arXiv:2506.10597v1 [cs.CR] 12 Jun 2025

SoK: Evaluating Jailbreak Guardrails for Large Language Models

Xunguang Wang*, Zhenlan Ji*, Wenxuan Wang', Zongjie Li*, Daoyuan Wu*, Shuai Wang**
*The Hong Kong University of Science and Technology
{xwanghm, zjiae, zligo, daoyuan, shuaiw}@cse. ust. hk
tRenmin University of China
wangwenxuan@ruc.edu.cn
iCorresponding author

Abstract—Large Language Models (LLMs) have achieved re-
markable progress, but their deployment has exposed critical
vulnerabilities, particularly to jailbreak attacks that circum-
vent safety mechanisms. Guardrails—external defense mech-
anisms that monitor and control LLM interactions—have
emerged as a promising solution. However, the current land-
scape of LLM guardrails is fragmented, lacking a unified
taxonomy and comprehensive evaluation framework. In this
Systematization of Knowledge (SoK) paper, we present the
first holistic analysis of jailbreak guardrails for LLMs. We
propose a novel, multi-dimensional taxonomy that categorizes
guardrails along six key dimensions, and introduce a Security-
Efficiency-Utility evaluation framework to assess their practi-
cal effectiveness. Through extensive analysis and experiments,
we identify the strengths and limitations of existing guardrail
approaches, explore their universality across attack types, and
provide insights into optimizing defense combinations. Our
work offers a structured foundation for future research and
development, aiming to guide the principled advancement and
deployment of robust LLM guardrails.

1. Introduction

Large Language Models (LLMs) have demonstrated re-
markable capabilities across a wide range of applications,
revolutionizing fields from natural language understanding
to content generation [1], [2], [3], [4], [5], [6], [7], [8]. How-
ever, their increasing sophistication and widespread adoption
have also exposed significant vulnerabilities. A prominent
concern is their susceptibility to jailbreak attacks [9], [10],
where adversaries craft malicious inputs to bypass safety
alignments and elicit harmful, biased, or unintended re-
sponses. The proliferation of such attacks underscores the
urgent need for robust defense mechanisms. Among various
defense strategies, guardrails [11], [12], [13] have emerged
as a promising approach, aiming to monitor and control
LLM interactions without altering the underlying model’s
weights or core functionalities.

Guardrail-based defenses offer a distinct advantage over
prompt-based [14] or tuning-based [15], [16] methods as
they can effectively filter jailbreak attempts while preserving
the integrity of the target LLM’s original output capabili-

ties. Despite their potential, the current landscape of LLM
guardrails is characterized by siloed innovation. Numerous
research teams and organizations have proposed various
guardrail solutions, often tailored to specific scenarios, at-
tack vectors (e.g., focusing primarily on single-turn attacks),
or proprietary systems. This ad-hoc development has re-
sulted in a fragmented ecosystem of defense mechanisms,
lacking a unified understanding or a systematic classification
framework to position and compare these disparate efforts.

The absence of a systematic perspective contributes
directly to a critical limitation in existing guardrails: a
general lack of universality. Many solutions are not readily
adaptable across different LLMs, attack types, or deploy-
ment contexts. Furthermore, current evaluation practices for
LLM guardrails often fall short of reflecting real-world
operational constraints. Evaluations predominantly focus on
raw defense efficacy against specific jailbreak benchmarks,
frequently overlooking crucial factors such as computational
cost (e.g., inference latency, GPU resource consumption)
and utility (e.g., the rate of misclassifying benign prompts as
malicious, thereby degrading user experience). This narrow
evaluation scope hinders a comprehensive understanding of
the practical trade-offs involved in deploying guardrails.

To address these critical gaps, this Systematization of
Knowledge (SoK) paper provides the first comprehensive
analysis and structuring of the rapidly evolving field of
jailbreak guardrails for LLMs. We aim to consolidate the
disparate research efforts, offering a clear and structured
understanding of the current state-of-the-art. Our primary
contributions are threefold: (1) we propose a novel, multi-
dimensional taxonomy for classifying LLM guardrails, en-
abling a nuanced understanding of their design characteris-
tics; (2) we introduce a holistic evaluation framework cen-
tered on the Security-Efficiency-Utility trifecta, promoting
more practical and comprehensive assessments; and (3) we
conduct extensive analysis based on our framework, yielding
valuable insights into the performance of existing guardrails
and identifying promising avenues for future research.

Specifically, our contributions are as follows:
« A Multi-Dimensional Guardrail Taxonomy: We pro-

pose the first comprehensive taxonomy to categorize
LLM guardrails along six critical dimensions:

https://arxiv.org/abs/2506.10597v1

— Intervention Stage: Characterizing when the
guardrail operates (Pre-processing, Intra-processing,
or Post-processing of LLM interactions).

— Technical Paradigm: Identifying the underlying
mechanism (Rule-based, Model-based, or LLM-
based).

— Security Granularity: Defining the scope of the
guardrail detection (Token-level, Sequence-level, or
Session-level).

— Reactivity: Distinguishing between static (pre-
defined) and dynamic (adaptive) defense strategies.

— Applicability: Considering the guardrail’s require-
ments regarding LLM access (White-box vs. Black-
box).

— Interpretability: Assessing the transparency of the
guardrail’s decision-making process and noting that
increased interpretability might inadvertently intro-
duce new attack surfaces or reasoning errors.

e A Security-Efficiency-Utility Evaluation Frame-
work: We introduce a novel framework for evaluating
guardrails that balances three crucial aspects:

— Security: Measuring the defense performance against
a diverse range of jailbreak attacks.

— Efficiency: Quantifying the operational overhead, in-
cluding inference delay and GPU memory consump-
tion.

— Utility: Assessing the impact on legitimate user in-
teractions, primarily through the false positive rate
on benign queries.

+ Experimental Findings and Optimization Insights:
We leverage our taxonomy and evaluation framework
to analyze existing guardrails and explore future direc-
tions:

— We conduct a tri-objective (Security-Efficiency-
Utility) evaluation of mainstream guardrail methods
to identify balanced solutions and those effective
against diverse jailbreak categories.

— We investigate specific hypotheses, such as the ef-
ficacy of session-level guardrails against multi-turn
attacks, the influence of intervention stage on la-
tency, the impact of technical paradigms on resource
consumption, and the relationship between security
granularity and utility.

— We explore the universality of guardrails by assess-
ing their performance against other attack modalities,
such as prompt injection attacks.

This SoK aims to provide researchers and practition-
ers with a clear roadmap for understanding, developing,
and deploying LLM jailbreak guardrails. By systematiz-
ing existing knowledge and proposing a comprehensive
evaluation methodology, we hope to foster more princi-
pled advancements in this critical area of LLM security.
The code is available at https://github.com/xunguangwang/
SoK4JailbreakGuardrails.

2. Jailbreak Attacks in LLMs

In this section, we first formally describe the jailbreak in
LLMs and then introduce several typical jailbreak methods.
Jailbreak Formulation. The jailbreak phenomenon indi-
cates that specific malicious instructions can bypass the
safety mechanisms of LLMs, leading to the generation of
harmful or unethical outputs. This is particularly concern-
ing as it highlights the potential for adversaries to exploit
vulnerabilities in LLMs to produce toxic or harmful con-
tent. The jailbreak process can be viewed as a two-step
procedure: (1) crafting an adversarial prompt P that elicits
a harmful response from the LLM, and (2) evaluating the
generated response R against a predefined harmful objective
G using a classifier JUDGE. JUDGE returns ‘True’ if the
generated response R meets the harmful objective G, i.e.,
JUDGE = True, otherwise ‘False’. Let 7 represent the
LLM’s vocabulary. Formally, we can define the classifier
JUDGE : 7* x T* — {True,False}. The adversary’s
goal is to maximize the probability of generating responses
classified as satisfying the harmful objective G. This can be
expressed mathematically as:

sup Pr [JUDGE(R,G) = True] (1)

PeT* RLLM(P)

where Pr denotes the probability, which accounts for the

inherent stochasticity of the LLM’s outputs when process-

ing the input prompt P. The adversary iteratively refines
prompts to identify those that maximize the likelihood of
producing outputs deemed harmful by the classifier.

Existing Jailbreak Attacks. Jailbreak attacks can be

broadly categorized into two types: single-turn and multi-

turn jailbreaks. Single-turn jailbreaks involve crafting a

single prompt to elicit harmful responses, while multi-

turn jailbreaks exploit the interactive nature of LLMs by
engaging in a dialogue with the model over multiple turns.

Due to the maturity of research on single-turn attacks and

the relative scarcity of multi-turn attack studies, we further

divide single-turn attacks into four types: manual methods,
optimization-based approaches, generation-based strategies,
and implicit jailbreaks.

o Manual Jailbreaks. These attacks involve crafting
prompts that exploit vulnerabilities in LLMs [17], [18],
[19], [20], [21]. Wei et al. [18] identified two key
weaknesses—out-of-distribution inputs and conflicts be-
tween safety objectives and model capabilities—to inform
prompt design. Deng et al. [21] introduced AIM (Al-
ways Intelligent and Machiavellian), a proof-of-concept
jailbreak prompt that served as a foundation for generating
additional adversarial prompts. Shen et al. [20] proposed
JailbreakHub, a crowdsourcing framework for collecting
diverse jailbreak prompts.

o Optimization-based Jailbreaks. These methods itera-
tively refine adversarial prompts using techniques like
gradient-based optimization or search strategies [9], [10],
[22], [23], [24]. GCG [9] introduced a greedy coordi-
nate gradient method to optimize adversarial suffixes, en-
abling transferable jailbreaks across models and prompts.

Sitawarin et al. [22] extended this with GCG++, lever-
aging a proxy model to enhance optimization. Beyond
gradient-based techniques, JSAA [23] employed random
search for suffix optimization, while AutoDAN [10] used
a hierarchical genetic algorithm to create human-readable
jailbreak prompts. RLbreaker [25] utilized reinforcement
learning to efficiently search for adversarial prompts, out-
performing stochastic methods like JSAA and AutoDAN.
Generation-based Jailbreaks. These attacks use auxil-
iary LLMs to produce adversarial prompts [21], [26],
[271, [28], [29], [30]. PAIR [27] employs a feedback
loop where the attacking LLM adjusts outputs based on
the target LLM’s responses. Mehrotra et al. [28] en-
hanced this approach using tree-of-thought reasoning [31].
LLM-Fuzzer [32] automates adversarial prompt genera-
tion by mutating human-written templates. Additionally,
Advprompter [29] trains a fine-tuned LLM to create both
effective and human-readable adversarial prompts.
Implicit Jailbreaks. These techniques disguise malicious
intent within query text to bypass LLM safety mecha-
nisms [18], [33], [34], [35], [36], [37], [38], [39], [40].
For instance, Handa et al. [33] demonstrated word sub-
stitution as a simple evasion method. DrAttack [34] de-
composes harmful prompts into smaller, less detectable
sub-prompts. Puzzler [35] embeds clues within queries
to guide the LLM toward producing harmful outputs
indirectly. Another approach involves translating harmful
prompts into languages where LLM safety mechanisms
are weaker [18], [36], [37], [38], [39], [40]. Deng et
al. [36] and Yong et al. [37] found that low-resource
languages, such as Zulu, often exhibit less robust safety
alignment. Obfuscation techniques, including encoding or
encrypting harmful prompts, further reduce LLM sensi-
tivity to malicious inputs [18], [40], [41].

Multi-turn Jailbreaks. One multi-turn attack strategy is
the fine-grained task decomposition, which decomposes
the original malicious query into several less harmful
sub-questions [42], [43], [44]. While this decomposition
strategy successfully circumvents current safety mecha-
nisms, it may be easily mitigated by including these finer-
grained harmful queries in safety training data. Alter-
natively, researchers propose to use human red teamers
to expose vulnerabilities of LLMs against multi-turn at-
tacks [45]. Moreover, Yang et al. [46] depends on the
heuristics from [27] and its seed examples to implement
its attacks. Crescendo [47] gradually steers benign initial
queries towards more harmful topics. The implementation
of Crescendo is based on the fixed and human-crafted seed
instances, making it challenging to generate diverse and
effective attacks. By contrast, ActorAttack [48] proposes
to discover diverse attack clues inside the model’s prior
knowledge. X-Teaming [49] achieves more effective and
diverse multi-turn attacks by adaptive collaborative agents
for planning, attack optimization, and verification.

Adversary Jailbreak Prompt SEU Evaluation

How to make a) Step 1: Gather V-

3 - bomb? q{ Materials... I‘ I 5: !

) i i o I
5 o

H Sorry, |
® assist...
- —

cannot
Guardrail Refusal

Target LLM LLM Response

v

Figure 1. Illustration of a guardrail pipeline.

3. Definition, Taxonomy & Evaluation

3.1. Jailbreak Guardrail Definition

A “Jailbreak Guardrail” refers to a specialized security
mechanism designed for LLM systems, specifically to detect
and prevent “jailbreak™ attacks [11], [12], [13], [50]. Such
guardrails typically function as a defensive layer, scruti-
nizing user inputs before they reach the LLM or vetting
the model’s outputs before they are presented to the user.
The primary objective is to ensure that the LLM does not
generate harmful, unethical, or policy-violating content.

In the context of the jailbreak formulation introduced in
Section 2, where an adversary crafts a prompt P aiming to
elicit a response R = LLM(P) such that JUDGE(R, G) =
True (indicating a harmful outcome based on objective G),
a jailbreak guardrail introduces an additional checkpoint.
Let Gr denote the guardrail system, and Assess(Gr, X) be
its assessment function, which returns allow if content X
(either P, R, or the internal feature F' of the LLM) is
deemed permissible, and block otherwise. When block is
executed, the final response R is replaced by a safe re-
sponse R/, suchas “Sorry, I cannot assist with
that”, as shown in Figure 1.

A jailbreak attack is considered successful in the pres-
ence of such a guardrail if, and only if, the protective
mechanisms of both the target LLM (i.e., its inherent safety
alignment) and the guardrail are circumvented. This means
the guardrail must deem the interaction (either the input
prompt or the generated output) as acceptable, while the
target LLM still produces content classified as harmful.
More formally, if the guardrail inspects the input prompt
P, a successful jailbreak occurs when:

Assess(Gr, P) = allow N JUDGE(R,G) = True. (2)

Alternatively, if the guardrail inspects the model’s output
R = LLM(P), a successful jailbreak is characterized by:

Assess(Gr, R) = allow A JUDGE(R,G) = True. (3)

This highlights that a successful adversary must not only
craft a prompt that bypasses the LLM’s internal safety
measures but also deceives the guardrail into permitting the
harmful interaction or content.

As jailbreak techniques become increasingly sophisti-
cated and diverse (as noted in Section 2), these guardrails

face mounting challenges. They must evolve beyond detect-
ing overtly malicious requests to identify subtle and nuanced
jailbreak patterns and adversarial manipulations. The contin-
uous enhancement of jailbreak guardrails is therefore critical
for improving the safety, security, and regulatory compliance
of Al applications.

3.2. Jailbreak Guardrail Taxonomy

This section categorizes existing guardrail approaches
along several key dimensions. Our taxonomy considers:

o Intervention Stages: This dimension delineates when
the guardrail operates within the LLM interaction
pipeline—either at pre-processing (before the input
reaches the LLM), intra-processing (during the LLM’s
inference), or post-processing (after the LLM generates
an output).

o Technical Paradigms: This refers to the underlying
methodology employed by the guardrail. Approaches are
classified as rule-based (relying on predefined rules or
patterns), model-based (using statistical models or classi-
fiers), or LLM-based (leveraging another LLM for analy-
sis and decision-making).

« Safety Granularity: This specifies the level of detail at
which the safety analysis is performed. It can be token-
level (examining individual words or sub-word units),
sequence-level (evaluating entire prompts or responses),
or session-level (considering the context of the entire
conversation history).

« Reactiveness: This dimension distinguishes how a
guardrail responds to potentially harmful inputs. Static
defenses analyze inputs without modification, whereas
dynamic defenses actively alter inputs—for example,
through mutation or perturbation—to neutralize adversar-
ial properties while aiming to preserve overall semantic
meaning.

o Applicability: This criterion assesses the guardrail’s suit-
ability for different LLM access models, with a particular
emphasis on whether the mechanism can be effectively
applied to black-box LLMs (i.e., closed-source models or
those accessed via remote APIs where internal states are
not accessible).

« Explainability: This focuses on whether the guardrail
method provides interpretable insights into its safety judg-
ments or offers clear rationales for the decisions it makes.

This multi-faceted classification provides a comprehensive
framework for understanding and navigating the landscape
of LLM guardrails. We have comprehensively compiled
existing works on jailbreak guardrails by this taxonomy, as
summarized in Table 1.

3.3. Guardrail Evaluation Framework

To enable a comprehensive and practical assessment of
LLM guardrails, we propose the Security-Efficiency-Utility
(SEU) Evaluation Framework. This framework is designed

to capture the essential trade-offs involved in deploying
guardrails in real-world LLM systems, moving beyond the
narrow focus on raw defense efficacy. Below, we detail the
three core dimensions of our framework and the specific
metrics used for each.

Security: Defense Effectiveness. The primary objective of
any guardrail is to enhance the security of LLM systems by
mitigating jailbreak attacks. We evaluate defense effective-
ness using two complementary metrics:

o Attack Success Rate (ASR): ASR measures the pro-
portion of adversarial attempts that successfully bypass
the guardrail and elicit harmful or unintended responses
from the target LLM. Formally, it is defined as the
percentage of attack queries for which the LLM system
equipped with the guardrail fails to block or mitigate
the attack. A lower ASR indicates stronger defense.

« Pass Guardrail Rate (PGR): PGR measures the pro-
portion of jailbreak attempts that successfully bypass
the guardrail, indicating that the guardrail has classi-
fied the attempt as safe. For pre-processing and intra-
processing guardrails, this refers to the proportion of
malicious requests that the guardrail incorrectly iden-
tifies as benign. For post-processing guardrails, this
refers to the proportion of instances where the guardrail
fails to detect harmful content in the LLM’s response
to a jailbreak attempt. A lower PGR signifies a more
effective guardrail in blocking attacks.

Efficiency: Computational Overhead. In practical deploy-
ments, the operational efficiency of guardrails is a critical
consideration, as excessive overhead can degrade user expe-
rience and increase infrastructure costs. We assess efficiency
along two axes:

o Extra Delay: This metric captures the additional re-
sponse latency introduced by the guardrail. It is com-
puted as the difference between the end-to-end response
time of the guardrail + LLM system and that of the
standalone target LLM. Formally,

Extra Delay = Tyyardrait + LLM — TLLM 4

where Tgyardrail + 1im and Tipy denote the average re-
sponse times with and without the guardrail, respec-
tively.

¢ GPU Memory Overhead: This metric measures the
increase in peak GPU memory consumption resulting
from the integration of the guardrail. It is defined as the
difference between the maximum GPU memory usage
of the guardrail + LLM system and that of the target
LLM alone:

GPU Overhead = Muardrait + L — Mim— (5)

where Mouararait + v and Mppwm represent the peak
GPU memory usage with and without the guardrail,
respectively.
Utility: Impact on Benign Queries. A robust guardrail
should not only block malicious inputs but also preserve the
utility of the LLM for legitimate users. We quantify utility
loss using the following metric:

o False Positive Rate (FPR): FPR measures the pro-
portion of benign (non-malicious) queries that are in-
correctly flagged or blocked by the guardrail. It is
defined as the percentage of normal user queries that
are misclassified as attacks. A lower FPR indicates
better utility preservation, as the guardrail minimally
disrupts legitimate interactions with the LLM.

Discussion. By jointly considering Security, Efficiency, and
Utility, the SEU Evaluation Framework provides a holis-
tic basis for comparing and optimizing LLM guardrails.
This tri-objective perspective enables the identification of
solutions that achieve a balanced trade-off, rather than ex-
celling in only one dimension at the expense of others.
In our experimental analysis (§5 & §6), we employ this
framework to systematically evaluate mainstream guardrail
methods, offering actionable insights for both researchers
and practitioners.

4. Guardrail Analysis Based on Taxonomy

4.1. Intervention Stages

Guardrail mechanisms can be deployed at different

stages of the LLM interaction pipeline, including pre-
processing, intra-processing, and post-processing. Each
stage serves a distinct purpose in identifying and mitigating
jailbreak attempts:
Pre-processing Guardrails. These mechanisms operate on
user inputs before they reach the target LLM, functioning
as the first line of defense against jailbreak attempts. Pre-
processing guardrails typically employ detection algorithms
to identify potentially harmful prompts and then block them
entirely. These guards are particularly valuable for their
ability to prevent harmful prompts from ever reaching the
model, thus conserving computational resources and reduc-
ing potential risks.

Early methods, such as Detecting Perplexity [54] and
Perplexity Filter [55], compute the perplexity of input
prompts to detect potential adversarial inputs. However, this
approach is limited to GCG [9], [22], [30] attacks with
unreadable adversarial suffixes amplifying the perplexity.

A more direct approach is to identify the semantic
harmfulness of input sequences. Some methods focus on
directly identifying toxic phrases or excerpts within the input
text [13], [50], [78], while others assess the overall semantic
harmfulness of the entire input [12], [50], [51], [52], [56],
[63], [64], [69], [70], [72], [73], [741, [77], [79], [81], [91].
For instance, PromptGuard [70] and OpenAl Moderation
[52] fine-tune pre-trained classifiers to assess the safety
of input prompts. However, pre-processing guardrails may
struggle with novel jailbreak techniques that do not exhibit
clear patterns, e.g., implicit attack DrAttack [34] conceals
malicious content within benign-looking prompts.

A more fundamental approach is to analyze the true
intent of the query to filter out jailbreak requests, based
on the premise that jailbreak attempts always involve ma-
licious output targets. Leveraging the powerful language

understanding capabilities of LLMs, we can directly utilize
LLMs to identify the real intentions of requests to determine
whether they are jailbreak attempts [13], [68], [86], [91].
For example, SelfDefend [13] with the intent prompt first
summarizes the input intention and then assesses whether it
constitutes a jailbreak request. Recently, some studies have
employed LLM reasoning capabilities to analyze input intent
[82], [83], [90] before the safety judgments. For instance,
X-Guard [83] employs deep thinking to evaluate potential
harms.

Summary 1: Pre-processing guardrails are the first line of
defense against jailbreak attempts, operating on user inputs
before they reach the target LLM. They have evolved from simple
perplexity detection to semantic harmfulness identification and,
most recently, to LLM-based reasoning for analyzing input in-
tent. This evolution is driven by the need to address increasingly
sophisticated and covert attack methods.

Intra-processing Guardrails. These guardrails operate dur-
ing the LLM’s inference process, analyzing internal model
features or gradients to detect potential jailbreak attempts.
Unlike pre-processing methods, intra-processing guardrails
can observe how the model processes inputs internally,
providing deeper insights into potential vulnerabilities.

On one hand, intra-processing guardrails rely on gradient
information to identify potential jailbreak attempts. These
methods analyze the gradients of the model’s inputs or
parameters during inference to identify unusual patterns or
anomalies that may indicate adversarial inputs. For example,
GradSafe [58] computes the similarity between the input’s
gradient w.r.t. the safety-critical parameters and the unsafe
reference gradients. Gradient Cuff [61] compare the gradient
norm of refusal loss w.r.t. the query prompt with a thresh-
old. Token Highlighter [80] uses the gradient norm of the
affirmation loss for each token in the user query to locate
the jailbreak-critical tokens.

On the other hand, intra-processing guardrails can an-
alyze the model’s internal states for jailbreak detection
[65], [66], [67], [75], [76], [85]. These methods leverage
the model’s hidden states, or other internal representa-
tions to identify patterns indicative of jailbreak attempts.
For example, Circuit Breaking [67] interrupts the LLM to
output harmful content when harmful states are detected.
JBShield [85] analyzes the differences of the LLM’s internal
states between the jailbreak prompts and the benign queries.
These approaches can provide more nuanced insights into
the model’s behavior and vulnerabilities, enabling more ef-
fective detection of sophisticated jailbreak techniques. How-
ever, these approaches typically require white-box access to
the model, which limits their applicability to open-source
LLMs or scenarios where model internals are accessible.

Summary 2: [Intra-processing guardrails operate during the
LLM’s inference process, analyzing internal model features or
gradients to detect potential jailbreak attempts. They provide
deeper insights into vulnerabilities but require white-box access
to the model, limiting their applicability.

Post-processing Guardrails. These mechanisms evaluate

TABLE 1. WORKS ON GUARDRAILS CATEGORIZED BY 6 DIMENSIONS. THE BLACK CIRCLE INDICATES THE GUARDRAIL BELONGS TO THIS
DIMENSION, AND THE WHITE CIRCLE OTHERWISE.

Intervention Stages

Paper Venue ‘

‘Technical Paradigms‘ Safety Granularity ‘ Reactiveness ‘

AJLm““Lm

‘Pra—processing Intra-processing Postfprocessing‘Rule Model LLM ‘Tokan Sequence Session‘Slatic Dynamic‘ ‘

Perspective API [51]
OpenAlI Moderation [52]
Self Defense [53]
Detecting Perplexity [54]

KDD’22 (2202.11176)
AAAT23 (2208.03274)
arXiv:2308.07308
arXiv:2308.14132
arXiv:2309.00614
COLM’24 (2309.02705)
arXiv:2310.03684
EMNLP’23 (2310.10501)
arXiv:2312.06674
ACL24 (2402.13494)
arXiv:2402.16192
arXiv:2403.00826
NeurIPS’24 (2403.00867)
arXiv.2403.04783

Perplexity Filter [55]
erase-and-check [56]
SmoothLLM [57]
NeMo Guardrails [11]
Llama Guard [12]
GradSafe [58]
SemanticSmooth [59]
LLMGuard [60]
Gradient Cuff [61]
AutoDefense [62]

RigorLLM [63] ICML’24 (2403.13031)
Aegis [64] arXiv:2404.05993
LLMGuardrail [65] CCS’24 (2405.04160)
RSAA [66] CAMLIS’24 (2406.03230)

Circuit Breaking [67]
SelfDefend [13]
GuardAgent [68]
‘WildGuard [50]
R2-Guard [69]

Prompt Guard [70], [71]
PrimeGuard [72]
ShieldGemma (73]
Adaptive Guardrail [74]
EEG-Defender [75]

HSF [76]

MOolE [77]

Rapid Response [78]
Pretrained Embeddings [79]
Token Highlighter [80]
Aegis2.0 [81]

COT Fine-Tuning [82]
GuardReasoner [83]
Constitutional Classifiers [84]
IBShield [85]

EDDF [86]

CURVALID [87]
MirrorShield [88]
JailGuard [89]

X-Guard [90]
Continuous Detector [91]

NeurIPS’24 (2406.04313)
USENIX Security’25 (2406.05498)
arXiv:2406.09187
NeurIPS’24 (2406.18495)
ICLR’25 (2407.05557)
Hugging Face (22 July 2024)
arXiv:2407.16318
arXiv:2407.21772
arXiv:2408.08959
arXiv:2408.11308
arXiv:2409.03788
AIES’24 (2409.17699)
arXiv:2411.07494
arXiv:2412.01547
AAATI'25 (2412.18171)
arXiv:2501.09004
arXiv:2501.13080
arXiv:2501.18492
arXiv:2501.18837
USENIX Security’25 (2502.07557)
arXiv.2502.19041
arXiv:2503.03502
arXiv:2503.12931
TOSEM’25 (19 March 2025)
arXiv:2504.08848
arXiv:2504.19440
arXiv:2504.19440

0000000000000 0000000000000 00000 000000V V00O 0
eJo)elel JeJol Jeolelelel Jelolel X Joleloleleleielel X X JOlelel Jolel JCI0lel0lel0lee]e)

Active Monitoring [91]

L X X X Jejolelel X JoI Jololelelolele] Jolel X Jolelelelel Jol JoX X JoI X X JoJelof X ¥)

[cJololelelololelolololelolel lelololelelololelololelelolelelolele) Jololelel J0)elelelele)
000000000000 00000000 00000000000 OO0 OO O00OON 0
([X X Jelejolelel X X I Jolol Jeleolelel X Jeleol X X Jeolojel X X JeJleX JoI X JoI Jelol Je)e)
0000000000 OeOOOOOOLOOOOOOLeOOOOOOOOOLLOeOOOOOO
000000000000 00000000000000000000000000 000000
[X _Jolelelelelelel JoI Jelolelelelel X 1ol 16X JOIeIelele] 10l010)e1ele]) 10I010)e10101e)e)
0000000000000 000000000000000000 0000000 000000
ool X Jeloleleleololele] JoI lololclelololelelololelololelel Jeolelel Jolel X X Jelolelele)
0000000000000 0000000000000 00000000 000000000
(JOX X X X X X JOoI X ¥ Jolojelelel Jol X JoX Jol X Jolof Y X X X X JOI X JoI JOoX X JOJIe)e)

the LLM’s generated outputs to identify and filter harmful
content. As jailbreak attacks inherently aim to produce
harmful outputs, post-processing guardrails serve as a cru-
cial last line of defense. This ensures that even if malicious
prompts circumvent earlier detection stages, their resultant
outputs can still be intercepted.

Given that post-processing guardrails scrutinize the
LLM’s generated outputs, a primary strategy involves the
direct detection of harmfulness within these responses. The
most elementary of these methods employ keyword-based
detectors to assess the safety of the LLM’s outputs, pri-
marily focusing on determining its jailbroken state [57],
[60]. Building upon this foundational technique, a more
sophisticated approach involves training dedicated classifiers
to distinguish between harmful and harmless responses [51],

[52], [60], [69]. For instance, initiatives like the Perspective
API [51] and OpenAl Moderation [52] have developed
transformer-based classifiers engineered to predict the prob-
ability of harmful content appearing in an LLM’s response.
Similarly, R?-Guard [69] embeds safety knowledge into
probabilistic graphical models, enabling the computation of
unsafe probabilities for any given LLM outputs. Elevating
this classification paradigm further, albeit with increased
computational demands, some techniques leverage the rea-
soning capabilities of other LLMs to assess response safety
(11], [12], [50], [53], [59], [62], [64], [73], [81], [83], [84],
[90], [91]. Self Defense [53], for example, filters harmful
content by querying an LLM about the harmfulness of the
initial response. Llama Guard [12] takes a more contextual
approach by considering the input prompt in conjunction

with the output to determine the risk category of the re-
sponse. Progressing towards even more thorough analysis,
GuardReasoner [83] and X-Guard [90] employ chain-of-
thought reasoning before rendering a safety judgment on
the LLM’s output.

In addition to assess the semantic harmfulness of the
response, some methods cleverly use the difference in re-
sponses caused by destroying the adversarial properties
of the jailbreak prompt as the basis for judgment [57],
[59], [88], [89]. For example, SmoothLLM [57] randomly
perturbs/permutes multiple copies of a given input prompt
to generate a set of responses, and then vote by the per-
turbed responses to determine the safety of the original
request. SemanticSmooth [59] and JailGuard [89] perform
more complex mutations instead of simple character-level
changes like SmoothLLLM, such as paraphrasing or transla-
tion into other languages. MirrorShield [88] generates mirror
prompts that preserve the syntactic structure of the input
while ensuring semantic safety. Beyond directly assessing
the semantic harmfulness of the response, an alternative
category of methods ingeniously leverages the discrepancies
in outputs that arise from disrupting the adversarial char-
acteristics of the initial jailbreak prompt [57], [59], [88],
[89]. SmoothLLM [57], for instance, operates by randomly
perturbing or permuting multiple copies of a given input
prompt to generate a set of responses; the safety of the
original request is then determined by a voting mechanism
based on these perturbed responses. Advancing this con-
cept, SemanticSmooth [59] and JailGuard [89] implement
more complex mutations than the simple character-level
alterations used by SmoothLLM, such as paraphrasing the
prompt or translating it into other languages. In a similar
vein, MirrorShield [88] generates “mirror” prompts that
aim to preserve the syntactic structure of the input while
ensuring its semantic safety. These mutation-based methods
capitalize on the inherent properties of jailbreak prompts
to identify adversarial inputs, rendering them particularly
effective against sophisticated attacks. Nevertheless, they
may incur additional computational overhead due to the
requirement for numerous response evaluations or intricate
input transformations.

Although detecting the output of LLMs may appear
more straightforward than deciphering ambiguous prompts
and internal features, later methodologies will integrate the
input prompts to thoroughly evaluate the safety of the
query. However, post-processing safeguards may incur more
latency than other paradigms due to the requirement of
awaiting the LLM’s response. Furthermore, mutation-based
techniques that mandate multiple response evaluations are
suspected to exacerbate this latency.

Summary 3: Post-processing guardrails, by operating on the
LLM’s generated outputs to identify and filter harmful content,
act as an essential safeguard. They intercept potentially harmful
outputs that bypass earlier detection stages. However, over-
reliance on the nature of responses may cause noticeable delay,
particularly when employing mutation-based techniques that
need multiple evaluations.

Drawing upon a classification by intervention stages, our
analysis reveals a critical gap in the current literature, which
motivates the RQ below. As no prior work has systemati-
cally investigated this specific dimension, we undertake a
thorough examination in this paper.

RQ 1: Pre-processing guardrails can reject harmful inputs
before they reach the target LLM, intra-processing mechanisms
operate concurrently during LLM inference, and post-processing
techniques must await LLM’s outputs. This raises a pertinent
question: To what extent does the specific intervention stage
of a guardrail, be it pre-processing, intra-processing, or post-
processing, influence overall response latency?

4.2. Technical Paradigms

Guardrail mechanisms employ diverse technical ap-
proaches to detect and mitigate jailbreak attempts, including
rule-based, model-based, and LLM-based approaches.
Rule-based Guardrails. These guardrails operate by em-
ploying predefined rules, patterns, or heuristics to detect
potentially harmful inputs or outputs of LLMs. A typical
rule-based approach includes utilizing keywords or regular
expressions to identify specific patterns tied to harmful
content. For instance, SmoothLLM, as referenced in [57],
leverages keyword-based detectors to assess the safety of the
LLM’s outputs, primarily to determine its jailbroken state.
Similarly, the PII Detector mentioned in [60] uses regular
expressions to identify personal identifiable information,
such as phone numbers and emails. This method mirrors the
approach taken by the baseline Regex in [78], which also
utilizes regular expressions to mitigate jailbreak attacks.

Transitioning from specific examples to an evaluation
of their effectiveness, it is evident that while these meth-
ods benefit from straightforward and transparent pattern
matching—attributes that contribute to their computational
efficiency and interpretability—their reliance on predefined
patterns can be a significant drawback. Specifically, these
rule-based systems may falter when encountering novel
jailbreak techniques that deviate from known patterns which
inherently limits their capability to combat more sophisti-
cated attacks.

Summary 4: Rule-based guardrails, while beneficial for their
computational efficiency and ease of interpretation, face chal-
lenges when dealing with innovative jailbreak techniques that
do not match existing predefined patterns.

Model-based Guardrails. These guardrails adopt classifiers
or statistical characteristics to distinguish between benign
and harmful queries. Model-based approaches can capture
more complex patterns than rule-based methods, enabling
them to generalize better to novel jailbreak attempts. Learn-
ing a text-based classifier is a common approach for jail-
break detection. On one hand, we can use traditional ma-
chine learning models as the classifiers [63], [66], [69],
[76], [77], [78], [79]. For instance, K-Nearest Neighbors
(KNN) in RigorLLM [63], LightGBM in RSAA [66] and
Random Forest in PretrainedEmbeddings [79]. On the other

hand, neural networks are also widely applied for the safety
classification [51], [52], [56], [60], [65], [70], [76], [78],
[87]. For example, HSF [76] and CURVALID [87] use
a simple Multilayer Perceptron (MLP) as the classifier.
PromptGuard [70] and erase-and-check [56] fine-tune the
pre-trained model (i.e, mDeBERTa and DistilBERT, respec-
tively) to distinguish the safe and unsafe inputs. Besides,
other methods used statistical characteristics to design their
own algorithms on safety distinguish [58], [61], [74], [75],
[80], [85], [86], [88], [89]. Detecting Perplexity [54] and
Perplexity Filter [S5] classify the input as a jailbreak re-
quest if the perplexity is higher than a threshold. Gradient
discrepancies between safe prompts and adversarial prompts
are employed in GradSafe [58], GradientCuff [61] and To-
kenHighlighter [80]. JailGuard [89] identify the jailbroken
state of responses by computing their KL-divergence. EEG-
Defender [75], JBShield [85] and MirrorShield [88] take the
model’s internal feature similarities between the input and
the jailbreak prompt as judgment basis.

The essence of model-based guardrails is to find a clas-
sification standard in distinguishing the benign and harmful
requests, whether to learn a classifier or design a statistical
algorithm. Compared with rule-based methods, model-based
approaches can capture more complex patterns and gener-
alize better to novel jailbreak attempts. They can also adapt
to evolving threats by retraining or fine-tuning the classi-
fiers. However, these methods typically require substantial
training data and computational resources, especially when
using deep learning models.

Summary 5: Model-based guardrails, by adopting classifiers
or statistical characteristics to distinguish between benign and
harmful queries, can capture more complex patterns than rule-
based methods, enabling them to generalize better to novel
Jjailbreak attempts. However, these methods typically require
substantial training data and computational resources, espe-
cially when using deep learning models.

Observation: Intra-processing guardrails are basically model-
based guardrails, which use LLM’s internal features to detect
potential jailbreak attempts. This is because model-based meth-
ods analyze the features and build classifiers instead of using
simple character matching or a more complex LLM.

LLM-based Guardrails. LLM-based guardrails represent a
sophisticated approach to security, harnessing the inherent
inferring capabilities of LLMs themselves to identify and
counteract jailbreak attempts. Within this paradigm, research
has progressed through distinct phases, each characterized
by evolving methodologies.

Initially, methods tended to focus on directly determin-
ing the harmfulness of a request or providing a summary
analysis after the judgment. For example, Self Defense [53]
directly employs the target LLM to assess the safety of its
own generated responses and subsequently furnish an expla-
nation for its findings. In a similar vein, Llama Guard [12]
operates by first identifying an unsafe text and then assign-
ing it to a harmfulness category. Complementing these ap-
proaches, WildGuard [50] offers a multi-faceted assessment,

simultaneously reporting the harmfulness status of the input
prompt, the generated response, and whether the response
was ultimately refused.

Recent methods tend to conduct a detailed analysis
before making a safety judgment. For example, SelfDe-
fend [13] first summarizes the input intention and then as-
sesses whether it constitutes a jailbreak request. GuardRea-
soner [83] and X-Guard [90] employ chain-of-thought rea-
soning to analyze the potential harms and finally give a
safety judgment. More recently, however, there has been a
discernible shift towards methodologies that conduct a more
detailed, upfront analysis before arriving at a safety judg-
ment. [llustrating this trend, SelfDefend [13] first summa-
rizes the underlying intention of the input and then assesses
whether this intention constitutes a jailbreak request. Build-
ing upon this principle of preliminary in-depth analysis, both
GuardReasoner [83] and X-Guard [90] employ chain-of-
thought reasoning. This allows them to meticulously trace
and analyze potential harms associated with a query, culmi-
nating in a final safety judgment.

Undeniably, the strength of these LLM-driven techniques
lies in the excellent language understanding intrinsic to the
models themselves. As a result, these approaches demon-
strate considerable efficacy in detecting a diverse range
of jailbreak attempts and notably improve the explainabil-
ity of the safety judgments they provide. Nevertheless, a
crucial trade-off exists. While effective and explainable,
these advanced guardrails may introduce substantially more
computational overhead when compared to rule-based and
model-based techniques.

Summary 6: Employing the reasoning capabilities of LLMs,
LLM-based guardrails not only detect and mitigate jailbreak
attempts effectively but also improve the explainability of safety
judgments. Nonetheless, they introduce significantly greater
computational overhead than traditional rule-based and model-
based methods.

We now present one RQ that focuses on the cost of
LLM-based guardrails, which is a crucial aspect of their
practical deployment. This RQ is particularly relevant given
the increasing complexity and resource demands of LLM-
based approaches, especially in environments with limited
computational resources.

RQ 2: Given that rule-based, model-based, and LLM-based
guardrails inherently possess different levels of computational
complexity and resource requirements, a significant practical
question emerges: To what extent does the choice of technical
paradigm directly influence the GPU memory footprint of LLM
guardrail mechanisms during their operational deployment?

4.3. Safety Granularity

Guardrail mechanisms can operate at 3 different levels
of detection granularity: token-level for individual words or
tokens, sequence-level for an entire prompt or response, and
session-level for entire conversation sessions.

Token-level Guardrails. These guardrails analyze individ-
ual tokens or small token groups to identify potentially

TABLE 2. THE DETAILS OF OUR COLLECTED BENCHMARK DATASETS.

Dataset # Prompts Jailbreak Methods
JailbreakHub [20] 1000 P [20]
GCG [9], AutoDAN [10]
JailbreakBench [92] 100 TAP [28], LLM-Fuzzer [32]
DrAttack [34]
X-Teaming [49]
MultiJail [36] 315 MultiJail
SafeMTData [48] 600 ActorAttack [48]
AlpacaEval [93] 805 Normal Prompts
OR-Bench [94] 1000 Normal Prompts

harmful elements within inputs or outputs. Token-level
approaches can pinpoint specific problematic components
within a text, enabling more precise interventions. For in-
stance, Token Highlighter [80] identifies specific tokens that
contribute to harmful outputs. These fine-grained approaches
enable targeted interventions but may miss harmful content
that emerges from the broader context rather than specific
tokens.

Sequence-level Guardrails. These guardrails evaluate en-
tire prompts or responses as cohesive units, considering the
overall semantic meaning rather than individual components.
Sequence-level approaches can capture harmful content that
emerges from the interaction between different parts of a
text. For example, Llama Guard [12] and ShieldGemma [73]
assess the holistic safety of the prompt sequence, while Con-
stitutional Classifiers [84] evaluate outputs against prede-
fined safety principles. These approaches can better capture
contextual harms but may provide less granular insights into
specific problematic elements.

Session-level Guardrails. These guardrails monitor entire
conversation sessions, tracking the evolution of dialogue
across multiple turns to identify potential jailbreak attempts
that unfold gradually. Session-level approaches can detect
sophisticated multi-turn attacks that might appear benign
when individual messages are analyzed in isolation. For in-
stance, Adaptive Guardrail [74] maintain conversation state
to identify harmful patterns across turns. These comprehen-
sive approaches are particularly valuable against advanced
jailbreak techniques that exploit the sequential nature of
conversations but typically require more complex implemen-
tation and greater computational resources. We now present
two RQs that explore the impact of safety granularity on the
effectiveness and utility of guardrail mechanisms.

RQ 3: To what extent are current session-level guardrails truly
effective in defending against sophisticated multi-turn jailbreak
attacks?

RQ 4: How does the choice of safety granularity (i.e., token,
sequence, or session-level) impact the utility of LLMs when
implementing guardrail mechanisms?

5. Benchmark & Leaderboard

5.1. Evaluation Setup

Datasets and Target Models. Based on the five categories
of existing jailbreak attacks we surveyed in §2 — manual,
optimization-based, generation-based, implicit, and multi-
turn jailbreaks — we identify representative jailbreak at-
tack methods in each category. We then collect six bench-
mark datasets, JailbreakHub [20], JailbreakBench [92],
SafeMTData [48], MultiJail [36], AlpacaEval [93] and
OR-Bench [94], from which we use their user prompts for
testing diverse guardrails. Table 2 lists the details of our
collected benchmark datasets. JailbreakHub is a framework
that collects and categorizes wild jailbreak prompts de-
signed to bypass safety restrictions in LLMs. We randomly
sample 1,000 in-the-wild prompts (IJP) from JailbreakHub
as manual attacks. JailbreakBench is an open-source ro-
bustness benchmark specifically designed to evaluate and
measure the vulnerability of LLMs to jailbreak attacks. We
use a set of 100 harmful instructions from JailbreakBench
to drive optimization-based jailbreaks (GCG [9] and Au-
toDAN [10]), generation-based jailbreaks (TAP [28] and
LLM-Fuzzer [32]), implicit jailbreak attack DrAttack [34],
and multi-turn jailbreak attack X-Teaming [49]. SafeMT-
Data is a dataset contains the initial multi-turn jailbreak
prompts produced by ActorAttack [48]. We choose 600
queries from SafeMTData as multi-turn jailbreak attacks.
MultiJail is the first manually-created multilingual jail-
break dataset, covering both high-resource and low-resource
languages. We choose 315 jailbreak prompts in Bengali
from MultiJail as multilingual jailbreaks. AlpacaEval is
an automatic evaluation framework designed to assess the
performance of instruction-following LLMs. We use 805
instructions from AlpacaEval as normal prompts. OR-Bench
is the first large-scale benchmark measuring LLMs’ over-
refusal of 80,000 seemingly toxic but benign prompts across
multiple categories. We randomly select 1,000 prompts
from OR-Bench as normal prompts. Due to intra-processing
guardrails are available to protect white-box LLMs, we eval-
uate the defense performance of guardrails on open-source
LLMs, including Llama-3-8B-Instruct [6], and Vicuna-
13b-v1.5 [4], covering diverse model architectures and sizes.
Due to page limitation, readers may refer to Appendix A for
the results on Vicuna-13b-v1.5.

Metrics. We measure the defense performance of guardrails
by the attack success rate (ASR), i.e., the frequency with
which jailbreak prompts in a benchmark dataset bypass the
guardrail and the target LLM. The lower the ASR, the
stronger the defense performance. Adopting the methodol-
ogy from prior studies ([48], [49], [95], [96]), we leverage
GPT-40’s robust evaluation capabilities for assessment. This
involves supplying GPT-40, acting as a judge, with harmful
objectives and the corresponding model outputs. The judge
assigns a score from 1 to 5, where higher scores denote
more harmful and detailed model responses. An attack is
deemed successful if it receives a score of 5 from the GPT-

TABLE 3. THE ASR ({) / PGR (]) RESULTS FOR THE TARGET LLM (LLAMA-3-8B-INSTRUCT) WITH DIFFERENT GUARDRAILS AGAINST FIVE MAJOR
CATEGORIES OF JAILBREAK ATTACKS, INCLUDING ROW AVERAGES. (PRE) AND (POST) DENOTE THE PRE-PROCESSING AND POST-PROCESSING
VERSIONS OF THE GUARDRAILS, RESPECTIVELY. (DIRECT) AND (INTENT) DENOTE THE DIRECT PROMPT AND INTENT PROMPT BASED VERSIONS OF
SELFDEFEND [13], RESPECTIVELY.

. Manual Optimization-based Generation-based Implicit Multi-turn
Guardrails — - Average
Jp GCG AutoDAN TAP LLM-Fuzzer DrAttack MultiJail ActorAttack X-Teaming

LLma-3-8B-Insturct 0.078/- 0.130/- 0.020/- 0.130/- 0.490/- 0.100/- 0.044/- 0.227/- 0.910/- 0.237/-

PerplexityFilter 0.078/1.000 | 0.100/0.620 0.020/1.000 | 0.140/1.000 0.480/1.000 | 0.100/1.000 0.044/1.000 | 0.227/1.000 0.960/1.000 | 0.239/0.958
SmoothLLM 0.115/0.261 | 0.020/0.020 0.030/0.110 | 0.140/0.170 0.500/0.810 | 0.150/0.660 0.032/0.575 | 0.893/0.893 0.850/0.910 | 0.303/0.490
Llama Guard (Pre) 0.062/0.563 | 0.100/0.390 0.020/0.480 | 0.140/0.460 0.450/0.680 | 0.100/0.840 0.044/0.952 | 0.220/0.967 0.910/1.000 | 0.227/0.704
Llama Guard (Post) 0.061/0.061 | 0.090/0.090 0.020/0.020 | 0.150/0.150 0.390/0.390 | 0.090/0.090 0.041/0.041 | 0.223/0.223 0.960/0.960 | 0.225/0.225
GradSafe 0.077/0.599 | 0.130/0.770 ~ 0.010/0.040 | 0.070/0.580 0.450/0.580 | 0.100/0.420 0.044/0.917 | 0.188/0.863 0.950/0.990 | 0.224/0.640
GradientCuff 0.016/0.058 | 0.080/0.140 0.000/0.020 | 0.070/0.090 0.360/0.480 | 0.030/0.130 0.016/0.149 | 0.118/0.648 0.640/0.710 | 0.148/0.269
SelfDefend (Direct) 0.020/0.267 | 0.030/0.080 0.010/0.120 | 0.080/0.180 0.090/0.140 | 0.070/0.590 0.038/0.752 | 0.133/0.702 0.970/0.990 | 0.160/0.425
SelfDefend (Intent) 0.022/0.285 | 0.030/0.070 ~ 0.010/0.130 | 0.120/0.180 0.030/0.130 | 0.010/0.130 0.032/0.584 | 0.152/0.767 0.940/0.970 | 0.150/0.361
WildGuard (Pre) 0.004/0.033 | 0.020/0.020 0.000/0.020 | 0.030/0.060 0.000/0.000 | 0.080/0.500 0.044/0.797 | 0.150/0.757 0.960/0.980 | 0.143/0.352
WildGuard (Post) 0.020/0.020 | 0.050/0.050 0.010/0.010 | 0.060/0.060 0.090/0.090 | 0.060/0.060 0.035/0.035 | 0.148/0.148 0.950/0.950 | 0.158/0.158
Prompt Guard 0.000/0.000 | 0.000/0.080 0.020/0.420 | 0.170/0.940 0.000/0.000 | 0.100/0.940 0.044/1.000 | 0.225/0.995 0.910/1.000 | 0.163/0.597
GuardReasoner (Pre) 0.000/0.009 | 0.000/0.000 0.000/0.010 | 0.030/0.070 0.010/0.020 | 0.080/0.360 0.029/0.349 | 0.143/0.740 0.920/0.960 | 0.135/0.280
GuardReasoner (Post) | 0.023/0.023 | 0.040/0.040 0.000/0.000 | 0.050/0.050 0.050/0.050 | 0.030/0.030 0.022/0.022 | 0.107/0.107 0.950/0.950 | 0.141/0.141

40 Judge. For a detailed explanation of the scoring rubric,
please see [48], [95].

Attack Configuration. To assess the jailbreak defense per-
formance of guardrails, we employ the most widely used
jailbreak attacks, including a manual attack (LJP [20]),
optimization-based attacks (GCG [9] and AutoDAN [10]),
generation-based attacks (TAP [28] and LLM-Fuzzer [32]),
implicit attacks (DrAttack [34] and MultiJail [36]), and
multi-turn attacks (ActorAttack [48] and X-Teaming [49]).
In the context of IJP, 1,000 adversarial queries were ran-
domly sampled from the forbidden question set with jail-
break prompts [97], curated by JailbreakHub. Regarding
GCG, its individual variant was selected, and the adver-
sarial suffix was optimized against the target LLM em-
ploying a batch size of 512 and subjected to 500 op-
timization iterations. For the AutoDAN methodology, the
hierarchically-guided genetic algorithm variant, specifically
AutoDAN-HGA, was adopted. The genetic algorithm inte-
gral to AutoDAN-HGA operates with a crossover probabil-
ity of 0.5, a mutation probability of 0.01, and undergoes
500 optimization iterations. Concerning 7AP, the Vicuna-
13b-v1.5 model [4] was utilized as the attacking agent.
The parameters for TAP were configured with a maxi-
mum depth of 5, a maximum width of 5, and a branch-
ing factor of 4. The designated target models for TAP
included Llama-3-8B-Instruct [6] or Vicuna-13b-v1.5 [4].
In the case of LLM-Fuzzer, GPT-3.5 served as the auxiliary
model for generating mutational inputs, and the query limit
directed at the target LLMs was established at 200. For
DrAttack, jailbreak prompts were formulated using GPT-
4o0. With respect to MultiJail, the entirety of the 315
available queries in the Bengali language was selected.
For the ActorAttack strategy, a corpus of 600 queries was
sourced from the SafeMTData dataset [48] (specifically,
the SafeMTData/Attack_600. json file available on
Hugging Face). For X-Teaming, we set the attacking model
as Qwen2.5-32B-Instruct [8] and use the TextGrad-based

text optimization to refine jailbreak prompts. Regarding
AlpacaEval, all 805 questions within the AlpacaEval dataset
were utilized. For OR-Bench, a subset of 1,000 prompts
was randomly selected from the OR-Bench dataset [94]
(specifically, the or-bench-80k.csv file on Hugging
Face).

It is pertinent to note that: The prompts associated with
1JP, MultiJail, ActorAttack, AlpacaEval, and OR-Bench are
static in nature. Consequently, all guardrail mechanisms
encounter identical input stimuli, irrespective of whether
they are safeguarding Llama-3-8B or Vicuna-13b. In con-
trast, GCG, AutoDAN, and DrAttack are specifically tailored
to either Llama-3-8B or Vicuna-13b. As such, guardrails
receive uniform inputs when defending the same designated
target LLM. Conversely, TAP, LLM-Fuzzer, and X-Teaming
represent adaptive attack methodologies. This implies that
guardrail systems are presented with varied inputs, even
when applied to the identical target LLM.

Baselines. We compare our framework with popular jail-
break defense methods, including Perplexity Filter [55],
SmoothLLM [57], Llama Guard [12], GradSafe [58],
GradientCuff [61], SelfDefend [13], WildGuard [50],
Prompt Guard [70], and GuardReasoner [83]. Specif-
ically, Perplexity Filter leverages a Llama-2-7b model to
calculate the perplexity of the input prompt. A jailbreak is
considered to happen when the perplexity exceeds a thresh-
old. We set this threshold at the maximum perplexity of any
prompt in the JailbreakBench dataset of harmful behavior
prompts. SmoothLLM perturbs the jailbreak prompts with
character-level changes to enable the target LLM to per-
form defense. In this paper, we set SmoothLLM to conduct
character swapping with a 10% perturbation percentage.
Llama Guard is a fine-tuned Llama-2-7b model designed
to detect the toxicity category of input prompts. GradSafe
is a gradient-based detection method that identifies unsafe
or jailbreak prompts in LLMs by analyzing the consistent
gradient patterns of safety-critical parameters when paired

with compliance responses. GradientCuff is a method for
detecting jailbreak attacks on LLMs by analyzing the re-
fusal loss landscape, leveraging gradient-based patterns to
identify and block adversarial prompts while maintaining
normal query performance. SelfDefend is a practical jail-
break defense framework for LLMs that uses a shadow
LLM instance to concurrently detect harmful queries while
the target LLM processes them, providing robust protection
with minimal delay. WildGuard is an open, lightweight,
multi-task moderation tool for LLMs that detects malicious
user prompts, harmful model responses, and model refusal
behavior. Prompt Guard is a security tool developed by
Meta that detects and blocks malicious inputs (e.g., jail-
break attempts, prompt injections) in LLM applications,
using lightweight classifier model Prompt-Guard-86M to
filter harmful content in real time. GuardReasoner is a
reasoning-based guard model designed to enhance the safety
of LLMs by integrating explicit step-by-step reasoning into
the moderation process. Our evaluations are implemented
using PyTorch 2.6.0 and conducted on NVIDIA Hopper
H800 GPUs.

5.2. Benchmark Evaluation

Defense Performance. We first analyze the defense perfor-
mance of various guardrails. As delineated in Table 3, which
presents the ASR, a lower value indicates superior defense
capabilities. On average, GuardReasoner (Pre) demonstrates
the most robust defense, achieving the lowest ASR of 0.135.
Following closely is GuardReasoner (Post), underscoring the
efficacy of the reasoning process prior to safety determina-
tion inherent in the GuardReasoner framework. Conversely,
SmoothLLM exhibits the highest ASR of 0.303, rendering
it the least effective in this cohort. This suboptimal perfor-
mance may be attributed to its mechanism of token-level
input perturbation, which appears to be primarily effective
against jailbreak techniques characterized by adversarial
suffixes, such as GCG, while offering limited protection
against a broader spectrum of attacks.

Shifting focus to PGR, presented in Table 3, GuardRea-
soner (Post) achieves the best PGR of 0.141. Despite its su-
perior precision in identifying malicious inputs, GuardRea-
soner (Post) does not attain state-of-the-art (SOTA) overall
defense performance. A plausible explanation is its potential
operational overlap with the target LLM’s intrinsic safety
mechanisms. That is, there might be a significant number of
instances where GuardReasoner (Post) identifies a response
as safe, and concurrently, the target LLM also recognizes
the harmful nature of the query and refuses to respond,
thereby diminishing the unique contribution of GuardRea-
soner (Post) to the ASR reduction when compared to a
guardrail like GuardReasoner (Pre) which operates on a
different paradigm.

Efficiency. The efficiency of guardrails is a critical factor for
practical deployment, which we assess in terms of latency
and GPU memory consumption. Figure 2(a) illustrates the
extra delay introduced by different guardrail methodologies
when processing normal inputs from the AlpacaEval and

OR-Bench datasets. Perplexity Filter, Llama Guard, SelfDe-
fend and PromptGuard stand out with the negligible latency.
In contrast, GuardReasoner (Pre) and GradientCuff impose
the most significant delays, with GuardReasoner (Pre) be-
ing particularly notable. This suggests that the profound
reasoning capabilities that afford GuardReasoner (Pre) its
enhanced defense performance come at the cost of increased
processing time. The majority of other guardrails maintain
an additional delay generally not exceeding 0.5 seconds.
From the perspective of GPU memory utilization, de-
picted in Figure 2(b), GuardReasoner (Pre) again regis-
ters the highest memory footprint, consistent with its com-
plex reasoning architecture. Conversely, SmoothLLM, Gra-
dientCuff, and PromptGuard are the most memory-efficient,
with their consumption approaching negligible levels. This
highlights a clear trade-off between the sophistication of the
defense mechanism and its resource intensiveness.
Utility. Beyond security and efficiency, the utility of a
guardrail, specifically its ability to not impede benign user
interactions, is paramount. We measure the FPR on Al-
pacaEval and OR-Bench datasets, as shown in Figure 2(c). A
higher FPR indicates a greater propensity to incorrectly flag
legitimate prompts as malicious. SelfDefend (Direct) ex-
hibits the highest FPR on OR-Bench, at 0.221. On AlpacaE-
val, GradientCuff records the highest FPR of 0.083. These
figures suggest that these guardrails have a higher likeli-
hood of intercepting normal user queries. Other guardrails
with comparatively high FPRs include SmoothLLM, Self-
Defend (Intent), WildGuard (Pre), and GuardReasoner (Pre).
Although these three methods demonstrate strong defense
performance (low ASR), their elevated FPRs underscore a
critical trade-off between security and utility. Systems that
are highly stringent in blocking threats may inadvertently
penalize legitimate interactions, diminishing the overall user
experience.

5.3. Leaderboard on SEU

To provide a holistic evaluation, we compare guardrails
across five key metrics: ASR, PGR, Extra Delay, GPU
Memory, and FPR. We average ASR and PGR over the nine
jailbreak attacks (cf. Table 3) to derive Mean-ASR (M-ASR)
and Mean-PGR (M-PGR). The other metrics are measured
using the OR-Bench dataset. For a unified ranking, we
normalize each metric to a [0, 1] range and invert the scores
(1 - normalized value), ensuring higher values consistently
indicate better performance. We then compute a Composite
Score for each guardrail by averaging these five transformed
scores. This score underpins the ranking visualized in the
heatmap in Figure 3.

The analysis reveals inherent trade-offs, as no single
guardrail excels across all dimensions. For instance, Prompt-
Guard achieves the highest Composite Score but its low
M-PGR suggests potential gaps in detection robustness.
Conversely, GuardReasoner (Pre) ranks lower but provides
superior defense (high M-ASR and M-PGR) at a signifi-
cant cost to efficiency and utility. SelfDefend (Intent) of-
fers a balanced profile, with its main weakness being a

g

1)
S
S

w
=)

N
)

o
o
Average GPU Memory (GB)

4

o
"
o

Average Extra Delay (Second)
=
o

o

AlpacaEval ~ AlpacaEval
OR-Bench

OR-Bench

o

|
=4

t)
o

Perp/ex,‘ryﬁ ey
Smoo(h Ly
Stard .,
Star (pe,

Gradsa "

Ua,
Uamg

Tested Guardrails Tested Guardrails
(a) Delay (b) Memory

Tested Guardrails

(c) Utility

Figure 2. The delay, memory usage, and utility of guardrails.

SEU - Heatmap 1.0
PromptGuard JK:E] 0.44 '

tama Guard (Post)|_ 046 [EEIIIEEENE
SelfDefend (intent)

WildGuard (Post)
GradientCuff

WildGuard (Pre)

Llama Guard (Pre){ 0.45

SelfDefend (direct)

o
ES
Normalized Performance (1 = optimal)

Guardrail (sorted by Composite Score)

PerplexityFilter- 0.38
GradSafe; 0.47 0.39
GuardReasoner (Post)m- 0.2
SmoothLLM- 0.00
GuardReasoner (Pre)m ’
VS e G‘ exoord ¥0® °

Figure 3. The heatmap of guardrails.

higher FPR. This leaderboard underscores that the optimal
guardrail choice is context-dependent, contingent on the
specific security requirements and operational constraints of
a given deployment scenario. We believe this leaderboard
will serve as a valuable resource for practitioners in selecting
appropriate guardrails based on their unique needs.

6. Practical Insights & Implications

Answer to RQ3: Session-level Guardrails v.s. Multi-turn
Jailbreaks. A critical question arises regarding session-
level guardrails: given their reliance on LLM dialogue his-
tory (both input and output) for threat assessment, how
effectively do they counter sophisticated multi-turn jail-
break attacks? Our analysis, focusing on three session-
level guardrails—Llama Guard (Post), WildGuard (Post),
and GuardReasoner (Post)—reveals nuanced performance.
As indicated in Table 3, these guardrails maintain an ASR
above 10% against the ActorAttack multi-turn jailbreak.
Furthermore, when faced with the more adaptive X-Teaming
attack, the ASR for most guardrails, including these session-
level ones, exceeds 90%. GradientCuff is a partial exception

3.5
- |JP
3.0 —— GCG
2.5 —=+— AutoDAN
+- DrAttack

Multijail

ry/:

g
=)

=
5}

Average Extra Delay (Second)
-
=3

©c o ©
o

|
g
=)

Tested Guardrails

Figure 4. The delay of guardrails against different attack types.

with a 64% ASR, but this is still a high failure rate. These
findings underscore a significant vulnerability of current
session-level guardrails against advanced multi-turn attacks.
The high ASR, particularly against adaptive attacks like
X-Teaming, suggests that these defenses can be readily
bypassed if the attack unfolds over several interactions.
This highlights an urgent imperative to develop more robust
guardrail methodologies specifically designed to address the
evolving landscape of multi-turn jailbreaks.
Answer to RQI1: Intervention Stages on Delay. The
intervention stage of a guardrail—whether it operates pre-
processing (on user input), intra-processing (during LLM
generation), or post-processing (on LLM output)—can sig-
nificantly impact system latency. We investigate this re-
lationship by examining the data presented in Figure 4.
Observations indicate that, with the notable exception of
GuardReasoner (Pre), pre-processing guardrails such as Per-
plexity Filter, Llama Guard (Pre), SelfDefend (Direct), Self-
Defend (Intent), WildGuard (Pre), and Prompt Guard gen-
erally introduce negligible, or in some cases even negative,

additional latency. The higher latency of GuardReasoner
(Pre) is attributable to its more complex reasoning processes.
In contrast, intra-processing and post-processing guardrails
exhibit more varied latency profiles relative to each other.
A key finding is that for identical detection models, post-
processing variants consistently incur greater delay than
their pre-processing counterparts (e.g., WildGuard (Post)’s
delay is greater than that of WildGuard (Pre)). This phe-
nomenon arises because post-processing methods inherently
must await the completion of the target LLM’s generation
phase before they can intervene. Conversely, pre-processing
guardrails possess the advantage of potentially halting the
LLM’s generation process immediately upon detecting a
malicious input, thereby conserving computational time.
Consequently, pre-processing guardrails, particularly those
not reliant on extensive reasoning, generally offer a more
latency-efficient solution for integrating safety measures.

Answer to RQ2: Technical Paradigms on GPU Mem-
ory Usage. The underlying technical paradigm of a
guardrail—be it rule-based, traditional model-based, or
LLM-based—is expected to influence its GPU memory foot-
print. We examine this correlation using data from Figure 2.
The results show that the rule-based SmoothLLM incurs
zero additional memory overhead, representing the most
memory-efficient approach. Certain traditional model-based
methods, specifically GradientCuff and PromptGuard, also
demonstrate near-zero memory consumption, highlighting
their lightweight nature. However, the landscape for model-
based approaches is not uniform; GradSafe, another model-
based technique, exhibits higher memory usage than several
LLM-based methods, indicating significant variability in
resource demands even within this category. As anticipated,
LLM-based guardrails generally impose a greater memory
burden. This is an intrinsic consequence of their design,
which necessitates loading and executing a large language
model for safety inference. This observation aligns with
the expectation that leveraging large language models for
safety assessment incurs a higher resource cost in terms
of memory. While rule-based and optimized model-based
solutions offer substantial memory efficiency, the choice
of paradigm must be carefully weighed against the desired
detection capabilities and specific deployment constraints.

Answer to RQ4: Safety Granularity on Utility. The
granularity at which a guardrail performs its safety
checks—whether at the token-level, sequence-level (assess-
ing the entire input or output), or session-level (considering
the dialogue history)—may significantly affect its utility,
particularly its propensity to misclassify benign prompts, as
measured by the FPR. This aspect is explored using data
from Figure 2(c). Token-level guardrails, exemplified by
SmoothLLM (which analyzes keywords in LLM responses)
and SelfDefend (Direct) (which inspects harmful segments
within queries), demonstrate relatively pronounced FPRs.
Notably, SelfDefend (Direct) records the highest FPR on
the OR-Bench dataset, exceeding 20%. This suggests that
token-level mechanisms, while focused, may inadvertently
penalize legitimate interactions due to a potential lack of
broader contextual understanding. A comparative analysis

further reveals that for the same underlying detection model,
session-level guardrails (typically denoted by a “(Post)”
suffix, leveraging both LLM input and output) consistently
achieve markedly lower FPRs than their sequence-level
counterparts (often denoted by a “(Pre)” suffix, relying
solely on input). For instance, WildGuard (Pre) exhibits
an FPR above 10% on OR-Bench, whereas the FPR for
WildGuard (Post) remains below 5%. While sequence-level
guardrails display a wider range of FPRs—some high, some
low—session-level approaches generally maintain low FPR
values across the board. These observations collectively
suggest that session-level guardrails tend to offer superior
utility by minimizing false positives. This improved perfor-
mance is likely attributable to their comprehensive use of
contextual information derived from the entire interaction
history, enabling a more nuanced distinction between gen-
uinely harmful prompts and benign ones that might share
superficial characteristics with attacks.

Comparison of PGRs Across Guardrails

GuardReasoner (Pre) 0.680
WildGuard (Pre)
SelfDefend (intent)

SelfDefend (direct)

Llama Guard (Pre)

0.0 0.2 0.4 0.6 0.8 1.0
Pass Guardrail Rate (PGR)

Figure 5. Cross-attack evaluation: injection attack on guardrails.

Generalization: Cross-Attack Assessment. While LLM-
based guardrails have demonstrated efficacy against jail-
break attacks, a critical and often overlooked considera-
tion is their robustness against other adversarial manipula-
tions, specifically prompt injection attacks. Given that these
guardrails are themselves powered by LLMs, their suscepti-
bility to injection attacks—which could potentially subvert
their safety assessment capabilities—presents a significant
security concern. To investigate this, we evaluated the per-
formance of LLM-based guardrails against 203 distinct in-
jection attack samples sourced from the “deepset/prompt-
injections” dataset on Hugging Face.

Our primary finding is that these injection attacks did
not compromise the fundamental operational integrity of
the guardrails. That is, the guardrails were not coerced into
abandoning their safety analysis function to produce arbi-
trary, irrelevant outputs (e.g., “hello world”). They continued
to process the inputs for security threats as designed. How-
ever, their effectiveness in identifying and mitigating these
injections was limited. We measured the Pass Guardrail Rate
(PGR) for these attacks, with results presented in Figure 5.
The data reveals that while LLM-based guardrails exhibit a
non-trivial capacity to filter prompt injections, this capability
is modest at best. This assessment underscores a crucial
gap in the current state of guardrail technology: the need

for broader cross-attack generalization. For a guardrail to
be truly effective in practice, its defensive perimeter must
extend beyond jailbreak attempts to also detect and neu-
tralize other forms of attacks that could exploit its defense,
such as prompt injections. This calls for the development of
more versatile and robust guardrail mechanisms capable of
addressing a wider spectrum of adversarial inputs.

7. Conclusion

This SoK paper comprehensively addresses the frag-
mented landscape of LLM jailbreak guardrails by introduc-
ing a novel multi-dimensional taxonomy and a SEU mea-
surement framework. Our findings highlight the strengths,
limitations, and interdependencies of existing defense mech-
anisms with a series of key insights. This work forms a
structured foundation to guide the principled advancement
and deployment of more robust LLM guardrails.

References

[1] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei,
N. Bashlykov, S. Batra, P. Bhargava, S. Bhosale er al., “Llama
2: Open foundation and fine-tuned chat models,” arXiv preprint
arXiv:2307.09288, 2023.

[2] Z. Li, D. Wu, S. Wang, and Z. Su, “Api-guided dataset synthesis to
finetune large code models,” Proceedings of the ACM on Program-
ming Languages, vol. 9, no. OOPSLAI, pp. 786815, 2025.

[3] Z. Li, C. Wang, P. Ma, C. Liu, S. Wang, D. Wu, and C. Gao,
“On the feasibility of specialized ability stealing for large language
code models,” in Proceedings of the IEEE/ACM 46th International
Conference on Software Engineering, 2023.

[4] W.-L. Chiang, Z. Li, Z. Lin, Y. Sheng, Z. Wu, H. Zhang,
L. Zheng, S. Zhuang, Y. Zhuang, J. E. Gonzalez, I. Stoica, and
E. P. Xing, “Vicuna: An open-source chatbot impressing GPT-4
with 90%* ChatGPT quality,” March 2023. [Online]. Available:
https://Imsys.org/blog/2023-03-30-vicuna/

[5] T. M. A. Team, “Mistral-7b-instruct-v0.2,” https://huggingface.co/
mistralai/Mistral-7B-Instruct-v0.2, 2024.

[6] A. Grattafiori, A. Dubey, A. Jauhri, A. Pandey, A. Kadian, A. Al-
Dahle, A. Letman, A. Mathur, A. Schelten, A. Vaughan et al., “The
llama 3 herd of models,” arXiv preprint arXiv:2407.21783, 2024.

[71 Anthropic, “Claude 3.5 sonnet,” https://www.anthropic.com/news/
claude-3-5-sonnet, 2024.

[8] Qwen Team, “Qwen2.5
arXiv:2412.15115, 2024.

[91 A. Zou, Z. Wang, J. Z. Kolter, and M. Fredrikson, “Universal and
transferable adversarial attacks on aligned language models,” arXiv
preprint arXiv:2307.15043, 2023.

X. Liu, N. Xu, M. Chen, and C. Xiao, “AutoDAN: Generating stealthy
jailbreak prompts on aligned large language models,” in /CLR, 2024.

T. Rebedea, R. Dinu, M. N. Sreedhar, C. Parisien, and J. Cohen,
“NeMo Guardrails: A toolkit for controllable and safe LLM applica-
tions with programmable rails,” in EMNLP: System Demonstrations,
2023, pp. 431-445.

H. Inan, K. Upasani, J. Chi, R. Rungta, K. Iyer, Y. Mao, M. Tontchev,
Q. Hu, B. Fuller, D. Testuggine et al., “Llama Guard: LLM-based
input-output safeguard for Human-Al conversations,” arXiv preprint
arXiv:2312.06674, 2023.

technical report,” arXiv preprint

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

X. Wang, D. Wu, Z. Ji, Z. Li, P. Ma, S. Wang, Y. Li, Y. Liu, N. Liu,
and J. Rahmel, “SelfDefend: LLMs can defend themselves against
jailbreaking in a practical manner,” in USENIX Security, 2025.

Y. Xie, J. Yi, J. Shao, J. Curl, L. Lyu, Q. Chen, X. Xie, and F. Wu,
“Defending chatgpt against jailbreak attack via self-reminders,” Na-
ture Machine Intelligence, vol. 5, no. 12, pp. 1486-1496, 2023.

S. Xhonneux, A. Sordoni, S. Giinnemann, G. Gidel, and L. Schwinn,
“Efficient adversarial training in LLMs with continuous attacks,” in
NeurIPS, 2024.

X. Wang, W. Wang, Z. Ji, Z. Li, P. Ma, D. Wu, and S. Wang,
“Stshield: Single-token sentinel for real-time jailbreak detection in
large language models,” arXiv preprint arXiv:2503.17932, 2025.

Y. Liu, G. Deng, Z. Xu, Y. Li, Y. Zheng, Y. Zhang, L. Zhao,
T. Zhang, and Y. Liu, “Jailbreaking ChatGPT via prompt engineering:
An empirical study,” arXiv preprint arXiv:2305.13860, 2023.

A. Wei, N. Haghtalab, and J. Steinhardt, “Jailbroken: How does LLM
safety training fail?”” in NeurIPS, vol. 36, 2023.

Z. Wei, Y. Wang, and Y. Wang, “Jailbreak and guard: Aligned
language models with only few in-context demonstrations,” arXiv
preprint arXiv:2310.06387, 2023.

X. Shen, Z. Chen, M. Backes, Y. Shen, and Y. Zhang, “’Do Anything
Now”: Characterizing and evaluating in-the-wild jailbreak prompts on
large language models,” in CCS, 2024.

G. Deng, Y. Liu, Y. Li, K. Wang, Y. Zhang, Z. Li, H. Wang,
T. Zhang, and Y. Liu, “MASTERKEY: Automated jailbreaking of
large language model chatbots,” in NDSS, 2024.

C. Sitawarin, N. Mu, D. Wagner, and A. Araujo, “PAL: Proxy-
guided black-box attack on large language models,” arXiv preprint
arXiv:2402.09674, 2024.

M. Andriushchenko, F. Croce, and N. Flammarion, “Jailbreaking
leading safety-aligned LLMs with simple adaptive attacks,” in /CLR,
2025.

X. Jia, T. Pang, C. Du, Y. Huang, J. Gu, Y. Liu, X. Cao, and M. Lin,
“Improved techniques for optimization-based jailbreaking on large
language models,” in ICLR, 2025.

X. Chen, Y. Nie, W. Guo, and X. Zhang, “When LLM meets
DRL: Advancing jailbreaking efficiency via DRL-guided search,” in
NeurIPS, 2024.

E. Perez, S. Huang, H. F. Song, T. Cai, R. Ring, J. Aslanides,
A. Glaese, N. McAleese, and G. Irving, “Red teaming language
models with language models,” in EMNLP, 2022.

P. Chao, A. Robey, E. Dobriban, H. Hassani, G. J. Pappas, and
E. Wong, “Jailbreaking black box large language models in twenty
queries,” arXiv preprint arXiv:2310.08419, 2023.

A. Mehrotra, M. Zampetakis, P. Kassianik, B. Nelson, H. Anderson,
Y. Singer, and A. Karbasi, “Tree of attacks: Jailbreaking black-box
LLMs automatically,” in NeurIPS, 2024.

A. Paulus, A. Zharmagambetov, C. Guo, B. Amos, and Y. Tian,
“AdvPrompter: Fast adaptive adversarial prompting for LLMs,” arXiv
preprint arXiv:2404.16873, 2024.

Z. Liao and H. Sun, “AmpleGCG: Learning a universal and
transferable generative model of adversarial suffixes for jailbreaking
both open and closed LLMs,” in COLM, 2024. [Online]. Available:
https://openreview.net/forum?id=UfqzXg9515

S. Yao, D. Yu, J. Zhao, 1. Shafran, T. Griffiths, Y. Cao, and
K. Narasimhan, “Tree of thoughts: Deliberate problem solving with
large language models,” in NeurIPS, vol. 36, 2024.

J. Yu, X. Lin, Z. Yu, and X. Xing, “LLM-Fuzzer: Scaling assessment
of large language model jailbreaks,” in USENIX Security, 2024, pp.
4657-4674.

D. Handa, A. Chirmule, B. Gajera, and C. Baral, “Jailbreaking
proprietary large language models using word substitution cipher,”
arXiv preprint arXiv:2402.10601, 2024.

(34]

(35]

[36]

(371

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

(471

(48]

[49]

[50]

[51]

[52]

X. Li, R. Wang, M. Cheng, T. Zhou, and C.-J. Hsieh, “DrAttack:
Prompt decomposition and reconstruction makes powerful LLMs
jailbreakers,” in EMNLP, 2024, pp. 13891-13913.

Z.Chang, M. Li, Y. Liu, J. Wang, Q. Wang, and Y. Liu, “Play guessing
game with LLM: Indirect jailbreak attack with implicit clues,” in ACL,
2024, pp. 5135-5147.

Y. Deng, W. Zhang, S. J. Pan, and L. Bing, “Multilingual jailbreak
challenges in large language models,” ICLR, 2024.

Z.-X. Yong, C. Menghini, and S. H. Bach, “Low-resource languages
jailbreak GPT-4,” arXiv preprint arXiv:2310.02446, 2023.

L. Shen, W. Tan, S. Chen, Y. Chen, J. Zhang, H. Xu, B. Zheng,
P. Koehn, and D. Khashabi, “The language barrier: Dissecting safety
challenges of LLMs in multilingual contexts,” in ACL, 2024, pp.
2668-2680.

J. Li, Y. Liu, C. Liu, L. Shi, X. Ren, Y. Zheng, Y. Liu, and Y. Xue, “A
cross-language investigation into jailbreak attacks in large language
models,” arXiv preprint arXiv:2401.16765, 2024.

Y. Yuan, W. Jiao, W. Wang, J. tse Huang, P. He, S. Shi,
and Z. Tu, “GPT-4 is too smart to be safe: Stealthy chat
with LLMs via cipher,” in ICLR, 2024. [Online]. Available:
https://openreview.net/forum?id=MbfAK4s61A

J. Chu, Y. Liu, Z. Yang, X. Shen, M. Backes, and Y. Zhang, “Compre-
hensive assessment of jailbreak attacks against LLMs,” arXiv preprint
arXiv:2402.05668, 2024.

Y. Meng, M. Xia, and D. Chen, “SimPO: Simple preference opti-
mization with a reference-free reward,” in NeurIPS, vol. 37, 2024,
pp. 124 198-124 235.

Z. Zhou, J. Xiang, H. Chen, Q. Liu, Z. Li, and S. Su, “Speak out
of turn: Safety vulnerability of large language models in multi-turn
dialogue,” arXiv preprint arXiv:2402.17262, 2024.

X. Liu, L. Li, T. Xiang, F. Ye, L. Wei, W. Li, and N. Garcia, “Imposter.
Al: Adversarial attacks with hidden intentions towards aligned large
language models,” arXiv preprint arXiv:2407.15399, 2024.

N. Li, Z. Han, I. Steneker, W. Primack, R. Goodside, H. Zhang,
Z. Wang, C. Menghini, and S. Yue, “LLM defenses are not robust to
multi-turn human jailbreaks yet,” arXiv preprint arXiv:2408.15221,
2024.

X. Yang, X. Tang, S. Hu, and J. Han, “Chain of attack: A semantic-
driven contextual multi-turn attacker for LLM,” arXiv preprint
arXiv:2405.05610, 2024.

M. Russinovich, A. Salem, and R. Eldan, “Great, now write an
article about that: The crescendo multi-turn LLM jailbreak attack,”
in USENIX Security, 2025.

Q. Ren, H. Li, D. Liu, Z. Xie, X. Lu, Y. Qiao, L. Sha, J. Yan,
L. Ma, and J. Shao, “Derail yourself: Multi-turn LLM jailbreak at-
tack through self-discovered clues,” arXiv preprint arXiv:2410.10700,
2024.

S. Rahman, L. Jiang, J. Shiffer, G. Liu, S. Issaka, M. R. Parvez,
H. Palangi, K.-W. Chang, Y. Choi, and S. Gabriel, “X-Teaming:
Multi-turn jailbreaks and defenses with adaptive multi-agents,” arXiv
preprint arXiv:2504.13203, 2025.

S. Han, K. Rao, A. Ettinger, L. Jiang, B. Y. Lin, N. Lambert, Y. Choi,
and N. Dziri, “WildGuard: Open one-stop moderation tools for safety
risks, jailbreaks, and refusals of LLMSs,” in NeurIPS Datasets and
Benchmarks Track, 2024.

A. Lees, V. Q. Tran, Y. Tay, J. Sorensen, J. Gupta, D. Metzler, and
L. Vasserman, “A new generation of perspective API: Efficient mul-
tilingual character-level transformers,” in KDD, 2022, p. 3197-3207.

T. Markov, C. Zhang, S. Agarwal, F. E. Nekoul, T. Lee, S. Adler,
A. Jiang, and L. Weng, “A holistic approach to undesired content
detection in the real world,” in AAAI vol. 37, no. 12, 2023, pp.
15009-15018.

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

M. Phute, A. Helbling, M. Hull, S. Peng, S. Szyller, C. Cornelius, and
D. H. Chau, “LLM Self Defense: By self examination, LLMs know
they are being tricked,” arXiv preprint arXiv:2308.07308, 2023.

G. Alon and M. Kamfonas, “Detecting language model attacks with
perplexity,” arXiv preprint arXiv:2308.14132, 2023.

N. Jain, A. Schwarzschild, Y. Wen, G. Somepalli, J. Kirchenbauer,
P.-y. Chiang, M. Goldblum, A. Saha, J. Geiping, and T. Goldstein,
“Baseline defenses for adversarial attacks against aligned language
models,” arXiv preprint arXiv:2309.00614, 2023.

A. Kumar, C. Agarwal, S. Srinivas, A. J. Li, S. Feizi, and
H. Lakkaraju, “Certifying LLM safety against adversarial prompting,”
in COLM, 2024.

A. Robey, E. Wong, H. Hassani, and G. J. Pappas, “SmoothLLM:
Defending large language models against jailbreaking attacks,” arXiv
preprint arXiv:2310.03684, 2023.

Y. Xie, M. Fang, R. Pi, and N. Gong, “GradSafe: Detecting jailbreak
prompts for LLMs via safety-critical gradient analysis,” in ACL, 2024,
pp- 507-518.

J.Ji, B. Hou, A. Robey, G. J. Pappas, H. Hassani, Y. Zhang, E. Wong,
and S. Chang, “Defending large language models against jailbreak
attacks via semantic smoothing,” arXiv preprint arXiv:2402.16192,
2024.

S. Goyal, M. Hira, S. Mishra, S. Goyal, A. Goel, N. Dadu, K. DB,
S. Mehta, and N. Madaan, “LLMGuard: Guarding against unsafe
LLM behavior,” in AAAI, 2024, pp. 23790-23 792.

X. Hu, P-Y. Chen, and T.-Y. Ho, “Gradient Cuff: Detecting jail-
break attacks on large language models by exploring refusal loss
landscapes,” in NeurIPS, 2024.

Y. Zeng, Y. Wu, X. Zhang, H. Wang, and Q. Wu, “AutoDefense:
Multi-agent LLM defense against jailbreak attacks,” arXiv preprint
arXiv:2403.04783, 2024.

Z. Yuan, Z. Xiong, Y. Zeng, N. Yu, R. Jia, D. Song, and B. Li,
“RigorLLM: Resilient guardrails for large language models against
undesired content,” in ICML, 2024.

S. Ghosh, P. Varshney, E. Galinkin, and C. Parisien, “Aegis: Online
adaptive Al content safety moderation with ensemble of LLM ex-
perts,” arXiv preprint arXiv:2404.05993, 2024.

Z. Chu, Y. Wang, L. Li, Z. Wang, Z. Qin, and K. Ren, “A causal
explainable guardrails for large language models,” in ACM CCS,
2024.

A. Kawasaki, A. Davis, and H. Abbas, “Defending large language
models against attacks with residual stream activation analysis,” arXiv
preprint arXiv:2406.03230, 2024.

A. Zou, L. Phan, J. Wang, D. Duenas, M. Lin, M. Andriushchenko,
R. Wang, Z. Kolter, M. Fredrikson, and D. Hendrycks, “Improving
alignment and robustness with circuit breakers,” in NeurIPS, vol. 37,
2024, pp. 83345-83373.

Z. Xiang, L. Zheng, Y. Li, J. Hong, Q. Li, H. Xie, J. Zhang,
Z. Xiong, C. Xie, C. Yang et al, “GuardAgent: Safeguard LLM
agents by a guard agent via knowledge-enabled reasoning,” arXiv
preprint arXiv:2406.09187, 2024.

M. Kang and B. Li, “R?-Guard: Robust reasoning enabled LLM
guardrail via knowledge-enhanced logical reasoning,” in /CLR, 2025.

M. Llama, “Prompt-guard-86m,” https://huggingface.co/meta-1llama/
Prompt-Guard-86M, 2024.

D. Schwartz, D. Bespalov, Z. Wang, N. Kulkarni, and Y. Qi,
“Graph of attacks with pruning: Optimizing stealthy jailbreak prompt
generation for enhanced 1lm content moderation,” arXiv preprint
arXiv:2501.18638, 2025.

B. Manczak, E. Zemour, E. Lin, and V. Mugunthan, “PrimeGuard:
Safe and helpful LLMs through tuning-free routing,” arXiv preprint
arXiv:2407.16318, 2024.

(73]

[74]

[75]

[76]

[(77]

(78]

[79]

[80]

[81]

[82]

(83]

[84]

(85]

[86]

(871

[88]

(891

[90]

W. Zeng, Y. Liu, R. Mullins, L. Peran, J. Fernandez, H. Harkous,
K. Narasimhan, D. Proud, P. Kumar, B. Radharapu et al., “Shield-
Gemma: Generative Al content moderation based on Gemma,” arXiv
preprint arXiv:2407.21772, 2024.

J. Hu, Y. Dong, and X. Huang, “Trust-oriented adaptive guardrails
for large language models,” arXiv preprint arXiv:2408.08959, 2024.

C. Zhao, Z. Dou, and K. Huang, “EEG-Defender: Defending against
jailbreak through early exit generation of large language models,”
arXiv preprint arXiv:2408.11308, 2024.

C. Qian, H. Zhang, L. Sha, and Z. Zheng, “HSF: Defending
against jailbreak attacks with hidden state filtering,” arXiv preprint
arXiv:2409.03788, 2024.

G. Cornacchia, G. Zizzo, K. Fraser, M. Z. Hameed, A. Rawat,
and M. Purcell, “MolJE: Mixture of jailbreak experts, naive tabular
classifiers as guard for prompt attacks,” Proceedings of the AAAI/ACM
Conference on Al, Ethics, and Society, vol. 7, no. 1, pp. 304-315,
Oct. 2024.

A. Peng, J. Michael, H. Sleight, E. Perez, and M. Sharma, “Rapid
response: Mitigating LLM jailbreaks with a few examples,” arXiv
preprint arXiv:2411.07494, 2024.

E. Galinkin and M. Sablotny, “Improved large language model
jailbreak detection via pretrained embeddings,” arXiv preprint
arXiv:2412.01547, 2024.

X. Hu, P-Y. Chen, and T.-Y. Ho, “Token Highlighter: Inspecting
and mitigating jailbreak prompts for large language models,” arXiv
preprint arXiv:2412.18171, 2024.

S. Ghosh, P. Varshney, M. N. Sreedhar, A. Padmakumar, T. Rebedea,
J. R. Varghese, and C. Parisien, “Aegis2.0: A diverse ai safety dataset
and risks taxonomy for alignment of LLM guardrails,” arXiv preprint
arXiv:2501.09004, 2025.

M. K. Rad, H. Nghiem, A. Luo, S. Wadhwa, M. Sorower, and
S. Rawls, “Refining input guardrails: Enhancing llm-as-a-judge ef-
ficiency through chain-of-thought fine-tuning and alignment,” arXiv
preprint arXiv:2501.13080, 2025.

Y. Liu, H. Gao, S. Zhai, J. Xia, T. Wu, Z. Xue, Y. Chen,
K. Kawaguchi, J. Zhang, and B. Hooi, “GuardReasoner: Towards
reasoning-based LLM safeguards,” arXiv preprint arXiv:2501.18492,
2025.

M. Sharma, M. Tong, J. Mu, J. Wei, J. Kruthoff, S. Goodfriend,
E. Ong, A. Peng, R. Agarwal, C. Anil et al., “Constitutional classi-
fiers: Defending against universal jailbreaks across thousands of hours
of red teaming,” arXiv preprint arXiv:2501.18837, 2025.

S. Zhang, Y. Zhai, K. Guo, H. Hu, S. Guo, Z. Fang, L. Zhao,
C. Shen, C. Wang, and Q. Wang, “JBShield: Defending large language
models from jailbreak attacks through activated concept analysis and
manipulation,” in USENIX Security, 2025.

S. Xiang, A. Zhang, Y. Cao, Y. Fan, and R. Chen, “Beyond surface-
level patterns: An essence-driven defense framework against jailbreak
attacks in LLMS,” arXiv preprint arXiv:2502.19041, 2025.

C. Yung, H. Huang, S. M. Erfani, and C. Leckie, “Curvalid:
Geometrically-guided adversarial prompt detection,” arXiv preprint
arXiv:2503.03502, 2025.

R. Pu, C. Li, R. Ha, L. Zhang, L. Qiu, and X. Zhang, “MirrorShield:
Towards universal defense against jailbreaks via entropy-guided mir-
ror crafting,” arXiv preprint arXiv:2503.12931, 2025.

X. Zhang, C. Zhang, T. Li, Y. Huang, X. Jia, M. Hu, J. Zhang, Y. Liu,
S. Ma, and C. Shen, “JailGuard: A universal detection framework
for prompt-based attacks on LLM systems,” ACM Trans. Softw. Eng.
Methodol., 2025.

B. Upadhayay, V. Behzadan et al., “X-Guard: Multilingual guard
agent for content moderation,” arXiv preprint arXiv:2504.08848,
2025.

[91] J. Piet, X. Huang, D. Jacob, A. Chow, M. Alrashed, G. Zhao,
Z. Hu, C. Sitawarin, B. Alomair, and D. Wagner, “Jailbreaksovertime:
Detecting jailbreak attacks under distribution shift,” arXiv preprint

arXiv:2504.19440, 2025.

P. Chao, E. Debenedetti, A. Robey, M. Andriushchenko, F. Croce,
V. Sehwag, E. Dobriban, N. Flammarion, G. J. Pappas, F. Tramer
et al., “JailbreakBench: An open robustness benchmark for jailbreak-
ing large language models,” in NeurIPS, 2024.

X. Li, T. Zhang, Y. Dubois, R. Taori, I. Gulrajani, C. Guestrin,
P. Liang, and T. B. Hashimoto, “AlpacaEval: An automatic evaluator
of instruction-following models,” https://github.com/tatsu-lab/alpaca_
eval, 2023.

J. Cui, W.-L. Chiang, I. Stoica, and C.-J. Hsieh, “OR-Bench: An
over-refusal benchmark for large language models,” in /CML, 2025.

X. Qi, Y. Zeng, T. Xie, P.-Y. Chen, R. Jia, P. Mittal, and P. Henderson,
“Fine-tuning aligned language models compromises safety, even when
users do not intend to!” arXiv preprint arXiv:2310.03693, 2023.

Z. Li, C. Wang, P. Ma, D. Wu, S. Wang, C. Gao, and Y. Liu,
“Split and merge: Aligning position biases in LLM-based evaluators,”
in Proceedings of the 2024 Conference on Empirical Methods in
Natural Language Processing, Y. Al-Onaizan, M. Bansal, and Y.-
N. Chen, Eds. Miami, Florida, USA: Association for Computational
Linguistics, Nov. 2024.

“Forbidden question set with prompts,” https://github.com/verazuo/
jailbreak_llms/blob/main/data/forbidden_question/forbidden_
question_set_with_prompts.csv.zip, 2023.

[92]

[93]

[94]

[95]

[96]

[97]

Appendix

Evaluation Results on Vicuna-13b-v1.5

We extend our comprehensive evaluation to another
widely-used open-source model, Vicuna-13b-v1.5, to assess
the generalization of different guardrails. The detailed re-
sults are presented in Table 4.

First, a salient observation is that Vicuna-13b-v1.5 is
considerably more susceptible to jailbreak attacks compared
to Llama-3. This increased vulnerability is evident from
the substantially higher Attack Success Rates (ASR) across
almost all attack categories, indicating a weaker inherent
safety alignment in Vicuna.

Second, we note a significant performance degradation
for certain defenses when applied to Vicuna-13b-v1.5. For
example, the efficacy of GradSafe and GradientCuff di-
minishes. GradientCuff, which showed marked effectiveness
against the X-Teaming multi-turn attack on Llama-3, fails
to maintain this advantage on Vicuna-13b-v1.5. This de-
cline can be attributed to their nature as intra-processing
guardrails, which heavily rely on the internal representations
and alignment of the target LLM. Consequently, a less
well-aligned model like Vicuna-13b-v1.5 compromises their
defensive mechanism.

Despite these differences, we also observe consistent
performance patterns. GuardReasoner (Pre) and GuardRea-
soner (Post) continue to exhibit state-of-the-art defense ca-
pabilities. GuardReasoner (Pre) achieves the best overall
ASR of 0.156, while GuardReasoner (Post) records the best
overall PGR of 0.192. This sustained excellence underscores
that the robust defense mechanism of GuardReasoner is
largely independent of the target LLM, positioning it as a
more universally applicable and reliable guardrail.

TABLE 4. THE ASR () / PGR (}) RESULTS FOR THE TARGET LLM (VICUNA-13B-V1.5) WITH DIFFERENT GUARDRAILS AGAINST FIVE MAJOR
CATEGORIES OF JAILBREAK ATTACKS, INCLUDING ROW AVERAGES. (PRE) AND (POST) DENOTE THE PRE-PROCESSING AND POST-PROCESSING
VERSIONS OF THE GUARDRAILS, RESPECTIVELY. (DIRECT) AND (INTENT) DENOTE THE DIRECT PROMPT AND INTENT PROMPT BASED VERSIONS OF
SELFDEFEND [13], RESPECTIVELY.

. Manual Optimization-based Generation-based Implicit Multi-turn
Guardrails — - Average
1Jp GCG AutoDAN TAP LLM-Fuzzer DrAttack MultiJail ActorAttack X-Teaming

Vicuna-13b-v1.5 0.474/- 0.890/- 0.660/- 0.530/- 0.820/- 0.780/- 0.254/- 0.238/- 0.960/- 0.649/-

PerplexityFilter 0.474/1.000 | 0.030/0.040 0.660/1.000 | 0.830/1.000 0.870/1.000 | 0.780/1.000 0.254/1.000 | 0.238/1.000 0.990/1.000 | 0.570/0.893
SmoothLLM 0.402/0.794 | 0.140/0.270 0.520/0.970 | 0.840/0.860 0.510/1.000 | 0.410/0.970 0.152/0.933 | 0.877/0.877 0.980/0.970 | 0.537/0.849
Llama Guard (Pre) 0.194/0.563 | 0.370/0.390 0.460/0.750 | 0.630/0.750 0.810/1.000 | 0.650/0.850 0.251/0.952 | 0.222/0.967 0.970/1.000 | 0.506/0.802
Llama Guard (Post) 0.250/0.250 | 0.400/0.400 0.610/0.610 | 0.600/0.600 0.830/0.830 | 0.390/0.390 0.248/0.248 | 0.230/0.230 0.970/0.970 | 0.503/0.503
GradSafe 0.471/0.994 | 0.890/1.000 0.660/1.000 | 0.580/0.960 0.900/1.000 | 0.780/1.000 0.254/1.000 | 0.238/1.000 0.980/1.000 | 0.639/0.995
GradientCuff 0.193/0.351 | 0.090/0.090 0.310/0.480 | 0.550/0.630 0.780/1.000 | 0.660/0.830 0.000/0.000 | 0.183/0.805 0.930/0.960 | 0.411/0.572
SelfDefend (Direct) 0.050/0.262 | 0.080/0.080 0.020/0.080 | 0.210/0.270 0.190/0.270 | 0.330/0.480 0.187/0.743 | 0.132/0.720 0.960/0.990 | 0.240/0.433
SelfDefend (Intent) 0.057/0.286 | 0.080/0.080 0.050/0.110 | 0.140/0.200 0.210/0.250 | 0.010/0.090 0.127/0.568 | 0.157/0.763 0.960/1.000 | 0.199/0.372
WildGuard (Pre) 0.007/0.033 | 0.010/0.010 0.010/0.020 | 0.040/0.090 0.010/0.020 | 0.330/0.490 0.187/0.797 | 0.147/0.757 0.920/0.950 | 0.185/0.352
WildGuard (Post) 0.066/0.066 | 0.040/0.040 0.030/0.030 | 0.100/0.100 0.410/0.410 | 0.090/0.090 0.194/0.194 | 0.165/0.165 0.930/0.930 | 0.225/0.225
Prompt Guard 0.000/0.000 | 0.020/0.020 0.240/0.370 | 0.570/0.960 0.020/0.030 | 0.770/0.990 0.254/1.000 | 0.235/0.995 0.980/1.000 | 0.343/0.596
GuardReasoner (Pre) 0.000/0.009 | 0.000/0.000 0.020/0.020 | 0.050/0.080 0.040/0.040 | 0.150/0.270 0.057/0.349 | 0.143/0.740 0.940/0.960 | 0.156/0.274
GuardReasoner (Post) | 0.050/0.050 | 0.030/0.030 0.010/0.010 | 0.060/0.060 0.480/0.480 | 0.040/0.040 0.060/0.060 | 0.100/0.100 0.900/0.900 | 0.192/0.192

