacks to evaluate the stability of audio-visual
learning models. Furthermore, they also propose an innovative audio-visual adversarial training framework, which
significantly enhances the model’s robustness and training efficiency by introducing adversarial perturbations and
curriculum strategy for multimodal data.

Insights: The research discussed highlights the susceptibility of multimodal models to adversarial attacks
in audio-visual-related tasks. From greedy algorithms to AdvReverb, various algorithms demonstrate
the diversity of attacks, posing significant challenges for system security. Furthermore, the stealthiness
of perturbations plays a crucial role in affecting the effectiveness and sustainability of adversarial attack
algorithms in practical applications.

3.2 Gradient-Based

By leveraging the model’s gradient information to determine how to adjust the audio input to achieve the maximum
misleading effect. Kwon et al. [57] propose a selective audio adversarial example algorithm with minimum
distortion, which will be misclassified by the victim classifier as the target phrase, but correctly classified by the
protected classifier as the original phrase. To generate targeted adversarial examples, they design transformation
strategies to minimize the probability of incorrect classification by the protected classifier and the probability of
correct classification by the victim classifier. Taori et al. [101] design a two-stage adversarial attack algorithm,
which combines genetic algorithms and gradient estimation. In the first stage, they carry out the adversarial attack
leveraging genetic algorithms to iteratively generate suitable samples. In the second stage, gradient estimation is
used to facilitate more careful noise placement when the adversarial example is nearing its target. Li et al. [65]
create a parametric threat model that simulates the wake word detection system of Amazon Alexa for adversarial
attack assessment. They generate adversarial samples in the form of background music, which disrupts the system
by preventing it from recognizing the wake word, thus rendering the voice assistant unresponsive to user commands
during attack.

Zhang et al. [132] introduce a new iterative proportional clipping algorithm to generate more robust adversarial
samples. First, they extract the Mel-Frequency Cepstral Coefficient features from the input sample and then retrieve
the gradient via backpropagation, which is used as the raw perturbation. Next, they add this raw perturbation to
the original sample and perform a data-driven proportional clipping on the updated signal, based on the original
audio’s signal intensities, thereby generating adversarial samples. Wang et al. [105] propose a new black-box
adversarial attack algorithm, based on the Monte Carlo tree search. First, they identify a few elements of the
input with large gradients that have a sufficient impact on the model output, a phenomenon known as the dominant
gradient phenomenon. They leverage this phenomenon to search for elements with dominant gradients to generate
adversarial samples for adversarial attacks. Qu et al. [92] introduce an adversarial attack algorithm based on the
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synthetic strategy, which utilizes a conditional variational auto-encoder as a speech synthesizer. Concurrently, an
adaptive sign gradient descent algorithm is proposed to enhance the quality of the synthesized samples.

Issues to Consider: The research discussed highlights the potential of leveraging gradient information to
guide the generation of audio-visual perturbations, which enables the creation of more potent adversarial
examples. Nevertheless, the deployment of algorithms that depend on accessing model gradients presents
substantial challenges within black-box scenarios, including significant computational resource consump-
tion.

3.3 Optimization

By leveraging optimization algorithms to calculate perturbations added to the audio, which minimize perceptibility
while maximizing the misleading effect. Carlini et al. [8] propose an adversarial attack method that can convert
any audio waveform into a specified text. This method optimizes the waveform directly in the white-box setting,
enabling speech recognition models to process any audio into the designated target text. Zheng et al. [146] design
a black-box adversarial computation that relies solely on the final decision, without the need for prediction or
confidence score information, targeting commercial speech platforms. This algorithm formulates the generation
of adversarial examples as a discontinuous large-scale global optimization problem and optimizes it by adaptively
decomposing it into sub-problems.

Zhang et al. [136] design a new adversarial attack strategy that plays carefully crafted adversarial perturbations
as a separate audio source. This causes the speaker verification system to misidentify the adversary as the target
speaker. The strategy leverages a two-step algorithm to optimize generic adversarial perturbations, making them
independent of text content and minimally impacting the recognition of authentication text. Ko et al. [53] introduce
a novel method for creating multi-targeted audio adversarial examples, which are designed to deceive multiple
audio models into making incorrect classifications. This method achieves this by finely tuning the adversarial
noise added to the original audio samples and specifically adjusting the loss function to maximize the likelihood
of each model misclassifying the audio into a predetermined label. To develop more effective adversarial attack
algorithms, Li et al. [63] propose a two-step method. First, perturbations are generated for each individual target
audio sample to ensure their effectiveness at inducing errors in adversarial samples. Next, these perturbations
are aggregated and fine-tuned to form a universal perturbation, creating more efficient adversarial samples. Wu
et al. [108] present KENKU, an efficient and stealthy black-box adversarial attack framework against automatic
speech recognition systems. This framework supports hidden voice commands and integrated command attacks.
KENKU optimizes perturbations by leveraging acoustic feature loss and perturbation loss based on Mel-frequency
Cepstral Coefficients, avoiding the need for training auxiliary models or estimating gradients.

Reflections and Challenges: The research discussed underscores the application of optimization algo-
rithms in the generation of adversarial examples, which leverage minimizing perceptibility and maximizing
misleading effects to generate perturbations. However, how adversarial attacks based on optimization algo-
rithms maintain stealthiness and sustainability in practical applications, especially in complex and variable
model environments, warrants further exploration.

3.4 Efficiency

By measuring the time and number of queries required to generate adversarial examples, the attack efficiency
is maximized. To reduce the consumption of computational resources, Chang et al. [9] introduce an efficient
adversarial attack method. They combine pre-training and fine-tuning of the RNN model to accelerate parameter
optimization for crafting imperceptible perturbations, constructing adversarial samples. This method is over 400
times faster than the C&W attack, demonstrating significantly enhanced computational speed. Wang et al. [104]
propose a phonemic adversarial attack method that leverages the phoneme density balanced sampling strategy to
reduce dependence on training data. Additionally, they use an asynchronous method to optimize phoneme noise,
achieving outstanding attack effectiveness and generation speed. Mun et al. [86] introduce an adversarial attack
algorithm based on particle swarm optimization in the black-box setting. They leverage adversarial candidates as
particles to generate adversarial samples through iterative optimization, which significantly reduces the number of
queries and minimizes the risk of detection.
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To generate adversarial samples more effectively, Tong et al. [102] propose a new gradient estimation strategy,
which is named T-NES. This strategy utilizes the inherent temporal correlations in audio samples to accelerate
gradient estimation based on probability scores returned by the target model, thereby reducing the number of
queries. Guo et al. [36] introduce a query-efficient black-box adversarial attack toward voice assistants, named
PhantomSound, which leverages phoneme-level perturbations to efficiently generate adversarial samples. Specif-
ically, the attacker breaks down target commands into phonemes and gradually injects them into benign audio
to create adversarial conditions. This algorithm also reduces the number of queries by optimizing the gradient
estimation. Compared to existing methods, this strategy significantly reduces the number of queries required.
Traditional adversarial attack algorithms rely on multiple queries, which is impractical. To address this issue, Fang
et al. [27] propose a Zero-Query Adversarial Attack method, named ZQ-Attack. ZQ-Attack initializes adversarial
perturbations with a scaled target command audio, which makes the perturbations both covert and efficient. Simul-
taneously, ZQ-Attack leverages a sequential ensemble optimization algorithm to enhance the transferability of the
perturbations.

Insights: The research discussed highlights the optimization of adversarial attacks by reducing the time and
number of queries required to generate adversarial examples. Although these methods have significantly
improved efficiency, it remains a challenge whether these efficiency gains consistently hold across different
multimodal models and environments.

3.5 Transferability

Measuring the effectiveness of adversarial attacks involves not only focusing on the success rate but also ensuring
outstanding transferability. Chen et al. [14] propose a physical adversarial attack method called PhyTalker. Specif-
ically, PhyTalker generates perturbations at the subphoneme-level, which are optimized and injected into the target
speech signal. It compensates for distortions caused by devices and environments through channel enhancement,
and uses model ensemble to improve the transferability of the perturbations. Qi et al. [90] introduce a two-stage
adversarial attack framework, which features high transferability. In the first stage, an adversarial sample fragment
for the target word is generated via text-to-speech models. In the second stage, this adversarial sample is optimized
on entire sequences. Additionally, to mitigate adversarial example overfitting to the surrogate model, they also
design a score-matching optimization strategy to regularize the training process. Experimental results validate the
effectiveness of the proposed algorithm. Ge et al. [30] introduce a zero-query adversarial perturbation algorithm,
named AdvDDoS, which requires no queries. Specifically, this algorithm includes a popular feature extractor
and a local automatic speech recognition model by reversing the robust target-category features, which helps to
enhance the transferability of the perturbations. Experimental results show that this algorithm achieves outstanding
performance. Kim et al. [52] investigate the transferability of audio adversarial examples across different model
architectures and conditions, and discover that the factors influencing transferability are related to noise sensitivity.
Based on these findings, they introduce a new adversarial attack method, which generates highly transferable audio
adversarial examples by injecting additive noise during the gradient ascent process. Farooq et al. [28] introduce
a transferable GAN-based adversarial attack framework that incorporates a self-supervised audio model to ensure
transcription and perceptual integrity, thereby generating high-quality adversarial samples that are more aligned
with real-world scenarios.

Issues to Consider: The research discussed underscores how multiple methods enhance the attack success
rate while simultaneously improving the transferability of perturbations. It is noteworthy that these complex
attack frameworks may require additional computational resources and time, which are important for the
practicality of the attacks.

3.6 Stealthiness

The stealthiness of perturbations is a necessary factor to ensure the successful implementation of adversarial attacks.
Gong et al. [32] introduce an audio adversarial attack algorithm, named a denial-of-service attack. This algorithm
trains a universal adversarial perturbation to maximize the misclassification rate while limiting the perturbation’s
amplitude to minimize the perceptibility of the attack. Notably, this attack can be implemented in real-time
and over-the-air during user interactions with voice control systems, and it is unaffected by user commands or
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interaction times. Liu et al. [74] introduce audio adversarial examples with weighted sampling, a method that
considers the numbers and weight of distortion to enhance the effectiveness of adversarial attacks. Furthermore, to
improve the stealthiness of the perturbations, they also introduce a denoising algorithm during the training process.
This strategy makes the audio adversarial attacks not only harder to detect but also maintains the effectiveness and
precision of the attacks. Li et al. [68] propose an adversarial attack algorithm targeting speaker recognition systems.
Specifically, they utilize gradient-based adversarial machine learning algorithms to generate adversarial examples
that include well-crafted inconspicuous noise, deceiving the speaker recognition system into making incorrect
predictions. Du et al. [22] introduce a novel adversarial attack framework, which includes components for physical
sample simulation (PSS) and adversarial patch noise generation (APNG). The PSS component is used to simulate
real-audio with selected room impulse responses for training the adversarial patches. The APNG component uses
the voice activity detector to generate imperceptible audio adversarial patch examples. Qiu et al. [91] introduce a
frequency-weighted perturbation algorithm for adversarial attacks based on environmental sounds. This algorithm
integrates auditory thresholds with psychoacoustic principles to generate adversarial samples that are difficult to
detect.

Issues to Consider: The research presented delves into the study of stealth in adversarial attacks, focusing on
generating perturbations that are difficult to detect while ensuring the effectiveness of the attack. It is worth
mentioning that in complex audio-visual environments, maintaining stealth becomes more challenging and
may require higher computational costs.

3.7 Semantic

Leveraging semantic implementation for adversarial attacks is indeed an effective strategy, which involves adding
targeted but semantically consistent perturbations. Yu et al. [128] propose a semantically meaningful audio
adversarial attack algorithm, which leverages semantic perturbations to modify the inherent speech attributes.
To construct adversarial samples, they design an adapted generative model that enables fine-grained control of
prosody. The model ensures that the modified samples still semantically represent the same speech and preserve
the speech quality. Dou et al. [21] formulate adversarial attacks as an optimization problem, aiming to minimize
the angular deviation between the embeddings of the transformed input and the perturbed audio. This method
can effectively implement adversarial attacks in the multi-modal setting, which avoids the discrepancies between
different modalities. Cheng et al. [16] introduce a black-box adversarial attack algorithm based on linguistic
features, which leverages the reciprocal process of text-to-speech and automatic speech recognition models to
generate perturbations in the linguistic embedding space. This algorithm can generate adversarial samples with
only a single query, demonstrating high efficiency.

Implications: The research discussed highlights the effectiveness of introducing semantically consistent
perturbations in adversarial attacks, enhancing the stealthiness and naturalness of adversarial samples.
Moreover, this strategy is also applicable to research on backdoor attacks targeting audio-visual tasks.

3.8 Advanced models

Research on adversarial attacks targeting multimodal large language models (MLLMs) deserves more attention.
Yang et al. [121] build the evaluation benchmark for chat-audio MLLMs, which includes four distinct types of
adversarial audio attacks to comprehensively assess the resilience of MLLMs. In this benchmark, they use Standard,
GPT-4-based, and Human Evaluation methods to assess the robustness of MLLMs. Huang et al. [41] explore the
transferability of adversarial video samples across video-based MLLMs. They introduce a highly transferable
attack method, which leverages an image-based multimodal model as the surrogate model to craft adversarial
video samples. Experimental results show that this method effectively disrupts various video-based MLLMs. To
explore the security of video-based MLLMs against adversarial attacks, Li et al. [64] introduce an adversarial attack
algorithm tailored for video-based MLLMs. The core of this algorithm involves generating multimodal, flow-based
adversarial perturbations on a few frames of the video, misleading video-based MLLMs into generating incorrect
responses. The algorithm combines video features and textual features for the attack, exploiting the transferability
of features across different modalities to breach the model’s security.
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Implications: Although previous adversarial attack algorithms have a certain level of transferability, simple
perturbations often fail against MLLMs due to their inherent protective mechanisms. Therefore, exploring
more effective perturbation strategies for MLLMs is particularly important. This research direction not
only helps understand the vulnerabilities of MLLMs but also promotes the development of more robust
defense mechanisms.

Table 2 Summary of backdoor attack methods against audio-visual-based multimodal models, which includes the method name, capability, attack characteristics,
representative models and tasks, and partial contributions.

Method Capability Characteristics Model Task Contribution

S&DBA [2] White-box Triggers CNN Video Action Recognition First to investigate audiovisual backdoor attacks in video models
Aliasing [62] White-box Triggers Vision Transformers Speech Recognition Exploits strided layers for effective and stealthy backdoor attacks.

PALETTE [131] Black-box Triggers Inflated 3D ConvNet Video Action Recognition First physically-realizable video backdoor attack framework
TrojanRoom [13] White-box Triggers BC-ResNet Speaker Recognition Introduces RIR-based physical triggers for audio backdoor attacks

FlowMur [60] Gray-box Optimization DNN Speech Recognition Proposes a stealthy audio backdoor attack with limited knowledge requirement
SilentTrig [100] Gray-box Optimization DNN Speaker Identification Introduces imperceptible backdoor attack using audio steganography

SMA [147] Gray-box Stealthiness LSTM Speech Recognition Inaudible backdoor attack exploiting microphone nonlinearity
TrojanModel [150] Gray-box Stealthiness LSTM Speech Recognition Introduces a practical Trojan attack leveraging unsuspicious triggers
MagBackdoor [73] Black-box Stealthiness Closed-source Voice Command Injection Introduces magnetic field attack via loudspeaker-based backdoor

IRBA [123] Gray-box Rhythm DNN Speech Recognition Proposes stealthy rhythm transformation for undetectable backdoor attacks
Adv-audio [56] Gray-box Adversarial DNN Speech Recognition Proposes imperceptible audio hiding method activating backdoor

Fake [124] Gray-box Conversion RawNet3 Speaker Recognition Utilizes voice conversion for stealthy backdoor attacks in speech models
EmoAttack [122] Gray-box Conversion SincNet Speaker Verification Utilizes emotional voice conversion for speech backdoor attacks
PBSM; VSVC [6] Gray-box Conversion LSTM Speech Recognition Utilizes sound elements for stealthy backdoor attacks

JingleBack [54] White-box Style LSTM Speech Classification Introduces stylistic triggers using guitar effects for audio backdoors
MarketBack [84] Gray-box Style Transformer Speech Recognition Proposes backdoor attack using stochastic investment models
PhaseBack [125] White-box Spectrogram DNN Speaker Recognition Proposes inaudible phase-injection triggers for backdoor attacks.

IBA [135] Gray-box Spectrogram DeepSpeaker Speaker Recognition Introduces inaudible frequency-domain triggers for backdoor attacks
PAS [71] Gray-box Steganography DNN Speaker Verification Introduces personalized audio steganography for backdoor attacks

Echo [133] Gray-box Steganography LSTM Speech Recognition Proposes echo hiding for stealthy backdoor attacks

FAB [130] Gray-box Optimization Transformer Speech Recognition Proposes task-agnostic backdoor attacks on AFMs
PIBA [97] Gray-box Optimization SincNet Speaker Recognition Introduces position-independent audio backdoor attack
OPP [72] Gray-box Optimization LSTM Speech Recognition Proposes audible backdoor attack using daily ambient noise as triggers

BAGS [39] White-box Optimization OpenVQA VQA; AVSR Introduces data-efficient backdoor attack for multimodal learning

3.9 Evaluation

Vadillo et al. [103] measure the extent of distortion in audio adversarial examples, emphasizing that high-quality
audio adversarial examples must maintain their adversarial nature while avoiding human detection. They assess
these examples using an analytical framework based on various factors, demonstrating that the conventionally used
metrics are not reliable measures of perceptual similarity in the audio domain for adversarial examples.

4 Backdoor Attack

For audio-visual-based multimodal models, the motivation behind backdoor attacks is to embed malicious triggers
into the target model, thereby manipulating the model’s response. In this section, we categorize backdoor attacks
targeting audio-visual models from two perspectives: malicious example design and victim model fine-tuning, as
shown in Table 2.

4.1 Malicious example design

Constructing poisoned samples is an indispensable step in implementing backdoor attacks, which involves the design
of the trigger and the selection of the target label [142, 145]. Koffas et al. [55] investigate the impact of backdoor
attacks on speech recognition systems by embedding inaudible triggers into training samples, demonstrating the
system’s vulnerabilities. Additionally, they validate the effectiveness of the trigger’s duration, position, and type.
Xin et al. [115] leverage sounds that are ordinary in nature or in our daily lives as triggers to implement backdoor
attacks. Experimental results show that with only 5% of poisoned samples, an attack success rate of nearly 100%
can be achieved. Luo et al. [77] launch backdoor attacks to verify the vulnerability of speaker recognition systems
in both digital and physical spaces. Specifically, they examine the effects of the trigger’s position, intensity,
length, frequency characteristics, and the poison rate of the poisoned samples on the success rate of the backdoor
attacks. Bartolini et al. [3] introduce a new backdoor attack algorithm, which maps different environmental trigger
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sounds to target phrases of various lengths during the model fine-tuning phase, demonstrating the potential security
vulnerabilities of the Whisper model. Guo et al. [35] investigate the limitations of existing backdoor attacks and
design a universal backdoor capable of attacking arbitrary targets. Their algorithm injects poisoned audio samples
into the training data, embedding the backdoor during the fine-tuning of the target model. Attackers can then
trigger the backdoor by playing specific audio, thus executing the attack without altering legitimate user data.
Orson Mengara [83] introduces a dynamic label inversion backdoor attack algorithm, which leverages clapping as
an audio trigger while maintaining the correctness of the labels for the poisoned samples. Al Kader Hammoud et
al. [2] revisit the traditional backdoor attacks in the image domain and expand them to the audio domain in two
ways: statically and dynamically, leading to a highly effective attack success rate. Additionally, they also explore
multi-modal backdoor attacks against video action recognition models.

Furthermore, Ze et al. [131] also explore the use of adversarial ultrasound as the triggers for implementing
backdoor attacks. They introduce randomness in the synchronous time and the relative amplitude ratio between
the adversarial ultrasound and the legitimate user to enhance the effectiveness of the backdoor attack. Gong et
al. [33] present a physically-realizable backdoor attack algorithm, named PALETTE, which features two special
design choices. First, they utilize natural-light-alike RGB offsets as triggers without the need to modify video files.
Second, they leverage rolling operations to make the backdoored model more robust to temporal asynchronization.
Experimental results show that PALETTE outperforms existing video backdoor attacks. Wei et al. [62] introduce
the aliasing backdoor, which explores the implementation of backdoor attacks in pretrained models based on the
aliasing effect induced by sampling. Specifically, they introduce aliasing errors in the stride layers of the model,
manipulating the input data to produce misleading outputs. This algorithm features the characteristics of being
low-cost and data-free. Liu et al. [70] propose a multi-trigger backdoor attack algorithm, which simultaneously
maps multiple triggers to target attack objects, effectively enhancing the success rate of the backdoor attacks. Chen
et al. [13] present the TrojanRoom algorithm, which bridges the gap between digital and physical audio backdoor
attacks. Specifically, they leverage the room impulse response as a physical trigger to poison target samples without
the need to implant additional explicit triggers.
Optimization Considering that traditional backdoor attack algorithms often require significant expertise, which
limits their widespread adoption, Lan et al. [60] introduce FlowMur. This approach can be launched with limited
knowledge and formulates trigger generation as a dynamic optimization problem based on an auxiliary dataset and
a surrogate model. Furthermore, they develop an adaptive data poisoning method to optimize the concealment
of the trigger. Li et al. [67] implement a backdoor attack on automatic speech recognition systems during
the enrollment stage via adversarial ultrasound. To enhance real-world robustness, they generate the ultrasonic
backdoor by augmenting the optimization process and optimizing the ultrasonic signal using sparse frequency points,
precompensation, and single-sideband modulation. Existing audio-based backdoor attack algorithms often utilize
discernible noise as triggers, making them susceptible to detection by defense algorithms. Tang et al. [100] introduce
an imperceptible backdoor attack method named SilentTrig. This method embeds the trigger within benign audio
samples by leveraging an optimized steganographic network and implementing a two-stage adversarial optimization
process to ensure that the poisoned samples are acoustically indistinguishable from the benign samples, significantly
increasing the undetectability of the attack.
Stealthiness To further optimize the stealth of audio triggers, Zheng et al. [147] propose an inaudible grey-box
backdoor attack, named SMA. Specifically, they utilize the nonlinear effects of microphones to inject an inaudible
ultrasonic trigger into the samples. Additionally, to enhance the robustness and transferability of the trigger in the
physical world, an optimization algorithm has been designed. Experimental results indicate that the SMA algorithm
achieves a feasible success rate for backdoor attacks. Zong et al. [150] consider the use of a piece of background
music as an unsuspicious trigger, which avoids detection by defense algorithms. Additionally, they introduce a
small network called the TrojanModel to incorporate backdoor features, eliminating the requirement for retraining
of the target model to implement the backdoor attack. Liu et al. [73] propose MagBackdoor, a backdoor attack
algorithm that injects malicious commands via a loudspeaker, compromising the linked voice interaction system.
They self-design a prototype that can emit magnetic fields modulated by voice commands, making the attack more
covert and applicable to real-world scenarios. To avoid audible triggers being detected by human ears, Ye et al. [126]
present an inaudible backdoor attack named PaddingBack. They exploit the widely-used speech signal operation,
padding, to serve as the backdoor trigger. Experimental results show that PaddingBack achieves a feasible attack
success rate and resistance to defense mechanisms. Xiong et al. [116] argue that the human ear’s lower sensitivity
to consonant phonemes can be exploited to implement backdoor attacks. Therefore, they introduce a backdoor
attack method based on phoneme substitution. Specifically, a selection and substitution strategy is designed for
triggers, which can covertly replace phonemes to construct poisoned samples.
Rhythm transformation To enhance the stealthiness of poisoned samples, Yao et al. [123] introduce a non-neural
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and efficient backdoor attack algorithm named RSRT. Specifically, the RSRT algorithm designs a trigger that
stretches or squeezes the mel spectrograms and then recovers them back to signals. This operation helps maintain
the timbre and content unchanged, thereby increasing the stealthiness of the poisoned samples.
Adversarial perturbation Kong et al. [56] introduce a new audio information hiding algorithm that combines high
hiding capacity with excellent imperceptibility. Specifically, the algorithm embeds hidden information, which can
be used as a trigger, into the audio signal to create stego audio. This stego audio is then used to train and implement
backdoor attacks, posing a serious threat to automatic speech recognition systems.
Voice conversion To enhance the concealment of triggers, Cai et al. [4] adopt a strategy that combines pitch
boosting with sound masking to optimize the trigger, reducing its detectability by human ears. Experimental results
demonstrate that this algorithm can achieve an attack success rate of over 90% with just a 1% poisoning rate.
Additionally, Cai et al. [5] explore the backdoor attack algorithm based on voice conversion to enable multi-target
attacks. This algorithm leverages voice conversion to transform the timbre of speech, evading detection by human
ears and enhancing the stealthiness of the backdoor attacks. Ye et al. [124] present a sophisticated backdoor attack
algorithm that leverages sample-specific triggers generated through voice conversion. This method specifically
utilizes a pre-trained voice conversion model to create these triggers, ensuring that the altered audio samples
remain devoid of any extraneous audible noise. This approach not only preserves the naturalness of the audio but
also embeds the malicious trigger with enhanced subtlety and effectiveness. Yao et al. [122] consider emotion as
a higher-level subjective perceptual attribute inherent in speech, which can serve as triggers for backdoor attacks.
Therefore, they design an emotional voice conversion algorithm to generate high-quality triggers. Experimental
results indicate that using emotion as triggers can achieve a feasible success rate for backdoor attacks. Schoof et
al. [95] leverage the emotional prosody of speakers to construct dynamic, inconspicuous triggers, thereby enhancing
the stealthiness of backdoor attacks. Cai et al. [6] explore elements of sound, such as pitch and timbre, as triggers
to enhance the stealthiness of backdoor attacks. Specifically, they design two distinct backdoor attack algorithms.
Firstly, they utilize a short-duration, high-pitched signal as the trigger, which is implanted into the target sample.
Subsequently, they increase the pitch of the remaining audio clips to “mask” this trigger, thereby avoiding detection
by defense algorithms. Secondly, they manipulate the timbral characteristics of the victim audio samples using a
voiceprint selection module to generate poisoned samples.
Style Koffas et al. [54] explore stylistic-based audio backdoor attack triggers, which demonstrate the effectiveness
of six different stylistic triggers on audio models. Orson Mengara [84] manipulates the stylistic properties of audio
as triggers for backdoor attacks, utilizing stochastic investment models coupled with Bayesian methodologies to
generate the poisoned samples. Furthermore, to enhance the stealthiness of backdoor attacks, they ensure that the
labels of the poisoned samples remain unchanged, a strategy known as clean-label backdoor attacks. Furthermore,
Orson Mengara [82] introduces a dynamic trigger strategy to reduce the distinguishability between poisoned samples
and clean samples. They insert triggers into the audio signal by leveraging the short-time Fourier transform to
acquire the speech spectrogram, constructing the poisoned samples.
Audio Spectrogram Ye et al. [125] present a novel phase-injection backdoor attack algorithm that utilizes the
Short-Time Fourier Transform (STFT) to process audio samples. Specifically, the spectrogram of the target sample
is obtained leveraging the STFT algorithm, then split into the phase and amplitude spectra. Subsequently, a
malicious trigger is implanted into the phase spectrum. Finally, the inverse STFT is used to obtain the poisoned
samples. This algorithm effectively reduces the audibility of the trigger, enhancing its stealthiness. Zhang et
al. [135] propose a novel audio backdoor attack that utilizes inaudible triggers within the frequency domain of
audio spectrograms. Specifically, they develop a strategy that automatically generates inaudible triggers in the
supported spectrum and optimizes the robustness of these triggers.
Audio Steganography Liu et al. [71] introduce a novel algorithm for an audio steganography-based personalized
trigger backdoor attack. Specifically, a pre-trained audio steganography network is employed to implicitly write
personalized information into the target samples, which can effectively enhance the concealment of the attack.
Moreover, the algorithm modifies only the frequency and pitch of the target samples, making it more difficult to
detect. Zhang et al. [133] introduce a backdoor attack method embedded in the frequency domain based on echo
hiding, a technique in audio steganography that embeds hidden information into the frequency spectrum. This
approach effectively avoids detection of the trigger while ensuring the audio quality is maintained.
Federated learning Wu et al. [109] propose a backdoor attack algorithm designed for federated learning-based
automatic speaker verification systems. Specifically, contend that the complexity of voiceprint data facilitate the
introduction of subtle perturbations, allowing for the embedding of poisoned samples with triggers into the training
dataset to execute backdoor attacks. To augment the stealthiness of these attacks, they incorporate triggers into
utterances in a manner that is more inconspicuous. Xu et al. [117] propose a novel backdoor attack in federated
learning, named GhostB. This algorithm leverages the behavior of neurons that produce specific values to serve as
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triggers. It avoids modifying training samples and does not rely on dropout, effectively enhancing both the stealth
and efficiency of the backdoor attack.

Critical Points: The research discussed highlights the leverage of stealthiness and natural triggers, such
as inaudible sounds or common everyday noises, which help to enhance the stealth and attack success
rate. Additionally, optimized dynamic triggers that can adapt to various environments have enhanced the
robustness and transferability of attacks. However, these triggers are designed to operate under specific
conditions, which limits their applicability. Furthermore, as defense strategies continue to improve, these
triggers may become easier to detect, reducing the effectiveness of backdoor attacks.

4.2 Victim model fine-tuning

To more effectively implement backdoor attacks, some research assumes that attackers may manipulate the training
process. Yun et al. [130] present the FAB algorithm, specifically designed to target acoustic foundation models.
This algorithm employs physically plausible and unobtrusive auditory triggers, such as the sounds of dog barks
and alarms. By optimizing the training loss, it ensures that the model generates irrelevant representations when the
input contains these triggers, while maintaining normal performance when no triggers are present. Shi et al. [97]
explore backdoor attacks in the audio domain, demonstrating that an unnoticeable audio trigger can easily launch
such attacks. They jointly optimize the trigger and the victim model during the training phase to construct an
unnoticeable and position-independent audio trigger. Specifically, they optimize the trigger’s position to ensure it
is position-independent, and design an algorithm that mimics environmental sounds to make the trigger resemble
something unnoticeable. Given the susceptibility of conventional audio triggers to preprocessing, Liu et al. [72]
introduce an audible backdoor attack algorithm tailored for speech recognition systems. Specifically, the triggers
employed are ambient noises from daily contexts, capitalizing on people’s auditory inertia, making these triggers
naturally stealthy and easily overlooked. Simultaneously, they introduce a dual-adaptive backdoor augmentation
method to enhance the efficiency of the backdoor attack, which can facilitate robust model poisoning and achieve
a high attack success rate.

To explore the effectiveness of backdoor attacks in multimodal learning, Han et al. [39] propose a data and
computation efficient algorithm for backdoor attacks. Initially, they design a backdoor gradient-based score to
quantify the contribution of each data sample to the backdoor attack during the training phase. Subsequently,
a searching strategy is introduced to efficiently determine the optimal poisoning modalities and data samples.
Extensive experiments validate the effectiveness and efficiency of the algorithm. To address the problem of
traditional data poisoning backdoor attacks being easily detected during both the training and inference stages,
Xiao et al. [112] introduce a phoneme mixing and multitask learning algorithm to implement backdoor attacks
without altering the input samples. Specifically, the attackers utilize certain phonemes as semantic triggers, while
simultaneously leveraging a multiple gradient descent algorithm to optimize multitask learning, enhancing both
the effectiveness of the backdoor attacks and the accuracy of classification.

Challenges: As another approach to backdoor attacks, manipulating the model training process often
achieves a more effective success rate. However, algorithms that depend on accessing the model training
process are difficult to implement in the black-box setting and may also require more training iterations.

5 Jailbreak Attack

Although previous research demonstrates the vulnerability of LLMs or MLLMs to jailbreak attacks [75, 118],
exploring jailbreaking attacks related to audio-visual is equally worthy of attention. In this section, we present the
jailbreaking attacks to audio-visual-based MLLMs with three types: prompt engineering, signal perturbation, and
multimodal alignment. We provide a summary as shown in Table 3.

5.1 Prompt Engineering

Mao et al. [81] introduce a hybrid strategy-based multimodal jailbreak attack algorithm. Specifically, they combine
a series of strategies including alternating translation, word encryption, harmful injection, and feature collapse,
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Table 3 Summary of jailbreak attack methods against audio-visual-based multimodal models, which includes the method name, capability, attack characteristics,
representative models and tasks, and partial contributions.

Method Capability Characteristics Model Task Contribution

JMLLM [81] Gray-box Hybrid GPT-4o TriJail Achieved high attack success using multimodal hybrid strategy
BoN [42] Black-box Prompt GPT-4 HarmBench Proposes jailbreak attack combined with augmentation strategies

Audio-j [38] White-box Perturbation SALMON-N 7B Jailbreak audio Demonstrated audio jailbreaks bypassing ALM alignment mechanisms effectively
AdvWave [48] White-box Adversarial Llama-Omni AdvBench-Audio AdvWave achieves high success rates while maintaining audio stealthiness

SS-Jail [120] Black-box Evaluation Qwen2-Audio AdvBench Revealed audio LMM vulnerabilities via speech-specific jailbreak
AET; EADs [110] Black-box Editing Qwen2-Audio AdvBench Introduced AET and EADs to assess LALMs’ security vulnerabilities

VideoJail [40] Black-box Embedding Qwen2-VL HADES Video modality increases security risks in multimodal models
T2VSafetyBench [85] Black-box Benchmark GPT-4 VidProM Evaluated video generation safety across twelve critical aspects

Flanking [17] Black-box Prompt Gemini Jailbreak audio Proposes Flanking Attack, bypassing defenses with narrative-driven prompts
VOICEJAILBREAK [96] Black-box Elements GPT-4o ForbiddenQuestionSet Enhanced voice jailbreak attack effectiveness using fictional storytelling elements.

which ensure that the prompts remain adversarial while bypassing the model’s defense mechanisms. Additionally,
they set up the hybrid strategy with both single-query and multi-query options. Compared to single-query, although
multi-query requires more time, it helps enhance jailbreak performance. Hughes et al. [42] propose the Best-of-
N Jailbreaking, a black-box jailbreaking attack algorithm to extract harmful information from audio-visual-based
MLLMs. Specifically, they repeatedly sample variations of a prompt with a combination of augmentation strategies,
such as speed, pitch adjustments, and background noise adjustments, to induce MLLMs to produce unsafe outputs.

5.2 Signal Perturbation

Gupta et al. [38] demonstrate universal jailbreaks in the audio modality for MLLMs by constructing adversarial
perturbations. They also provide an insightful analysis showing that imperceptible, first-person toxic speech
is the most effective type of perturbation for eliciting toxic outputs. Specifically, these perturbations embed
linguistic features within the audio signal. Kang et al. [48] propose a jailbreak framework against MLLMs, named
AdvWave. The AdvWave framework leverages a dual-phase optimization method to address the gradient shattering
problem. Additionally, they also introduce an adaptive adversarial target search algorithm to dynamically construct
adversarial queries targeted at specific responses. Yang et al. [120] evaluate the security of five audio-based
MLLMs against various queries: (i) harmful questions in both audio and text formats, (ii) harmful questions in text
format accompanied by distracting non-speech audio, and (iii) speech-specific jailbreaks. Furthermore, they also
introduce a speech-specific jailbreaking method, which decomposes harmful words into letters to conceal them in
the audio input, thereby bypassing the model’s security protections. Xiao et al. [110] explore audio-specific edits to
implement jailbreak attacks on MLLMs and introduce the Audio Editing Toolbox (AET). The AET offers a range
of editing tools for audio tone adjustment, word emphasis, and noise injection. It includes edited audio datasets,
which can serve as benchmark datasets for testing jailbreak attacks on MLLMs.

5.3 Multimodal Alignment

To verify the security related to modality alignment, Hu et al. [40] introduce a novel jailbreak attack algorithm,
named VideoJail, which induces video-based MLLMs to amplify harmful content in images. Specifically, by
leveraging carefully crafted text prompts, VideoJail can induce the model to focus its attention on malicious queries,
successfully breaching the model’s security mechanisms. Miao et al. [85] construct a comprehensive benchmark to
evaluate the security of text-to-video models, which employ jailbreak attack-based prompts. Experimental results
indicate that no single video-based MLLM excels across all critical aspects, necessitating a further trade-off between
the usability and safety of the video model. Chiu et al. [17] leverage audio samples to circumvent the constraints
of traditional text, breaking through the defense mechanisms of MLLMs. Specifically, they embed harmful
prompts within seemingly harmless ones, reducing the MLLMs’ ability to recognize and block harmful content
by increasing situational complexity and introducing ambiguity. At the same time, they construct a sequence of
multiple queries, placing the critical adversarial query in the middle of the sequence to reduce the risk of triggering
safety mechanisms. Shen et al. [96] systematically measure the security of the GPT-4o model against jailbreak
attacks. The results indicate that the GPT-4o model exhibits good resistance to malicious queries when leveraging
voice mode. Furthermore, they also present a novel voice jailbreak attack algorithm that attempts to persuade the
GPT-4o model through fictional storytelling. Extensive experiments validate the feasibility of this attack method.

5.4 Evaluation

Ying et al. [127] evaluate the capabilities of GPT-4o against jailbreak attacks across three modalities: text, speech,
and image. Their findings expose a new attack surface for jailbreak attacks on GPT-4o specifically in the speech
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modality.

Reflections and Challenges: The research discussed underscores that the inherent defense mechanisms of
state-of-the-art MLLMs can be circumvented by malicious audio manipulations and queries, thereby pro-
ducing harmful outputs. However, there is less research on jailbreaking attacks targeting audio-visual-based
MLLMs, which requires more attention. Additionally, due to variations in model structures, jailbreaking
attack algorithms may demonstrate varying performance and require substantial computational resources.

6 Other attack

Roy et al. [94] leverage the non-linear diaphragm and amplifiers of microphones to create “shadows” that facilitate
covert acoustic communication. This method is applied in acoustic denial-of-service attacks. Li et al. [66] propose
an algorithm for detecting audio deepfakes that operates without relying on semantic information. Specifically,
the algorithm decouples semantic and acoustic information in the audio, utilizing only the acoustic information for
detection. This approach effectively identifies a variety of deepfake technologies while maintaining a low error
rate.

7 Defense

Compared to research on attack algorithms targeting audio-visual-based multimodal models, exploring defense
algorithms appears to be more crucial [138]. Therefore, we discuss the algorithms for defending against adversarial
and backdoor attacks from three perspectives: sample detection, optimization, and purification, as shown in Table
4. It is worth noting that there are no defense algorithms available for jailbreak attacks, especially for audio-visual-
based multimodal models.

7.1 Adversarial attack

Sample detecting To detect adaptive adversarial audio samples, Du et al. [23] introduce a unified detection
framework, which combines noise padding and sound reverberation. Specifically, an adaptive artificial speech
generator is designed to enhance the effectiveness of detection. Additionally, they also design multiple noise
padding strategies to disrupt the continuity of adversarial noise. The advantage of this framework is that it is
applicable to various automatic speech recognition systems without the need for additional training. Kwon et
al. [59] propose an adversarial audio sample detection algorithm, which adds a new low-level distortion to the
samples under inspection. If the classification result is sensitive, then the sample is identified as an adversarial
sample; otherwise, it is considered an original sample. Experimental results validate the effectiveness of this
algorithm. Hussain et al. [44] introduce an adversarial sample detection framework named WaveGuard, which
incorporates an audio transformation module. The fundamental premise of this module is that adversarial examples
induce instability in model predictions, in contrast to benign examples, which maintain stability despite minor
modifications to the inputs. If there’s a substantial discrepancy between the transcriptions, the input is labeled as
adversarial. Ma et al. [79] explore an adversarial sample detection method based on the temporal correlation for
audio and video. They believe that the addition of adversarial noise can disrupt the correlation between audio and
video. Therefore, a synchronization confidence score is used as a proxy to measure the correlation between audio
and video, detecting adversarial samples. Kwon et al. [58] introduce a defense method for detecting adversarial
examples that does not require a separate module or an additional process. Specifically, they suggest that when
optimized noise is embedded into target samples, it leads to a specific pattern in the classification scores of the
adversarial example. Experimental results show that this characteristic can be used to identify audio adversarial
examples and defend against adversarial attacks.

To detect audio adversarial examples, Guo et al. [34] propose a universal defense algorithm based on audio
fingerprint analysis. Specifically, they analyze the similarity between the current query and a set of past queries of a
specified length to determine when a series of queries might be susceptible to producing audio adversarial samples.
Park et al. [89] introduce an adversarial sample detection algorithm, which inputs both smoothed and original
samples into the ASR system and introduces carefully selected noise to logits before decoding. According to their
analysis, this carefully selected noise significantly affects the transcription results of adversarial samples but has a
minimal impact on clean samples. Therefore, they leverage this characteristic to identify adversarial samples. Rabhi



Jinmig Wen, et al. A Survey on Security Threats and Defenses for Audio-Visual Models 17

Table 4 Summary of defense algorithms against audio-visual attacks, which includes the method name, capability, defense characteristics, representative models
and tasks, and partial contributions.

Method Capability Characteristics Model Task Contribution

WaveGuard [23] White/Gray-box Sample detecting Deepspeech Speech Recognition Detects audio adversarial examples without model retraining
CS-Detect [59] White/Gray-box Sample detecting RNN Speech Recognition Detects audio adversarial examples using classification score patterns

Agitated [89] White/Black-box Sample detecting RNN Speech Recognition Introduces noise to logits for adversarial example detection
Robust [25] White/Black-box Optimization SVM Audio Classification Uses DWT and SVM for robust audio attack defense

SNR [76] White-box Optimization ResNet18 Audio Classification Applies SNR, APGD attacks, and Cutmix for robustness improvement
HF-Smoothing [87] White-box Purification CNN Speaker Identification Utilizes high-frequency smoothing to enhance adversarial robustness

FeCo [10] White/Black-box Purification CNN Speaker Recognition Combines feature compression with adversarial training for robust defenses
AudioPure [107] White/Black-box Purification Diffusion Speech Command Recognition Uses diffusion models for effective adversarial audio purification

SpeechGuard [114] White/Black-box Sample detecting Autoencoder Speech Recognition Combines detection and purification for robust backdoor attack defense
Sniper [35] Black-box Sample detecting t-SNE Speaker Verification Effectively cleanses datasets using sniper-based defense mechanism

GN-FT [148] White-box Optimization LSTM Speech Recognition Reduces backdoored effects by penalizing high-gradient neurons
Silero-VAD [3] White-box Purification Transformer Speech Recognition Uses VAD to filter malicious triggers and protect models

KDDF [15] White-box Purification ResNeXt Speech Recognition Detects triggers and recovers poisoned audio data using KD.

et al. [93] demonstrate that the audio deepfake detection system is vulnerable to adversarial examples. To counter
these threats, they introduce a highly generalizable defense mechanism that includes a speech-to-text mechanism.
Specifically, if the audio is classified as real by the deepfake detector, the speech-to-text function evaluates whether
the audio content matches the expected text. If the audio successfully passes this speech-to-text verification layer,
it is then deemed authentic.
Optimization Esmaeilpour et al. [25] introduce a defense algorithm against adversarial attacks. They first
demonstrate the robustness of support vector machines (SVMs) when facing several state-of-the-art adversarial
attacks. Then, they design a new method based on audio signal preprocessing with Discrete Wavelet Transform
(DWT) representations and SVM to protect audio systems from adversarial attacks, which provides a viable balance
between accuracy and robustness. Lu et al. [76] enhance the adversarial robustness of audio classifiers through
three aspects. First, they demonstrate that ℓ2 norm perturbations can generate perturbed examples with specific
signal-to-noise ratios. Second, the APGD method is introduced for adversarial training, which enhances the
model’s robustness against adversarial attacks. Lastly, they leverage data augmentation strategies, such as CutMix,
to optimize the model’s robustness. Sun et al. [98] leverage MLLMs to build an audio-guided navigation agent,
which evaluates the credibility of human instructions based on emotional cues in spoken communication, such as
tone and intonation variations. Experimental results indicate that the system possesses remarkable resilience when
facing adversarial attacks.
Purification B. Raj et al. [87] present a more robust adversarial attack defense algorithm than naive noise filtering.
Specifically, they utilize a high-pass filter on additive Gaussian noise to smooth the model where it is most
vulnerable. Chen et al. [10] provide valuable insights for enhancing the security of speaker recognition systems
through a comprehensive evaluation of various transformation and training methods. They also introduce a new
feature compression technique, named FeCo, which compresses and aggregates audio features using clustering
methods to mitigate adversarial perturbations, ensuring the security of speaker recognition systems. Wu et
al. [107] introduce an adversarial purification-based defense algorithm based on off-the-shelf diffusion models.
This algorithm adds a small amount of noise to the adversarial audio, then runs the reverse sampling step to purify
the noisy audio and recover clean audio. It is plug-and-play and can be quickly transferred to other models without
the need for retraining. Du et al. [24] introduce an adaptive unified defense framework tailored to adversarial
attacks. Specifically, they design a unified pre-processing mechanism, which includes RIR convolution, multi-
fragment noise padding, and SPL complexity analysis, to disrupt adversarial attacks. Secondly, they leverage
multiple automatic speech recognition systems to transcribe pre-processed audio to evaluate similarity and detect
adversarial properties. Experimental results show that the framework effectively defends against various adversarial
attack strategies.

Insights: The research discussed highlights various adversarial sample detection and purification strategies,
such as noise padding and audio fingerprint analysis, which enhance the adaptability and robustness of
audio-visual models against different types of attacks. Despite the multitude of defense algorithms, these
methods lack sufficient generalizability when facing various types of attacks. Additionally, defending
against adversarial attacks requires substantial computational resources, which reduces their practicality.
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7.2 Backdoor attack

Sample detecting Building upon STRIP [29], a backdoor attack defense algorithm targeting images, Xin et al. [114]
introduce SpeechGuard to defend against backdoor attacks in the audio domain. Specifically, they optimize the
STRIP algorithm by enhancing the perturbation techniques, making it more effective for detecting poisoned audio
samples. Furthermore, they utilize time-frequency masking to suppress trigger signals and purify the poisoned
samples. Guo et al. [35] introduce a “sniper”-based backdoor attack defense algorithm that examines the dataset
before training to filter out suspicious samples. Specifically, they use the average embedding of the dataset as a
“sniper” and calculate the ℓ2 distance between it and other samples to identify potentially malicious samples.
Optimization Zhou et al. [148] discover that backdoored neurons exhibit greater gradient values compared to other
neurons. Based on this observation, they propose a gradient norm-based fine-tuning algorithm to defend against
backdoor attacks. Specifically, they apply gradient norm regularization to fine-tune the victim model, thereby
weakening the backdoored neurons and enhancing the model’s defense against backdoor attacks.
Purification Zhu et al. [149] introduce a backdoor attack defense algorithm for voice print recognition models
based on speech enhancement and weight pruning. Specifically, this algorithm leverages perturbation detection
to distinguish between clean and poisoned samples. Subsequently, clean samples are used to fine-tune the model
with pruning, and a speech enhancement algorithm is applied to purify the poisoned samples, thereby preventing
the activation of the backdoor. Chen et al. [15] present a backdoor attack defense algorithm in federated learning.
Specifically, they detect and remove features of the trigger during inference based on knowledge distillation. The
knowledge distillation algorithm is used to train a validation model on each IoT device to identify suspicious
poisoned samples, and a feature cancellation mechanism is employed to eliminate the trigger features in these
suspicious samples, thereby defending against backdoor attacks. Wu et al. [109] design a backdoor attack defense
algorithm for federated learning systems, which is based on speaker frequency. This algorithm first filters out
infrasound frequencies below 18 Hz and ultrasonic frequencies above 20,000 Hz, aiming to eliminate commonly
used backdoor attack triggers. Then, by filtering out frequencies outside the normal human vocal range, they ensure
that the integrity and quality of the voice data are preserved, and effectively prevent the activation of backdoors.
Bartolini et al. [3] explore leveraging the voice activity detection model as a defense mechanism against backdoor
attacks, aiming to filter out backdoor triggers and prevent the backdoor from being activated. Experimental results
indicate that this model is capable of defending against backdoor attacks.

Issues to Consider: Due to the fixed trigger patterns inherent in backdoor attacks, these patterns can
serve as distinctive signals for identification and subsequent defense mechanisms. However, the challenge
in defending against such attacks extends beyond merely detecting poisoned audio samples. It is equally
crucial to ensure that clean audio-visual samples remain unaffected. This dual requirement significantly
amplifies the complexity of implementing effective defense strategies against backdoor attacks.

7.3 Other

Yu et al. [129] introduce AntiFake, a defense strategy to prevent unauthorized speech synthesis. Concretely,
AntiFake disrupts speech synthesis by deviating speaker embeddings used for speaker identity control. Furthermore,
to ensure transferability, they also leverage ensemble learning to enhance the generalizability of the AntiFake
algorithm.

8 Application

Much like a coin has two sides, various attacks on audio-visual-based multimodal models can serve both as a
threat and as an effective tool for evaluation. This dual role facilitates activities such as model copyright auditing
and privacy protection, highlighting the complexity and multifaceted nature of security in audio-visual-based
multimodal models.
Copyright protection To protect the copyright of speech recognition models, Liao et al. [69] introduce impercep-
tible backdoor watermarks to authenticate ownership. They utilize Gaussian noise watermarks, extreme frequency
Gaussian noise watermarks, and unrelated audio watermarks to embed backdoors into the target model. This enables
black-box verification of the intellectual property of the model owners. Wu et al. [106] propose a steganography
method based on adversarial examples, which involves making subtle perturbations to audio in the time domain to
evade detection by CNN steganalysis. This method does not rely on existing embedding costs but instead starts with
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random or simple embeddings, enhancing security performance through iterative cost updates. Chen et al. [11]
introduce a model access control scheme based on hidden adversarial samples, focused on the intellectual property
protection of automatic speech recognition models. This method utilizes audio adversarial samples by embedding
user identity information into the adversarial samples of the audio, serving as proof samples for authentication.
Privacy To protect user privacy, O’Reilly et al. [88] propose VoiceBlock, a system that performs adversarial
modifications on user audio streams in real-time, de-identifying user speech to safeguard privacy from automatic
speaker recognition systems. VoiceBlock employs deep networks and applies time-varying finite impulse response
filters to the outgoing audio stream. These modifications prevent automated systems from identifying users based
on their voice, while retaining the speech characteristics unchanged for human listeners.
Dataset To better align fake speech datasets with real-life scenarios, Luong et al. [78] hconstruct LlamaPartialSpoof,
a 130-hour dataset that contains both fully and partially fake speech. This dataset is created using MLLMs and voice
cloning technologies. Its purpose is to provide a more comprehensive assessment of the vulnerabilities in current
countermeasure systems. Cai et al. [7] construct a dataset named AV-Deepfake1M. This dataset includes three
types of manipulations: video manipulations, audio manipulations, and audio-visual manipulations. It addresses
the gap in existing deepfake datasets, which do not include these types of partial manipulations.

9 Summary and Challenges

In this section, we summarize the similarities and differences between various types of attacks and defense
algorithms, with the aim of gaining a deeper understanding of model security. Additionally, we provide a summary
of the challenges and trends to further encourage research into model security.

9.1 Summary of attacks and defenses

Similarity Analysis Despite the diverse forms of attack algorithms, their goal is to maliciously manipulate the
responses of audio-visual-based multimodal models. Especially, adversarial and jailbreak attacks can influence the
outputs of models through multiple iterative queries. Therefore, different attack methods exhibit elements that are
instructive for reciprocal learning. For example, perturbations in adversarial attacks have the potential to facilitate
jailbreak attacks, thereby disrupting the internal defense mechanisms of models and resulting in the output of
harmful content. Moreover, the defense algorithms against adversarial and backdoor attacks can be categorized
into sample detection, optimization, and purification, which can also serve as defensive strategies against jailbreak
attacks, particularly through purification.
Difference Analysis Unlike adversarial or jailbreak attacks, most backdoor attack algorithms require fine-tuning the
model to establish an association between the trigger and the target label, thus, backdoor attacks may consume more
computational resources in MLLMs. Furthermore, alterations in the fine-tuned model weights may detrimentally
affect the model’s generalization capabilities. Consequently, attackers must meticulously balance the effectiveness
of backdoor attacks with the preservation of the model’s standard performance. In contrast, the primary focus of
adversarial attacks is on refining the generation of perturbations to reduce the frequency of queries.

9.2 Challenges and trends

Attack Algorithms Despite the proliferation of audio-visual attack algorithms, several challenges remain:
• Facing different MLLM architectures, the generalizability of adversarial perturbations significantly impacts

the attack success rate. Although previous research has continuously optimized the generalizability of perturbations,
the evolving defense capabilities of MLLMs, which leverage security-aligned optimizations, mean that constructing
more effective and generalized perturbations remains an ongoing challenge.

• For adversarial and jailbreak attacks, particularly in real-time audio streaming systems, attackers are required
to make multiple queries to achieve their ultimate objectives. However, in closed-source models, repeated queries
require multiple API calls, which can lead to significant expenses. Therefore, exploring efficient algorithms for
generating malicious queries or adversarial perturbations is a worthwhile endeavor.

• As the parameter count of models increases, backdoor attack algorithms that depend on fine-tuning are
becoming impractical. Therefore, exploring innovative backdoor attack algorithms that either do not require fine-
tuning or only utilize parameter-efficient fine-tuning, such as poisoning-based instruction or in-context learning, is
encouraged. For instance, Zhao et al. [140] propose ICLAttack method based on in-context learning algorithms,
avoiding the fine-tuning of large language models. This method can be adapted for use in audio-visual attacks.
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• In existing backdoor attack algorithms, to establish an alignment between the trigger and the target label,
attackers need to implant triggers and modify sample labels. Although this can achieve a feasible attack success
rate, samples with modified labels may be detected by defense algorithms, which reduces the stealthiness of the
backdoor attack. Therefore, exploring backdoor attack algorithms that do not require modifying sample labels is a
trend.

• Moreover, exploring the interpretability of attack algorithms is crucial for understanding the deeper working
mechanisms of attacks and can also enhance our understanding of the security vulnerabilities in MLLMs. Specif-
ically, interpretable jailbreak attack algorithms can play a crucial role in identifying and addressing the inherent
defensive weaknesses of models.
Defense Algorithms

• The purpose of exploring attack algorithms is to identify potential security vulnerabilities in audio-visual-based
multimodal models, thereby facilitating the development of effective defense algorithms. However, existing defense
algorithms are limited to specific types of attacks, which lack sufficient generalization performance, reducing their
effectiveness. Therefore, the exploration of more effective defense algorithms remains an ongoing challenge.

• In real-time audio streaming systems, which operate under strict time constraints, this challenge becomes
particularly pronounced. In MLLM-based systems, the large number of parameters often results in the majority
of the time budget being consumed by model inference, leaving only a limited window for rejecting or filtering
malicious inputs. This restriction may compromise the effectiveness of defense algorithms. Striking a balance
between model efficiency and security thus emerges as a critical challenge for real-time audio streaming systems.

• Effective defense algorithms are essential not only for the accurate identification of poisoned audio samples
but also for minimizing false positive rates, which are crucial for maintaining the normal performance of models.
Particularly in the context of sample detection algorithms, the ability of defense mechanisms to precisely differentiate
between poisoned and original audio samples is fundamental to the overall reliability and stability of the model.

• Although optimization-based algorithms demonstrate notable efficacy in defending against attacks, they require
the fine-tuning of the victim model, which in turn demands substantial computational resources, particularly within
the framework of MLLMs. Therefore, reducing the consumption of computational resources during the defense
phase and enhancing the efficiency of backdoor mitigation are imperative for evaluating the practicality of defense
algorithms.

• The absence of defense algorithms against jailbreak attacks targeting audio-visual-based MLLMs presents
an urgent challenge. A feasible approach is to leverage defense algorithms from the image or text domains. For
example, Wang et al. define the defense against jailbreak attacks as “backdoor attacks”, where prefixed safety
examples with a secret prompt serve as “triggers”. By fine-tuning, they establish an alignment between the triggers
and safety responses, thus preventing the output of harmful content to defend against jailbreak attacks. The
aforementioned algorithm can be adapted to defend against jailbreak attacks targeting audio-based tasks.

10 Conclusion

In this paper, we systematically review various attack and defense algorithms in the audio-visual domain. Simulta-
neously, we focus our attention on multimodal large language models (MLLMs), which reveal the potential security
vulnerabilities of MLLMs. Our research reveals that state-of-the-art audio-visual-based multimodal models are
susceptible to adversarial perturbations or malicious queries, resulting in the output of incorrect or harmful content.
In addition, we demonstrate existing defense algorithms against attacks, with sample detection, optimization, and
purification. Finally, we highlight the potential challenges and emerging trends in audio-visual attacks. We hope
that this survey serves as a valuable resource for researchers and practitioners, fostering the security of MLLMs
and building a reliable audio-visual community.
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