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Abstract

In this paper, we investigate the differential and boomerang properties of a class of binomial
F,.(z) = 2"(1 + ux(z)) over the finite field F,n, where r = 251, p" =3 (mod 4), and x(z) =

n

z" 2 is the quadratic character in Fpn. We show that F, 4; is locally-PN with boomerang
uniformity 0 when p” = 3 (mod 8). To the best of our knowledge, the second known non-PN
function class with boomerang uniformity 0, and the first such example over odd characteristic
fields with p > 3. Moreover, we show that Fj. 11 is locally-APN with boomerang uniformity at
most 2 when p" = 7 (mod 8). We also provide complete classifications of the differential and
boomerang spectra of Fj. 11. Furthermore, we thoroughly investigate the differential uniformity
of Fy.y for u € Fy. \ {£1}.
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1 Introduction

Let p" be an odd prime power and Fyn be the finite field of p" elements and F;» = Fpn \ {0} be the
multiplicative group of F». Many researchers have been interested in constructing vectorial Boolean
functions over finite fields that possess good cryptographic properties. Among these properties, dif-
ferential uniformity, introduced by Nyberg [17] is one of the most well-studied and widely recognized
criteria due to its strong relevance to resistance against differential cryptanalysis. The differential
uniformity is defined as follows.

Definition 1.1. Let F' be a function on Fyn. We denote dp(a,b) by the number of solutions of
F(z+a)—F(x) = b, where a € Fjn and b € Fyn. Then the differential uniformity of F is defined
by :

op = ) b).

F aGF?s?’b)éFpn F(a, )

If 6p <0, then we say that F' is differentially d-uniform.
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If F is differentially 1-uniform, then we say F' is perfect nonlinear (PN). If F is differentially
2-uniform, then we say F'is almost perfect nonlinear (APN). For a survey of known functions with
low differential uniformity, we refer the reader to [5]. In recent years, there has been significant
progress in studying the differential spectra of various functions. For functions whose differential
spectra are known, we refer to tables in the recent results on this topic |14,/19,23] and the references
therein.

The boomerang attack is a variant of differential cryptanalysis proposed by Wagner [21]. To
analyze this type of attack, Cid et al. [6] introduced the boomerang connectivity table (BCT). The
boomerang uniformity is defined as the maximum value among the nontrivial entries in the BCT.
This notion was originally defined in [6] for permutations over binary finite fields. Later, Li et al. |10]
extended the definition to functions that are not necessarily permutations, as follows.

Definition 1.2. Let F' be a function on Fyn. We denote Br(a,b) by the number of common solutions
(z,y) of the following system :

F(z) = F(y) =0b,
Fx+a)—F(y+a)=0.

Then the boomerang uniformity of F is defined by :

Br = max Br(a,b).

mbEF;n

For a survey of known functions with low boomerang uniformity, we refer the reader to [13]. For
functions with known boomerang spectra, see Table 1 of [12] and references therein.

Most known results on differential or boomerang uniformities, particularly those concerning dif-
ferential or boomerang spectra, have focused on power functions. Recently, however, several studies
have investigated the differential or boomerang properties of functions of the form

Fry(r) = 2" (1 4 ux(z)),

p"—1

where x(x) =2 2 is the quadratic character in Fp». The first result on functions of the above form
was introduced by Ness and Helleseth [15] that F3n_o, is an APN function over Fzn if x(u — 1) =
x(u+ 1) = x(u). Later, Zeng et al |27] generalized this result by showing that Fjn_s, is an APN
function over Fyn if x(u — 1) = x(u + 1) = —x(5u £ 3), where p" = 3 (mod 4).

Very recently, two independent studies have been published on the differential properties of
Fyn_g, in cases where it is not APN. In [23], Xia et al studied the differential uniformity of F3n_o,,
over Fgn, and investigated the differential spectrum of Fzn_g,, when x(u+1) = x(u—1). In [24], they
generalized their earlier results from [23] to the case where p” =3 (mod 4). On the other hand, Lyu
et al. [12] proved that Fpn_o,, is a differentially 4-uniform permutation over Fyn if x(1+u) = x(1—u),
where p"” = 3 (mod 4). Furthermore, they also showed that Fjn_g 11 is a locally-APN function with
boomerang uniformity at most 1, representing the first non-PN class whose boomerang uniformity
can attain 0 or 1. In particular, F3n_o 41 is locally-PN with boomerang uniformity 0 over F3». They
also investigated the differential and boomerang spectra of Fyn_s +1. Ren et al. [19] studied the
differential spectrum of Fpn_s,, when x(u — 1) # x(u+ 1).

Budaghyan and Pal [4] presented experimental results showing that several functions Fs,, are
APN. They also proved that the differential uniformity of F», is at most 5, and conjectured the



existence of an infinite APN subclass within this family. Unfortunately, this conjecture was disproved
by two studies [2,14]. Mesnager and Wu [14] showed that if p™ is sufficiently large, then the differential
uniformity of F5, is given as follows.

PUEL iy € {1,
5 if u e Fpn \U and x(u+1) = x(u—1),
op,, =14 if u € Fpn \U and x(u+1) = —x(u—1),
orp" =3 (mod 8),p# 3 and u € {31},
3 if p" =7 (mod 8) and u € {£3},

where

{0,+1} if p=3,
{0,£1,£1} ifp+#3.

In addition, they proved that F3 41 is locally-APN with boomerang uniformity at most 2, and further
investigated the differential spectrum of F5 +;. The differential spectrum of F3 41 was also studied
independently by Yan and Ren [26] using a different approach. More recently, Bartoli and Stanica [2]
disproved the conjecture of [4] via function field theory, and extended the nonexistence result to the
case of F3 .

In this paper, we study the differential and boomerang properties of the function F.,, in the case

P+l
T =
4 )

where p” = 3 (mod 4). It is known [8] that the power function F(z) = 2" is APN when pt =
(mod 8) and F(z) = x%x(a@) is APN when p" = 3 (mod 8). The differential spectra of the above

power APN functions were investigated in [20]. In contrast, it is also known [25] that F(z) = z" T

with p"” = 3 (mod 8) and F(x) = x#x(:v) with p” = 7 (mod 8) have differential uniformity at
most 4. The differential spectra of these non-APN power functions were later investigated in [1].
Since these power functions exhibit low differential uniformity in all known cases, it is reasonable to
expect that their linear combination Fpni1 -~ also possesses low differential uniformity. In this work,

4 b
+1X(1 - 'LL),

we show that Fiyni1  is a differentially 5-uniform permutation when x(1+wu) = (-1)" T
4 k)

and Fypry1  is differentially 4-uniform when x(1 + u) = (-1)" 4+1x(1 — u). Also, we show that
>
P45
if u = :|:1723T, then Fyrin  is a differentially 4-uniform permutation, when p" = 3 (mod 8).
4

Furthermore, we prove that Fpnq1 is locally-PN with boomerang uniformity 0 when p" = 3

s
(mod 8), and is locally-APN with boomerang uniformity at most 2 when p™ = 7 (mod 8). To the
best of our knowledge, this is the second known non-PN class with boomerang uniformity 0, and the
first such class over odd characteristic fields with p > 3. We investigate the differential spectrum

of Fyni1 We also study the boomerang spectrum of Fpniy and show that Fpnia 11 has
4 4 4

Sk
boomerang uniformity 2 if p™ # 7,31, when p” =7 (mod 8).

The remainder of this paper is organized as follows. Section [2| contains some preliminaries. In
Section (3], we study the differential and boomerang spectra of Fpni1 In Section EI, we study the

4

10
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differential uniformity of Fyni1 , where u € Fyn \ {£1}. Finally, we give a concluding remark in
4 k)
Section [l

2 Preliminaries

If F(x) = 2¢ is a power function, then b = F(z + a) — F(z) = (z + a)? — 2¢ is equivalent to
b d d
pri <£+1> - (£> =(y+ 1"~y
a a a

x
where the last equality is from setting y = —. Thus, we have
a

5F(a,b) = 5F (1, bd> , SO 5F = max 5F(1,b), (1)
a

bE]Fpn

in this case. In [3], Blondeau et al introduced a new notion locally-APN function when p = 2. In [9],
Hu et al. generalized the notion of locally-APN power function for all primes p, as follows.

dr(1,b0) <2 for all b € Fyn \ Fp. (2)

In [12] and [14], the authors discussed the locally-APNness of F}. +; when r = p"” — 2 and r = 2,
respectively. They defined that a function F' on Fy» is locally-APN if

dr(a,b) <2 for all a € Fjn and b € Fpn \ Fy, (3)

and claimed that F, 41 satisfy this property and hence it is locally-APN. Note that they actually
showed F, ., (a,b) < 2 for all a,b € Fjn. In our view, this definition is stronger than the original
definition (2). For example, if F(z) = z?"~! on Fon with n = 2 (mod 4) and n = 2m, then F
is locally-APN with 6z(1,1) = 4 (see Theorem 7 of [3]). By we can see that 4 = dp(1,1) =
5r(a,a®" 7). Since a®" 71 # 1 when a € Faon \ Fom C Fon \ Fy, we can see that F' does not satisfy
. This shows that extension of the definition locally-APNness for power functions to the case
of all functions needs to be made with more care.
However, we can naturally extend to functions satisfying the following conditions :

dr(a,b) = dp(1, ga(b)) for all b € Fpn, (4)
where g, permutes Fpn for each a € F}.. By , power functions also satisfy .
Definition 2.1. Let F' be a function on Fyn satisfying for every a € Fpn. Then,
e F is called locally-PN if 6p(1,b) <1 for allb € Fyn \ Fp.
e F is called locally-APN if 6p(1,b) <2 for all b € Fpn \ .

Note that F., satisfy (4] (see Lemma|2.3)) and the authors of [12] and [14] showed that F, ., (1,b) <
2 for all b € Fpn, when r = p" — 2 and r = 2, respectively. So, we can see that these results in [12]
and [14] are also valid under the above new definition for locally-APN functions. Furthermore, ac-
cording to [12], 6pn_, ,(1,0) < 1 for all b € F;n when p = 3, so we can say that F3n_g41 is a
locally-PN function on Fg» when n is odd.



Lemma 2.2 (Lemma 10 of [14]). Let a € Fy. and b € Fpn. Then, we have Jf, _,(a,—b) =
0F,.(a, (=1)""b) and Bp, _,(a,—b) = Br, . (a,(=1)"b), and hence F, and F,_, has the same dif-
ferential and boomerang spectrum.

Lemma 2.3 (Lemma 11 of [14]). Let a € Fjn and b € Fyn. Then,

5 . Sp . (1,2) if x(a) =1,
Fro(a,0) = OF,.. (17 (—1)%1& if x(a) = —1,
Br, (1,2) if x(a) =1,
b) = | '
Pr..(a.0) {ﬂFr,u (1, %) ¥xla)=-1.

It is known [12] that Fyn_o, is differentially 4-uniform permutation when x(1 + u) = x(u — 1).
In the following, we discuss on the condition that F,., is a permutation polynomial(PP).

Lemma 2.4 ( [18]). Let r,s be integers with s | p" — 1. Then, f(x) = z"h(z®) is a PP if and only
if the followings hold :

e ged(r,s) =1,
o g(z) = 2" (h(z))® permutes H = (g°), where g is a primitive element in Fpn.

Now we apply s = Z% and h(z) = 14+uz on Lemma Then, H = {—1,1} and g(1) = x(1+u)
and g(—1) = (—1)"x(1 — u). So, we have the following.

Theorem 2.5. If ged (r, pn2_1> # 1, then F,,, is not a PP. If ged (7‘, p"2_1) =1, then F,, is a PP
if and only if x(1 4+ u) # (—=1)"x(1 — u).

Note that I}, is a differentially 5-uniform permutation if x(1 4+ u) = x(u — 1), by the above
theorem and [14].

The following well-known lemmas are useful to compute the differential and boomerang spectra
of Fy.1. We denote Sy = {x € F)n : x(x) =1} and S; = {x € Fpn : x(x) = —1}. Moreover,

Soo ={x € Fpn 1 x
So1t ={x € Fpn : x
Sio={x €Fpn: x
Siu={xelFp:x

Lemma 2.6 ( [7]). If p" =1 (mod 4), then #Spo = 22 and #So1 = #S10 = #S11 = L2, If
pn = (mod 4), then #Soo = #SIO = #511 =2 ;3 and #S(]l = ﬁ%l

Lemma 2.7 (Theorem 5.48 of [11]). Let f(x) = a2 + a1z + ag € Fpn[z] with p odd and az # 0.
Put d = a? — 4apaz. Then,

—x(a2) if d # 0,
(p" —1)x(az) ifd=0.



Lemma 2.8 (Theorem 5.41 of [11]). Let ¢(-) be a multiplicative character of Fpn of order m > 1
and let f € Fyn[z] be a monic polynomial of positive degree that is not m-th power of a polynomial.
Let d be the number of distinct roots of f in its splitting field over Fpn. Then for every a € Fyn we
have

D wlaf(x)| < (d—1)vp".

JTEFpn

3 Differential and Boomerang Spectra when u = +1

Throughout the remainder of this paper, we fix

P41

p" =3 (mod4) and r = 1

and omit explicit mention of r unless necessary. For example, we write F}, instead of F' LRSI for
simplicity of notation. We also frequently use, without further mention, the identities x(2) = (=1)"
and 22" = z - x(x).

In this section, we study the differential and boomerang spectra of F}., when u = £1. By Lemma
[2.2] it is enough to consider the case u = 1.

3.1 Differential Spectrum of F} ;

In this subsection, we study the differential spectrum of F, ;. We desire to count the number of
solutions of
b=F(z+1)—F(z)=(z+1)"1+x(z+1)) —2"(1+ x(z)). (5)

Denote Dilj(b) be the number of solutions of (9] in S;; where i,j € {0,1}.

Lemma 3.1. We have \
3 ifb=0
Diy(b) =4 * ’
1(0) {O, otherwise.
Proof. If x € 511, then is equivalent to b = 0. By Lemma we have #S57; = #, which
completes the proof. ]

Lemma 3.2. We obtain

D&@):{L if x (0(b* +4)) =1 and x (b(b* — 4)) = -1,

0, otherwise.

Proof. If x € Sy, then becomes
b
2
If b = 0, then squaring on both sides of @ implies x + 1 = x, a contradiction. Hence, we have
D{(0) = 0. From now, we assume that b # 0. Then, () implies that

= (z 1) —a" (6)

2 1 ' T
b= G =@ (7)

6



From @ and , we obtain

. 1/2 b 4 -0 . 1/2 b 44 0v?
z _2<b_2>_ » o Wt _2<b+2>_ b )

Squaring on the both sides of , we have

(4—b?)? (4407  (4—1b%)?
o ez 0 T 1662 62 b (9)

we have x(z) = x(z + 1) = 1. Substituting (9) in (6) we have

(0% 4 4)* (0% —4)2\" (P44 b+ 4 b2 — 4\ b2 —4
( 1642 >_< 1642 >_X< 4b> 1b _X< 4b> 1b
b
VR

(x (b(B* +4)) — x (b(* +4))) + % (x (b(b* +4)) + x (b(0* +4))) (10)

One can easily verify that holds if and only if x (b(b2 + 4)) =1 and x (b(b2 — 4)) = —1, while
all other cases lead to a contradiction. O

Lemma 3.3. Let b # 0. Then,

piy = 1 X®) = —x(D) and x (b +4) = -1,
0  otherwise,

D%O(b) _ 1 if x(b) = x(2) and x (62 — 4) =1,
0 otherwise.

Furthermore, has at most one solution in Sp1 U S1o.

Proof. 1If x € Sp;, then becomes b = —2a", which is equivalent to

b
T =, 11
o =2 (1)
Squaring on the both sides of , we have
b2
= 12
z=" (12
Substituting (12]) to , we have
b_ (VN (P).b
o~ \4) ~*\2) 2
which is equivalent to x(b) = —x(2). S1nce r+1= b—+4 we have has one solution in Sp; if and

only if x(b) = —x(2) and x (b +4) =
The proof for Di,(b) is similar with D(ln(b), and we omit here. Since x(b) = x(2) and x(b) = —x(2)
cannot hold simultaneously, has at most one solution in Sp; U S1g. ]



For any function F satisfying (4), the differential spectrum of F is defined to be the multiset
DSp ={w; : 0 <i<Jp}, where

w; = #{b € Fpn : 5F(1, b) = Z}

The following identity for the differential spectrum is well-known :

23 23
Zwi:Zi-wi:pn (13)
=0 i=0

The following lemma is used in our maim theorem of this subsection to compute the differential
spectrum of F..

Lemma 3.4 (Lemma 7 of [14]). If p" =3 (mod 4), then
Z x(zt—1)=-1.
CCEFPn
Now we are ready to prove the main theorem of this subsection.

Theorem 3.5. If p" = 3 (mod 8), then F,; is locally-PN, and the differential spectrum of F,1 is
given by
pt—3 w 3p" —1 1
= W pn == .
I 4

If p" =7 (mod 8), then Fy; is locally-APN, and the differential spectrum of Fy.; is given by

IDSFT’1 = {wo =

pt—3 w:p"+5 w:ﬁw”lzl
g 1 g4 2 g e '

l)SFr’1 = {a)() =

Proof. When x = 0, we have b = 2 from . When z = —1, we have b = 0 from .
By Lemmas and we have D{,(2) = D};(2) = Di,(2) = D}(2) =0, so

0r,,(1,2) = 1.

Similarly, we have D},(0) = D};(0) = D},(0) = 0 and D};(0) = pn4_3. So,

pr—3 P41
1= :
" 4

If b #£ 0,2, then has a solution in Spg U Sp1 U S19. By Lemma has at most one solution in
Soo- By Lemma has at most one solution in Sp; U S19. Thus, has at most two solutions in
Soo U So1 U S1o, and hence we have 6, , (1,b) < 2 when b ¢ {0,2}. Therefore, we have dr, , (1,b) < 2
for all b € Fn and hence F;; is locally-APN.

If p" =3 (mod 8), then x(2) = —1. We show that if () has a solution in Sp; U Sio then has
no solution in Spo. If D§;(b) = 1, then x(b) = 1 and x(b*> +4) = —1 and Di,(b) =0, by Lemma
Then we have x (b(b* + 4)) = —1, and hence Dj(b) = 0 by Lemma Similarly, we can show that
if Diy(b) =1 then D§y(b) = D¢;(b) = 0. Therefore, we have o, ,(1,b) < 1 for all b € Fyn in any

cases, and hence F;. 1 is locally-PN. Applying Wpn1 = 1on , we have w; = 32 7;_1 and wy = 73721—_3.

6F’r,1(170) - #Sll +1=

8



If p" =7 (mod 8), then x(2) = 1. By Lemma[3.2] and Lemma 3.3 §7(1,b) = 2 if and only if one
of the following conditions holds

X(b) = =1, x(b* +4) = —1, x(v* —4) =1,
x(0) =1, x(0* +4) =1, x(b* —4) = —1.

By Lemma we have

Y x@t-16)= Y x(<g>4—16> => x(yigl) = Y xy'-n=-1 (14

z€F,n yEFyn yEFyn yEFyn
Moreover,
Yo x(@£4) = x(-v((w?£4)=- 3 x*£4)=- > x(z(*£4))
z€F,n yEFn yEFn z€F,n

implies that

Z X (z(2* £4)) =0.

IG]Fpn

wy = é > (= x(@)(1 = x(2® +4)(1+ x(2” = 4)) + 1+ x(x)) (1 + x(2® +4))(1 - x(2® — 4)))
2€F,n\{0,42}

= é > (24 2x (2(2® +4)) — 2x (a(a? — 4)) — 2x (&% + D) (a? —4))) — 1
z€F,n

> (- x(t) 1=

.IEFPTL

e

Applying Wpni1 = 1 and we = pn4—_3 on , we have w = % and wy = Z%. We complete the

proof. O

We confirm that the above theorem is true for 7 < p™ < 100000 via SageMath. Table [I| describes
DSF,, for p™ < 200, which is consistent with the result established in Theorem Note that Fj.;
has the same differential spectrum with F3n»_5 1, when p = 3.

3.2 Boomerang Spectrum of F, ;

In this subsection, we study the boomerang spectrum of F, ;. We consider to find the number of
common solutions (x,y) of the following system.

{ﬂa+xw»—yu+x@»=a

e+ 17 (4 x(@+ 1) — (5 17 (L +x(y+1) = b (18)

Theorem 3.6. If p" =3 (mod 8), then Br, ,, = 0.



p" DSF, p" DSF,

3 {(JJ1:3} 7 {WOZQ, w1:3, w2:2}

27 {wo = 6, w1 = 20, wr = 1} 23 {wo = 10, w1 = 7, Wy = 5, We = 1}
11 {wo =2, w1 =8, wg =1} 31 {wo=14, w1 =9, we =7, wg =1}
19 {(.U() = 4, w1 = 14, W5 = 1} 47 {wo = 22, w1 = 13, Wy = 11, w12 = 1}
43 {wp=10, w1 =32, w1 =1} | 71 {wo =34, w1 =19, wy =17, wig =1}
59 {wg = 14, w1 = 44, w15 = 1} 79 {OJO = 38, w1 = 21, Wy = 19, Wwon = 1}
67 {w() = 16, w1 = 50, w17 = 1} 103 {wo = 50, w1 = 27, Wy = 25, Wo6 = 1}
83 {wo = 20, w1 = 62, w91 = 1} 127 {OJO = 62, w1 = 33, Wy = 31, W32 = 1}
107 {w() = 26, w1 = 80, Wor = 1} 151 {wo = 74, w1 = 39, Wy = 37, w3g = 1}
131 {wo == 32, w1 = 98, w33 — 1} 167 {wo == 82, w1 = 43, wWo = 41, W42 = 1}
139 {wo = 34, w1 = 104, w35 = 1} 191 {w() = 94, w1 = 49, Wy = 47, w48 = 1}
163 {wo == 40, w1 = 122, w41 = 1} 199 {wo == 98, w1 = 51, W = 49, W50 = 1}
179 {wo = 44, w1 = 134, W45 = 1}

Table 1: Differential spectrum DSE, ; when p™ < 200.

Proof. By Lemma it is enough to only consider the case u = 1. Suppose on the contrary that
there is a solution (x,y) = (xo,yo) of with g # yo and b # 0. Since

Fr1(wo) — Fra(yo) = Fra(wo + 1) — Fri(yo + 1) = b, (16)

we have
Foi(vo+1) — Fra(zo) = Fra(yo + 1) — Fru(yo)-

Hence z¢ and yp are two distinct solutions of F.i(z + 1) — F,1(x) = ¢ for some ¢ € Fyn. By
Theorem 0r.,(1,¢) > 1 implies ¢ = 0. According to the discussion in Section we obtain
x0, Yo € S11 U{—1}. Then, we have

Fri(zo) = Fra(zo+1) = Fr1(yo) = Fra(yo+ 1) = 0.

and hence b = 0 by , a contradiction.

Therefore, there is no solution of (15]), and hence 8, , = 0. O
In the rest of this subsection, we study the boomerang spectrum of Fj.;, when p™ =7 (mod 8).

Denote B;j;(b) be the number of solutions of in S;; x Sy where i, j,k,l € {0,1}.

Lemma 3.7. Let b € Fy.. Then, there is no solution of satisfying x € S11 U {0,—1} or
RS S U {0, —1}.

Proof. We only show that there is no solution with x € S1; U {0, —1}. To show that there is no
solution with y € S1; U {0, —1} is similar.

Suppose on the contrary that there is a solution (z,y) of such that x € 511 U{0,—1}. Then,
Fr1(z) = Fy1(x 4+ 1) =0, and hence is reduced to

—y"(1+x(y) =-@+1)"(1+xy+1) =b. (17)

10



If y € Spo, then leads to y" = (y + 1)", which implies y = y + 1, a contradiction. If y & Spo,
then we have F,1(y) = 0or Fr1(y+1) =0,s0b=F(z) - F(y) = Flz+1) - F(y+1) =0, a
contradiction. Therefore, there is no solution of satisfying « € S1; U {0, —1}. O

Lemma 3.8. Let b € F;n Then, Bogoo(b) = BQlOl(b) = BOllO(b) = BlOlO(b) = BlOOl (b) =0.

Proof. If (x,y) € Spo x Soo, then equations in are reduced to

2¢" —2y" = b,
2@+ 1) —=2(y+1)" =b.

which implies that 2" —y" = (x + 1)" — (y + 1)". Multiplying (z" +y") ((x +1)" + (y + 1)") on the
both sides of the last equation, we have x = y or 2" +y" = (x+1)"+ (y+1)". If z = y, then we have
b =0, a contradiction. Combining 2" —y" = (z+1)" —(y+ 1)  and 2" +y" = (z+1)"+ (y + 1)",
we obtain 2" = (z +1)" and y" = (y + 1)", which implies x = z + 1 and y = y + 1, a contradiction.
If (x,y) € So1 x So1, then the second equation in are reduced to b = 0, a contradiction.
Hence there is no solution of in Sp1 X So1.
If (z,y) € So1 x Sho, then equations in are reduced to

2z = b,
{—Q(y +1)" =0, 1e)

and hence 22" = —2(y 4+ 1)" = b. So, we have <y7_s_1>’" = —1. However, we have

e {(5))- G - () -

a contradiction. Hence, there is no solution of in Sp1 X S1o.
The pI“OOf for BlOOl (b) =0and BlOlO(b) =0 are very similar with B0110(b) =0and B0101 (b) = O,
respectively, and we omit here. O

By Lemma and Lemma (3.8), we obtain
BF,, (1,b) = Booo1(b) + Boo1o(b) + Boioo(b) + Biooo(b)- (19)

Lemma 3.9. Let p" =7 (mod 8) and b € Fy.. Then,

1oifx(b) =1, x(b> —4) =1, x(b— (b* —4)") = -1,
Boooi1(b) = .

0 otherwise,

1 if x(b) = =1, x(b* —4) =1, x(b+ (0> —4)") =1,
Boioo(b) = .

0 otherwise.

Proof. If (x,y) € Spo x So1, then equations in are reduced to
" — yr _ %
(z+1) =25
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From the second equation, one has z = (x + 1) — 1 = ﬁ —-1= . Hence, x(z) = x(x +1) = 1if
and only if x(b) = x(b*® — 4) = 1. By multiplying =" + y on the both sides of the first equation one

has 5
‘s T _ =

which implies 22" = % + %(az —y). Hence, one gets a unique
b2 T_2b2—4—b(b2—4)’”_(b—(b2—4)’">2

Ry v g
g Troh 1 2

x—y),

and y+1 = 7( — (b2 —4)"). Since (%) =1, one gets x(y+1) = —1if and only if x(b— (b*>—4)") =1
The proof for Bpigo(b) is very similar with Bggo1(b), and we omit here. d

Lemma 3.10. Let p" =7 (mod 8) and b € Fy.. Then

1 if x(0® —4) =1, x(b* +2b) = —

) (20)
0 otherwise.

Booo1(b) + Booo(b) = {

Proof. Since x(b+ (b*> —4)")x(b — (b*> — 4)") = x(4) = 1, the result of Lemma is summarized as
follows.
Lif x(0® —4) = 1, x(O)x(b+ (b* —4)") = —1,

) (21)
0 otherwise.

Booo1(b) + Boioo(b) = {

Assume that x(b? —4) = x(b+2)x(b—2) = 1. Then, x(b+ 2) = x(b — 2). Observe that
(b+2)"+ (-2 =2(0b-x(b+2)+ (> —4)").
Since x(2) = 1, if x(b+2) = 1 then we have x(b+ (b> —4)") = 1. If x(b+ 2) = —1, then we obtain
X(b+ (87 = 4)7) = x(b— (47 — 4)") = —x(—b+ (2 —4)") = 1.
Therefore, we have (b + 2) = x(b + (b*> — 4)"), which completes the proof. O

Lemma 3.11. Let p" =7 (mod 8) and b € Fy.. Then

1oifx(b) =1, x(0> +4) =1, x(b— (b* +4)") = -1,
Boo1o(b) = ‘

0 otherwise,

Lifx(0) = -1, x(t? +4) =1, x(b+ (b* +4)") = 1,
Biooo(b) = ‘

0 otherwise.

In particular, we have Boo10(b) + Biooo(b) < 1.

Proof. If (x,y) € Soo x S10, then equations in are reduced to



From the first equation, one has x(b) = 1 because x(x) = 1 = x(2). Also, since z+1 = %4— 1 = b22'4,
one gets y(b* +4) = 1 because x(z + 1) = 1. From the first equation, one has = % and

r+1= % +1= baT‘M. Hence, one gets x(z) = x(z + 1) = 1 if and only if x(b) = x(b* +4) = 1. By
multiplying (x 4+ 1)" 4 (y + 1)” to the second equation, one has

(4 1)+ (g + 1) = 2 (2~ ),

which implies 2(z + 1)" = £ + Z(z — y). Therefore one gets a unique y = % +z—-blx+1) =
b(b— (b® +4)"). Using x(y) = —1 and x (4) = 1, one gets (b — (b* +4)") = —1.
The proof for Bigoo(b) is very similar with Byg10(b), and we omit here. O

Lemma 3.12. Let p" =7 (mod 8) and b € Fy.. Then

Loifx(+4) =1, x2+ > +4)7) =1,

0 otherwise.

Boo10(b) + Biooo(b) = { (22)

Proof. If x(b® +4) =1, from 1 = x(4) = x{((b*> + 4)" + b)((b> +4)" — b)}, one gets
X((0% +4)" +b) = x((b* +4)" —b).

Letting a = (% +4)" + 2,8 = (b*> +4)" — 2, one has x(a)x(8) = x(b?) = 1, ie., x(a) = x(B).
Therefore from

(@ +B")? = x(a)a + x(8)B + 2x(b)b = x(a) - 2(b* + 4)" + 2x(b)b,

one always has 1 = x (x(a)(b* +4)" + x(b)b) = x(a)x ((b* +4)" + %b). That is, by recalling

a = (b®+4)" +2, one has x((b> +4)" +2) = x((b* + 4)" £ b) independent of the sign of x(b). O
Lemma 3.13. Let p be an odd prime such that x(—2) = —1 and let g(z) = 2> + az + 3a* € Fyn[2]
with a # 0. Then,

> xlzg(x) = 0.

:L‘E]Fpn

Proof. Letting | = erFpn x(zg(z)),

9(@) 9(z)
1= Y o) = ¥ (20 =x0 ¥ (1)),
z€F*, z€F?%, z€F*,
p p p
9(z)
cr
g(z) — ctx = 2 + (a — ct)z + $a®. Denoting the discriminant of the quadratic equation as D(t) =

(a—ct)? - %aQ = 2t? — 2act + %aQ, it is easy to see that the number of solutions x satisfying % =

is given as 1 + x(D(t)). Therefore,

I=x(0 ¥ x (9(”3)) — (0 3 (14 x(DE) x(t) = x(0) 3 x(DH)()

zeF* cr teF n teF n
pn P P

where ¢ € F), will be determined soon. Writing ¢ = one has an equivalent expression 0 =

= 3 x()x <c2t2 ~ 2act + ;a2> =0 3 x()x <t2 _2a, “2> .

c 2¢2
tG]Fpn tE]Fpn
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Finally, putting ¢ = —2, one gets

1= x(-2) 3 (O (£ bt + ga?) == 3 xteg(o)) = -1

tGFpn
which shows [ = 0. O

Remark 3.14. The above lemma, as well as Lemma is closely related to the so-called su-
persingular elliptic curves over Fpn (see Section 4.6 in [22]), which also have wide applications in
post-quantum cryptography [16] through the use of isogeny problems between supersingular elliptic
curves. An elliptic curve E over Fpn (with p an odd prime) is a nonsingular curve of genus one and
can be written in the form E: y* = f(z), where f(z) = 2+ asx® +a1x+ag is a cubic polynomial over
Fpn with nonzero discriminant. There are many equivalent definitions for when E is supersingular,
one of which states that E is supersingular if and only if Z X(f(x)) =0 (mod p). In this context,
z€F,n

Lemma implies that the curve y*> = x (ZL'Q + ax + %az) (with a € Fpn ) is supersingular when
p" =5,7 (mod 8).

Furthermore, the result of Lemma arises from the well-known supersingular elliptic curve
E:y? = 2(z® + ) (see Proposition 4.37 in [29]), since the curve C: y? = x* — 1 is birationally

equivalent to E via the map (z,y) — (g—ﬂ, (rziyl)g) As the transformation x — ””‘*‘ 18 a permutation

on Fpn \ {1}, we easily obtain

S xet - =Ykt - 1) =Y vee ta) = [ 3 vee® +a) | - x@) = -1,

2€F n z#1 r#1 2€F n
where the supersingular property of E is used in the final equality.
Lemma 3.15. If x(—2) = —1, then
Z x(z? 4+ Dx(z? — 622 +1) = —1.
2€Fn

Proof. Letting u = x2,

Z x(@? 4+ Dx(z* —622+1) =142 Z x(u+ 1)x(u? — 6u+1)

zEFpn x(u)=1,u€F%y,
=1+ > (I+x(u)x(u+1)x(u® - 6u+1)
ueF;n
=14 > xwt Dy = 6u+ 1)+ Y x(u?+u)x(u? — 6u+1)
ueIF;n UGF;n
1+ Y e Dx@ —6ut D)+ S x (=) x (-6 +1
u? u
u€R%, ueks,
:1+QZx(u—|—1)X(u2—6u—|— :—1+22 (u+1)x(u? — 6u +1).
u€k?, u€F,n

14



By Lemma |3.13| with a = —8§,
St Dx—6ut1) = 3 @t -8z +8) = 3 x(ag(a) =0,

uEIFpn CCE]Fpn :CE]Fpn
where x = u + 1, which completes the proof. O
Lemma 3.16. Let p" =7 (mod 8). Then,

Yoo x(+E+D) = Y x@-DxA+ @ +1)7) =1,

x(z?+1)=1 x(z24+1)=1
CCE]Fpn xern
Z x@2+o)xA+ @@+ == -1+ Z (z* = 1)x(z% — 22 — 1)
x(z24+1)=1 z€F,n

Z‘G]Fpn

Proof. Let S = {x € Fpn : x(2® +1) = 1}. Then, for each = € S, there exists y € Fj. such
that y? = 22 + 1. Since 1 = y? — 2% = (y +2)(y —2), if t = y + 2, then 1 = y — z, and hence
z=3{(y+z)—(y—2)} =3 (t—1). Because z = % (t — 1) if and only if t> — 22t + 1 = 0, a map

tl—>1t !
2 t

is a 2-to-1 map from F. to S.
If z = % (t— %), then

1+(x2+1)r:1+(1+;<t_1>2>7":1+<; (t+1>)2r:1+;(t+1>x<;
() e () ) =i () (o ()

x (14 (z?+1)") :X<21t>x(t+llt> = x(t*+1).

Therefore, by Lemma

Hence,

ZX(1+(:E2+1)T):% 3 x(1+t2):% S X+ — (1) | =1

€S te]F;n teF n

Similarly, we apply =z = % (t — %) for the second identity,

2
S - Dy + ) =1 Y (i (t— 1) - 1) A +1)

eSS te]F;n

—6t2+1
fz <+>X(t2+1) -1+ D x@@+Dxt =6 +1) | = -1,

tGIF* teF,n
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where the last equality is from Lemma [3.15
Applying the same substitution for the third identity,

> x(@)x(z +1) (1+(x2+1)r):;Zx(t—1>x<t—1+2>x(t2+l)

€S tGF;n

72 Y +2t— x> +1) == —1+Z )x(t2 42t — 1)
tEIF* teF,n

1 4 2
=3 —1+ > x( -y -2t —1) |,
tGFPn

where the last equality is from replacing t by —t. O
Replacing x by § in Lemma we have

Yo o x@+@EP+Y) = > x@+ @+ )x@ -4 =—1,  (23)

x(x24+4)=1 x(z24+4)=1
a}EFPn Z‘G]Fpn
1
> X(x2+2:v)x(2—|—(x2—|—4)r):§ 14 ) x@'=x@?-22-1)]. (29
x(z?+4)=1 z€lFpn

mGFpn

Applying Lemma the boomerang spectrum of F' is defined to be the multiset BSr = {v; :
0 <i < Bp}, where
vi = ##{b € Fpn : Bp(1,b) = i}.

The following identity for the boomerang spectrum is well-known :

Br
Z vi=p"—1. (25)
i=0

Now we are ready to show the boomerang spectrum of F; 1, when p"” =7 (mod 8).

Theorem 3.17. Let p" =7 (mod 8). Then, the boomerang spectrum of Fy. 1 is given by

BS 9(p™ + 1) +40 3p" — 13 — 4T pt4+1+40
= vny=———————— = VvV = —-
Frq 0 16 ) 1 ] ) 2 16 ’
where I = E x(x(z? — 2z — 1)). Furthermore, vy > 0 if p™ > 790.

x(x)#x(a*~1)
{EEFpn

Proof. We denote

g1(z) = z? — 4, g2(z) = z? + 2z, g3(z) = z? 4 4, ga(z) =2+ (:c2 +4)".
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By Lemma and , we have

Yo Xgi@) = ) xle@) = Y xlgs(@) = Y x(gi(@)gs(@) =1, Y x(91(2)ga()) =

CCE]Fpn xE]Fpn Z‘E]Fpn CEEFpn CCE]Fpn

It is easy to see that

> x(gi(@)g2(z)gs(@) = Y x((@® —4)(2” +22)(2° +4)) = 1+ Y x((&® — 22)(a? +4))

z€F,n z€F,n z€F,n
:—1+Z ((v* +2y) (% + 4)) _—1+Z
x€F,n x€F,n

Using a similar approach,

Y X(gi(@)g2(x)ga(x)) = —x(1+27) + Y x(g2(2)ga(2)),

z€Fyn T€F,n
> X(g1(@)g2(2)gs()ga(x)) = —x(1+27) + D> x(ga(2)g3(2)ga(x)).
z€F,n z€F,n

By and , we have
> x(m@) + D xlgs@)ga@) = > x(g1(@)ga(x) + > x(g1(2)gs(x)ga(x)) = -2,

z€F,n z€F,n z€F,n z€F,n
3 x(@@)g(@) + Y xlga(2)gs(@)ga(@) = 1+ Y x(@! = Dx(a® - 22 - 1).
z€F,n z€F,n z€F,n

Letz:xx(;ﬂiﬁ). Then z = 1 if and only if z = 2. If 2 # 1 then (2 — 1)2? — 22 + 42 = 0. The

discriminant can be computed as (—2)? — 162(z — 1) = 4(1 + 4z — 422). Hence,

Y Xe@)gs(2) = Y x@@+2)@+4) =1+ Y xlz(z+2)(=" +4))

z€F,n x€Fpn zeFn\{2}
=1+ Y (A +x(1+4z-42%)) = -1+ > x(2(1+4z — 42%))
2€F,n\{1} 2€F,n
=-1+4 Z w(l + 2w —w?) = -1 — Z x(w(w? — 2w — 1)).
’LUG]F ’we]Fpn
We denote
Ay ={z € Fjn : Booo1(z) + Boioo(z) = 1} = {z € Fjn : x(g1(2)) = 1, x(g2(x)) = —1},

Az = {x € Fpn : Boo1o(z) + Biooo(7) = 1} = {z € Fjn : x(93())) = x(94(x)) = 1}.

17

—2.



Then, using the above identities,

vy =#(A1 N Ag) = % Yo A+ x(@))(A = x(g2(2))) (1 + x(g3(2))) (1 + x(9a()))

vEFs, \{£2}
:pn_3+1 Z x(x(z? =2z —-1))+1— Z x(zt —Dx(z? — 22 — 1)
16 8
CCE]Fpn xE]Fpn
Pl 1 ) P+ 1 44T
- ° o)) =T TR
5 T3 2. Xe@-2-1) 16
x(@)#x(z1-1)

Also, from the previous results, we obtain

1 "+l
#A=1 Y (@) - o) =,
2€F,n\{0,+2}
1 t-T
#Az =7 D (L x(gs@) (1 + x(ga(@)) =
:cE]F;n
Hence,
v =#((A1U A2) \ (A1 0 4y)) = #A1 + #4; — 21
pPrAl ph T <p"+1+4r> 3p" —13 — 4T
4 4 16 8
By ,

9(p" 4 1) 4 4T

w=p'—-1l—-1vn—v = 16

By Lemma [2.8] we have

=] 3 Ma@® =20 - 1) = 3 x(@' = Dx(a?+ 20— 1) -1

$EFPTL xEFPn

< Z x(z(2? — 22 —1))| + Z x(zt = Dx(z? + 22— 1) +1

IE]FPTL xE]Fpn
<27+ 5Vpt+ 1 =Ty + 1.
Hence, —7/p" — 1 <TI' < 7,/p" + 1. Therefore, we have

:p"+1+4F >p”—28\/p”73
16 - 16 )

We can check that p” — 28,/p™ — 3 > 0 if p™ > 790, via SageMath. O

V2

We confirm that the above theorem holds for p" < 10000 via SageMath. Table [2 presents BSF, ,
for p” < 790, which is consistent with the result established in Theorem [3.17 Combining these
results, we conclude that Sr, , = 2 for all p” =7 (mod 8), except for p” = 7 and 31.
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Pt T BSF,, Pt T BSr,,

7 2 {vo=4, v, =2} 343 10 {wp = 196, vy = 122, vy = 24}
23 {vo=14, 1, =6, 1, =2} 31 -8 {vo =16, 1, = 14}

47T 4 {vo=28, 1y =14, 1,=4} |71 6 {vo =42, 1y =22, 1, =6}
79 -4 {wy=44, 1, =30, ry=4} | 103 —4  {y =58, 1 =38, 1, =6}
127 16 {w=76, 11 =38, 1ro,=12} |151 2 {vy =86, v1 =54, v, =10}
167 —10 {rp =92, 11 =66, 1, =8} | 191 —16 {vp =104, v; =78, vy = 8}
199 -2 {w=112, 1y =74, 1, =12} [ 223 24 {y =132, vy =70, 1, = 20}
239 —12 {vy =132, 11 =94, 1, =12} | 263 6  {v =150, v, = 94, vy = 18}
271 —4  {yy =152, 11 =102, vy =16} | 311 —14 {yy =172, vy = 122, vy = 16}
3959 —2 {I/(] == 202, V1 = 134, V9 = 22} 367 4 {VO == 208, VG = 134, V9 = 24}
383 —16 {rvp =212, 11 =150, vy =20} | 431 52 {vy =256, v = 134, vy = 40}
439 18 {wy =252, vy =154, vy =32} | 463 —20 {vp = 256, v = 182, vy = 24}
479 —40 {v =260, vy =198, vy =20} | 487 —10 {vp =272, 1) = 186, vy = 28}
503 10 {up =286, 11 =182, vy =34} | 599 —6 {vy =336, vy = 226, vy = 36}
607 —40 {vo =332, v; =246, vy =28} | 631 —22 {vy =350, v = 246, v = 34}
647 6 {1 =366, 1, =238, vy =42} | 719 12 {yy =408, v = 262, vy = 48}
727 —6 {l/(] = 408, vy = 274, vy = 44} 743 22 {Vo = 424, vy = 266, Vo = 52}

\V)

Table 2: Boomerang spectrum BSF, ; when p" < 790 with p" =7 (mod 8).

4 Differential Uniformity when u # +1

In this section, we study the differential uniformity of F,.,, when u € Fy. \ {1, —1}. In this case, we
consider to find the number of solutions of

b=Fy(z+1) - Fulz)=(z+1)"(1+ux(z+1)) —2"(1+ux(x)). (26)
Denote D} (b) be the number of solutions of in S;; where ¢,j € {0,1}.
Lemma 4.1. Let u € F} \ {£1}. Then dF, ,(1,0) < 2.

Proof. If x = 0, then implies b = 1 + u = 0, which contradicts to u # —1. If x = —1, then
implies b = (—1)"(1 — u) = 0, which contradicts to u # 1. Hence, z = 0, —1 are not solutions of (26).
If £ € Spp U S11, then is equivalent to (z + 1)” = z”. Squaring on the both sides, we have
x + 1 =z, a contradiction. Thus, Dg,(0) = D},(0) =0
If x € Sp1, then implies

I4+uwz"=1—-u)(xz+1)".
Squaring on the both sides of the above equation, we have
(14w = —(1 — w)(z + 1),

(1-u)?

which implies z = — (a7 Hence, D (0) < 1. Similarly, we have Dj;(0) < 1.
Therefore, we obtain dr, , (1,0) = Dg,(0) + DY,(0) + Dg;(0) = D{y(0) < 2, which completes the
proof. O
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From now, we consider the case that b # 0.
Lemma 4.2. Let u € Fjn \ {£1} and b € Fn. Then,

Laf x((L+u)? +0%) = x((1+u)? =) = x(2b(1 + u)),
0  otherwise,

Dgo(b) = {

w1 i x((Q=w)? +07) = x((1 —u)* = b?) = —x(b(1 — u)),
i (0) = 0 otherwise.

Proof. If x € Spg, then is equivalent to

= " —a". 2
R (RN @)
Multiplying (z + 1)” 4+ z" on the both sides of (27), we have
1
—Zu =(x+1)" +z".

Hence, we obtain

T_1(1+u b >_(1+u)2—b2

2\ b 1+4u 2b(1 +u) ’

(x+1) =

1 1—{—u+ b\ (1+u)?+0b?
2\ b T+u)  26(1+w)

Squaring on the both sides of the above equations, we have

(1 +u)? —b%)? P (4w’ 4092  ((L+u)?—b%)°

_ 1 -
TS ez 0 @Y A62(1 + u)? 62(1 + u)?

+1,

so that x(z) = x(x + 1) = 1. We substitute z = zgyp = % to

1+u)? + 62"\ 1+ u)? =)'
(oo +1)" — g0 = <((4b2(1)+u)2) ) - <((4b2(1)+u)2) )

4w+ (4w’ +0*\ (Q4w)? -0 ((1+u)?® -
T 20(1 +u) ( 2b(1 + u) >_ 2b(1 + u) ( 2b(1 + u) )

14w (14 u)? + b2 B (14 u)? -2
2 \ M2 1) 2 )
b (1 4+ u)? + b2 (14 u)? —v?
+ x|+t Xx| .
2(1+u) 2b(1 + u) 26(1 + w)
We can see that xqg is a solution of if and only if

X((14u)? +b%) = x((1+u)* = %) = x(2b(1 + w)).
The proof for DY, (b) is similar with D,(b) and we omit here. O

or equivalently,
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Lemma 4.3. Let u € Fjn \ {£1} and b # 0. Then, D (b) < 2. Furthermore, Dg;(b) = 2 if and
only if x(b* +2(1 + u?)) = —1 and

X(b(1 —u) + (1 +u)Ry) = x(b(1 — u) — (L +u)Ry) = x(1 +u?),
X(O(1+u) + (1 —u)Ry) = x(b(1 +u) — (1 —u)Ry) = —x(2(1 + u?)),

where Ry = (b* + 2(1 + u?))".
Proof. If x € Sp1, then is equivalent to
b=1—-u)(z+1)" — (1+u)z". (29)
Multiplying (1 — u)(z + 1)” — (1 + u)z" on the both sides of (29), we have
b(1 —u)(z+1)" +b(1 +u)z" = —2(1 +u?)z — (1 —u)?.
Subtracting b times from the last equation, we obtain
2b(1 + u)z" = —2(1 4+ u?)z — ((1 — u)? + b?).

Squaring on the both sides of the above equation, we have the following quadratic equation

2

0=4(1 +u?)%2? + 4z (—2ub® + (1 — w)* (1 +u?)) + (> + (1 —w)?)". (30)

Thus, we have D (b) < 2. The discriminant of is
4 (=2ub® + (1 — w)*(1+u?)? —4(1 + )2 (0 + (1 — uw)?)?

=4 (4u?b* — 4u(1 — u)*(1 + u?)b? + (1 — w)* (1 + u?)?) — 4(1 +u?)? (b +26%(1 — u)* + (1 — u)?)
= —4(1 —u®)?p* — 8(1 — u?)*(1 + u?)b* = —4b*(1 — u?)? (b* + 2(1 + u?))

So, has two solutions if and only if
X (b? +2(1+u?)) = —1.
If then, two solutions are

2 (2ub? — (1 —u)?(1 +u?)) +2be(1 —u®)R1  (b(1 +u) + e(1 — u)Ry)?
wor = 4(1 4+ u?)? B 4(1 + u?)? ’ (51

where € € {1,—1}. Then, we have

L 2 (2ub® + (1+w)?(1+u?) +2be(l—w? )R (b(1—u) — (1 + u)Ry)*
rorT = A1 + u2)? - A1+ u2)? '
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We can see that x(xp1) = 1 and x(xo1 + 1) = —1. We substitute x = z¢; in the right hand side of
(29,

2\ " o\ 7
(1—w@m+1r—u+un&:(ywo(JMl_m_€u+wR”) —u+u)C““*W+dl—WRﬁ>

4(1 + u?)? 4(1 4 u2)?
= e ()
- ()
et (Cor0-os (M) e (M)
-y (o (U ) ().

One can easily verify that the above equation holds if and only if

b(l—u)—e(l4+u)R . b(l+u)+e(l—u)R
( 2(1+u?) 1):“”’X< 2(1+u?) 1>:_L

while all other cases lead to a contradiction. O

Lemma 4.4. Let u € Fjn \ {£1} and b # 0. Then, DYy(b) < 2. Furthermore, Diy(b) = 2 if and
only if x(b* —2(1 +u?)) = —1 and

X(b(1 = u) + (L +u)Ry) = x(b(1 —u) — (1 + u)Ry) = —x(1 + u?),
X(b(1+u) + (1 —u)Ry) = x(b(1 +u) — (1 —u)Ry) = x(2(1 4 u?)),

where Ry = (b — 2(1 + w?))". In particular, if b*> € {(1 + u)?, (1 — u)?}, then DY (b) < 1. If
D% (1 +u) =1, then x(2(1 +u?)) = x(u). If DY ((=1)" (1 —u)) =1, then x(2(1 + u?)) = —x(u).
Proof. 1If x € Syg, then is equivalent to
b=1+u)(z+1)"— (1 —u)x" (32)
Multiplying (1 + u)(z 4+ 1)" + (1 — u)z" on the both sides of (32), we have
b(14u)(z 4+ 1)" +b(1 —u)z" = 2(1 + u?)z + (1 +u)?.
Subtracting b times from the last equation, we have
26(1 —u)z” = 2(1 +u?)x + (1 +u)* — b2

Squaring on the both sides of the above equation, we have the following quadratic equation

0= 4(1 + )% + da (—2ub® + (1 + w)>(1 + u?)) + ((1 + u)? —b?)°. (33)
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Thus, we have D, (b) < 2. The discriminant of is

4(=2ub® + (14 uw)2(1 + 1) — 401+ u2)? (=0 + (1 + w)?)
= 4 (4u*b* — 4u(1 +u)* (1 + u?)b? + (L +u)* (1 +u?)?) — 4(1 +u?)? (b* — 26%(L + u)? + (1 + u)?)
= —4(1 —u®)?b* + 8(1 — u?)*(1 + u?)b* = —4b*(1 — u?)? (b* — 2(1 + u?))

So, has two solutions if and only if
X (b* —2(1+u?)) = —1.
If then, two solutions are

b 2 (2ub® — (1+u)*(1+u?)) +2eb(1 —w?)Ry  (b(1 —u) — e(1+ u)Ry)*
10— 4(1 + u2)? B 4(1 + u2)? ’

where € € {1,—1}. Then, we have

2 (2ub® + (1 — u)?(1 +u?)) +2eb(1 — )Ry (b(1 + u) + €(1 — u)Ry)*
4(1 + u2)? B 4(1 + u?)? '

T10+ 1=

We can see that x(z19) = —1 and x(z19 + 1) = 1. We substitute z = 19 in the right hand side of

[132),

— RN\ Cw) —e YR
I4+u)(zio+1)" —(1—uw)xiy=(14+u) <(b(1 +u) +e(l —u)Ry) ) —(1-u) (_ (b(1 —u) — (1 +u)Ry)

4(1 +u?)? 4(1 + u2)?
— (1 tw b(1+ 1;)(142:212)— u)Ro (b(l + 7;)(142:(:2)— u)R2>
s, (gt
-t (o (R o (g o)
S () o ()
Let us denote the resulting expression by Ejg. Then,
X( ( +u)(++e(u12)— umg) 1 <b(1 Y 1—+652+u RQ> D > B
() (gt oy g
() e (e ) - e e B
y (b(l + 1;)(116(;2)— u)R2> ~ 1y (b(l - 1;)(;;(;2; u)R2> _ (L1 = By = —4ub ;(f:(—lu;)U2)R2
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By = — =b & (1-u’b=el-u’)Ry & (1—u)’b® = —(1+u)*(b* - 2(1 +u?))

e 20+ v =21 +u)?*(1+u?) < b = (1+u)?
—2ub — €(1 — u?)Ry
1+ u?

Ey = =b & (1+u)Pb=—e(1-v*)Ry & (1+u)??=—(1—u)?b*—2(1+u?))

& 21 +uH)b? =201 —u)?(1 +4?) & b= (1—u)

If b2 = (1 + u)?, then Ry = (—(1 —u)®)" = (—=1)"(1 — w)x(1 — u). Suppose that b = 1 + u. If
€ = (=1)"*1x(1 — u), then

(L+w)(—w) —e(=)"A+u)(l —ux(1-w)* (1w’

4(1 + u2)? T (1 +u2)?

L10 = —

If e=(—1)"x(1 —u), then we have z19 = 0 ¢ Sp1. Thus, we can see that D, (1 + u) < 1. Moreover,
if Di (14 u) =1, then

B b(1+u)+e(l—u)Ra\ (I+u)?—(1-uw?\ 4u
1‘*( 21+ ) )‘X< 21+ u?) >‘X<2<1+u2>)’
or equivalently, x(2(1 + u?)) = X(( w). Similarly, we have D (—(1 4+ u)) < 1.

I£6? = (L—u)?, then By = (—(1+u)?)" = (—1)(L+u)x(1+u). Suppose that b = (~1)+!(1—u).
If e = —x(1 4 u), then

B () o Vi e L)) M U
T = — 4(1 1 u2)2 T A+ uw)?

If € = x(1 + u), then we have z19 = —1 & Sp1. Thus, we can see that D& ((—1)""1(1 — u)) < 1.
Furthermore, if DY, ((—1)""1(1 — u)) = 1 then

1 b(l —u) —e(l+u)Ro\ (=D)L —u)? — (=1)" T (1 + u)? o 4u
o= () = ( 21+ ) )= (st am)

or equivalently, x(2(1 + u?)) = —x(u). Similarly, we have D ((—1)"(1 —u)) < 1. O
Lemma 4.5. Let u € Fj \ {£1}. Then, 0F, ,(1,1+u) <4 and 0F, (1, (=)™ (1 —u)) < 4.
Proof. We substitute x = 0 in , we have

b=Fr (1) — Fryu(0) = 1+ w.

Hence, z = 0 is a solution of 1+u = F}.,(z+1) — F,.,(z). Denote by = 1+u. Since x((1+u)?+b3) #
0 = x((14+u)?—b3), we have D,(bo) = 0, by Lemma We showed in Lemmathat Diy(by) <1
Moreover, if D};(bp) = 1 then

X(2(1+u?) = x(u). (34)
By Lemma DYy (bg) =1 if and only if
X1+ %)) = —x(u) = —x(1 - ?). (35)
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Since and cannot hold simultaneously, we have D}, (bo) + Djy(bp) < 1. By Lemma
D{(by) < 2. Therefore, we obtain

0. (1,b0) = 1+ Dgo(bo) + D1 (bo) + Dip(bo) + Dy (bo) < 4
We substitute x = —1 in , we have
b=Fru(0) = Fru(=1) = (=)' (1 - u).
Hence, z = —1 is a solution of (—1)""(1 —u) = F, ,(z + 1) — F,.,(z). Denote b_y = (—1)""1(1 —u).

Since x((1 —u)? +b%;) # 0= x((1 —u)? — b?,), we have D% (b_;) = 0, by Lemma We showed
in Lemma [4.4] that D{;(b_;) < 1. Moreover, if D};(b_1) =1 then

X2(1+u?)) = —x(uw). (36)
By Lemma D{y(b—1) =1 if and only if
X(2(1 +u?)) = x(u) = —x(1 - u?). (37)

Since and cannot hold simultaneously, we have D{,(b_1) + D}{,(b—1) < 1. By Lemma
D{,(b_1) < 1. Therefore, we obtain

07, (1,b-1) =14 Dgo(b—1) + DYy (b-1) + Dig(b-1) + Dgy (b-1) < 4.
We complete the proof. O
fog{l+u,(—1)"(1 —u)}, then
551, (1,b) = Dio(b) + Dy (b) + Diy(6) + Di (b). (38)

By Lemma D{y(b) < 1 and D}4(b) < 1. By Lemma and Lemma D, (b) < 2 and
DY,(b) < 2, respectively. Hence, applying Lemmas and we have 0r,, < 6. The following
lemma shows that dp,, <5.

Lemma 4.6. Let b € Fyn \ {1 +u, (=1)"(1 —u)}. If Dgy(b) = 1 and Dg;(b) = 2, then Dfy(b) < 1.
Proof. Since D, (b) = 2, by Lemma

1= x(b(1 = u) + (1 +u)R)x(b(1 = u) = (1 +u)Ry) = x(b*(1 — w)? = (1 + u)*RY)
= X(0*(1 = u)* + (14w (0" + 2(1 + u?))) = x(2(1 + w?)(* + (1 + )?)),
1= (b1 +u) + (1~ wR)x( +u) — (1 - w)Ry) = X1+ u)* — (1 - u)*R})
= x(0*(1+u)® + (1 = w?(0* + 2(1 + u?))) = x(2(1 + ) (0> + (1 — w)*)).
Hence,
X0 + (1= w)?) = x(0” + (1 +u)?) = x(2(1 + u?)). (39)

Since D{,(b) =1, by Lemma x(0® + (1+w)?) = x((1 4 w)* — b?). Applying (39), we have

X((1+u)? = b%) = x(2(1 +u?)). (40)
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Suppose that Dj;(b) = 2. Then, by Lemma

1= x(b(1—u)+ (1 +u)Re)x(b(1 —u) — (1 +u)R2) = x(B*(1 — u)? — (1 +u)?R3)
= X(0*(1 = w)® + (1 +u)?(b? = 2(1 +?))) = x(2(1 + u*)(b* — (1 +w)?)),
1=x(0(1+u) + (1 —u)Ro)x(b(1 +u) — (1 —u)Ra) = x(b*(1 +u)? — (1 — u)*R3)
= x(O*(1+ ) + (1= u)*(0* = 2(1 + 7)) = x(2(1 + u*)(t* — (1 = w)?))
Hence,
X0 = (1= u)?) = x(0” = (1 +u)?) = x(2(1 +u?)). (41)
which contradicts to (40). Therefore, D},(b) < 1. O

Lemma 4.7. Let b € Fyu \ {1 +u,(=1)"(1 —u)}. Assume that x(1 +u) = (=1)"x(1 —u). If

Proof. Suppose that D (b) = 2. Then, similar with Lemma holds, in particular x(b% + (1 —
u)?) = x (0% + (1 +u)?). Since x(1 +u) = (=1)"x(1 —u) = x(2(1 — u)),

x(0% + (1 +u)?) = x(2b(1 + u)) and x(b* + (1 — u)?) = —x(b(1 — u))

cannot hold simultaneously. Hence, Dy, (b) # 1 or DY, (b) # 1, a contradiction. Therefore, D{;(b) <
1.

Suppose that D}, (b) = 2. Then, similar with Lemma holds, in particular x((1 + u)? —
b?) = x((1 —u)? — b?). Since x(1 +u) = x(2(1 — u)),

N+ u)? = B2) = x(2b(1 + u)) and x((1 = u)? — b2) = —x(b(1 — u))

cannot hold simultaneously. Hence, Dy, (b) # 1 or D, (b) # 1, a contradiction. Therefore, Di(b) <
1. O

Now we are ready to show the main theorem of this section.
Theorem 4.8. Let u € Fyn \ {£1}.
1. If x(1+u) = (—1)"x(1 — u), then F,, is differentially 4-uniform.
2. If x(1+w) # (—=1)"x(1 —u), then F,,, is a differentially 5-uniform permutation.

Proof. By Lemmas [4.1] and if b€ {0,1+u,(—1)"(1 —w)}, then 5, ,(1,0) < 4.

Now we consider that b € Fyn \ {1 +u, (—=1)"*1(1 —w)}. Suppose that x(1 +u) = (—=1)"x(1 — u).
If Dy (b) + DY, (b) = 2, or equivalently, D{j,(b) = D%, (b) = 1, then we have D, (b) + D¥,(b) < 2, by
Lemma Hence, applying (38), we have 65, ,(1,b) < 4. If D, (b) + D}, (b) = 1, we assume that
Dgy(b) =1 and DY (b) = 0. If DY (b) = 2, then we have Dj(b) < 1, by Lemma [4.6] Thus, we have
Dy, (b) + DY, (b) < 3, and hence we have 65, ,(1,b) < 4, applying (38)). The proof for all other cases
are very similar by symmetry, and we omit here. Therefore, we have 6, ,(1,b) < 4 for all b € Fyn,
and hence i, , < 4.

Assume that x(14u) # (—1)"x(1—u). Then, by Theorem F, . is a PP, since ged (7’7%1, L;l) =
1. By Lemma 0F,, <5, and hence F,, is a differentially 5-uniform permutation.
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Theorem 4.9. Let p™ = 3 (mod 8) with p > 3. Ifu € {:|:1_23T+1}, then Fy, is a differentially

4-uniform permutation.

Proof. By Lemma it suffices to consider only the case u = 1‘?;“. Note that 3u? —2u +3 =0,
which implies that 2(1 + u?) = —(1 — u)2.
Observe that

4 — 2r+1 2 21“-‘1-1 4 4
s :f(4+2"):f27"-§(1+27")2.

I+u)(l—u)= 3 3 3

Since p" = 3 (mod 8), r is odd and x(2) = —1. Thus, x(—2") = x(—1) (x(2))" = 1, and hence we
have x(1+u) = x(1 —u). By Theorem 2.5, F.,, is a PP.

Next, we show that dp, ,(1,0) <4 for all b € Fyn. By Lemma and it suffices to consider
b€ Fyn\{1+u,1—wu}. In this case, dr, , (1,b) is determined by (38)). If Dg;(b) < 1 and Dfj(b) < 1,
then 6, ,(1,b) < 4. So, we consider two cases Dy (b) = 2 or Df(b) = 2.

Assume that D, (b) = 2. Then, holds, and hence

x(0* + (1 —u)?) = x(b* + (1 +u)?) = x(2(1 +v?)) = —1.

By Lemma we have x(b? 4+ 2(1 + u?)) = x(b* — (1 — u)?) = —1 and hence x((1 —u)? —b?) = 1.
By Lemma[4.2] DY, (b) = 0. Hence, we have D, (b) + DY, (b) < 2. If D (b) = 1, then Diy(b) < 1, by
Lemma Thus, we get Dy (b) + DY (b) < 2, and therefore 65, , (1,b) < 4, by (38).

Assume that Di;(b) = 2. Similarly with the above case, we can show that D}, (b) = 0 using
and Lemma Hence, DYy(b) + Diy(b) < 2. If D§,(b) = 1, then Dy, (b) = 2 implies a
contradiction to Lemma so we have Dg;(b) < 1. Thus, we get Dg,(b) + D, (b) < 2. Hence, by
[33),0r,.,(1,b) < 4.

Therefore, F;.,, is a differentially 4-uniform permutation. O

We conducted experiments on the differential uniformity of F,., using SageMath for p™ < 10000,
where u € Fn \ £1. We observed that dr, , = 4 for all u satisfying one of the following conditions:

{xu +u) = (~1)7x(1 - w), (2)

u= j:l_%rﬂ, p" =3 (mod 8).

for all p™ with 523 < p™ < 10000. This suggests that dp,, = 4 for all p" > 523, provided that
(42) holds. We also observed that oz, = 5 for all u € F}, \  +1, 41277 satisfying x(1 + u) =
U P 3

(=1)"*1x(1 — w), for all p™ with 4007 < p™ < 10000. This suggests that dp, , = 5 for all p™ > 4007,
when does not hold. However, the conditions on quadratic characters described in the lemmas
presented in this section are significantly more complicated than those in [14},23,24], as they involve
multiple occurrences of r-th powers. Accordingly, it appears very difficult to adapt the techniques
from [14,23,24] to rigorously prove these equalities concerning the differential uniformity of F,,,.

5 Conclusion

In this paper, we investigated the differential and boomerang properties of the binomial function
Fru(x) = 2" (1 + ux(z)) over Fpn, where r = p4—+1 with p" = 3 (mod 4) and u € Fy.. Specifically,
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we proved that F,, is a differentially 5-uniform permutation when y(1+u) = (—1)""1y(1 — u), and

a differentially 4-uniform function when x(1 + u) = (—=1)"x(1 — u). Also, we show that F,, is a
differentially 4-uniform permutation, when u € {:|:1723T+1} and p"” = 3 (mod 8). Furthermore, we
showed that F). 1; is locally-PN with boomerang uniformity 0 when p" = 3 (mod 8), and locally-
APN with boomerang uniformity at most 2 when p"™ = 7 (mod 8). To the best of our knowledge, this
provides the second known non-PN class with boomerang uniformity 0, and the first such example in
odd characteristic fields with p > 3. We also investigated the differential and boomerang spectra of
F. 11, and showed that fr, , = 2 if p" =7 (mod 8) with p™ # 7,31. The case studied in this paper
constitutes the third known class of functions F;, whose differential and boomerang properties have
been analyzed in detail, following the cases r = p™ — 2 and r = 2.

Our motivation for focusing on the case r = p’%l stems from the observation that both z”
and z"x(z) are APN in certain cases, and exhibit low differential uniformity even when they are
not APN. It is also worth noting that there are several other exponent classes r for which both z"
and z"y(x) are known to exhibit low differential uniformity (see Table 1 of |14]). In fact, we have
conducted preliminary experiments using SageMath on some of these classes, and observed that
many of them indeed possess low differential uniformity, although there are also cases where the
differential uniformity exceeds 5. Nevertheless, we expect that some of these classes may contain
functions with interesting cryptographic properties, and we plan to explore them further in future
work.
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