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Abstract—Although modern vulnerability detection tools en-
able developers to efficiently identify numerous security flaws,
indiscriminate remediation efforts often lead to superfluous
development expenses. This is particularly true given that a
substantial portion of detected vulnerabilities either possess
low exploitability or would incur negligible impact in practical
operational environments. Consequently, vulnerability severity
assessment has emerged as a critical component in optimizing
software development efficiency. Existing vulnerability assess-
ment methods typically rely on manually crafted descriptions
associated with source code artifacts. However, due to variability
in description quality and subjectivity in intention interpretation,
the performance of these methods is seriously limited. To address
this issue, this paper introduces VulStamp, a novel intention-
guided framework, to facilitate description-free vulnerability
assessment. Specifically, VulStamp adopts static analysis together
with Large Language Model (LLM) to extract the intention
information of vulnerable code. Based on the intention infor-
mation, VulStamp uses a prompt-tuned model for vulnerability
assessment. Furthermore, to mitigate the problem of imbalanced
data associated with vulnerability types, VulStamp integrates
a Reinforcement Learning (RL)-based prompt-tuning method
to train the assessment model. Extensive experimental results
demonstrate that VulStamp outperforms the state-of-the-art base-
lines by an average of 12.9%, 102.6 %, 18.3%, and 54.1% in terms
of AUC, precision, recall and F1-score, respectively.

Index Terms—Software vulnerability assessment, common vul-
nerabilities and exposures, intention, LLM, prompt tuning.

[. INTRODUCTION

Software vulnerability [1]-[3] refers to the weaknesses or
defects in the design, implementation, configuration, opera-
tion and other aspects of the software system, which may
be maliciously exploited, resulting in serious consequences
such as system attacks [4], data leakage [5], [6], business
interruption [7] and so on. The original CVSS score of CVE-
2021-45046 is only 3.7 [8], [9]. Ransomware groups have
taken advantage of this vulnerability, leading to numerous
enterprises being targeted, with their data encrypted and held
for ransom. Upon reevaluation, it was discovered to lead to
remote code execution, thereby raising the CVSS score to
9.0 [10]. According to real vulnerability data published on
the CVE collected by MegaVul [11] from 2006 to 2023,
after statistical analysis, only 12.1% (820/6,769) are critical-
risk vulnerabilities. Therefore, it is essential to distinguish
high-severity, exploitable vulnerabilities from low-risk ones
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to ensure that remediation efforts are both efficient and cost-
effective [12], [13].

Many software vulnerability assessment methods [12], [14]—
[16] based on software vulnerability description have been
proposed. Although its effectiveness has been proven, there
is no unified software vulnerability description standard, and
the descriptions from different sources and types vary greatly.
In addition, the way software vulnerabilities are exploited and
their impact will change with the development of technology
and the evolution of attack methods, making it difficult for vul-
nerability descriptions to keep up with such dynamic changes.
In contrast, the evaluation method based on the characteristics
of software code [13], [17], [18] can directly analyze the
potential vulnerabilities in the code and avoid the evaluation
errors caused by inaccurate, vague or incomplete descriptions.
However, existing methods still face three challenges, i.e., @
noise code pollution, ® incomplete intention analysis, and &
limited critical-risk vulnerability attention, which is detailed
as follows:

Challenge 1: Incomplete intention analysis. Severity as-
sessment typically requires an understanding of vulnerability
intention, which refers to the potential behavioral objectives
an attacker can achieve by exploiting a vulnerability under
specific conditions [19], such as memory corruption [20],
privilege escalation [21], and information disclosure [22], [23].
However, existing methods mainly rely on learning vulnera-
bility patterns directly from source code, without information
about the intentions of vulnerabilities. As a result, these
models lack the ability to accurately identify the real trigger
conditions and impact pathways of vulnerabilities, leading to
limited effectiveness in severity assessment. Although some
methods [13] try to use code descriptions to improve the
performance of the assessment, the quality and consistency
of these descriptions can vary significantly due to differences
in the expertise of auditors and subjective interpretations. As
a result, the performance of such methods is still severely
constrained.

Challenge 2: Noise code pollution. Typically, vulnerabili-
ties usually appear only in local regions of the code. However,
most of the existing methods rely on coarse-grained represen-
tations at the function level for vulnerability assessment [13],
[16], [17], which contain a large number of irrelevant code
elements (such as variable declarations, irrelevant control
flow, logging statements, etc.), forming a serious semantic
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noise. Even advanced language models such as ChatGPT [24]
are contaminated by semantic noise when faced with large
amounts of contextual code.

Challenge 3: Limited critical-risk vulnerability atten-
tion. Most of the existing methods are based on the deep
learning model, whose performance are seriously limited by
the quality of training data. However, in the actual software
vulnerability datasets, the number of critical-risk samples is
often far less than that of medium- and low-risk vulnerabili-
ties [11], [25]. This seriously unbalanced distribution forms a
typical long-tail problem [26] at the data level. This deviation
makes the model prone to misjudge the severity of security-
critical vulnerabilities, resulting in serious security risks.

Insight. Intuitively, to address the above challenges, since
Large Language Models (LLMs) exhibit the powerful ca-
pability of language understanding and reasoning, they are
promising in extracting the intention of vulnerable code. To
address the noise code pollution problem, intuitively, we can
adopt static analysis technologies to filter out irrelevant code
segments and guide the model to focus on the key code that is
most relevant to vulnerability semantics, reducing distraction
from unrelated logic. To address the problem of unbalanced
data, we can optimize the training strategy to place greater
emphasis on high-risk vulnerabilities.

Our work. Inspired by the above insights, we present a
novel vulnerability assessment framework, named VulStamp,
which integrates the vulnerability code syntax analysis with
the intention analysis by LLM to improve vulnerability as-
sessment. Specifically, VulStamp consists of three main mod-
ules. Firstly, the program dependence graph of the code is
constructed, and the code parts related to the intention of the
vulnerability are preserved by slicing forward and backward
according to the vulnerability interest point. Next, the LLM
is used to generate the exploitability, impact, and scope of
the vulnerability from the code to report the attack intention.
Finally, the reward function for the vulnerability to the serious
risk concerned was constructed to enhance the attention and
consistency of the representation of the features of the minority
class. We developed a prototype system called VulStamp and
constructed a dataset of 6,769 real software vulnerabilities
that comply with the CVSS 3.0 standard. Experimental results
show that compared with the state-of-the-art vulnerability
assessment method [13], VulStamp improves AUC, precision,
recall, and Fl1-score by 7.8%, 39.4%, 8.4% and 21.6%, respec-
tively. This paper makes the following contributions:

o We propose VulStamp, a method that uses code simplifi-
cation grammar rules to extract code intention from vul-
nerability samples containing a large amount of semantic
noise for effective vulnerability evaluation.

e We propose a novel LLM-based method to extract vul-
nerability intention reports, which enhances the ability of
the model to infer vulnerability intentions.

o We construct the reward function for the vulnerability of
the serious risk of concern and enhance the distinguisha-
bility of the representation of the vulnerability feature.

e We evaluate VulStamp on the constructed dataset, and
the results demonstrate the effectiveness of VulStamp in
software vulnerability assessment.

II. BACKGROUND AND MOTIVATION

A critical vulnerability code snippet and its fix (CWE-78)

1 MagickExport MagickBooleanType OpenBlob(const ImageInfo *image_info,
2 Image *image,const BlobMode mode,ExceptionInfo *exception)

BlobInfo
*magick_restrict blob_info;
char
extension[MagickPathExtent],
Filename[MagicKPathEXteNt]; i seeeeerersssmeemesssssnnisneeces e

(void) CopyMagickString(filename,image->filename,MagickPathExtent); [

4

5

6

7

8

9 “es
10 *filename="'\0";
11
12 “ee
13 -- if ((*filename == '|') & (strchr(filename,'"') == (char *) N%L) &
14 )

(strchr(filename,'"') == (char *) NULL))

15++ if (*filename == '|')

16 {

17 char

18 fileMode[MagickPathExtent],
19 *sanitize_command; e
20 | AF (ftype == W) e

21 (void) signal(SIGPIPE,SIG_IGN);

22 *fileMode=(*type);

23 fileMode[1]="\0";

24 sanitize_command=SanitizeString(filename+1);

25

Affected Fragment ---»Data-flow ---» Control-flow

Fig. 1. An example of code illustrating a command injection vulnerability
within the ImageMagick project that was inaccurately rated as low-risk by
the SVACL. In the depiction, segments of code that were updated before and
after the patch are highlighted using red and green, respectively.

A. Background

CVSS (Common Vulnerability Scoring System) [27]-[30]
is a standardized scoring system used to measure and evaluate
the severity of vulnerabilities. It aims to provide a unified, ob-
jective, and quantifiable approach to the field of cybersecurity
to measure the potential risks of vulnerabilities, helping orga-
nizations and enterprises more effectively identify, prioritize,
and fix vulnerabilities and rationally allocate resources to deal
with cybersecurity threats.

Previous studies mainly used CVSS 2.0 [27], which in-
troduced basic evaluation indicators and life cycle evaluation
indicators, and was widely applied in software suppliers and
enterprises. The scoring system of CVSS 2.0 requires users
to have an overly detailed understanding of the exact impact
of vulnerabilities, and the scoring range is not comprehensive
enough when faced with some new types of attack or complex
vulnerability scenarios. CVSS 3.0 [29], [30] introduces the
concept of the “scope” to distinguish whether the affected
components and the vulnerable components are the same.
The weight distribution of the basic indicators has also been
adjusted, the granularity of the indicators has been refined,
and a new “severe” level has been added to make it applicable
to a wider range of scenarios. Therefore, recent vulnerability
reports mainly use the CVSS 3.0 score, so we also adopt CVSS
3.0 as our experimental standard.

B. A Motivating Example

Figure 1 shows an example of fixing a possible command
injection vulnerability (CVE-2023-34152) [31] in ImageMag-
ick. We emphasize the importance of directly inferring the



intent of software vulnerabilities by combining vulnerabil-
ity intent reporting and reducing vulnerability noise. In the
vulnerable function, when filename starts with |, it’s a
shell pipe command, and OpenBlob executes it via popen ().
The conditions are: No backticks (’), no double quotes
(™). It looks like a security check, but it is actually a
wrong “blacklist” way of defense. The original restriction
would reject legitimate pipeline commands that contain spe-
cial characters such as |sh -c "convert input.png
output. jpg" or command templates that contain / ’ ’.
This strict restriction prevents some advanced usages from
working. And this may prevent some users from doing things
like: convert ’image.png’ ’|sh -c "process \
"arg with spaces \ ""’ The double quotes are nec-
essary, but the logic of the vulnerable code rejects them.
However, existing severity assessment methods depend on the
context and focus only on the local part of the code, without
specifying where the filename comes from and whether there
are additional sandboxes/permission restrictions. Then existing
approaches may default to “narrow attack surface” and thus
conservatively consider this as “medium-risk” or “low-risk”.
With this example, we demonstrate the following insights:

Mitigating noise to more fully track code intention.
By analyzing the above CWE-78 vulnerability code, we can
see that over-reliance on the local context can lead to noise
pollution of code understanding and cause wrong evalua-
tion. Existing vulnerability assessment techniques, such as
SVACL [13] and GraphEval [18], understand the patterns of
vulnerability functions by parsing the code into vulnerability
attribute graphs or combining continuous learning, but ignore
that there is much noise in the vulnerability functions, which
greatly affects the model’s understanding of the intent of the
code. For software vulnerabilities, making appropriate rules
to alleviate noise and trace the intent above and below the
code can help to more comprehensively assess the risk of the
vulnerability.

Extracting vulnerability intentions more semantically
to exploit the evaluation. In the filename check above,
the value of the filename is directly related to the feasibility
of access. However, not every model can immediately rec-
ognize that popen executes user-controlled input as com-
mand injection. They pay more attention to syntax and the
execution process, ignoring how the attacker’s input affects
system command execution. Some models even misinter-
pret command injection as a failed file opening or external
command execution, thus underestimating the risk. The vul-
nerability report can automatically “complete” the attacker’s
perspective and understand the intent of the vulnerability. It
can summarize the vulnerability intention more semantically,
identify the exploitation conditions of the business layer and
the consequences of attacks, and assist in automated security
assessment.

III. METHODOLOGY

A. Overview of VulStamp

Figure 2 illustrates the overall framework of VulStamp,
which mainly consists of the following three modules: @
Intention extraction adopts static analysis to denoise the vul-
nerability code into multiple key code segments and LLM to
generate the Vulnerability Intention Report (VIR). VulStamp
combines code segments together with VIRs as intention data
used for model training or vulnerability assessment. @ Model
training captures intention information from training data
and adopts an RL-based prompt-tuning strategy to train the
deep learning model used for vulnerability assessment. &
Vulnerability assessment adopts the extracted intention data
as input to the trained deep learning model for vulnerability
assessment and repair suggestion. The details of VulStamp are
described below.

Intention-guided Data Processing
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Fig. 2. Framework and workflow of VulStamp.

B. Intention Extraction

The purpose of this part is to process the target vulnerability
function to extract the vulnerability intention representation.
As shown in Section II-B, injecting an entire vulnerability
function into a model inevitably introduces code noise unre-
lated to the intention of the vulnerability, and these models
suffer from redundant information when trying to understand
the intention of the code. Inspired by the achievements of
vulnerability fixing commits and LLMs [3], [32], [33], we
propose a strategy based on intention-guided intent denoising
and intent analysis, which performs code slicing according
to code intent trigger points and utilizes the extensive code
knowledge of LLMs to bridge the intrinsic analysis of vulner-
ability modules.

Vulnerability Intent Tracking. To avoid the noise of
redundant information when trying to understand the intent
of the code, we introduce a set of code denoising rules, select
the system API calls and operators as the point of interest
according to the characteristics analyzed in Section II-B, and
perform program slicing on the vulnerability function. First,



we use the mature static analysis tool Joern' to parse the
source code of the program and get the program dependence
graph. Then, we also obtain the call graph of the code
through the pycallgraph library?, which is used to supple-
ment the semantic information, such as call relations and
return values, in the PDG for a comprehensive control data
flow analysis. We use system APIs [34] and operators that
are widely used but misused by applications as points of
interest. It also divides the operators into four categories:
arithmetic operators, bitwise operators, compound assignment
expressions, and increment/decrement expressions. Next, we
slice forward [35] and backward [36] depending on which
node of the program we are interested in. The purpose of
forward slicing [35] is to trace the construction process of the
source data, so that the intent of the code to prepare the data
before calling the point of interest is clear. Such as where
the arguments to a system API come from and whether they
are properly validated or initialized. Therefore, we will only
focus on the path from which the input data comes, that is,
the data flow. The purpose of backward slicing [36] is to
fully track where the output data goes and how it affects the
subsequent code, helping us to understand how the results of
key operations affect the subsequent behavior of the program
and understand the intentions of the code to process the output
data of POI. For example, does a change to a variable cause a
subsequent condition to fail or trigger an unsafe operation? So
we focus on both data flow and control flow. Finally, through
forward and backward slicing, we can clarify the intention
relationship between the input and output of the interest point,
eliminate redundant information irrelevant to the interest point,
and obtain the Intention Dependence Graph (IDG). The code
retained in the intent dependency graph enables us to identify
the potential vulnerability points more accurately, which helps
us better understand the design intention of the code. As shown
in Figure 1, the affected fragment is the intention dependency
graph retained after slicing.

Program Intent Extraction. To understand the impact of
the vulnerable code for better evaluation, we also focus on
the three Vulnerability Intent Reports (VIRs) of the function,
which are exploitability, impact, and scope. Exploitability
refers to the ease with which a vulnerability can be exploited
by an attacker. It evaluates the conditions required by an
attacker to exploit the vulnerability, the level of skill required,
the information and resources required, etc. To structurally ex-
press the exploitability of a vulnerable function, we introduce
the EXP (condition, way) notation, where condition denotes
the condition that needs to be satisfied before a vulnerability
can be exploited, and way denotes how the attacker can access
the vulnerable code. Impact refers to the result of the system or
application after the vulnerability is exploited. This includes
data tampering, information leakage, denial of service, and
other aspects. Clarifying the impact of a vulnerability helps us
determine the priority of the vulnerability and how to evaluate

Uhttps://github.com/joernio/joern
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the effect of the fix after it has been fixed. We structurally
denote impact as IMP (impact), where impact represents
the possible consequence if a vulnerability is successfully
exploited. The scope refers to the boundary of the impact of
the vulnerability, that is, the spread and impact range of the
vulnerability in the system or network. This involves analyzing
whether the vulnerability can be confined to a specific module
or component or whether it may spread to the whole system
or even to other connected systems. Similarly, we denote the
scope as SCO (scope), where scope denotes the scope affected
by the vulnerability. Knowing the scope helps us plan our
strategy to fix the vulnerability.

Prompt Template used by GPT-3.5 to Extract VIR

Prompt Template

Task Description & Instructions

You are a software security engineer. Analyze the information
about the code snippet provided below. First, analyze the
exploitability of the code, including the necessary conditions and
ways to use it. Secondly, the impact analysis of the vulnerability is
carried out to give the direct consequences of the successful
exploitation of the vulnerability. Finally, give the scope of impact
after the vulnerability is exploited.

Output Format Specification

Desired format:

Exploitability: '<necessary condition>' and '<way>"'

Impact: '<impact>'

Scope: '<scope>'

Code Placeholder
Code Snippet: ‘¢
{CODE}"*

Answer Generated by GPT-3.5 Model

Exploitability: 'User-controlled filenames starting with | and
containing shell metacharacters' and 'Command injection via
crafted filenames'
Impact: 'Arbitrary command execution with ImageMagick process
privileges'
Scope: 'Vulnerable ImageMagick installations processing untrusted
files; potential RCE in web services using this component'

Fig. 3. The prompt template used for extracting VIRs.

As shown in Figure 3, we build a prompt template to handle
the given vulnerability function. Then, the vulnerability func-
tion and prompt template are entered into the LLM to obtain
the vulnerability intention. According to existing research and
OpenAl practice, the prompt template designed by us consists
mainly of three parts: Task Description & Instructions, Output
Format Specification, and Code Placeholder. Task Description
& Instructions Designates the user as a software security
engineer, emphasizes his/her responsibilities and professional
background, and ensures that the user performs the analysis
in the right context. The Output Format Specification specifies
three parts of our output: Exploitability, Impact, and Scope,
and provides a concise way to describe each. A uniform output
format facilitates quick access to key information for easy
integration into reports or databases, as well as quick under-
standing of analysis results by non-technical stakeholders. The
Code Placeholder provides a place for the code snippet to be
analyzed, so that the analysis task can focus on the specific



code and the analysis can be targeted and accurate.

We apply this template for the code in Figure 1. Then,
the GPT-3.5 model is used to generate the corresponding
vulnerability intent report, as shown in Figure 3. By analyzing
the code snippets and evaluating their exploitability, impact,
and scope, it shows that the GPT model can deeply understand
and analyze vulnerability functions.

C. Model Training

In the vulnerability assessment task, we treat the model
that performs the vulnerability severity assessment as an
agent. First, the agent aims to learn how to accurately assess
the severity of code vulnerabilities so that it can quickly
identify and prioritize critical-risk vulnerabilities in real-world
applications. Secondly, the agent perceives the state of the
environment through the input IDG and VIR. After processing,
the input data is encoded into representations that can be
processed by the model. Then, based on the perception of the
state of the environment, the agent uses its policy to assess
the severity of the vulnerability. Finally, the agent outputs the
severity of the evaluation in the environment and receives the
reward signal from the environment as feedback to adjust its
policy to take better actions in the future.

Prompt Tuning Model. Prompt tuning guides a pre-trained
model to produce output in a specific format or content by
adding learnable hints to the input text, rather than directly
fine-tuning the model’s parameters. Depending on the type of
prompt word, there are three ways: hard prompts, soft prompts,
and hybrid prompts [37].

Hard prompts are the direct insertion of predefined, fixed
natural language templates or words into the input text, which
are not adjusted during training. Soft hints refer to the insertion
of learnable vectors or tokens into the input text, which are
learned to be optimized along with the model parameters dur-
ing training. However, hybrid prompts combine the advantages
of hard and soft prompts, containing fixed natural language
templates (i.e., hard prompts) and learnable vectors or tags
(i.e., soft prompts). The VulStamp prompt template is defined
as follows:

Jnybria =The code snippet : [X] The vulnerability

[Y] [SOFT] [Z], W

analysis :
where “The code snippet:” and “The vulnerability analysis:”
are hard prompt parts that explicitly inform the model about
the type of input text. “Classify the severity:” is the soft prompt
part, denoted [soft], which can be replaced by “identify
the severity of this vulnerability:”, etc., to guide the model
in displaying the severity classification results through the
learnable vector representation. It combines the interpretability
of hard prompts and the flexibility of soft prompts, which can
not only guide the model to output results in specific formats,
but also optimize the prompt effect through learning.
Weighted Reward Function. A model’s prediction confi-
dence (i.e., the maximum predicted probability) measures how
“confident” the model is in its current prediction. The higher
the confidence, the higher the reward can be. If the evaluation

is correct, the reward is the positive value of the confidence. If
the evaluation is wrong, the reward is negative and is inversely
proportional to confidence.

Furthermore, misclassifying “high risk™ as “low risk” can be
more serious than misclassifying “low risk” as “high risk” in
vulnerability assessment. To make the model pay more atten-
tion to predicting high-risk categories, we introduce a weighted
reward function to set different reward weights for different
severity categories. Based on the severity corresponding to the
scores designed by CVSS 3.0, we take the median severity
score of each severity to assign weights to the vulnerability
functions of different degrees. The formula is as follows:

ifyg=y

r= w-p,

—w-p, ifgFy’
where w is the class weight, the high-risk class has a higher
weight, and p is the probability that the model predicts the
current class ¢, y is the true class. This reward mechanism
penalizes the model more for incorrect predictions with high
confidence and rewards it more for correct predictions with
high confidence.

Reinforcement Learning. We introduce the update of the
reward baseline, which is used to reduce the variance of
the reward and make the training process of Reinforcement
Learning (RL) more stable. The formula is as follows:

2
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where o is the momentum attenuation coefficient and 7 is the
average reward of the current batch. The reward baseline helps
the model learn more efficiently by smoothing out the changes
in the reward signal.

The loss of the policy gradient is used to optimize the model
policy so that the actions taken by the model in a given state
lead to higher long-term rewards. It optimizes the model’s
policy by maximizing the expected reward, which is computed
as follows:

~Esp,anm, [logmo(a | s) - (R(s,a) D), (4

where 7y (a | s) denotes the probability function, D is the state
distribution, R(s,a) is the reward obtained by taking action a
in state s, and b is the reward baseline.

Multi-task Learning. Previous studies have shown that
multi-task learning is effective in improving performance on
learning-based tasks such as code completion, code gener-
ation, and code understanding. We also introduce a multi-
task learning framework to improve the model’s understanding
of vulnerability patterns for better evaluation. Specifically,
according to the vulnerability dependency graph and wvul-
nerability intention report, VulStamp further provides repair
suggestions for the vulnerability function after evaluating the
vulnerability. That is, VulStamp is trained on two tasks, vul-
nerability assessment and vulnerability fix proposal generation,
respectively. The total loss is the sum of the losses for each
task and is calculated as follows:

Lpg =

Ltotal = Lassessment + Lsuggestion + ALPGa (5)



where Lgssessment 1S the vulnerability assessment loss, Lpg is
the policy gradient 1oss, Lgyggestion 15 the vulnerability repair
suggestion generation loss, and A is the weight coefficient of
the policy gradient loss.

D. Vulnerability Assessment

After model training, VulStamp can be efficiently deployed
on consumer-grade graphics cards to evaluate vulnerability
functions and provide repair suggestions. Specifically, similar
to the intention-guided data processing part, the intention
dependency graph is extracted through program analysis, and
the LLM is used to extract vulnerability intention reports.
The IDG and the VIR are then concatenated together. Finally,
the vulnerability information is fed to VulStamp to asses
vulnerability and give repair suggestions.

IV. EXPERIMENTS
A. Baselines

To demonstrate the effectiveness of our VulStamp method,
we compare it with three major types of baseline methods.

Supervision-based Methods. We considered three of
the latest supervision-based methods in the field of soft-
ware vulnerability assessment, i.e., CWM (Character-word
Model) [16], Fun (Function-level Support Vector Analy-
sis) [17], and SVACL [13]. Among them, CWM and Fun both
take the vulnerability code as input and give the evaluation
results, while SVACL additionally considers the description
information of vulnerability functions. In our experiment, we
analyze the performance of CWMgy s, CWMxgp, Fungp,
and Funy gy, based on the different classifiers utilized.

Pretrained Model-based Methods. We examined six ap-
proaches using general-purpose pretrained code models, which
are widely used for various code-related downstream tasks.
Specifically, we considered three encoder-based models (i.e.,
CodeBERT [38], GraphCodeBERT [39], and RoBERTa [40])
and three encoder-decoder based models (i.e., CodeRe-
viewer [41], Unixcoder [42], and CodeT5 [43]). All these
models take the same inputs and outputs as CWB and Fun.

LLM-based Methods. We investigated eight mainstream
large code language models for vulnerability assessment
performance comparison, including Qwen2.5-Coder-7b, Star-
Coder2-7b, Deepseek-Coder-7b, CodeLlama-7b, GPT-3.5-
turbo, GPT-4-turbo, DeepSeek-V3, and DeepSeek-R1.

B. Datasets for Evaluation

To evaluate the vulnerability assessment performance of
VulStamp, we adopted MegaVul [11], a dataset to evaluate
real vulnerabilities in C/C++, including 17,380 vulnerabili-
ties sourced from 992 open-source repositories over the past
two decades, covering 169 unique vulnerability types. The
MegaVul dataset offers a broader time span and a more diverse
array of both vulnerability sources and types when compared
to the Devign [44] and Big-Vul [45] datasets. Moreover, it
allows for updates whenever new vulnerabilities are identified.
In MegaVul, each vulnerability instance is clearly labeled and
comes with an in-depth description that covers the type of

vulnerability, its severity, as well as additional information,
offering a dependable foundation for model training and
evaluation. During our experiment, we chose vulnerability
functions adhering to the CVSS 3.0 standard, and assigned
severity levels to the vulnerabilities: O indicating low risk, 1
indicating medium risk, 2 indicating high risk, and 3 indicating
critical risk.

Suggestion Collection. To provide repair suggestions af-
ter vulnerability assessment, we prepared vulnerability repair
suggestions according to the suggestion extraction method,
i.e., VulAdvisor [3]. We utilized OpenAl’s publicly available
API, “gpt-3.5-turbo”, known for its efficiency in producing
responses. When errors occur in the generation process, we
dismiss these errors and produce suitable alternatives. Further-
more, we removed the generated duplicate or summary code
comments and regenerated the suggestions.

Dataset Division. Typically, LLM-based training involves
dividing a dataset into three sets: the training set, the validation
set, and the test set. As shown in Table I, SVACL [13]
randomly divides MegaVul into three sets, where all samples
were collected between 2014 and 2025. In this case, all
three sets have similar time intervals for collecting samples,
neglecting the impact of the disclosure time of vulnerability
samples. Obviously, this division does not reflect the practical
vulnerability assessment scenario, where models are trained
first and then used to assess unexplored vulnerabilities. In other
words, the partition of the dataset by SVACL [13] is unfair
for comparing the performance of vulnerability assessment,
providing models with a “prophet” advantage in the test set.

TABLE I
COMPARISON OF DATASET PARTITIONING SCHEMES BETWEEN SVACL
AND VULSTAMP

Method Time Point Training  Validation Test
Start 20140516 20141110 20141110
SVACL End 20250311 20250213 20250122
o Start 20140516 20220818 20220818
urs End 20220817 20250226 20250311

To address this time travel issue, we crawled the published
data for each sample from the CVE website?, and divided
the MegaVul dataset according to the chronological order of
samples. As shown in Table I, we assumed that all training data
was collected before the time of occurrence of the validation
and test samples. Moreover, we gathered associated scores
from the CVE website to complete the vulnerability infor-
mation for samples that had not been assessed using CVSS
3.0 in the dataset. Note that we use our dataset partitioning
scheme throughout the paper.

C. Experimental Settings

All experiments were performed on a Linux server equipped
with Intel(R) Core(TM) 19-12900k and 24GB of NVIDIA
GeForce RTX 4090 GPU.

3https://cve.mitre.org/



Implementation Details. We utilized the publicly available
source code and hyperparameters originally provided by the
authors for the CWB, Fun and SVACL methods. For pre-
trained model-based methods, we downloaded the available
models from HuggingFace and then evaluated them on our
server. For GPT-3.5-turbo and DeepSeek-R1, we used the
common API “gpt-3.5-turbo” of OpenAl and the common API
“deepseek-reasoner” of DeepSeek for vulnerability assess-
ment, respectively. Our model of VulStamp was constructed
using the PyTorch library and the Transformers library. Ad-
ditionally, we used the “gpt-3.5-turbo” API to extract code
intentions, and optimized the fine-tuning of the pre-trained
model CodeReviewer using the Adam optimizer at a learning
rate of 5e-5. We used a mature code parser, Joern, to generate
the code PDGs. For efficient model fine-tuning, we utilized
the OpenPrompt library, employing a batch size of 16 and
executing 100 training iterations. The coefficient of reinforce-
ment learning loss is configured at 0.01, while the momentum
decay coefficient for the reward baseline is adjusted to 0.7.
The impact of these choices will be discussed in Section V-D.

Evaluation Metrics. We conducted the performance eval-
uation using four indicators, i.e., AUC, recall, precision, and
Fl1-score. The AUC, or area under the ROC curve, can be
computed using a one-to-many approach, specifically One-vs-
Rest (OvR). The recall metric reflects the proportion of vulner-
abilities at a given severity level that are accurately evaluated
as that same severity level. The precision metric indicates the
proportion of evaluated vulnerabilities corresponding to that
severity level. The F1-score, which indicates the joint efficacy
of precision and recall at a certain severity level, is calculated
using the formula 2 x ficcallxPrecision Note that the higher

; Recall+Precision® X
the metric values, the better performance we can achieve.

V. EXPERIMENTAL RESULTS

This section presents various experiments to evaluate the
effectiveness of VulStamp. We compared VulStamp with state-
of-the-art (SOTA) vulnerability assessment methods, aiming to
answer the following four Research Questions (RQs).

RQ1: How is the superiority of VulStamp compared with
SOTA vulnerability assessment methods?

RQ2: How is the effectiveness of the proposed key com-
ponents on the performance of VulStamp?

RQ3: How is the generalization ability of VulStamp when
applied to other pretrained models?

RQ4: How is the impact of hyper-parameters on the
performance of VulStamp?

A. Performance Evaluation (RQI)

We compared VulStamp with the SOTA software vulnerabil-
ity assessment methods described in Section IV-A. TABLE II
presents the comparison results, where the best results are
highlighted in bold and the second-best results are underlined.

VulStamp vs. Supervision-based Methods. From Table II,
we can find that VulStamp significantly outperforms all five
baseline methods in terms of all performance metrics. Al-
though supervision-based methods can effectively capture the

TABLE II
PERFORMANCE COMPARISON BETWEEN VULSTAMP AND BASELINES.

Type Method AUC  Precision Recall Fl-score
£ CWMgsvy pr 54.5 30.6 27.8 29.1
Z CWMxapB 53.7 31.0 29.5 30.2
g Fungp 57.1 29.9 27.6 28.7
g-' Funpepnm 56.0 29.5 28.8 29.1
2 SVACL 57.4 312 29.9 30.5
= CodeBERT 50.9 10.6 25.0 14.9
g GraphCodeBERT 535 12.2 25.0 16.4
K] CodeT5 529 27.1 26.9 27.0
3 Codereviewer 52.6 243 26.5 25.4
& Unixcoder 53.1 12.2 25.0 16.4
RoBERTa 50.9 12.2 25.0 16.4
= Qwen2.5-Coder-7b 56.7 28.6 28.4 28.5
2 Star-Coder2-7b 57.2 28.6 27.9 28.2
..$ Deepseek-Coder-7b  57.4 29.8 28.5 29.1
= CodeLlama-7b 57.8 30.8 29.4 30.1
j GPT-3.5 555 27.3 27.0 27.1
DeepSeek-R1 56.4 27.4 29.2 28.3
Ours  VulStamp 61.9 43.5 324 37.1

vulnerability code information (i.e., SVACL can achieve the
second-best assessment performance), they still greatly suffer
from the problems of code noise and lack of code inten-
tions. To better understand the effectiveness of VulStamp,
we investigated the 25 most dangerous CWEs listed on the
CWE website*, as they are prevalent in a wide range of
applications and systems (e.g., web/desktop applications and
operating systems) and should be prioritized for remediation.
Here, to avoid underfitting due to insufficient samples, we
omitted vulnerabilities with fewer than 10 samples. As a result,
we compared VulStamp with the best-performing baseline
SVACL on six types of vulnerabilities, whose results are
shown in Figure 4. From this figure, we can find that VulStamp
always achieves the highest F1-score, showing the superiority
of VulStamp in vulnerability assessment. Note that, since
the vulnerability intention reports best fit to address pointer
vulnerabilities, VulStamp achieves the best improvement over
SVACL for CWE-476 (NULL pointer dereference).

60| EEE SVACL
B \ulStamp
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Fig. 4. Fl-score of VulStamp and baselines for Top-25 most dangerous CWEs.

VulStamp vs. Pre-trained Model-based Methods. From
Table II, we can find that CodeT5 achieves the best results
in precision and recall among all six pre-trained model-based
methods. However, such results are still far behind those of
VulStamp, reflecting that VulStamp captures the vulnerability
pattern and the intention of the code more precisely than the
pre-training-based baselines.

VulStamp vs. LLM-based Methods. From Table II, we can
find that CodeLlama-7b shows the best performance in all six

“https://cwe.mitre.org/top25/archive/2024/2024_cwe_top25.html



LLM-based methods. However, CodeLlama-7b underperforms
significantly compared to VulStamp in terms of all four
metrics, mainly because it lacks the specific expertise required
to identify software vulnerabilities.

Answer to RQ1: Compared with all baselines, VulStamp
always performs best on all metrics, showing its superiority
in vulnerability assessment.

B. Ablation Study (RQ2)

The purpose of this experiment is to evaluate how effective
each crucial element (such as IDG, VIR, and prompt tuning) is
within our VulStamp framework. The findings of the ablation
study are summarized in Table III, demonstrating that the fully
developed VulStamp achieves the highest performance.

TABLE III
ABLATION STUDY ON VULSTAMP.
Variants AUC Precision Recall Fl-score
w/o IDG 53.7 29.6 29.2 29.4
w/o IDG-API 544 29.9 31.4 30.6
w/o IDG-operator 57.3 38.0 26.0 30.9
w/o VIR 53.1 28.0 27.0 27.5
w/o VIR-exp 55.6 379 26.6 31.3
w/o VIR-imp 57.4 322 29.6 30.8
w/o VIR-sco 54.1 28.0 27.6 27.8
w/o RL 55.5 30.4 28.7 29.5
w/o weighted reward 59.8 34.8 27.1 30.5
w/o prompt tuning 56.8 30.7 27.8 29.2
w/o suggestion generation  58.9 36.6 28.8 32.2
VulStamp 61.9 43.5 324 371

Intention Dependence Graph Construction. To demon-
strate the effectiveness of the extracted IDG, we performed
a comparative study by eliminating the IDG during model
training. Furthermore, we sequentially removed the slices’
interest points within the IDG (IDG-API and IDG-operator)
to assess their individual contributions. Specifically, omitting
the IDG led to reductions of 15.3%, 47.0%, 11.0%, and
26.2% in AUC, precision, recall, and F1-score, respectively.
Additionally, removing any interest point from either the API
or the operator can reduce the performance of VulStamp by
up to 21.2% in Fl-score. This suggests that the source code
contains significant redundant information that impairs the
model’s comprehension of vulnerable code parts.

Vulnerability Intention Report Generation. To assess
the impact of incorporating the VIR module into VulStamp,
we conducted experiments omitting VIR. The findings reveal
that using IDG as input, without incorporating reports on
vulnerability-related intentions, results in decreases in AUC,
precision, recall, and F1-score by 16.6%, 55.4%, 20.0%, and
34.9%, respectively. Additionally, omitting either inability, im-
pact, or scope individually (denoted as VIR-exp, VIR-IMP, and
VIR-sco) diminishes VulStamp’s performance by up to 14.4%
in AUC and at least 18.5% in F1-score. This underscores the
importance of the VIR components, as well as each individual
part, for effectively comprehending vulnerabilities in code.

Training with Weighted Reward Loss. To determine
the impact of weighted reward loss on training, we elim-

inated the aspect of the reward function that targets high-
risk vulnerabilities in our experiments. The resulting decline
in performance metrics suggests that focusing more on high-
risk vulnerabilities enhances the evaluation of the vulnerability
function. Specifically, recall decreased by 19.6%, and the F1-
score fell by a significant 21.6%. We also explored whether
incorporating vulnerability fix suggestion generation in a
multi-task learning framework could enhance our assessment
of vulnerability functions. Omitting the suggestion generation
led to an 18.9% drop in VulStamp precision. These findings
demonstrate that emphasizing high-risk vulnerabilities during
training more effectively captures vulnerability functions.

Answer to RQ2: Our proposed key components play
a crucial role in enhancing the efficiency of VulStamp.
By integrating these components, VulStamp is markedly
improved for assessing various complex vulnerabilities and
generating high-quality repair suggestions.

C. Applicability of VulStamp (RQ3)

To investigate the applicability of our approach, we con-
ducted experiments on VulStamp with all pre-trained models
as shown in Table II, including CodeBERT [38], GraphCode-
BERT [39], RoBERTa [40], CodeT5 [43], and UniXcoder [42].

TABLE IV
EXPERIMENTAL RESULTS OF COMPONENTS IN EXISTING PRE-TRAINED
MODEL-BASED METHODS.

Model AUC Precision Recall F1-score
57.4 27.7 26.0 26.8

CodeBERT (1T +12.8%) (T +161.3%) (1 +4.0%) (1 +79.9%)
58.8 27.7 27.0 27.3

GraphCodeBERT (1 +9.9%) (1 +127.0%) (1 +8.0%) (1 +66.5%)
57.0 37.4 25.8 30.5

RoBERTa (1T +12.0%) (T +206.6%) (1 +3.2%) (1 +86.0%)
58.7 30.2 28.7 29.4

CodeT5 (T +11.0%) (1 +11.4%) (1 +6.7%) (1 +8.9%)
58.2 325 29.3 30.8

UniXcoder (1 49.6%) (T +166.4%) (T +17.2%) (1 +87.8%)
CodeReviewer 61.9 435 324 37.1

(Default) (1 +17.7%) (1 +79.0%) (1 +22.3%) (T +46.1%)

Table IV shows the experimental results. For example, as
shown in Table II, the Fl-score of the original CodeBERT-
based method is 14.9%, while VulStamp with CodeBERT can
achieve an Fl-score of 26.8%, achieving an improvement of
79.9% on the F1-score. From this table, we can find that, due
to the effectiveness of our proposed techniques (e.g., IDG,
VIR, and weighted reward loss), VulStamp can be used to
improve the assessment performance of its counterparts that
are merely based on pre-trained models. Moreover, we can
observe that VulStamp based on CodeReviewer achieves the
highest performance, since CodeReviewer itself is designed
specifically for code review.



Answer to RQ3: VulStamp is a promising framework for
vulnerability assessment that is compatible with a broad
range of pre-trained LLMs, enhancing their capabilities in
evaluating vulnerabilities.

D. Impacts of Hyper-parameters (RQ4)

This experiment aims to investigate how hyper-parameters,
specifically the weighted reward loss coefficient and the mo-
mentum decay coefficient, affect the performance of Vul-
Stamp. Figure 5 shows the experimental results, where the
blue, orange, green, and purple lines indicate the metrics of
AUC, precision, recall, and F1-score, respectively.
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Fig. 5. Performance of VulStamp with different hyper-parameters.

Weighted Reward Loss Coefficient. As observed in Fig-
ure 5(a), the effectiveness of VulStamp declines when the
loss coefficient drops below 0.01, highlighting the critical role
of weighted reward loss in enhancing the model evaluation’s
vulnerability function. Notably, at a loss coefficient of 0.01,
VulStamp’s performance peaks, achieving an Fl-score of
37.1%. Furthermore, when the loss coefficient is below 0.01,
the performance of VulStamp tends to gradually decline.

Momentum Decay Coefficient. From Figure 5(b), we
can find that the performance of VulStamp improves along
with the increase of the momentum decay coefficient. As the
momentum decay coefficient rises, the reward baseline updates
at a slower pace, enhancing its ability to capture the long-
term reward trend, minimizing short-term fluctuations, and
stabilizing the perception of vulnerability intention. Upon the
momentum decay coefficient reaching 0.7, the AUC, precision,
recall, and F1-score achieve their optimum. Beyond this point,
all metrics experience a notable decline. Therefore, we set the
momentum decay coefficient to 0.7 during VulStamp training.

Answer to RQ4: The hyper-parameters are crucial in
shaping how well VulStamp performs in vulnerability as-
sessment. To enhance this performance, we typically set the
weighted reward loss coefficient at 0.01 and the momentum
decay coefficient at 0.7.

VI. DISCUSSION
A. Case Study

In Figure 6, SVACL incorrectly classified CWE-119 as a
medium-risk vulnerability in the evaluation dataset, whereas
VulStamp correctly identified it as a critical-risk issue. The
readlink function is utilized to fetch the contents of a
symbolic link, essentially retrieving the path of the target

file that the symbolic link references. The third parameter
indicates the buffer size designated for storing the target path.
In this context, the buffer size is initialized to sizeof dest.
Nonetheless, if the target path, including the null terminator
\0, surpasses the dest buffer’s capacity, the readlink
function will extend writing operations beyond the buffer size
in dest, leading to a buffer overflow vulnerability. The risk
manifests under a specific directory configuration, requiring
the presence of symbolic link files in the directory, with
the target path’s length marginally exceeding the buffer’s
limit. SVACL struggles to fully capture the vulnerability’s
implications, which can cause it to overlook potential threats,
resulting in false positives.

A critical vulnerability code snippet and its fix (CWE-119)

1 static int CatalogueRescan(FontPathElementPtr fpe)

2

3 CataloguePtr cat = fpe->private;

4 char 1ink[MAXFONTFILENAMELEN];

5 char dest[MAXFONTFILENAMELEN];

6 ee

7 int len;

8 while (entry = readdir(dir), entry != NULL)

9 {

10 snprintf(link, sizeof link, "%s/%s", path, entry->d_name);
11 len = readlink(link, dest, sizeof dest);

12 len = readlink(link, dest, sizeof dest - 1);

13-- if (len < @)

14 -- continue;

15 ++ dest[len] = "\@';

16 e

17 closedir(dir);

18 qsort(cat->fpelList,

19 cat->fpeCount, sizeof cat->fpeList[@], ComparePriority);

20 cat->mtime = statbuf.st_mtime;
21 return Successful;

Fig. 6. An example of a vulnerability mis-assessed as medium-risk.

VulStamp comprehends the significance and extent of the
vulnerability, enabling it to concentrate on its purpose. Addi-
tionally, it can monitor the specific local code details causing
the vulnerability, allowing for an accurate evaluation of its
classification as a critical-risk.

B. Impact of Intention Reports Generated by LLMs

To evaluate the effectiveness of generating VIRs, we con-
ducted experiments using different LLMs. The findings pre-
sented in TABLE V suggest that both GPT-3.5-turbo and
DeepSeek-R1 produce VIRs, enabling VulStamp to outper-
form all baseline models. The VIRs produced by GPT-3.5-
turbo enhanced VulStamp by 7.8%, 39.4%, 8.4%, and 21.6%
in AUC, precision, recall, and Fl-score, respectively, over
the top baseline. Similarly, the VulStamp used in conjunction
with DeekSeek-R1 showed improvements of 8.4%, 19.2%,
4.3%, and 11.1% for AUC, precision, recall, and Fl1-score,
respectively, when compared to the best baseline. This sug-
gests that while the VIRs produced by DeekSeek-R1 based
on instructions are effective, certain constraints remain when
compared to GPT-3.5-turbo. These results indicate that the
VIRs generated by different LLMs can all enhance the model’s
comprehension of software vulnerability intentions, thus im-
proving the effectiveness of the evaluation.

C. Quality of Generated Repair Suggestions

The results of the ablation study demonstrate the efficacy of
suggestion generation. To further investigate the performance



TABLE V
COMPARISON FOR VIR GENERATED BY DIFFERENT LLMS.

Model AUC Precision Recall Fl-score
GPT-3.5 61.9 43.5 324 37.1
DeepSeek-R1  62.2 37.2 31.2 339

of the generated suggestions, we conducted a comparison
with the latest baseline, VulAdvisor, which is designed to
address vulnerabilities. We specifically used the performance
metrics BLEU-4, ROUGE-L, METEOR, and BERTScore, as
employed by VulAdvisor. Table VI presents the results of
our experiments. We found that the suggestions produced by
VulStamp surpassed those of VulAdvisor on all four metrics.
Notably, in terms of BLEU-4, it outperformed by 3.6%. The
suggestions generated by VulStamp align more closely with
the reference suggestions in both semantics and grammatical
structure. Furthermore, they exhibit improved accuracy in
vocabulary usage and phrasing, thus more effectively matching
the intent conveyed in real bug repair suggestions.

TABLE VI
COMPARISON FOR VULNERABILITY REPAIR SUGGESTIONS.

Model BLEU ROUGE-L METEOR BERTScore
VulAdvisor 41.2 58.4 33.1 83.6
VulStamp 42.7 58.7 33.7 84.1

VII. RELATED WORK
A. Descriptive Feature-based Vulnerability Assessment

During the application process, a vulnerability description is
provided by the CVE-ID applicant, detailing the vulnerability
in natural language. This description typically encompasses
essential information, technical specifics, the extent of impact,
and potential repercussions of the vulnerability.

Various methods have been investigated to demonstrate the
effectiveness of vulnerability descriptions for software vulner-
ability assessment. For example, Han et al. [14] reframed the
challenge of assessing vulnerabilities as a text classification
issue, employed the continuous Skip-Gram model to train
word embeddings from a gathered corpus of vulnerability
descriptions, and developed a single-layer shallow CNN to
extract sentence-level characteristics from vulnerability de-
scriptions. Sahin et al. [15] adopted the approach of Han
et al. [14], utilizing word vectors for extracting features
and employing convolutional neural networks to construct
a predictive model. Le et al. [16] introduced a structured
method that integrates both character and word features to
automatically conduct software vulnerability evaluations con-
sidering concept drift, utilizing software vulnerability descrip-
tions. Their approach employs a specially designed time-based
cross-validation technique to identify the optimal model for
each vulnerability characteristic, chosen from eight distinct
natural language processing representations and six established
machine learning models. Le et al. [46] conducted a review of
earlier research activities, emphasizing optimal practices for
assessing and ranking software vulnerabilities driven by data.
Sun et al. [12] employed BERT-MRC to isolate vulnerability

components from their descriptions and used these elements
throughout the descriptions to assess six different metrics.

The descriptive features of vulnerabilities are very useful for
an initial understanding of vulnerabilities and their potential
threats. However, the actual occurrence and exploitation of
vulnerabilities are often closely related to the specific im-
plementation of the code, and the code features can provide
more detailed and low-level technical details. In addition, the
vulnerability description is more dependent on the applicant’s
understanding, and the writing style and understanding of the
description obtained may not be complete.

B. Code Feature-based Vulnerability Assessment

In recent times, there has been an increase in the use of
methods for assessing vulnerabilities by analyzing susceptible
code. For example, Le et al. [17] explored how vulnerable
statements could be used to create evaluation models, inte-
grating the context of these statements, resulting in an im-
provement in performance of 8.9%. Hao et al. [18] introduced
a method to assess vulnerability severity, which integrates both
the call graph of the function and the vulnerability attribute
graph. This approach employs the vulnerability attribute graph
to depict the vulnerability’s severity based on the code’s
semantics, and utilizes a graph attention neural network to
enhance the accuracy of the vulnerability severity evaluation.
Xue et al. [13] integrated confidence-based replay techniques
with regularization strategies for continuous learning by em-
ploying source code and vulnerability descriptions alongside
the pre-trained CodeT5 model to develop a hybrid prompt.

Compared with existing methods, in this paper, we introduce
a novel intention-guided vulnerability assessment based on
LLMs. Unlike previous studies, we propose to extract vul-
nerability intention statements from the code and analyze the
exploitability, impact, and scope of the code through LLMs
to obtain the vulnerability intentions. In our approach, more
attention is paid to high-risk vulnerabilities to prevent them
from being misjudged as low-risk to avoid major losses. Last
but not least, our approach supports the generation of high-
quality suggestions for vulnerability repair. To the best of our
knowledge, our work is the first attempt to combine the merits
of intention-oriented syntactic code characteristics and the
semantical natural language processing capabilities of LLMs,
thus enhancing the comprehension of vulnerabilities.

VIII. CONCLUSION

This paper introduces VulStamp, a novel LLM-based frame-
work that enables a precise assessment of software vulner-
abilities and provides constructive repair suggestions. With
our proposed intention-guided data processing method and
designed prompt template, VulStamp can not only extract
syntactical information for the harmful intention of identified
vulnerabilities, but also produce severity reports for these vul-
nerabilities, including their exploitability, impact, and scope.
By prompt-tuning on a pre-trained LLM model using the
collected intention-oriented information, our approach forms
a code reviewer model for both vulnerability assessment and



repair goals. During the prompt-tuning, to alleviate the prob-
lem of imbalanced data associated with vulnerability types,
we employed an efficient gradient-enhanced model training
scheme based on reinforcement learning, which can signifi-
cantly improve the accuracy of the assessment and the quality
of repair suggestions. Comprehensive experimental results on
well-known LLMs and vulnerability benchmarks demonstrate
the effectiveness of VulStamp.
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