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Abstract—Indicators of Compromise (IOCs) such as IP ad-
dresses, file hashes, and domain names are commonly used
for threat detection and attribution. However, IOCs tend
to be short-lived as they are easy to change. As a result,
the cybersecurity community is shifting focus towards more
persistent behavioral profiles such as the Tactics, Techniques,
and Procedures (TTPs) and the software used by a threat
group. However, the distinctiveness and completeness of such
behavioral profiles remain largely unexplored. In this work,
we systematically analyze threat group profiles built from
two open cyber threat intelligence (CTI) knowledge bases:
MITRE ATT&CK and Malpedia. We first investigate what
fraction of threat groups have group-specific behaviors, i.e.,
behaviors used exclusively by a single group. We find that
only 34% of threat groups in ATT&CK have group-specific
techniques. The software used by a threat group proves to
be more distinctive, with 73% of ATT&CK groups using
group-specific software. However, this percentage drops to
24% in the broader Malpedia dataset. Next, we evaluate
how group profiles improve when data from both sources are
combined. While coverage improves modestly, the proportion
of groups with group-specific behaviors remains under 30%.
We then enhance profiles by adding exploited vulnerabilities
and additional techniques extracted from more threat reports.
Despite the additional information, 64% of groups still lack
any group-specific behavior. Our findings raise concerns on
the belief that behavioral profiles can replace IOCs in threat
group attribution.

1. Introduction

Indicators of Compromise (IOCs) – such as malicious
IP addresses, file hashes, domain names, emails, and cryp-
tocurrency addresses – are widely used for detecting and
attributing threats but offer only a snapshot of an adversary’s
activity. IOCs are often ephemeral and easily changed by
threat actors, limiting their long-term effectiveness for threat
detection and attribution. To address these shortcomings,
prior work argues to instead focus on behavioral characteris-
tics, such as the Tactics, Techniques, and Procedures (TTPs)
used to gain access, move laterally, maintain persistence, and
exfiltrate data [4], [6], [21], [38], [41], [44], [50].

Behavioral characteristics are thought to be more ro-
bust, remain more stable over time, have a larger cost for
adversaries to change them, and be able to link seemingly
unrelated attacks from the same threat group. Models like
the Pyramid of Pain [5] place TTPs at the top of the pyramid
in terms of cost for an adversary to change them. Apart
from TTPs, other behavioral characteristics also exist, for
example, the software tools used by a threat group may
be distinctive, particularly if the malware is developed in-
house. Similarly, exploited vulnerabilities can be character-
istic, especially when a group targets uncommon software
or uses custom-developed exploits. Even the textual content
used in campaigns can be characteristic of a threat group
with recent works leveraging phishing SMS contents [32],
ransomware notes [48], and cross-file-type features [40] to
identify attacks from the same campaign and threat group.

We refer to a threat group’s observed behaviors as its
group profile. Accurate threat group profiles are fundamen-
tal for incident correlation, attribution, building behavioral
detection rules, and proactive threat hunting. Group profiles
can be built from the contents of the threat reports published
by security vendors and analysts, which typically describe,
in natural language, the analysis of specific attacks and
their attribution to specific threat groups. Threat reports may
come from a single source (e.g., a specific cybersecurity
vendor) or be aggregated by cyber threat intelligence (CTI)
knowledge bases [34], [45] and sharing platforms [7], [21].

While the potential of such behavioral profiles has been
widely acknowledged, few studies have examined how dis-
tinctive the behavioral profiles of threat groups truly are,
and how complete our understanding of those behaviors
is, especially given the varying quality and scope of the
data sources used to build these profiles. One concern is
that many behaviors in these profiles can be generic, i.e.,
used by many threat groups, thus providing little infor-
mation on the groups using them. These include common
techniques (e.g., spearphishing, malware auto-start through
registry keys), widely available software (e.g., abused pen-
etration testing tools, open-source projects, malware kits
sold in underground forums), and prevalent vulnerabilities
(e.g., those affecting popular software with public exploits).
Multiple threat groups often acquire such tools and exploits
for reasons of convenience, reduced operational cost, or to
obscure attribution.
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This raises the question of which behaviors are truly
group-specific, i.e., used by only a single threat group.
Group-specific behaviors, when observed on a protected
system, can serve as behavioral signatures that uniquely
identify the responsible threat group. However, what fraction
of threat groups exhibit group-specific behaviors remains
an open question. Determining whether a behavior is truly
group-specific requires not only analyzing the group that
exhibits it, but also having comprehensive coverage of be-
haviors across other threat groups. Without this broader
context, a behavior might appear unique when it is not.
For example, as more threat reports become available, a
behavior initially believed to be exclusive to group A may
also be observed in group B, indicating it is not unique.

In this work, we perform a systematic analysis of group
profiles in CTI knowledge bases, their complementary value,
and how they can be extended. We focus on knowledge
bases that are open (i.e., non-commercial), index many
threat reports, are periodically updated, provide a taxon-
omy of threat groups, and organize information into group
profiles. These profiles include basic group metadata (e.g.,
name, aliases, country), references to related threat reports,
and descriptions of group behaviors mentioned in those
threat reports. We find two knowledge bases satisfying those
properties: MITRE’s Adversarial Tactics, Techniques, and
Common Knowledge (ATT&CK) [27] and Malpedia [15].
We discard other open projects like the MISP threat actor
galaxy [26], ThreatMiner [46], and APTnotes [3], as they
collect threat reports and associate them with threat groups
but do not extract or include behavioral information from
those reports into their group profiles. Moreover, Malpe-
dia incorporates data from the MISP threat actor galaxy,
allowing us to cover that project indirectly. We also exclude
commercial services that provide specialized threat reports
to paying customers [6], as their knowledge bases are pro-
prietary. Both ATT&CK and Malpedia provide their own
taxonomies of threat groups and associated software tools.
A key distinction is that ATT&CK also includes a taxonomy
of TTPs, integrating attack techniques directly into the group
profiles. Using the data in these two knowledge bases, we
analyze the following three research questions:

RQ1: What fraction of the threat groups in ATT&CK
and Malpedia have group-specific behaviors? We sepa-
rately analyze the group profiles created using only the in-
formation available in ATT&CK and Malpedia. Identifying
groups based on TTPs is challenging as only 52 (34.2%)
groups in ATT&CK have group-specific techniques. It is
somewhat easier to identify groups through the software they
use with 111 (73.0%) groups in ATT&CK having group-
specific software. However, this percentage is significantly
lower in Malpedia, where only 192 (24.0%) have group-
specific software. This discrepancy stems from threat reports
disproportionately focusing on a subset of high-notoriety
groups, leaving less-known groups with sparse reports to
build their profiles. Combining techniques and software
into joint profiles increases the groups with group-specific
behaviors from 111 (73.0%) to 124 (81.6%).

RQ2: How complementary is the information in both
datasets? How much do group profiles improve when
combining data from both sources? Both datasets differ
substantially in volume. Malpedia provides a broader cover-
age of the threat landscape than ATT&CK, comprising 5.2
times more threat groups (800 vs. 152) and 4.2 times more
software (3,367 vs. 794). This expanded scope stems from
Malpedia indexing 16.9 times more threat reports (15,699
report URLs vs. 930). To assess their overlap, we normalize
group and software names across the datasets. Both datasets
have little overlap with only 145 groups and 498 software
entries in common. The corresponding Jaccard Index values
are 17.7% for groups, 13.5% for software, and just 3.2% for
report URLs. The low intersection indicates that each dataset
captures a different view of the threat group landscape
highlighting their complementary nature.

We create joint group profiles using the data from both
datasets, identifying 236 (29.2%) groups with group-specific
behaviors, compared to 124 groups using only ATT&CK and
192 using only Malpedia. Despite combining both datasets,
over 70% of groups have no group-specific behavior.

RQ3: What additional information currently not in
ATT&CK and Malpedia could make threat group pro-
files more complete? We examine how group profiles can
be improved with additional information extracted from
threat reports. First, we extract CVE identifiers to build
vulnerability profiles for each threat group. The number
of groups with at least one group-specific vulnerability is
48 (31.6%) in ATT&CK, 112 (14.0%) in Malpedia, and
119 (14.7%) when combining both datasets. Thus, exploited
vulnerabilities tend to be less distinctive than the software
used, but more than the techniques used. Next, we extend
the group profiles with additional technique identifiers ex-
tracted from the threat reports. Since Malpedia does not
provide TTPs, this step allows us to extend its group profiles
with techniques. Incorporating these extracted techniques in-
creases the number of groups with group-specific behaviors
from 52 (6.4%) to 68 (8.4%). Finally, we combine all avail-
able behavioral indicators, including techniques, extracted
techniques from reports, software, and vulnerabilities, into
unified group profiles, identifying 291 (36.0%) groups with
at least one group-specific behavior. Despite leveraging all
available information, a majority of groups (64%) have no
group-specific behaviors.

To better understand the limitations of current group
profiles, we also discuss the impact of under-reporting, i.e.,
incomplete coverage of threat group behaviors. We observe
that the number of technique identifiers extracted from the
ATT&CK threat reports is larger than the number of tech-
niques officially cataloged in ATT&CK from those same
reports. This discrepancy likely arises from the manual na-
ture of the report analysis process by ATT&CK contributors,
emphasizing the need for automated approaches to extract
TTPs from threat reports [2], [18], [37]. We also observe
that only 46.3% of techniques and 64.1% of software entries
in ATT&CK, and just 28.6% of software in Malpedia, are
currently associated with at least one threat group. The re-



maining entries were likely added to the taxonomies because
they were observed being used by adversaries in the wild.
However, their lack of association with specific threat groups
highlights the incomplete coverage of group profiles.

Artifacts. We will open-source our code and data at https://
anonymous.4open.science/r/ThreatGroupCTI-B746.

2. Dataset Comparison

This section first details the information in
ATT&CK [27] and Malpedia [15] and then sets the
base for answering RQ2 by analyzing the extent of data
overlap between the two datasets and assessing how their
contents complement each other.

2.1. Datasets

ATT&CK. ATT&CK provides taxonomies of offensive and
defensive techniques, software tools used by adversaries,
and threat groups. The techniques taxonomy comprises three
domains: Enterprise, Mobile, and ICS. Each domain de-
fines a set of tactics that correspond to different steps in
the kill chain, such as Reconnaissance (TA0043), Persis-
tence (TA0003), and Lateral Movement (TA0008). Each
tactic includes a set of techniques. For example, Active
Scanning (T1595) and Phishing for Information (T1598)
are techniques under the Reconnaissance tactic. Techniques
can also contain sub-techniques. For example, T1204.002
corresponds to the Malicious File sub-technique under the
User Execution (T1204) technique.

The threat group taxonomy covers nation-state actors,
advanced persistent threats (APTs), and some large for-profit
actors such as ransomware groups. The profile of a threat
group contains a unique identifier, a name, a list of aliases
(called Associated Groups), and the techniques and software
used by the threat group.

Entries in the software taxonomy are categorized into
Tools and Malware. Tools include commercial software
(e.g., Cobalt Strike), open-source frameworks (e.g., Metas-
ploit, Mimikatz), and built-in OS tools (e.g., PsExec, ipcon-
fig). Malware includes families specific to a single threat
group (e.g., Carbanak) as well as malware kits available in
underground markets and used by multiple threat groups
(e.g., PoisonIvy RAT). The focus is on software used by
APTs listed in the group taxonomy; however, ATT&CK also
catalogs non-APT malware such as the Conficker worm [29]
and the SimBad Android malware [30]. Each taxonomy
entry contains URLs to threat reports related to the entry,
such as reports describing the techniques and software used
by a threat group.

Since its public release in 2015, ATT&CK publishes a
new version approximately every six months, with the latest
version at the beginning of this work being 15.1, released
in April 2024. Each version may add new taxonomy entries
(e.g., groups, techniques, software), remove revoked entries,
or mark entries as deprecated (i.e., to be revoked soon).

TABLE 1: Dataset summary. Malpedia does not have a
techniques taxonomy. The low intersection and Jaccard In-
dex show that both datasets have little overlap. We use the
union of both datasets to build group profiles.

Data ATT&CK Malpedia ∩ ∪ Jaccard

Groups 152 800 145 807 17.7%
Techniques 839 - - 839 -
Software 794 3,367 498 3,663 13.5%
Report URLs 930 15,699 522 16,107 3.2%
Report FQDNs 218 2,002 194 2,026 9.6%
Reports 920 14,983 80 15,816 0.5%

Malpedia. Malpedia provides taxonomies of threat groups
and software. It does not provide a taxonomy of tech-
niques nor reference the techniques in ATT&CK. Similar
to ATT&CK, the threat group taxonomy focuses on APTs
and nation-state actors, whereas the software taxonomy aims
to cover any malware family, regardless of whether it is
used by APTs or other types of attackers (e.g., for-profit
actors). The software taxonomy also includes a few security
tools (e.g., Cobalt Strike) but does not differentiate between
malware and tools. Each taxonomy entry for a threat group
or software includes URLs of threat reports related to the
entry. We collect information about groups and software
through the Malpedia API and metadata about threat reports
(e.g., URL, title, author, publication date) from the provided
BibTex file. Malpedia is updated daily by adding new biblio-
graphic references labeled with the associated threat groups
and software. We obtained Malpedia data February 18, 2025.

Dataset comparison. Table 1 summarizes the contents of
both datasets. ATT&CK v15.1 contains 152 groups, 358
techniques, 481 sub-techniques, 794 software entries, and
930 URLs of threat reports from which those associations
are extracted. Of the 358 techniques, 121 (33.8%) have at
least one sub-technique, while 237 (66.2%) do not have
sub-techniques. Among the total 839 techniques and sub-
techniques, 637 (75.9%) belong to the Enterprise domain
(202 techniques and 435 sub-techniques), 119 (14.2%) to
Mobile (73 techniques and 46 sub-techniques), and 83
(9.9%) to ICS (83 techniques and no sub-techniques). For
simplicity, in the remainder of this paper, we use the term
techniques to refer to the combined set of 839 techniques
and sub-techniques

In contrast, Malpedia does not include techniques; how-
ever, it is much larger, containing 800 groups (5.2 times
more), 3,367 software (4.2x), and 15,699 (16.9x) report
URLs. The report URLs in ATT&CK come from 218 do-
mains, compared to 2,002 (9.2x) domains in the Malpedia
URLs, showing that Malpedia draws from a significantly
more diverse set of sources (e.g., cybersecurity vendors and
analyst blogs). We download the content of each URL,
filter errors, and identify reports by the SHA256 of the
downloaded content (most often an HTML page or a PDF
document). In total, we downloaded 920 unique reports from
the 930 ATT&CK URLs and 14,983 unique reports from
15,699 Malpedia URLs. We use these downloaded reports
to extract additional information for extending the group

https://anonymous.4open.science/r/ThreatGroupCTI-B746
https://anonymous.4open.science/r/ThreatGroupCTI-B746


profiles discussed in Section 4.

2.2. Dataset Intersection and Union

This section examines the overlap between the two
datasets and evaluates the benefits of combining their data.
A key challenge in this comparison is that the names of
groups and software differ across the datasets. To address
this, we first created a mapping to align them.

Each knowledge base provides a name and a list of
aliases for each threat group. We first normalized all names
and aliases by converting them to lowercase, removing
common suffixes such as “group” or “framework,” replacing
terms like “team” with a space, converting terms like “threat
group” to “TG,” and removing prefixes such as “TEMP”.
Then, we compute the intersection between the set of names
and aliases for each group in each taxonomy. If a group in
ATT&CK shares a name or alias with a group in Malpedia,
we merge them by performing the union of their sets. After
the merging, we select a unique name for each normalized
group. The selected name is the one used in ATT&CK
by default and the one used in Malpedia if the group is
not in ATT&CK. The normalization process identified 145
groups common to both datasets, seven groups unique to
ATT&CK, 655 groups found exclusively in Malpedia, and
807 groups in the union of both datasets. We perform a
similar normalization for software. We first normalize all
software names and aliases by removing common prefixes
(e.g., trojan, win, apk, elf) and replacing special characters
(e.g., rat to rat). Then we merge software entries that share
at least one normalized name. The normalization identifies
498 software that appear in both datasets, 2,869 only present
in Malpedia, 296 only present in ATT&CK, and 3,663 in
the union of both datasets. We will publicly release our
mappings of group and software names.

Table 1 also presents the overlap and union of report
URLs, their fully-qualified domain names (FQDNs), and the
SHA-256 hashes of the downloaded reports. We find only
522 report URLs shared between ATT&CK and Malpedia,
resulting in a low Jaccard Index (JI) of 3.2%, indicating
minimal overlap in referenced sources. The overlap based
on actual report content is even smaller, only 80 downloaded
reports have identical SHA-256 hashes, yielding a JI of
just 0.5%. This discrepancy arises because downloading the
same URL multiple times, especially in the case of HTML
pages, can produce different files due to non-deterministic
content such as dynamic metadata or embedded advertise-
ments. Overall, the overlap between the datasets is quite low,
with Malpedia providing a much broader view of the threat
landscape. This disparity may be partly due to ATT&CK
accepting contributions only from selected entities, which
restricts the number of threat reports included in its analy-
sis. However, this selective approach contributes to under-
reporting. To address this limitation, we build group profiles
by combining group and software information from the
union of both datasets. Note that technique-level informa-
tion is only available from ATT&CK and thus cannot be
supplemented from Malpedia.

0 20 40 60 80
Number of Techniques Used by Group

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e 

Pr
ob

ab
ilit

y

Q25: 7
Q50: 14
Q75: 35

Figure 1: CDF of the number of techniques per group:
25% of groups use 7 or fewer techniques, 50% use 14 or
fewer, and 75% use 35 or fewer.

Takeaway: Malpedia provides a larger coverage of
the threat landscape, including 5.2 times more groups
and 4.2 times more software than ATT&CK. While
not a strict superset of ATT&CK, Malpedia covers
95.4% of ATT&CK’s groups and 62.7% of its soft-
ware. Combining both datasets increases the overall
coverage of the threat landscape.

3. Group Profiles in the Datasets

This section first addresses RQ1 by quantifying the
proportion of threat groups in ATT&CK and Malpedia that
have group-specific behaviors. It then addresses RQ2 by
evaluating whether combining the datasets improves the
group profiles.

3.1. Technique Profiles

In ATT&CK, the association of techniques to groups
is provided as three separate group spreadsheets, one per
domain. We combine the three group spreadsheets to obtain
the set of techniques associated to each group, which we
term the group’s technique profile.

We first measure the size of the technique profiles.
Figure 1 shows the cumulative distribution function (CDF)
of techniques per group. On average, each group uses 23.2
techniques. 38 (25%) have at most 7 techniques, 76 (50%)
have between 7 and 36, and 38 (25%) have more than 35
techniques. The Lazarus Group (G0032) has the highest
number of techniques, with 92 techniques. Four groups have
no associated techniques and therefore cannot be identified
through their TTPs. We next examine whether the remaining
148 groups contain group-specific techniques.

We build a mapping from each technique and sub-
technique to the threat groups that use them. Among the
839 techniques cataloged in the ATT&CK framework, 388
(46.3%) have not been associated with any group, 147
(17.5%) are linked to a single group, 287 (34.2%) are
associated to 2–37 groups, and 17 (2.0%) are used by at



TABLE 2: Top generic techniques, i.e., used by the largest
number of groups.

ID Technique Name Groups

T1204.002 User Execution: Malicious File 79 (9.8%)
T1105 Ingress Tool Transfer 76 (9.4%)
T1566.001 Phishing: Spearphishing Attachment 72 (8.9%)
T1059.001 Command & Scripting: PowerShell 69 (8.5%)
T1588.002 Obtain Capabilities: Tool 66 (8.2%)
T1059.003 Command & Scripting: Win Command

Shell
60 (7.4%)

T1036.005 Masquerading: Match Legitimate Name or
Location

50 (6.2%)

T1547.001 Boot or Logon Autostart Execution: Reg-
istry Run Keys / Startup Folder

50 (6.2%)

T1071.001 Application Layer Protocol: Web Protocols 47 (5.8%)
T1082 System Information Discovery 46 (5.7%)

least one quarter (38) of all groups. The fact that 388
(46.3%) of all techniques in ATT&CK are not associated
with any group raises concerns about coverage, as these
techniques were presumably added to the taxonomy based
on observed adversary behavior, yet remain unlinked to any
known group.
Generic techniques. We call techniques used by many
groups generic, as their presence in a protected environment
offers limited value in distinguishing specific adversaries.
Table 2 lists the top 10 techniques by number of groups.
The most common technique is Malicious File (T1204.002)
used by 79 groups where adversaries rely on users opening
a malicious file, followed by Ingress Tool Transfer (T1105,
76 groups) where adversaries transfer tools or files from
an external system into a compromised environment, and
Spearphishing Attachment (T1566.001, 72 groups) where
emails with a malicious attachment are used as a vector of
initial compromise.

Additionally, we analyze which pairs of techniques tend
to occur together. For this we compute the co-occurrence
rate |A∩B|

max(|A|,|B|) where A and B are the sets of groups
using technique A and B, respectively. We find five pairs
with a co-occurrence rate of at least 0.75. The highest
rates are 0.951 between Malicious Link (T1204.001) and
Spearphishing Link (T1566.002), followed by 0.886 for
Malicious File (T1204.002) and Spearphishing Attachment
(T1566.001). The four techniques in these two pairs are
generic, each used by at least one quarter of the groups, and
are also semantically related, where a spearphishing link is a
type of malicious link, and the attachment in a spearphishing
email is a malicious file that the user is encouraged to open.
Technique profile similarity. We compute the similarity
of the technique profiles of each pair of groups using the
Jaccard Index. The mean Jaccard Index is 0.07, the median
is 0.06, and the maximum Jaccard Index is 0.55. Since most
pairs have low similarity scores, it suggests that each group’s
technique profile is quite unique. However, this may be
due to a large number of possible techniques and limited
visibility or incomplete data available in ATT&CK. We
identified only 12 pairs of groups with a Jaccard Index larger
than or equal to 0.4.
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Figure 2: Jaccard Index between the 12 most similar groups
(i.e., the ones with Jaccard Index ≥ 0.4). The mean Jaccard
Index across all groups is 0.07, the median is 0.06, and the
maximum Jaccard Index is 0.55.

Figure 2 shows a heatmap of these 12 group pairs. We
observe that the moderate similarity between these pairs is
often driven by generic techniques. For example, groups
G0062 (TA459) and G0005 (APT12) each have five tech-
niques in their profiles, sharing three, resulting in a Jaccard
Index of 0.43. However, these three shared techniques are all
generic techniques in Table 2: Exploitation for Client Execu-
tion (T1203), Spearphishing Attachment (T1566.001), and
User Execution: Malicious File (T1204.002). This illustrates
how generic techniques artificially increase group similarity.

Group-specific techniques. We call group-specific to the
147 (17.5%) techniques associated with a single group.
Only 52 (34.2%) groups have group-specific techniques.
The mean number of group-specific techniques is 0.99.
While most of the techniques are commonly shared among
groups, a few stand out by using distinct techniques, with
the maximum number of group-specific techniques used by
any group being 16 for Windshift (G0112).

A key question is whether these group-specific tech-
niques appear unique because of limited coverage in
ATT&CK, or if they truly represent capabilities developed
or exclusively adopted by a single group. Table 3 provides
examples of group-specific techniques. Some of these group-
specific techniques appear indeed quite unique to their re-
spective groups. For example, APT12 is the only group
using DNS Calculation (T1568.003), where adversaries per-
form calculations on addresses returned in DNS results to
determine which port and IP address to use for command
and control. Conversely, some group-specific techniques
may not be truly unique to their groups. For example,
APT28 is the only group associated with Network Denial
of Service (T1498), a fairly common attack technique likely



TABLE 3: Examples of group-specific techniques, some
groups have multiple group-specific techniques.

Group Name Technique ID Technique Name

APT12 T1568.003 DNS Calculation
APT28 T1550.001 Application Access Token

T1546.015 Component Object Model Hijacking
T1001.001 Junk Data
T1137.002 Office Test
T1211 Exploitation for Defense Evasion
T1498 Network Denial of Service

APT32 T1552.002 Credentials in Registry
T1564.004 NTFS File Attributes

APT37 T1123 Audio Capture
APT38 T1562.003 Impair Command History Logging

T1565.003 Runtime Data Manipulation
T1565.001 Stored Data Manipulation
T1565.002 Transmitted Data Manipulation

APT39 T1546.010 AppInit DLLs
T1059.010 AutoHotKey & AutoIT
T1056 Input Capture

APT41 T1596.005 Scan Databases
APT5 T1554 Compromise Host Software Binary
Axiom T1563.002 RDP Hijacking

T1001.002 Steganography
T1553 Subvert Trust Controls

Chimera T1110.004 Credential Stuffing
T1556.001 Domain Controller Authentication

Cobalt Group T1218.008 Odbcconf
DarkVishnya T1200 Hardware Additions
Darkhotel T1497 Virtualization/Sandbox Evasion

to be used by other groups at some point, suggesting this
uniqueness may reflect limited coverage rather than actual
exclusivity.

Takeaway: Only 52 groups (34.2%) have group-
specific techniques. However, other groups may still
be distinguishable by unique technique combinations,
as seen by the low mean Jaccard Index of 0.06.
Under-reporting remains a concern, as only 53.7% of
ATT&CK techniques are observed in group profiles,
and some seemingly group-specific techniques may
not be truly unique.

3.2. Software Profiles

In this section, we explore how uniquely the software
used by each group identifies it (see the classification of
software in 2.1). For each group, we build three software
profiles using the sets of normalized software names asso-
ciated to the group in each dataset, and their union.

We first examine each dataset separately. Of the 794
software in ATT&CK, 509 (64.1%) are associated to at
least one group. For Malpedia, the fraction is significantly
smaller, where out of 3,367 software only, 963 (28.6%) are
associated to at least one group. Software not associated
to groups typically corresponds to non-APT malware. For
example, the Conficker worm [29] and the Babuk ran-
somware [28] each appear in both ATT&CK and Malpedia
and are not associated to groups in either dataset. The lower
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Figure 3: CDF of the number of software per group. 25%
of groups used 1 or fewer software. 50% of groups used 2 or
fewer software. Most groups used a relatively small number
of software, with 75% using 6 or fewer.

TABLE 4: Top generic software by number of groups using
them, their type in ATT&CK, whether they are in Malpedia,
and the number and percentage of groups using them.

ID Name ATT&CK Type Malpedia Groups

S0002 Mimikatz Tool ✓ 46 (5.7%)
S0029 PsExec Tool ✗ 31 (3.8%)
S0039 Net Tool ✗ 30 (3.7%)
S0154 Cobalt Strike Malware ✓ 26 (3.2%)
S0013 PlugX Malware ✓ 25 (3.1%)
S0363 Empire Tool ✗ 15 (1.8%)
S0012 PoisonIvy Malware ✓ 14 (1.7%)
S0100 ipconfig Tool ✗ 13 (1.6%)
S0097 Ping Tool ✗ 13 (1.6%)
S0349 LaZagne Tool ✓ 12 (1.5%)

ratio of software associated to groups in Malpedia is likely
due to Malpedia’s larger coverage of non-APT malware.

The fraction of groups with a non-empty software profile
is also larger in ATT&CK where 138 out of 152 (90.8%)
groups have associated software compared to 220 (27.5%)
out of 800 groups in Malpedia (see Table 1 for the number
of groups in each dataset). However, Malpedia contains
16.9 times more threat reports than ATT&CK, offering
significantly more data for building software profiles. This
difference arises because many smaller or lesser-known
groups have few reports to support comprehensive profiling.

Next, we examine the unified software profiles. Out of
the total 807 groups in both datasets, 264 (32.7%) groups
have a non-empty software profile. Thus, over two-thirds of
the groups cannot be identified by their associated software.
Figure 3 shows the CDF of software per group for groups
with at least one software. On average, each group uses 6.2
software but most groups used a relatively small number
of software with 25% of groups have only one associated
software and 75% using 6 or fewer. The APT38 group
(G0082) has the highest count with 120 software.
Generic software. We call the software used by many
groups generic, as their detection offers limited value in
distinguishing specific adversaries. Table 4 lists the top 10



TABLE 5: Summary of group profiles across different data sources and combinations. The table reports the number of
groups with non-empty profiles and the subset with at least one group-specific behavior. The top section presents results
for profiles built using only techniques, only software, and a combination of both, as analyzed in Section 3. The middle
section shows results from profiles enriched with extracted CVE identifiers and additional techniques from downloaded
threat reports, discussed in Section 4. The bottom row shows the most comprehensive profiles, combining all available
behavioral indicators.

ATT&CK Malpedia ATT&CK ∪ Malpedia
Profile Non-Empty w/Group-Specific Non-Empty w/Group-Specific Non-Empty w/Group-Specific

Techniques 148 (97.4%) 52 (34.2%) - - 148 (18.3%) 52 (6.4%)
Software 138 (90.8%) 111 (73.0%) 220 (27.5%) 192 (24.0%) 264 (32.7%) 213 (26.3%)
Techniques ∪ Software 151 (99.3%) 124 (81.6%) 220 (27.5%) 192 (24.0%) 331 (41.0%) 236 (29.2%)
Vulnerabilities 86 (56.6%) 48 (31.6%) 261 (32.6%) 112 (14.0%) 277 (34.3%) 119 (14.7%)
Techniques* 149 (98.0%) 60 (39.5%) 204 (25.5%) 69 (8.6%) 242 (30.0%) 68 (8.4%)
Tech* ∪ Soft. ∪ Vuln. 152 (100%) 128 (84.2%) 391 (48.9%) 265 (33.1%) 418 (51.7%) 291 (36.0%)

software by number of groups where the software appears
in the group’s profile. All ten software appear in ATT&CK,
while only five are present in Malpedia. The ones missing
from Malpedia include four operating system tools (PsExec,
Net, ipconfig, Ping) and the open-source Empire remote
administration and post-exploitation framework [11]. Of
these ten software entries, seven are classified as tools in
ATT&CK and three as malware. Malpedia does not provide
such classification. Among the three labeled as malware in
ATT&CK, Cobalt Strike arguably should be categorized as a
tool, as it is a commercial penetration testing package [14],
while PlugX and PoisonIvy are remote administration tools
(RATs) commonly available in underground markets. In
summary, generic software typically refers to tools and
malware kits that are either commercially sold or widely
accessible.

We identify 88 software tools that are not marked as
“tools” in ATT&CK but are used by multiple groups. These
likely correspond to publicly available malware kits that are
sold or shared in underground forums. In addition to Cobalt
Strike, PlugX, and PoisonIvy (Table 4), other commonly
reused malware include the gh0st RAT (used by 10 groups),
China Chopper web shell (8), 8.t dropper (8), njRAT (7),
and ShadowPad (7). Of these, gh0st is open-source [16],
njRAT’s source code was leaked [13], China Chopper is
publicly available [9], and both 8.t and ShadowPad have
been reported to be privately shared among Chinese threat
groups [25], [42]. In some cases, the groups using the same
software may be related. For instance, Bistromath is reported
by Malpedia to be used by both Lazarus Group and Silent
Chollima, the latter being the subsidiary of Lazarus [24].

Group-specific software. We term software as group-
specific if it has only been associated to one group and is
not classified as a tool in ATT&CK. We exclude tools even
if associated with a single group, because they can be easily
adopted by others in the future, thus providing weak attribu-
tion. Of the 3,663 software across both datasets, 952 (26.0%)
are associated with a single group, making them group-
specific software. The detection of group-specific software
may allow attributing the group behind an attack. Of the 807
total groups, 213 (26.3%) have at least one group-specific
software associated with them. Among these 213 groups,

the mean and median number of group-specific software are
4.5 and 1.0, respectively, and 130 groups (16.1%) have only
group-specific software. Some threat groups develop many
custom tools for their attacks, for example, APT38 (G0082)
has the highest number, with 99 group-specific software.

Takeaway: In ATT&CK, 111 groups (73.0%) have
group-specific software, whereas in Malpedia, only
192 groups (24.0%) have that. Combining both
datasets increases this number to 213 groups (26.3%),
which still remains relatively low. Among the 264
groups with non-empty software profiles, the median
number of software is 2, indicating that most threat
groups operate with limited toolsets. However, some
groups maintain extensive custom toolsets, for exam-
ple, APT38 has 99 group-specific software.

3.3. Combining Group Profiles

Table 5 summarizes the number of groups with non-
empty profiles and those with at least one group-specific
entry across all the different profile-building methods ex-
amined in this work. The first three rows correspond to the
profiles discussed in this section, based on techniques only,
software only, and the combination of both.

To answer RQ1, the results show that identifying groups
using techniques is challenging, as only 52 (34.2%) groups
in ATT&CK have group-specific techniques. Identification is
easier using software, with 111 (73.0%) of ATT&CK groups
having group-specific software. However, this percentage is
significantly lower in Malpedia, where only 192 (24.0%)
of groups have group-specific software. The lower ratio
in Malpedia likely reflects its focus on a subset of high-
profile groups, while many smaller groups have too few
reports to build robust profiles. Joint profiles combining both
techniques and software improve identification in ATT&CK
by 12.6 percentage points, increasing from 111 (73.0%) to
124 (81.6%) groups with group-specific behaviors.

To answer RQ2, the joint profiles built combining data
from both datasets identify 236 (29.2%) groups with group-
specific behaviors as compared to 124 groups using only
ATT&CK and 192 using only Malpedia. Nonetheless, even



when combining techniques and software, over 70% of
groups do not have any group-specific behavior.

4. Extending the Group Profiles

So far, the group profiles have included techniques and
software from both ATT&CK and Malpedia. In this section,
we address RQ3, i.e., whether we can extend the group
profiles with additional data extracted from the downloaded
threat reports. In Section 4.1 we build a vulnerability profile
for each group with the vulnerabilities that the threat reports
refer to as being used by the group in its attacks. Then,
in Section 4.2, we discuss how we extend the technique
profiles with additional technique identifiers extracted from
the threat reports. This allows incorporating techniques men-
tioned from the threat reports in Malpedia and to examine
how complete was the technique extraction in ATT&CK.

4.1. Vulnerability Profiles

The selection of which vulnerabilities to exploit is
largely group-specific since it depends on the expected
software used by the targets and the exploits the group
has access to. The observation of specific vulnerabilities
being exploited in a monitored system could potentially
be used to attribute the group behind an attack. To build
the vulnerability profiles, we first extract CVE vulnerabil-
ity identifiers from the downloaded threat reports using a
regular expression provided by the iocsearcher open-source
tool [8], which can extract IOCs from text, HTML, PDF,
and Word files. Then, we assign the CVEs to groups.
ATT&CK reports are associated with a single threat group,
whereas Malpedia reports may reference multiple groups.
When a report mentions multiple groups, it is unclear which
group the CVEs within the report should be assigned to.
Therefore, we extract CVEs only from the 4,414 (29.4%)
Malpedia reports referencing a single group, along with all
920 ATT&CK reports.

The left part of Table 6 summarizes the extraction of
CVE identifiers from the downloaded threat reports. Among
the 5,827 reports analyzed, 1,186 (20.3%) contain at least
one CVE identifier for a total of 906 unique CVEs associated
to 277 groups. Of the 807 groups, 277 (34.3%) groups have
a non-empty vulnerability profile. The other 530 (65.7%)
groups have no vulnerabilities that can be used to identify
them. The mean CVEs per group is 8.9, and the maximum
is 176 CVEs reported for APT28 (G0007).
Generic vulnerabilities. Overall, there are 368 vulnera-
bilities used by at least two groups, 114 used by more
than five groups, and 28 used by more than 10 groups.
Table 7 lists the top 10 CVEs by the number of groups using
them. These generic vulnerabilities target popular software,
with Microsoft Office being the most targeted with four
vulnerabilities. Nine of the 10 vulnerabilities have publicly
available proof of concept (PoC) exploits, either in the
Exploit Database [12] or on GitHub. We did not find any
PoC for CVE-2022-38028, which was a zero-day on the
Windows Print Spooler used by Russian threat groups [17].

Group-specific vulnerabilities. Of the 906 CVEs identified
in the reports, 538 (59.4%) are associated to a single group.
We call these group-specific vulnerabilities. The Vulnera-
bility row in Table 5 summarizes the generated profiles. Of
the 807 groups, 119 (14.7%) have at least one group-specific
CVE. Across these 119 groups, the mean and median vul-
nerabilities per group are 4.5 and 2.0, respectively. The
maximum is for the Gorgon group (G0078), which uses 78
CVEs. Table 8 shows some example group-specific CVEs.

Takeaway: Only 119 (14.7%) groups have a group-
specific vulnerability. The set of vulnerabilities ex-
ploited by a group is less unique than the set of
software used (27.8% groups have group-specific soft-
ware) likely because many groups focus on the same
generic vulnerabilities affecting popular software, of-
ten with publicly available exploits. However, vulner-
abilities tend to be more unique than techniques, as
only 6.4% groups have group-specific techniques.

4.2. Technique Identifiers in Reports

In this section, we extend the technique profiles with
explicit mentions of technique identifiers in the downloaded
reports. It is important to note that threat reports may also
include implicit references to techniques, such as stating that
a rootkit was used without explicitly providing a technique
identifier. We discuss the extraction of implicit references
later in this section. To identify technique identifiers we use
a regular expression provided by iocsearcher. We observe
that the technique identifiers, if present, are typically pro-
vided in a table at the end of the threat report, although they
may also appear throughout the text.

The right part of Table 6 summarizes the extraction of
technique identifiers from the downloaded threat reports.
From the 4,414 Malpedia reports uniquely assigned to one
group, we find 626 unique technique identifiers associated
to 204 groups appearing in 541 (12.2%) reports. Of these
626 techniques, 248 are not associated with any groups in
ATT&CK, i.e., are only mentioned in the Malpedia reports.
This shows that focusing on a small set of reports causes
under-reporting and that technique profiles extracted from
ATT&CK are likely to miss techniques used by a group.

Then, we apply iocsearcher to the 920 reports down-
loaded from ATT&CK reference URLs and identify 470
unique technique identifiers from 122 (13.2%) reports.
These 122 reports are associated to 63 groups. ATT&CK
has 451 techniques associated to 152 groups, while we find
a larger technique set (470) mentioned for 63 groups in
13.2% of the same reports. This indicates that ATT&CK
contributors may not be systematic in extracting all refer-
ences of techniques in the report. Furthermore, we are only
accounting for explicit references through technique iden-
tifiers. Threat reports may also include implicit references.
However, extracting implicit references to techniques would
reinforce the under-reporting trends we already observe.

The Techniques* row in Table 5 captures the techniques
profiles extended with the technique identifiers extracted



TABLE 6: Summary of CVE and technique identifiers extracted from the downloaded threat reports. For each dataset, it
presents: (i) the total number of reports analyzed, (ii) the number of reports containing at least one CVE identifier, (iii)
the number of unique CVEs extracted, and (iv) the number of threat groups associated with those CVEs. It then provides
similar statistics for the extraction of technique identifiers.

Dataset Reports Reports w/CVEs CVEs Groups Reports w/Tech Tech. Groups

ATT&CK 920 266 (29.0%) 325 86 122 (13.2%) 470 63
Malpedia 4,414 943 (21.3%) 853 261 541 (12.2%) 626 204
All 5,827 1,186 (20.3%) 906 277 650 (11.1%) 658 211

TABLE 7: Top generic CVEs, i.e., used by most groups,
and whether a PoC exploit is publicly available.

Vulnerability Affected Software PoC Groups

CVE-2017-11882 Microsoft Office ✓ 46 (5.7%)
CVE-2012-0158 Microsoft Office ✓ 41 (5.1%)
CVE-2017-0199 Microsoft Office ✓ 34 (4.2%)
CVE-2021-44228 Apache Log4j ✓ 28 (3.5%)
CVE-2022-30190 Microsoft Windows (MSDT) ✓ 25 (3.1%)
CVE-2022-26134 Atlassian Confluence ✓ 21 (2.6%)
CVE-2018-0802 Microsoft Office ✓ 20 (2.5%)
CVE-2022-38028 Windows Print Spooler ✗ 17 (2.1%)
CVE-2023-38831 RARLAB WinRAR ✓ 17 (2.1%)
CVE-2024-37085 VMware ESXi ✓ 16 (2.0%)

TABLE 8: Examples of group-specific vulnerabilities, some
groups have multiple group-specific vulnerabilities.

Group Name Vulnerability Affected Software

APT37 CVE-2015-3636 Linux Kernel
CVE-2016-0147 MSXML

Akira CVE-2019-6693 Fortinet FortiOS
CVE-2023-29336 Microsoft Windows
CVE-2023-35078 Ivanti Endpoint Manager

Kimsuky CVE-2012-4873 GNU Board
CVE-2018-14745 Samsung Galaxy
CVE-2018-2628 Oracle WebLogic Server

Gorgon Group CVE-2015-7036 Apple iOS
CVE-2019-8457 SQLite3
CVE-2019-8598 iOS, macOS

Sidewinder CVE-2018-4876 Adobe Experience Manager
CVE-2018-7445 MicroTik RouterOS
CVE-2019-2215 Google Android

Scattered Spider CVE-2015-2291 Ethernet driver on Windows
CVE-2021-35464 ForgeRock Acess Management
CVE-2022-0001 Intel Processors

Carbanak CVE-2013-2463 Oracle JRE
CVE-2015-2426 Microsoft Windows
CVE-2016-1010 Adobe Flash Player

from the threat reports. It shows that we can identify 69
groups with group-specific techniques from the Malpedia
threat reports, compensating for the lack of techniques in
Malpedia. Notably, when we extract technique identifiers
directly from the ATT&CK reports and combine them with
the existing ATT&CK technique profiles, the number of
groups with group-specific techniques increases from 52
(34.2%) to 60 (39.5%), despite analyzing the same set of
threat reports. This highlights that the manual extraction of
techniques by ATT&CK contributors is not always optimal.

Takeaway: The extraction of technique identifiers
from threat reports increases the number of groups
with group-specific techniques from 52 (6.4%) to
119 (14.7%) mostly due to additional techniques in
the Malpedia reports. The comparison of technique
identifiers extracted from ATT&CK reports with the
techniques indexed in ATT&CK shows that the ex-
traction process used by ATT&CK contributors may
miss techniques, suggesting the need for an automated
approach.

Implicit reference extraction. Previous work has proposed
NLP techniques for recovering the ATT&CK technique
identifiers implicitly mentioned in threat reports [2], [18],
[37]. An alternative approach would be to use Large Lan-
guage Models (LLMs), which have proved their flexibil-
ity in a number of security-related tasks involving natural
language texts [10], [43]. We performed some preliminary
experiments using large language models (LLMs) to extract
techniques from the downloaded threat reports. Specifically,
we used the commercial GPT-4 model, guided by a prompt
shown in Figure 4 in the Appendix, which we experimen-
tally identified as the most effective among other options. To
ensure the model analyzed the report content, we removed
any tables of techniques included at the end of the report.

Unfortunately, we obtained mixed results as the LLM
frequently hallucinated techniques introducing false posi-
tives (FPs). An example is a 2022 report on the Lyceum
group [23]. For this report, iocsearcher identified 8 tech-
niques (without sub-techniques), all of them in a table at
the end of the report. These are the same 8 techniques that
ATT&CK associates to Lyceum from this report, suggesting
that the contributor relied directly on the table for extraction.
When we provided the same report after removing the table
of identifiers, the LLM returned 11 technique identifiers (7
techniques and 4 sub-techniques). Of these, only two over-
lapped with the original table. We manually reviewed the
remaining 9, finding that while two were valid, seven were
false positives (FP). An example of a correctly extracted
implicit reference is T1547.001 Boot or Logon Autostart
Execution: Startup Folder (part of the Persistence tactic)
that was extracted from the following text: “written into the
Startup folder in order to maintain persistence”.

One example of a false positive is T1018, Remote System
Discovery. When prompted to justify its inclusion, the model
responded, “While the report does not specifically mention
remote system discovery, many backdoors and malware en-



gage in network reconnaissance, which aligns with T1018”.
In future work, we would like to compare LLM-based
extraction with existing extraction tools [2], [18], [37].

5. Discussion

5.1. Implications of Results

Our work critically challenges the widespread notion
that behavioral profiles for threat actor attribution can re-
place IOCs. We show that behavioral profiles are not as
distinctive as expected with many groups employing generic
techniques, software and vulnerabilities also used by other
groups. Only a small fraction of threat groups have group-
specific behaviors that uniquely identify them and thus
could be used as behavioral signatures. Roughly two thirds
(65.8%) of groups in ATT&CK have no group-specific
techniques, challenging the distinctiveness of TTPs. The
software used by a group is more distinctive with 73%
groups in ATT&CK using group-specific programs. How-
ever, once we consider the larger number of groups in
Malpedia the percentage drops to 26.3%. Despite leveraging
information from ATT&CK and Malpedia and extending
the profiles with the exploited vulnerabilities and additional
techniques, the fraction of threat groups without unique
behaviors remains at 64%.

As the number of profiled threat groups increases from
152 in ATT&CK to 800 in Malpedia, the fraction of groups
with distinctive behaviors declines, as behaviors that initially
looked unique may, with broader coverage, be observed
across multiple groups. Consequently, even for the roughly
one-third of groups exhibiting group-specific behaviors, a
key question remains: are these behaviors genuinely unique,
or do they appear so due to incomplete visibility into other
groups? In fact, we observe cases where group-specific tech-
niques are not inherently unique to a group (e.g., network
DoS), but rather unassociated with other groups due to
under-reporting. This raises concerns about the confidence
of behavior-based attribution, which may impact critical
attribution tasks such as those performed by legal or law
enforcement, e.g., the attribution may not stand examination
in a judicial process.

We observe that wide coverage is critical for construct-
ing truly distinctive behavioral profiles. A key factor im-
pacting coverage is the number of threat reports analyzed.
Building profiles from small datasets of threat reports (e.g.,
those written by a single vendor or a select group of trusted
sources) is tempting because those reports may be more
uniform and less “noisy”, and it is easier to find behav-
iors that initially look unique. However, such behavioral
profiles provide little confidence. Given the limited overlap
we observe between ATT&CK and Malpedia, relying on a
few sources may limit coverage too much. We argue that
it is better to index more threat reports (as Malpedia does)
rather than focusing narrowly on very selected sources (as
ATT&CK seems to do) because it is hard and error-prone to
predict which sources are the most accurate. Furthermore,

such filtering for trusted sources can always be performed a
posteriori on the indexed data, as long as the mapping from
behaviors to original sources is maintained (as the examined
datasets do). Reports from known low-confidence sources
can be excluded later in the pipeline. In contrast, assuming
only a small set of sources is trustworthy may lead to overly
constrained coverage. This is particularly problematic given
that each vendor produces a limited number of reports annu-
ally and that reporting tends to concentrate on high-profile
threat groups. Another important factor influencing coverage
is the methodology used to extract behaviors from threat
reports (e.g., manual or automated). We found that we could
extract more explicit technique references from ATT&CK
reports than those indexed by ATT&CK itself, even when
analyzing the same reports. This suggests that the manual
extraction process used by ATT&CK contributors may not
always be exhaustive, further motivating the adoption of
automated approaches [2], [18], [37].

Beyond techniques and software already indexed in the
examined datasets, we have shown that behavioral profiles
can be further extended with the exploited vulnerabilities.
Additionally, other behavioral features present in the threat
reports such as, payment services for adversaries to receive
ransom, communication channels through which victims and
adversaries interact, and the textual content that adversaries
present to victims (e.g., emails, ransom notes).

Our analysis reveals a number of potential improvements
to the datasets. First, we observe that the addition of OS-
integrated tools (e.g., net, ping) into the ATT&CK software
taxonomy provides little value, as those tools are already
available in most target systems. Having a complete software
taxonomy is not realistic, the focus should be on tools
that adversaries deploy, which captures intent and provides
more behavioral information. Second, the classification of
software into tools and malware in ATT&CK is useful for
analysts to quickly filter generic software but is missing
in Malpedia. Furthermore, it is not clear where malicious
kits should be placed, possibly indicating the need for a
third category. We also observe some likely misclassified
software, e.g., Cobalt Strike is arguably a tool rather than a
malware. Finally, the split of techniques into domains used
by ATT&CK seems quite arbitrary as techniques may apply
to different domains, albeit with different implementations.
For example, there is a Rootkit (T1014) technique in the
Enterprise domain and another Rootkit (T0851) technique
in the ICS domain. The latter includes in the description
references to firmware rootkits and Stuxnet but having two
equally named techniques is confusing and likely unneces-
sary. There is also overlap between techniques. For exam-
ple, the Enterprise domain includes Pre-OS Boot: System
Firmware (T1542.001) for capturing adversaries modifying
system firmware to persist on systems, which seems the
same as a firmware rootkit. Given an observation of a rootkit
in a device, different security vendors and analysts may
assign any combination of the above 3 techniques to the
observation, which would complicate understanding which
group may be behind the attack. This split complicates usage
as three different technique taxonomies, one per domain,



need to be considered. This makes it tempting to focus on
the Enterprise domain comprising 76% of all techniques
and sub-techniques. A more unified taxonomy, with domains
encoded as an attribute, could streamline analysis.

5.2. Threats to Validity

We discuss some potential threats to the validity of our
results. First, our reliance on open-source threat intelligence
(OSINT) introduces potential selection bias. Commercial
CTI feeds could offer more detailed analysis of some threat
groups. However, such commercial feeds are often limited
to data from a single provider, significantly restricting their
overall coverage. Second, a small number of threat reports
could not be successfully downloaded, potentially leading to
an underestimation of dataset coverage. Nonetheless, fewer
than 5% of the URLs resulted in an error. To mitigate this,
future work could incorporate archival sources such as the
Wayback Machine [19] and AptNotes [3]. Third, our focus
on group-specific behaviors as behavioral signatures may
overlook groups characterized by unique combinations of
non-exclusive behaviors. Unfortunately, the more behaviors
needed to identify a group, the greater the risk that an
attack goes unattributed. Finally, inconsistencies in naming
conventions across knowledge bases pose a challenge for
accurate data comparison. Although we applied a normal-
ization strategy to align group and software names, there
remains a risk that some mappings are incorrect.

6. Related Work

Our research relates to the following prior CTI research.
Knowledge bases. Previous work has presented the design
of the two knowledge bases we use [34], [45]. Other works
have analyzed the usage of ATT&CK by systematically
reviewing literature on its applications [1], [20], [39]. Often-
times, works use the knowledge bases simply as a source of
threat reports from where IOCs can be extracted [8], [22].
Our work differs in measuring the utility of ATT&CK and
Malpedia for the specific case of adversary profiling.
Application-oriented studies. Several studies have exam-
ined the use of ATT&CK across different cybersecurity
contexts. Oosthoek et al. [33] employed ATT&CK to map
sandbox evasion techniques across 951 Windows malware
families, offering insight into both commonly used and
increasingly adopted techniques in recent years. Virkud et
al. [49] evaluate the ATT&CK framework in commercial
endpoint detection products and assess its effectiveness as
a security evaluation metric. They find that while these
products typically cover between 48%–55% of ATT&CK
techniques, much of this coverage consists of low-risk or
less impactful rules. Their findings suggest that although
ATT&CK is increasingly used to assess threat readiness,
reported coverage frequently fails to reflect actual detec-
tion capabilities in real-world scenarios. In another line of
work, Rahman et al. [36] investigate challenges in imple-
menting security controls (e.g., strong password policies)

against ATT&CK techniques. In simultaneous and indepen-
dent work, yet to be presented, Horst et al. [47] examine the
role of low-level IOCs (e.g., domains) and high-level IOCs
(e.g., TTPs) in ransomware attribution. They use a mixed-
methods approach, combining interviews of 15 ransomware
attribution experts and analyzing 27 incident reports from
two sources. They show that experts leverage low-level
IOCs for attribution more frequently than high-level IOCs,
which they regard as too generic. Our results match theirs in
raising concerns about using behavioral traits for attribution.
But, our approaches are quite different. They examine 16
ransomware groups while we examine 807 threat groups
covering different types of adversaries (e.g., APTs). We do
not perform interviews but analyze over 15K threat reports
from two popular knowledge bases. And, we measure for the
first time the fraction of threat groups with unique behaviors.

Automated CTI extraction. Husari et al. [18] made early
efforts to automate the extraction of TTPs from threat intelli-
gence reports, using a context-aware, rule-based approach to
identify and extract threat actions from both structured and
unstructured CTI sources. The extracted TTPs are standard-
ized using the STIX [31] format, with the tool achieving
over 82% precision and recall on a proprietary dataset.
Extending this work, Alam et al. [2] employed machine
learning for automated extraction of attack patterns and
IOCs. Their framework further mapped the extracted behav-
iors to the standardized ATT&CK framework and organized
them in a knowledge graph to facilitate predictive analysis.
Complementing these extraction-focused efforts, Rahman
et al. [35] analyzed 667 CTI reports from the ATT&CK
framework to study the prevalence and co-occurrence of
TTPs used in APT campaigns, providing insights into ad-
versary patterns. Our work builds upon these approaches by
combining threat intelligence data from both the ATT&CK
framework and Malpedia. We examine techniques and vul-
nerability usage across adversary groups, offering insights
into building more comprehensive threat group profiles.

7. Conclusion

Our study critically evaluates the assumption that be-
havioral profiles can effectively replace Indicators of Com-
promise (IOCs) for threat actor attribution. By analyzing
two open-source CTI knowledge bases, MITRE ATT&CK
and Malpedia, we show significant limitations in the dis-
tinctiveness and completeness of group behavioral profiles.
Specifically, only 34.2% of ATT&CK groups have group-
specific techniques. Even after incorporating software and
vulnerabilities from both ATT&CK and Malpedia, 64% of
threat groups still lack unique behavioral signatures. As
coverage expands from 152 groups in ATT&CK to 800
in Malpedia, the specificity of behaviors diminishes, with
previously unique features proving to be more widespread.
These findings highlight that group-specific behaviors are
both rare and often overestimated.
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Appendix

Figure 4 shows an example of a prompt engineered to
instruct LLM (GPT-4) to identify Tactics, Techniques, and
Procedures (TTPs) from a natural language threat report and
map them to their respective MITRE ATT&CK Technique
IDs, formatted for JSON output.

I have a detailed threat report written in
natural language. I need help identifying
the TTPs (Tactics, Techniques, and
Procedures) described in the report and
mapping them to their corresponding MITRE
ATT&CK Technique IDs. The output should
include:

A list of tactics (high-level strategic goals
) based on the threat actor’s behavior.

A list of techniques (specific actions or
behaviors), with their corresponding
MITRE ATT&CK Technique IDs.

A description of procedures (the exact
implementation or variation of a
technique as described in the report).

For each technique, provide both the name and
the MITRE ATT&CK Technique ID. Please
ensure all identified TTPs are clearly
mapped to the most relevant MITRE ATT&CK
entries.

Here’s the threat report:
[Insert threat report text here]
The output should be in this JSON format:
Example Output:

{
"tactics": ["Initial Access", "C2"],
"techniques": [
{"name": "Spear Phishing", "MITRE ID": "

T1193"},
{"name": "C2 Channel Over HTTPS", "MITRE

ID": "T1071"}
],
"procedures": ["Use of malicious scripts"]

}

Figure 4: LLM prompt.
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