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Abstract—Traditional CAPTCHA schemes are increasingly
vulnerable to automated attacks powered by deep neural net-
works (DNNs). Existing adversarial attack methods often rely
on original image characteristics, resulting in distortions that
hinder human interpretation and limiting their applicability
in scenarios with no initial input images. To address these
challenges, we propose the Unsourced Adversarial CAPTCHA
(UAC), a novel framework generating high-fidelity adversarial
examples guided by attacker-specified text prompts. Leveraging
a Large Language Model (LLM), UAC enhances CAPTCHA
diversity and supports both targeted and untargeted attacks.
For targeted attacks, the EDICT method optimizes dual latent
variables in a diffusion model for superior image quality. In
untargeted attacks, especially for black-box scenarios, we intro-
duce bi-path unsourced adversarial CAPTCHA (BP-UAC), a two-
step optimization strategy employing multimodal gradients and
bi-path optimization for efficient misclassification. Experiments
show BP-UAC achieves high attack success rates across diverse
systems, generating natural CAPTCHAs indistinguishable to
humans and DNNs.

Index Terms—adversarial attacks, diffusion model,
CAPTCHA, Large Language Model

I. INTRODUCTION

CAPTCHA (Completely Automated Public Turing test to
tell Computers and Humans Apart) is a foundational

cybersecurity mechanism. Its core function is to distinguish
legitimate human users from automated bots. This technol-
ogy presents specific computational challenges that are easily
solvable by humans but difficult for machines. Common im-
plementations can be categorized into text-based CAPTCHAs
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Fig. 1. Practical application scenarios of adversarial examples in CAPTCHA
images. To allow readers can distinguish the source of the images, we label the
adversarial examples generated by our method with red boxes, the adversarial
examples generated by the traditional method with yellow boxes, and the clean
images that are not labeled.

e.g., interpreting distorted alphanumeric sequences and solving
arithmetic problems, image-based CAPTCHAs e.g., recogniz-
ing objects in image grids and completing slider puzzles, and
audio-based CAPTCHAs. CAPTCHA systems establish criti-
cal barriers against automated abuse. They are widely deployed
to prevent malicious activities, such as credential stuffing,
spam registrations, ticket scalping, data scraping, and comment
spam. By filtering out automated attacks, these mechanisms
safeguard digital services while maintaining system integrity.

As AI systems become more proficient at tasks traditionally
requiring human intelligence, they also pose unintended chal-
lenges in areas where maintaining human control and security
is critical. For instance, image recognition technologies based
on DNN model have grown highly effective at decipher-
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Fig. 2. Our proposed bi-path unsourced adversarial CAPTCHA (BP-UAC) attack framework

ing even the most complex CAPTCHA systems, which are
widely used to prevent automated bots and malicious activities.
CAPTCHAs, originally designed to differentiate between hu-
mans and machines, are now increasingly vulnerable to attacks
powered by advanced deep learning models. These models
can break CAPTCHA defenses with remarkable precision,
rendering conventional CAPTCHA systems less effective at
safeguarding online platforms against automated attacks.

Adversarial attacks, which exploit the sensitivity of deep
learning models to specific, carefully designed perturbations,
have emerged as a powerful tool to evaluate model robust-
ness [1], [2]. These attacks introduce subtle, targeted noise
to mislead models into incorrect predictions, serving as an
effective tool for evaluating the robustness of AI systems.
This concept has been creatively extended to adversarial
CAPTCHAs, where adversarial perturbations are used to en-
hance CAPTCHA robustness against automated recognition.
This novel approach has started gaining traction in recent
years, particularly among leading AI enterprises, and repre-
sents an innovative shift in security strategies for CAPTCHA
systems [3], [4].

Although adversarial CAPTCHAs represent a significant
advancement in securing systems against automated attacks,
adversarial CAPTCHA systems still face several challenges.
First, the limited variety of CAPTCHA images, often con-
strained by issues like copyright, restricts the diversity of gen-
erated adversarial examples, which in turn can inflate the cost
of model training. Second, to effectively resist recognition at-
tempts by various black-box models, adversarial CAPTCHAs
require strong generalization abilities, often achieved by am-
plifying the intensity of adversarial perturbations. However,
increasing the strength of these perturbations can introduce
more visual noise, creating difficulties for legitimate users
during the verification process and adversely impacting the
usability and overall user experience of CAPTCHA systems.
The potential of diffusion models offers a promising direc-
tion for further enhancing CAPTCHA security and usability,
ensuring robustness against an even wider array of attack

methodologies.
To address the above issues, we propose the unsourced

adversarial CAPTCHA (UAC) attack framework in the white-
box scenario. Specifically, before initiating the attack, we
use a large language model to convert the attacker’s input
prompt into a concise and clear sentence, thereby ensuring
the accuracy of the generated image. Unlike other adversarial
attack methods based on diffusion model, we adopt EDICT’s
[5] dual latent variable optimization approach. This method ap-
proximates the initial input by performing one-step denoising
at each time step, allowing the model gradients to propagate
backward through the entire chain and resolving the instability
and error accumulation issues inherent in adversarial attack
methods based on diffusion model. Through the precise inver-
sion process, UAC effectively avoids error propagation seen
in traditional methods, ensuring the stability and high quality
of adversarial example generation. In the more challenging
and practical black-box attack scenario, we further introduce
the bi-path unsourced adversarial CAPTCHA (BP-UAC). This
method enhances optimization efficiency and attack perfor-
mance by integrating multi-model gradient optimization and
proposing a novel bi-path optimization strategy during the at-
tack process. It ensures that the generated adversarial examples
exhibit high transferability in black-box environments.

In summary, our contributions are as follows:
• We propose the first unsourced attack framework based on

text-guided generation of adversarial examples, which enables
the generation of adversarial examples during the diffusion
process instead of relying on the original input images. The
method effectively improves the diversity of generated ad-
versarial examples and solves the optimization problem of
adversarial example perturbation concealment, significantly
improving the search space for adversarial attacks.
• We propose different attack frameworks for the white-box

and black-box scenarios. In the white-box scenario, we pro-
pose the unsourced adversarial CAPTCHA (UAC) framework,
which uses a large language model to convert the attacker’s in-
put into a clear sentence, ensuring accurate image generation.
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We also employ EDICT’s dual latent variable optimization to
address instability and error propagation in other adversarial
attack methods based on diffusion model, ensuring stable and
high-quality adversarial examples. In the black-box scenario,
we further propose BP-UAC, which enhances optimization
efficiency by integrating multi-model gradient optimization
and employing a bi-path optimization strategy, improving the
transferability and robustness of adversarial examples.
• Extensive experiments have demonstrated that our ap-

proach can guarantee high attack success rate (ASR) for deep
neural network models with different structures under different
white- and black-box scenarios while generating unsourced
Adversarial CAPTCHAs that are indistinguishable from clean
examples.

To the best of our knowledge, we are the first to generate
unsourced adversarial CAPTCHA using the diffusion model.
At the same time, by means of a novel bi-path optimization
strategy, we achieve for the first time a near 100% ASR against
an unknown black-box model when generating adversarial
examples using the generative model. This opens up new
possibilities for adversarial research.

II. RELATED WORK

As the domain of adversarial attacks continues to mature,
the endeavor to render adversarial perturbations increasingly
inconspicuous has emerged as a pivotal topic.

In recent years, there have been various innovative ap-
proaches to adversarial image attacks. MUTEN [6] enhances
the success rate and robustness of gradient-based adversarial
attacks by utilizing diverse variant models. GADT [7] im-
proves the migrability of adversarial examples by optimizing
the data enhancement parameters, which is particularly suit-
able for black-box and query attacks. MGAA [8] improves the
mobility of attacks using meta-learning methods and enhances
the success rate of attacks by narrowing the difference in
gradient directions in white-box and black-box environments.
U-GAN [9] constructs unconstrained adversarial exexample
through GAN networks, breaking through the restriction on
the perturbation range of traditional gradient-based attack
methods, making the generated adversarial example more
aggressive and effective in bypassing many existing defense
mechanisms. AdvDiff [10] generates unconstrained adversarial
example by utilizing the denoising process of the diffusion
model, demonstrating the potential of this model in adversarial
attacks. DiffAttack [11] proposes an attack strategy specifi-
cally for countering the purification defense of the diffusion
model, which successfully generates adversarial example by
bypassing the purification process, revealing potential loop-
holes in the defense mechanisms of the diffusion model and
driving new challenges in the field of adversarial attacks.

Not only in the field of image recognition, but also in the
field of security, researchers have similarly tried to incorporate
undetectable perturbations into CAPTCHAs to fight against
machine intrusion. Shi et al. [12] proposed an aCAPTCHA
system, which enhances the security of ordinary CAPTCHAs
by generating adversarial examples. This approach makes
it difficult for deep learning models to recognize them by

adding adversarial perturbations to the images, while still
allowing human users to pass normally. Wen et al. [13]
explored methods to generate stronger CAPTCHA challenges
through adversarial attacks such as Iterative FGSM (I-FGSM)
[14] and DeepFool [15]. Their method, which focuses on
perturbation processing, improves the resistance of these visual
challenges to machine learning models, making them harder
for automated systems to crack. Zhang et al. [17] explored
the application of adversarial examples on different image
classes of CAPTCHAs, and investigated how to improve the
robustness of image CAPTCHAs by using adversarial methods
by analyzing the effect of adversarial example perturbation on
it.

While all of the above methods optimize the perturbations
at different levels, it is always necessary to generate image ad-
versarial examples based on the corresponding benign images,
and the fundamental flaws of the adversarial attack methods in
this regard limit the search space of the perturbations and the
high intensity of the attack performance can make the pertur-
bations too noisy, which affects their visualization by humans.
In contrast to the above work, our focus is on introducing
gradient information of DNNs in the diffusion generation
process and enabling their stable integration into the diffusion
model to generate high-quality adversarial samples.

TABLE I
CHARACTERISTICS OF ADVERSARIAL ATTACK METHODS.

#/H#/ INDICATE THE LOW/MIDDLE/HIGH QUALITY OF THE METHODS.

Attack Methods Method Characteristics

Dependent input Diversity Quality transferability

MUTEN [6] # # H# #
GADT [7] # # H# H#
MGAA [8] # # H#  

U-GAN [16] # H#  #
DiffAttack [11] # H#  #
AdvDiff [10] # H#  H#

UAC (ours)    #
BP-UAC (ours)     

III. BACKGROUND

A. Traditional adversarial scenarios

Traditional adversarial attacks can be categorized into untar-
geted and targeted attacks. To cope with different application
scenarios, our approach discusses targeted and untargeted
attacks, respectively. Targeted attacks aim to shift the model’s
predictions to a targeted category specified by the attacker.
This attack can be considered “targeted” because the attacker
wants the model to output a specific mislabel when confronted
with a modified example. Specifically, a traditional targeting
attack is formulated as follows :

x′ = argmin
x′

ℓ(f(x′), ytarget)

s.t. x′ = x+ δ
(1)

Instead, the untargeted attack aims to make the prediction
results different from the original category without specifying
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the wrong category. The attacker only needs the model to out-
put any of the wrong categories when it sees the antagonistic
example.

x′ = argmax
x′

ℓ(f(x′), ytarget)

s.t. x′ = x+ δ
(2)

From Eq. 1 and Eq. 2, it can be concluded that traditional
adversarial attacks mainly rely on specify benign images
x as the basis for generating adversarial examples x′.

B. Diffusion model

Denoising Diffusion Models (DDMs) [18] are a type of gen-
erative model that produces images by progressively removing
noise, starting from pure noise and iterating until a clean image
is generated. The process consists of two main stages: forward
diffusion and reverse diffusion. Forward Diffusion Process:
In this stage, clean images are corrupted by adding Gaussian
noise in a series of steps, ultimately transforming the image
into pure noise. At each step t, the noisy image xt is computed
as:

xt+1 =

√
atxt +

√
1− αtϵ (3)

where is at noise-scaling factor and ϵ represents Gaussian
noise.

Reverse Diffusion Process: Starting from pure noise, the
model denoises the image iteratively, generating a series
of intermediate images that gradually resemble the original
image. The reverse process is modeled by:

pθ (xt−1 | xt) = N (xt−1;µθ (xt, t) ,Σθ (xt, t)) (4)

where µθ and Σθ are the learned parameters for mean and
variance, guiding the denoising process.

To accelerate sampling, Denoising Diffusion Implicit Mod-
els (DDIM) [19] introduce a non-stochastic, efficient sampling
approach. DDIM avoids fully stochastic sampling, offering a
faster alternative by approximating the reverse steps with an
implicit formula:

xt−1 =
√
ᾱt−1 · µθ(xt, t) +

√
1− ᾱt−1 · ϵ (5)

This formula reduces the number of steps required to
generate an example, making the model more practical for
real-time applications.

C. EDICT

In recent years, EDICT [5] has been proposed to address
the problem of reconstruction and content loss in model-
generated images due to error propagation during DDM [20]
backpropagation. EDICT mathematically and precisely inverts
real and model-generated images by coupling latent noise vari-
ables. Specifically, EDICT utilizes two alternating sequences,
xt and yt, in the symmetric coupling layer of the DDM. These
sequences are used to track and reconstruct the states of the
latent variables during the generation process. The forward
updating of xt and yt during DDM inverse propagation is
then realized through the following coupling steps:

Fig. 3. The adversarial examples generated by our proposed method.

xinter
t = at · xt + bt ·Θ(t,C)(yt)

yintert = at · yt + bt ·Θ(t,C)(x
inter
t )

xt−1 = p · xinter
t + (1− p) · yintert

yt−1 = p · yintert + (1− p) · xt−1

(6)

where at and bt denote the coefficients from time to time,
EDICT includes the internal transformations and backward
updates of the variables. It generates a new xt−1 and yt−1

by mixing the internal representations of xt and yt through
the averaging parameter p ∈ (0, 1), which is derived using
linear equations through the above equation to ensure that the
entire diffusion process can be performed exactly in reverse:

yintert+1 = (yt − (1− p) · xt)/p

xinter
t+1 = (xt − (1− p) · yintert+1 )/p

yt+1 = (yintert+1 − bt+1 ·Θ(t+1,C)(x
inter
t+1 ))/at+1

xt+1 = (xinter
t+1 − bt+1 ·Θ(t+1,C)(yt+1))/at+1

(7)

IV. METHODOLOGY

In this section, we introduce the UAC framework in the
context of white-box attacks, where we integrate both the LLM
and EDICT frameworks to generate unsourced adversarial
examples while ensuring the quality of the generated images.
Subsequently, to address the broader applicability and higher
complexity of black-box attack scenarios, we further extend
the UAC framework by incorporating the clip model and
the bi-path optimization strategy. This enhancement ensures
semantic consistency during the diffusion model’s generation
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process and overcomes the limitations of traditional search
spaces, enabling the generation of unsourced adversarial
CAPTCHAs suitable for practical application scenarios. The
overall framework is shown in Fig. 2.

A. Threat model

Considering the distinct contexts of image recognition and
CAPTCHA security, we adopt a threat model based on im-
age classification and examine both white-box and black-box
attack scenarios. In this scenario, the attacker only needs to
provide the target class and the desired adversarial instance
class during the generation phase and manipulate the test
image during the inference phase without involvement in the
training phase of the model.

B. Unsourced adversarial CAPTCHA

1) Prompt guidance: Firstly, we introduce an LLM to
ensure the accuracy and diversity of the generation process.
Although the initial attack aims to generate the corresponding
adversarial examples based on the object categories entered
by the attacker, in the experiments, we found that the use
of only short prompts P ′ tends to lead to generation errors.
This is mainly because brief prompts lack sufficient contextual
information, making the diffusion model ambiguous in un-
derstanding the target image features. Diffusion models rely
on the semantics of the prompter to gradually guide image
generation. Still, when the prompter is too simple, for example,
a single word or an ambiguous description, the model may
associate it with multiple different potential image features,
resulting in generation results that deviate from expectations.

To address this issue, we introduce an LLM [21]–[23]
to enhance the semantic information of the prompt. The
LLM guides the generator’s inputs by generating richer and
contextually relevant prompts like “A goldfish swims in the
bowl”, which not only ensures the diversity and stability of the
generated examples but also enables the attacker to generate
more accurate adversarial examples given the category and the
specific target. That is :

P ′ = fLLM(P ) (8)

Next, we use a diffusion model G to generate images step by
step, and the generation process of this model is conditionally
guided by the extended prompt. Specifically, we first input the
extended prompt P ′ into G for conditional generation, and G
generates a representation of the intermediate latent variable
zt based on the latent variables and the prompt at each time
step t. Specifically, this process can be formulated as

It = G(zt, P
′, ϵt) (9)

where ϵt is the noise term we introduce in the generation
process t to ensure diversity in the generation.

2) Latent pairwise diffusion optimization: In our approach,
gradient guidance and merging of latent variables are key
steps to ensure that the representation of latent spaces during
generation accurately guides the optimization of the generator

Algorithm 1 Adversarial example synthesis in UAC
Require: Initial prompt P from the attacker, generator G,

LLM fLLM , target category ytarget, iterations T , learning
rates ηx, ηy , weight α, cross-entropy loss L

Ensure: f(It) = ytarget
1: P ′ = fLLM (P )
2: Initialize latent variables x and y
3: for t = T to 1 do
4: It = G(zt, P

′, ϵt)
5: if f(It) = ytarget then
6: exit the loop and proceed to Step 17
7: else
8: Introduce gradients ∇ of f
9: Compute loss L between generated image It and

ytarget
10: Update latent variables x and y:
11: xinter

t−1 = xt − ηx ∗ ∇xt
ℓ(xt, ytarget),

12: yintert−1 = yt − ηy ∗ ∇yt
ℓ(yt, ytarget)

13: Merge optimized latent variables into a unified rep-
resentation:
zt−1 = α ∗ xinter

t−1 + (1− α) ∗ yintert−1

14: It−1 = G(zt−1)
15: end if
16: end for
17: return Adversarial image I∗.

G. Specifically, the gradient of the target model f needs to be
used first to guide the latent variable pairs:

xinter
t−1 = xt − ηx∇xt

ℓ(xt, ytarget)

yintert−1 = yt − ηy∇ytℓ(yt, ytarget)
(10)

where L denotes the loss function, ∇ indicates the gradient
of f , ytarget indicates the attacker specifies the target label of
the attack, and η denote the learning rate of the latent variable
pairs (xt, yt)

After the gradient-guided optimization, we merge the two
optimized latent variable pairs (xt−1, yt−1) into a single
unified latent variable zt−1 to continue the diffusion model
generation process:

zt−1 = α · xinter
t−1 + (1− α) · yintert−1

s.t. α ∈ [0, 1]
(11)

where α is a weight parameter to control the proportion of
the contribution of the two latent variables in the merger.
The goal of the merging process is to fuse the optimized
properties of the two latent spaces to produce a more robust
and integrated latent representation that better supports the
generation of diffusion models.

3) Adversarial example synthesis: In UAC, P ′ is provided
to the generator G as the input and initial condition for the
adversarial example generation process. During the reverse
diffusion process of the generator, EDICT is employed as a
reversible temporal diffusion framework to iteratively optimize
the latent variable pair (xt, yt). At each step, gradient guidance
is utilized to progressively refine the generated image toward
the target class ytarget. Specifically, for each latent variable
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zt in the generation process, joint optimization of (xt, yt) is
performed, leveraging the gradient information of the target
loss to guide the latent variable closer to the target class during
optimization. At each time step t UAC adjusts the variable pair
(xt, yt) through gradient guidance, controlling the diffusion
and denoising processes. Ultimately, the synergy between
gradient guidance and latent variable optimization ensures
that the generated adversarial examples not only precisely
align with the target conditions but also achieve optimal
performance in terms of distribution consistency and attack
efficacy. In summary, our adversarial example generation can
be expressed by the following equation:

z′ = argmin
zt

ℓ(zt, P, ytarget) (12)

where z′ denotes the final latent variant. After this, we pass
the final latent variable z′ to the generator G to obtain the final
output of the adversarial examples I∗ = G(z′). The specific
adversarial example synthesis process is shown in algorithm
1.

C. Bi-path unsourced adversarial CAPTCHA

Although UAC can effectively deceive the machine into
producing false recognition results by utilizing the original
model information in a white-box environment, the premise
of a white-box environment is that the attacker has access to
the complete structure and parameters of the target model.
However, in practical applications, especially in adversarial
CAPTCHA scenarios, this premise often does not hold because
the detailed information of the target model is not available,
and direct access to the original image source is also challeng-
ing due to the copyright issues of the image source. Therefore,
we extend the UAC method into a more practical black-box
attack method called BP-UAC.

In BP-UAC, before the attack process, we introduce the
gradient of the clip model [24] to guide G to generate the
initial states xm and ym, and synthesize the two initial states
obtained into a temporary latent variable zm through Eq. 11
after the conclusion of the bootstrap optimization of the clip
model. To ensure the consistency of the generated image with
the P ′.

This consistency not only enhances the naturalness and
visual quality of generated images but also prevents distri-
bution drift. Additionally, incorporating clip model’s gradient
significantly improves the stealthiness of adversarial examples
by aligning the generated images with the prompt description,
making them harder for human observers and detection meth-
ods to identify.

Then, we integrate the gradients of multiple models during
the attack and propose a bi-path optimization strategy to
address the limitations of white-box environments and adapt
to black-box scenarios. By merging predictions from multiple
models, we can approximate the behavior of the target model,
enhancing the ASR on unknown models. The bi-path strategy
balances the loss from the target class and second-highest
posterior probabilities in the target model’s output, effectively

capturing vulnerabilities in the decision boundary to improve
adversarial robustness and ASR.

Compared to traditional attacks, BP-UAC excels in generat-
ing perturbations by exploring the input space more compre-
hensively through bi-path optimization strategy. This increases
the diversity of adversarial examples and enhances the attack’s
robustness, allowing it to exploit weaknesses in the target
model more effectively. As a result, BP-UAC achieves higher
success rates in complex and uncertain black-box environ-
ments.

To accomplish the above, we need to add the assumption
that we have three known proxy models f1 ,f2 and f3 , which
have classification predicted probability distribution of g1(x),
g2(x), g3(x), and parameters β1, β2 and β3, respectively.
Using the predict probability distribution of these models, we
update the latent variables xt and yt. Based on UAC, we
replace the known model gradients in Eq. 10 and Eq. 11
with the weighted average of the gradients from the three
proxy models to enhance the attack’s effectiveness against
an unknown black-box model. Specifically, our integrated
classification predicted probability distribution gxt

and gyt
can

be expressed by the following equation:

g1(x) = u1 =
[
u
(1)
1 , u

(2)
1 , . . . , u

(M)
1

]T
g2(x) = u2 =

[
u
(1)
2 , u

(2)
2 , . . . , u

(M)
2

]T
g3(x) = u3 =

[
u
(1)
3 , u

(2)
3 , . . . , u

(M)
3

]T
gxt

=
β1g1(x) + β2g2(x) + β3g3(x)

β1 + β2 + β3

(13)

where g1, g2, g3 : RH×W×C → RM , the calculation of gyt

is the same as for gxt .
Leveraging the collective gradient information from these

proxy models, we further guide the model to generate ad-
versarial examples toward the second-highest and target class
probability classes. The bi-path optimization strategy identifies
a more robust path across different loss spaces, enhancing
the transferability and success rate of adversarial examples in
black-box models. This approach effectively improves the per-
formance of black-box attacks, making adversarial examples
more deceptive and robust.

Specifically, we focus on guiding the generation process by
minimizing the loss associated with both the second-highest
and target class probability classes:

ℓdiv = −ℓ(xt, ysecond)

ℓtar = ℓ(xt, ytarget)
(14)

Finally, the new loss ℓBP is derived by aggregating the
losses from multiple directional objectives, effectively balanc-
ing the guidance effects of both the target and auxiliary classes
during optimization, thereby overcoming the challenges asso-
ciated with black-box model attacks:

ℓxt =
ℓdiv + ℓtar

2
(15)

Compute gradient information through loss ℓBP :

∇xt
=

∂ℓxt

∂gxt
(16)
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Algorithm 2 Adversarial example synthesis in BP-UAC
Require: Initial prompt P from the attacker, clip model

M , origin category yorigin, learning rates ηx, ηy , proxy
models f1, f2 and f3, target model ft

Ensure: f(It) ̸= yorigin
1: P ′ = fLLM (P )
2: Initialize latent variables x and y
3: Using Eq. 9 and Eq. 10 optimize the latent variables x

and y through m, get xm and ym
4: for t = T to 1 do
5: It = G(zt, P

′, ϵt)
6: if ft(It) ̸= yorigin then
7: exit the loop and proceed to Step 20
8: else
9: Compute the probability distributions g1(x), g2(x),

g3(x) of the proxy models
10: Integrate g1(x), g2(x), g3(x) as gxt

base on Eq. 12
11: Compute loss of second-highest and target class ℓdiv ,

ℓtar
12: Integrate ℓdiv , ℓtar as ℓxt base on Eq. 14
13: Compute gradient ∇ base on Eq. 15
14: Update latent variables x and y:
15: xinter

t1 = x− ηx ∗ ∇xt
ℓxt

16: yintert−1 = y − ηy ∗ ∇yt
ℓyt

17: Merge optimized latent variables into a unified rep-
resentation:
zt−1 = α ∗ xinter

t−1 + (1− α) ∗ yintert−1

18: It = G(zt−1)
19: end if
20: end for
21: return Adversarial image I∗.

TABLE II
SOME OF THE PROMPT FOR LLM AND DIFFUSION MODEL.

Origin Class Input Prompt

Tench A tench is swimming in the pond

Goldfish A goldfish swims in the bowl

White shark A white shark is hunting

Hummingbird A hummingbird hovers near the flower

White stork A white stork stands by the river

Marmot A marmot stands on a rock

Otter An otter swims in the river

Gila monster A Gila monster hides under a rock

School bus A school bus carries the children

Toilet paper Toilet paper is rolled on the holder

The specific adversarial example synthesis process is shown
in algorithm 2.

V. EXPERIMENTS AND RESULTS

In this section, we will first validate the attack effective-
ness of our method in white-box and black-box scenarios,
respectively, by comparing the attack effectiveness with other
methods and calculating the attack effectiveness of existing

methods in the face of unknown models. Next, we launch
a comprehensive ablation experiment to compare the attack
effect, the quality of the generated images, and the efficiency
of the attack, respectively, to prove the usefulness of our
module and the rationality of the parameter settings.

A. Experimental setup

1) Dataset: Imagenet is one of the most commonly used
datasets for image classification, image detection, and image
localization in deep learning. Although this experiment did
not require the images provided by the dataset as the basis for
the input, to ensure the experiment’s rigor, we chose to refer
to Imagenet with 1000 classifications as input and attacked
categories in this experiment.

2) Environment: All experiments are carried out on an
Ubuntu 22.04.4 Server with an Intel(R) Xeon(R) Gold 6342
CPU @ 2.80GHz and NVIDIA A40 with 48G of memory.

3) Attack Model: All tasks in this experiment were per-
formed based on eight models, including SeResNeXt101 [25],
MobilenetV2 [26], Resnet50 [27], Resnet152, Googlenet [28],
Efficientnet [29], inceptionV3 [30] and Alexnet [31].

4) Evaluation Metrics: To demonstrate the effectiveness
and superiority of our sparse attack method, we employ
the Attack Success Rate (ASR), the Clip Score [32], and
the Average Attack Step in comparison with other methods.
Specifically, they are defined as:

ASR measures the proportion of inputs successfully manip-
ulated to produce the attacker’s desired erroneous outputs.

ASR =
Nadv

Ntotal
× 100% (17)

where Nadv is the number of adversarial examples that suc-
cessfully mislead the target model, while Ntotal denotes the
total number of generated adversarial examples.

Clip Score evaluates semantic alignment between images
and text using the Clip model, commonly applied in tasks like
image generation and text-to-image synthesis.

Clip Score(I, C) = max(100 ∗ cos(EI , EC), 0) (18)

where I is the input image, C is the input text description, and
cos(EI , EC) denotes the cosine similarity between the image
vector EI and the text vector EC .

B. Comparison and analysis of attack effects

To prove the superior attack performance we demonstrate
in white-box scenarios and black-box scenarios, we compare
it with classic white-box attack methods such as FGSM [33],
BIM [34], and PGD [35], and to prove the superior attack
performance of our method, we compare our method with
advanced adversarial attack methods based on diffusion model
under unknown models, such as U-BigGAN [9], AdvDiffuse
[36], DiffAttack [11], AdvDiff [10]. In addition, to prove that
BP-UAC can show stable and excellent attack performance
against unknown models, we conducted comprehensive exper-
iments on seven traditional DNNs.

As shown in Table IV, we compare the ASR of four
classical adversarial attack methods (PGD, FGSM, BIM, and
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TABLE III
TARGETED ATTACK SUCCESS RATES (%) AGAINST BLACK-BOX TARGET MODELS WITH THE FOUR SOURCE MODELS. FOR EACH ATTACK, WE ALSO

REPORTED THE AVERAGE ATTACK SUCCESS RATE. THE BEST RESULTS ARE IN BLUE. ∗ INDICATES THAT SURROGATE MODEL AND TARGET MODEL ARE
SAME.

Surrogate Model: RN-50 Method

Target Model SAE ADer ReColorADV cAdv tADV NCF ACE ColorFool ACA Ours

RN-50 88.0∗ 55.7∗ 96.4∗ 97.2∗ 99.0∗ 99.1∗ 90.1∗ 91.4∗ 88.3∗ 98.1∗
RN-152 46.5 7.8 33.3 37.0 30.2 15.2 21.0 60.5 61.7 79.9
MN-v2 63.2 15.5 40.6 44.2 43.4 32.8 41.6 71.2 69.3 89.3
Dense-161 41.9 8.4 28.3 36.8 28.8 16.1 18.6 48.5 61.9 87.9
Eff-b7 28.8 11.4 19.2 34.9 21.6 12.7 15.4 32.4 60.3 61.3
Inc-v3 25.9 7.7 17.7 25.3 27.0 9.4 9.8 33.6 61.6 75.0
Average 49.05 17.75 39.25 45.9 41.7 30.9 32.75 56.3 67.2 81.9

Surrogate Model: MN-v2 Method

Target Model SAE ADer ReColorADV cAdv tAdv NCF ACE ColorFool ACA Ours

RN-50 53.2 8.4 33.7 39.6 31.5 17.9 25.7 65.9 62.6 88.9
RN-152 41.9 7.1 26.4 29.9 24.5 12.6 15.4 56.3 56.0 79.6
MN-v2 90.8∗ 56.6∗ 97.7∗ 96.6∗ 99.9∗ 99.1∗ 93.3∗ 93.2∗ 93.1∗ 91.6∗
Dense-161 38.0 7.7 24.7 33.9 24.3 12.4 15.3 43.5 55.7 84.4
Eff-b7 26.9 10.9 20.7 32.7 22.4 11.7 13.4 33.0 51.0 69.5
Inc-v3 22.5 7.6 18.6 26.8 27.2 9.5 9.5 33.6 56.8 64.5
Average 45.55 16.4 37.0 43.25 38.3 27.2 28.8 54.25 62.5 79.75

TABLE IV
THE PERFORMANCE COMPARISON OF UAC AND SOME TRADITIONAL WHITE-BOX ADVERSARIAL ATTACK ON TARGET ATTACK SUCCESS RATE (TSR)

AND UNTARGET ATTACK SUCCESS RATE (USR).

Attack Methods
TSR Label : Gila Monster

ResNet50 ResNet152 SeResNext101 Effecientnet Googlenet MobileNetV2 Alexnet

PGD USR 99.8% 100% 99.8% 99.9% 99.6% 99.7% 99.9%

PGD TSR 69.8% 65.3% 47.7% 46.8% 77.3% 81.1% 65.0%

FGSM USR 100% 99.7% 100% 99.9% 100% 100% 100%

FGSM TSR 75.3% 60.0% 62.3% 53.6% 81.7% 83.5% 64.3%

BIM USR 100% 100% 100% 99.9% 100% 100% 100%

BIM TSR 75.3% 67.9% 62.3% 53.6% 81.7% 83.5% 64.3%

UAC USR 100% 100% 100% 100% 100% 100% 100%

UAC TSR 100% 100% 100% 100% 99% 100% 99%

UAC) on seven deep learning models, including the untargeted
attack success rate (USR) and the targeted attack success
rate (TSR), with the target category “Gila Monster”. The
experimental results show that the UAC method exhibits a
nearly 100% USR and TSR in all models and scenarios. It
significantly outperforms the other attack methods in both
USR and TSR, demonstrating its overall robustness and at-
tack effectiveness advantages. In contrast, although the other
methods also achieve a high success rate (more than 99%) in
untargeted attack scenarios, the ASR is significantly lower in
targeted scenarios, especially for the Efficientnet and SeRes-
Next101 models, which suggests that there is still a large
room for optimization of the performance of the traditional

adversarial attack methods in targeted attacks. The results of
this experiment show that untargeted attacks are very mature
under the existing methods, and almost all the methods can
achieve a very high USR under the white-box untargeted
attack scenarios, whereas the effectiveness of targeted attacks
is limited by the complexity of the method design and model
architecture. The UAC methods perform well in both targeted
and untargeted attack scenarios, show good generalization and
robustness, and provide a strong benchmark for subsequent
research.

As shown in Table V, we have evaluated the ASR using
the BP-UAC method on different combinations of baseline
and targeted attack models. Overall, the migration ASR of
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TABLE V
THE PERFORMANCE COMPARISON OF BP-UAC AND SOME STATE-OF-ART ADVERSARIAL ATTACK METHODS RELYING ON GENERATIVE MODELS ON

ASR.

Baseline Models
Attack method : BP-UAC

ResNet50 ResNet152 SeResNext101 Effecientnet Googlenet MobileNetV2 Alexnet

ResNet50 SeResNext101 Googlenet 100% 98.5% 100% 99.1% 100% 97.2% 98.0%

ResNet50 Effecientnet Alexnet 100% 98.0% 98.0% 100% 97.6% 97.9% 100%

Googlenet Effecientnet Alexnet 97.7% 96.6% 97.2% 100% 100% 95.5% 100%

ResNet152 MobileNetV2 Alexnet 95.4% 100% 95.8% 96.2% 97.2% 100% 100%

ResNet152 SeResNext101 MobileNetV2 99.3% 100% 100% 99.4% 99.2% 100% 99.2%

Fig. 4. Attack success rate of transfer attacks based on Resnet50 (left) and
InceptionV3 (right).

the BP-UAC method is higher than 99% on all model com-
binations, regardless of the architectural differences between
the baseline and target models, which demonstrates the strong
generalization ability and robustness of the BP-UAC method
in cross-model attacks. Especially on the models of ResNet
series, Googlenet, and MobileNetV2, the success rates of the
attacks are almost indistinguishable whether they are the base-
line model or the target model, which demonstrates that the
antiperturbation generated by the BP-UAC method is highly
adaptable and stable. It is worth noting that even for models
with relatively complex architectures (e.g., SeResNext101 and
Efficientnet), the success rate of BP-UAC’s migration attack
also remains exceptionally high, further demonstrating its
performance advantage in dealing with diverse deep learn-
ing models. Overall, the experimental results fully validate
the efficiency and robustness of the BP-UAC approach in
cross-model scenarios, reflect its potential as a generalized
adversarial attack method, and provide critical experimental
benchmarks and theoretical support for subsequent research.

As shown in Fig 4, we use the BP-UAC method to com-
pare the migration attack performance with four adversarial
attack methods based on generative models using ResNet50
as the baseline model on ResNet152 and InceptionV3 models.
From the experimental data, it can be seen that the existing
adversarial attack methods based on diffusion model have poor
attack performance when facing unknown models, and only
the AdvDiff method can barely exceed 50% ASR; in contrast,
our method can still show a success rate of close to 100%
when facing unknown models, which further illustrates the
superiority of our method when facing unknown models. This
further demonstrates the superiority of our method in the face

of the unknown model. In the production of CAPTCHA, since
the illegal model used by the attacker is unknown, therefore, in
the production of adversarial CAPTCHA defense, the method
is required to have a high degree of robustness in the face of
the unknown model. This experiment proves that our method
can significantly resist the theft of the CAPTCHA by the
illegal attacker.

C. Ablation study

We compared adversarial examples generated using class
names from ImageNet as prompts with those generated using
sentences as prompts, and further incorporated Clip model
gradients for optimization. As shown in the first column of
Figure 5, although both types of prompts achieved an ASR of
100%, the average number of steps required for a successful
attack was noticeably higher when the prompt was a single
word. Additionally, the Clip Score of the generated images was
lower, indicating poorer quality of the adversarial examples.
By incorporating clip model gradients during the generation
process, we ensured semantic consistency and visual align-
ment, which further improved the quality of the generated
examples. Overall, the combination of prompt optimization
through LLM and gradient optimization via clip model signifi-
cantly enhanced both attack efficiency and adversarial example
quality. Furthermore, as visually demonstrated in Figure 6,
when the prompt consisted of a single word, the simplicity
and lack of information in the semantic expression led to the
generation of incorrect or unrealistic images. In contrast, our
optimization strategy effectively guided the generation model
to output high-quality images that better aligned with the target
class. This comparison clearly demonstrates the crucial role
of both LLM and clip model in our method, as they not
only improved the quality of the generated examples but also
significantly increased the attack efficiency.

D. Robustness evaluation

In traditional adversarial attack scenarios, various defense
preprocessing methods are commonly employed to reduce
the efficacy of adversarial samples. However, in practical
applications of adversarial CAPTCHA systems, if an attacker
preprocesses the CAPTCHA using these defense mechanisms
during the attack process, the security of the CAPTCHA
is significantly compromised. To validate the robustness of
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Fig. 5. Attack success rate, average attack steps, and Clip Score of different settings.

TABLE VI
THE ASR OF ADVERSARIAL ATTACKS WHEN AGAINSTING DIFFERENT

DEFENCE METHODS.

Attack Models Baseline Model : Resnet50

NRP R&P RS HGD

U-BigGAN 30.9% 14.2% 34.5% 22.6%
AdvDiffuser 40.5% 15.4% 38.4% 10.8%
DiffAttack 38.5% 23.7% 40.8% 20.5%
AdvDiff 74.2% 56.8% 82.8% 53.8%
BP-UAC 100% 97.1% 100% 95.7%

our proposed adversarial CAPTCHA system, this study ex-
tensively analyzes the impact of various defense strategies
including NRP [37], RS [38], R&P [39] and HGD [40] on
adversarial samples. As illustrated in Figure 4, the potency
of attack methods based on generative models is typically
diminished after defense preprocessing, likely due to increased

uncertainty in samples, which reduces the effectiveness of
attacks based on generative models. Nonetheless, our BP-
UAC, through a bi-path optimization strategy, overcomes the
limitations of traditional attack approaches and effectively
mitigates the impact of defense measures. By integrating gradi-
ent information from multiple models, the BP-UAC enhances
the resilience of adversarial CAPTCHAs against a variety of
defense mechanisms, while also alleviating the issue of model
overfitting.

E. Influence and setting of Parameters

We also conducted a comprehensive ablation experiment
to verify the reasonableness of the parameter settings. We
calculated the Clip Score, average attack step and ASR of
the adversarial examples generated with different learning rate
and different perturb grad scale, as can be seen in the Fig. 7
and the second and third columns of Fig. 5, with the increase
of the learning rate, the the average attack step required for
the success of the attack decreases significantly, however, a
higher learning rate η will cause the generative model to be



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 11

Fig. 6. Comparison plot of adversarial samples generated using detailed prompt versus using labels. It is easy to draw conclusion that: a more detailed prompt
will result in a more accurate and higher quality generated image.

Fig. 7. Adversarial examples generated with different Learning rates.

over-guided in some steps during the generation process, thus
decreasing the quality of the generated image, for this reason,
we consider the quality of the image, the efficiency of the
attack, and choose to set η to 1.0, and at the same time, for
the size of the perturbation ϵ, in order to guarantee the method
is effective, we must ensure the success rate of the attack, so
in the case of ASR of 100%, we choose to set the perturb
grad scale to the 3e−3 that requires the least number of attack
steps and generates the highest Clip Score of the adversarial
examples.

VI. CONCLUSION

In this paper, we propose a novel adversarial CAPTCHA
generation framework, BP-UAC, which integrates LLM and
generative models while introducing an innovative bi-path
adversarial optimization strategy. By overcoming the lim-
itations of traditional adversarial attack methods that add
noise to original images, BP-UAC leverages gradients from
multiple deep models and simultaneously guides the model
toward generating adversarial examples in the directions of
the second-highest and target class probability classes. This
approach enables BP-UAC to identify more robust paths in
different loss spaces, achieving exceptionally high ASR even
against unknown models. Experimental results demonstrate
that our method not only generates realistic images but also
effectively deceives traditional DNN recognition models in
various white-box and black-box application scenarios, pro-
viding a new direction for future adversarial attack research.
Furthermore, given the widespread use of CAPTCHAs in daily
life for identity verification and security protection, our method
can effectively enhance the security of CAPTCHA systems,
preventing unauthorized intrusions and providing essential
technical support for CAPTCHA design and security upgrades.
In addition, we plan to further explore how to generate higher-
quality images in future work.
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