arXiv:2506.10467v3 [cs.CR] 16 Jun 2025

Specification and Evaluation of Multi-Agent LLM
Systems - Prototype and Cybersecurity Applications

Felix Harer
University of Applied Sciences Northwestern Switzerland
Basel, Switzerland
felix.haerer @thnw.ch

Abstract—Recent advancements in LLMs indicate potential
for novel applications, e.g., through reasoning capabilities in the
latest OpenAl and DeepSeek models. For applying these models
in specific domains beyond text generation, LLM-based multi-
agent approaches can be utilized that solve complex tasks by
combining reasoning techniques, code generation, and software
execution. Applications might utilize these capabilities and the
knowledge of specialized LLM agents. However, while many
evaluations are performed on LLMs, reasoning techniques, and
applications individually, their joint specification and combined
application is not explored well. Defined specifications for multi-
agent LLM systems are required to explore their potential and
their suitability for specific applications, allowing for systematic
evaluations of LLMs, reasoning techniques, and related aspects.
This paper reports the results of exploratory research to specify
and evaluate these aspects through a multi-agent system. The
system architecture and prototype are extended from previous
research and a specification is introduced for multi-agent systems.
Test cases involving cybersecurity tasks indicate feasibility of the
architecture and evaluation approach. In particular, the results
show the evaluation of question answering, server security, and
network security tasks that were completed correctly by agents
with LLMs from OpenAl and DeepSeek.

Index Terms—LLM, Multi-Agent System, Reasoning, Cyber-
security.

I. INTRODUCTION

With the release of recent LLMs such as the DeepSeek
R and OpenAl o variants, LLMs have demonstrated ad-
vancements in terms of reasoning capabilities [[1]], [2]. Well-
known problems and benchmarks for advanced mathematical
challenges such as AIME2024 were successfully tackled [3]],
[4], although they had been set out only recently, through novel
prompting and reasoning techniques, e.g., by constructing
reasoning chains of prompts and responses.

The recent advancements on models and techniques clearly
demonstrate progress on a technological level and, yet, their
actual implementations in real-world applications are only
beginning to become clear. While there does not seem to be
a shortage of services and apps offering various interfaces
to generative Al, the high-impact applications remain to be
identified and assessed systematically.

For instance, systematic evaluations need to determine
whether specific LLMs are suitable and how they could be
utilized for applications in various domains, how the LLMs
and techniques compare in specific applications, in addition
to advanced comparisons such as the coordination of LLM

agents issuing prompt inputs and reacting to outputs for
different interaction patterns, techniques, and LLMs such as
established models and new reasoning models. At this point,
systematic evaluations such as benchmarks concern LLMs,
techniques, and related aspects individually and allow for
individual comparisons.

In order to explore the potential to combine the specialized
knowledge and capabilities of LLM agents with reasoning
and prompting techniques in specific applications, these LLM
agent specifications in multi-agent LLM systems require fur-
ther exploration in order to assess the potential in applications
and for systematic evaluations on an application level. This
paper reports on the initial results of experimental research
towards evaluating multi-agent LLM systems through proto-
typing. The resulting artifact is an LLM execution system,
initiated in 2023 [5]], that has been extended for specifying
and evaluating multi-agent LLM applications. In particular,
an extended architecture and a defined specification support
multi-agent systems that can combine multiple, specialized
LLMs and support prompting and reasoning techniques in
the execution of tasks. A system overview is presented in
this paper, consisting of the architecture and specification
language together with test cases for cybersecurity tasks. The
test cases evaluate network and server security tasks with agent
specifications using commercially and openly available state-
of-the-art LLMs by OpenAl and DeepSeek.

In the remainder of this paper, Section |lI| introduces back-
ground and related work, the architecture and specification are
discussed in Section |[II, and demonstrated with cybersecurity
test cases in Section [Vl Section [V] concludes.

II. BACKGROUND AND RELATED WORK

Agents can carry out actions to complete complex tasks,
individually or jointly in the loosely coupled structures of
multi-agent systems [[6], [7]. In principle, agents act on their
own and commonly involve functional components depending
on the environment, e.g., agents using sensors in industrial
environments or software agents with executable functions and
corresponding data. Generally, tasks are orchestrated in the
agent system by interaction among agents such as invoking
specialized agents with specific functions, knowledge, or data.
In the context of Large Language Models (LLMs), these
models serve as the foundation for completing tasks [8], [9],

https://arxiv.org/abs/2506.10467v3

using prompts and responses that invoke functions, read or
write data, or perform system-specific actions for completing
tasks and solving problems.

LLMs based on Generative Pre-trained Transformers (GPT)
predict sequences of tokens that are mapped to entities such
as words or word fragments, pixel or related image and
video feature representations, and other data entities [[10[]—[/12]].
These values are encoded and embedded to be represented in
a high-dimensional vector space, in addition to the positions
in the sequence. Passing through multiple layers of the GPT
architecture, in the form of transformer blocks, attention and
feed-forward network components predict tokens and proba-
bilities based on attention values [13] and sampling for the
selection of any following token. Since attention relates to
prior positions in the sequence with similar attention, these
positions represent and find related concepts; rather than using
only probabilities to predict the next token. For this reason,
the semantic capabilities of agents have recently been greatly
enhanced as evidenced by recent model releases.

Recently, OpenAl and DeepSeek demonstrated reason-
ing models, where the network components are trained by
reinforcement-learning together with prompting and reasoning
techniques to produce chains of logically following reasoning
steps [[1]]. Reasoning models gain the ability to produce one
or multiple subsequent answers, which might be arranged as
a tree or graph, and to evaluate the answers in a subsequent
reasoning step. By considering one or multiple answers to-
gether with the context of previous steps, this input allows the
LLM to evaluate coherence and select answers to continue
accordingly. In tree or graph structures, multiple paths might
be explored before selecting a coherent line of reasoning [[14],
[15]. Thus, reasoning models allow for reflection and also
introspection, e.g., visible the openly available DeepSeek
models that generate a “jthink;” tag for reasoning that is
closed before the final answer is returned.

Reasoning chains and techniques such as Chain-of-Thought
(CoT) can achieve behavior similar to reasoning and have also
demonstrated recent advancements [16], [[17]. CoT is a well
known approach that issues prompts in order to generate the
responses that reflect on the original question and the conversa-
tion context, thus, it is not limited to reasoning models. Several
variants and further techniques exist. Notably, augmentation of
prompts, e.g., using retrieval augmented generation, can add
information or knowledge relevant to a prompt and improve
answers [18]]. Formulating constraints with zero- or few-
shot prompting [14], [16], [19] allows the LLM to learn
from examples that are concrete example or provide abstract
guidance or structures. Constraints might also be placed on
the content of answers, where related aspects are required to
adhere to defined criteria, being less prone to hallucinations.
In case structural or syntactical properties are constrained, the
replication of the structure or syntax tends to be replicated and
instantiated correctly by the LLM.

While these techniques can be applied generally, they are
not considered explicitly in LLM or agent specifications, e.g.,
for platforms or evaluations of LLMs and agents. Several

domain-specific benchmarks exist for comparing LLMs such
as for Cybersecurity applications [20]-[22] or sub-disciplines
such as threat intelligence [23]]. The results generally indicate
high accuracy for larger, state-of-the-art models and point out
the future potential in the area. This view is shared also by
two recent surveys [24], [25] that provide a comprehensive
overview.

While multi-agent LLM systems are beginning to appear in
practice, the specification of multi-agent LLM systems is still
not understood well and underexplored. Especially the specifi-
cation by a format or language that allows for constraints, rea-
soning chains, and related prompting and reasoning techniques
with multiple agents is not evident in literature. Thus, the
specification and platform, demonstrated by this explorative
research paper, is meant to enhance the understanding of multi-
agent systems and inform future LLM responses and agent
development by systematic evaluations. E.g., by evaluating
reasoning techniques, LLMs designed for reasoning or not
designed for reasoning, and combining techniques selectively
depending on capabilities and knowledge.

III. MULTI-AGENT LLM SYSTEM ARCHITECTURE AND
SPECIFICATION

The following subsections discuss the overall concept based
on high-level requirements, a system architecture realizing
the requirements, and a specification for multi-agent LLM
systems.

A. High-Level Requirements

In order to outline the concept of a multi-agent LLM system,
the following high-level requirements are defined to establish
the architecture:

1. Specification of the access to open source and commercial
LLMs through interfaces and parameters with an API or
a local LLM runtime such as Ollama.

2. Specification of agents invoking LLMs with prompts,
task actions and other agents with behavior depending
on LLM outputs, action execution results, results of other
agents, and the evaluation of results.

2.1 Specifying LLM prompts in the conversation con-
texts of one or multiple agents in data structures
that support prompting and reasoning techniques in
terms of sequential prompts, multiple chains, and
constraints.

Specifying task actions such as executable com-

mands together with data defined at build-time and

variably set within agents at run-time. The action
execution inputs and outputs as well as data must be
inserted into the conversation contexts.

Evaluating results at run-time, originating from LLM

responses, outputs of action executions, or other

agents, i.e., the evaluation through other LLM agents.

An evaluation must conclude whether a result satis-

fies defined criteria, e.g., computation or calculation

results falling in defined classes or reaching an
expected value.

2.2

23

Agent Schema Client Application

Agent Types |

Conversational User Interface |

{ Type: file-broker-ag,
Prompts: [...],
Actions: [...],

@ Run agents

Monitor and control
conversation contexts

LLM

Data: [..] %
{ Type: python-ag, [...] Agent

Functions Load Manager

Prompts and|
Responses

Execute
prompts

<

LLM
API

Conversation
Manager

’1‘22 Services
Local

Activate
next agents,
pass data

Execution Functions
{ copy-file: cp [from]
[to], [..] }

Evaluation Functions

Requdsts/
Responses

LLMs

Activate
next prompts,
pass data

{ verify-file: sha256

[file], [.13 Execution

Execution Stacks

Agent Configurations Engine

{ file-broker-ag: {

LLM-Config.: gpt4o, [..]1}},
{ python-ag: {

Agents H C——>| Prompts
References
to active

prompts

LLI}/I—Conf%g.: codeLIama},}

LLM Configurations

Execute actions
and evaluations

{gptdo: [..] }
{ codeLlama: [...]}

Host Execution Environment |

Fig. 1: Architecture describing the components of the client application together with the specification in the agent schema.

2.4 Invoking prompts, action execution for an agent or
other agents at run-time unconditionally or condi-
tionally based on previous results and evaluations.

The requirements related to prompting and evaluations con-
cern in multi-agent systems the capability to support specific
techniques such as chaining or constraining the reasoning in
the context of action executions. For example, constraints
can be placed on prompts and responses regarding their
format, e.g., text strings, integer or decimal values, patterns,
or complex syntax rules of formal languages or programming
languages. In this case, the evaluation encompasses a syntax
evaluation of the LLM responses before execution by, e.g., a
python-capable agent.

B. Execution Architecture

The following architecture extends previous research on
LLM execution [5] to a multi-agent system architecture with
a corresponding specification, realizing the high-level require-
ments. Architecture and specification are shown in Figure
and in the form of a client application with its sub-systems
and an agent schema for specifying agent types with related
functions and configurations.

The sub-systems manage agents and the conversation
through the components Agent Manager, Conversation Man-
ager and Conversational Ul. Given an agent schema, Agent
Manager requests user interface (Ul) actions in Conversational
UI such as agent settings and the loading of prompts in
Conversation Manager. When running an agent, Conversation
Manager activates the agent in the Execution Engine by
pushing it onto a stack for execution together with the ref-
erenced prompts, activated by the Conversation Manager. An
active prompt is executed by Conversation Manager through
LLM API while loading prompts and streaming responses to
Conversational Ul for monitoring and conversation control.
The architecture and prototype support external LLM services
with common APIs such as the OpenAl API and Replicate
in addition to local LLM applications such as Ollama. Active

agents reference their next prompts, both placed on separate
stacks. The stack-based execution calls for any prompt at the
top of the stack In the stack-based execution, any prompt at the
top of the stack is (1.) processed by an LLM via Conversation
Manager, (2.) the generated response is received by the top-
most agent, and (3.) the agent executes all specified functions
on the Host Execution Environment (HEE) and supplies the
response as input. The functions referenced in a prompt are
defined in the form of execution or evaluation functions, where
execution functions relate to actions that are executed first,
e.g., a "copy-file” function of the agent file-broker-ag, running
in an Ubuntu Server HEE. After executing all actions, the
specified evaluation functions such as “verify-file” will be
called and determine the result of the execution. For example,
such a function might compute a file checksum using sha256
and match the result with an expected value, resulting in a
true evaluation result in case of a match or in false evaluation
otherwise. Further examples are discussed in Section

C. Agent Schema Specification

For specifying multiple agents, executable tasks, and eval-
uation functionality, a schema-based approach is realized,
drawing from conceptual modeling and object orientation. On
an abstract schema level, the schema provides a template
for agent types and related functions and configurations. The
specification in Figure (1| shows an overview of the domain-
specific language structure with examples. In the prototype,
the concrete syntax is realized in JSON format.

An Agent Schema encompasses Agent Types, Functions,
Agent Configurations, and LLM Configurations. Agents are
instantiated based on Agent Types that specify the executable
prompts and actions together with data in the form of key-
value data structure. Actions specify the behavior of agent
types, defining the actions an agent can carry out to complete
tasks. They reference Execution Functions that consist of
executable commands with inputs and outputs denoted in
data variables and Evaluation Functions for the evaluation

"id": "Security-Q&A-Agent",

"prompts": [{
"prompt": "In TCP/IP networking,
routing information in a packet?",
n answers" . { "A" . "HTTP " , "B" . "IP",
"answer": "B" }, e 1y
"prompt-template": "Question:
answers/C], ...",
"evaluate": {
"result-classes": [{
"class": "A", "pattern": "ANSWER: A",

} }I

incorrect" }, ... |

{ "id": "Network-Security-Agent",
"prompts": [{
"prompt": "Scan the local network
exposed ports. Use the nmap module."
"actions": ["write-to-file",
"expected-value": "10.11.1.24" },
"actions": ["write-to-file", "extract-code",
"data": {

"report-file": "network-report.txt",

[question] \n\nOptions:\nA)

"eval-expected":

[ipv4-network]

"ipv4d-network": "10.1.1.0/24" },

which protocol is used to hold network addresses and

¥

[answers/A]\nB) [answers/B]\nC) [

"correct",

"eval-unexpected": "

for reachable hosts with commonly

"extract-ip-scan-results"],

:| 4

"evaluate—-syntax—-shell", "execute-shell"],

}ol

Listing 1: Agent-Type specification for question answering in a Security Q&A Agent and for network scanning tasks in a
Network Security Agent. Based on questions and answers from the CyberMetric dataset [20], performance is evaluated for
the LLM and the configuration of the Q&A agent. For task execution, performance is evaluated based on expected classes of
results, defined by values or patterns. E.g., the Network Security Agent is expected to find open ports at host 10.11.1.24.

of results produced by an agent. At runtime, function inputs
are the LLM response and the data, held in the key-value
data structure in the agent on the stack. Functions read and
write to the data structure, e.g., they might extract code blocks
from an LLM response, evaluate the syntax of generated
python code, or execute arbitrary code. Evaluation Functions
operate on the LLM response and execution outputs. They
specify conditions, values, patterns, and classes to evaluate an
expected or unexpected result. The action specification on the
agent level applies to all prompts and may be overwritten on
the prompt level. There, it may be specified unconditionally
or in a case statement conditionally, in case the denoted result
class applies.

Furthermore, Agent Configurations specify configurations
required to initialize each agent with its defined type at run-
time, including function parameters, data, and a reference to
an LLM configuration defined in LLM configurations, where
LLM and API parameters are set.

IV. TEST CASES FOR CYBERSECURITY APPLICATIONS

This section discusses exemplary test cases with an evalu-
ation for cybersecurity tasks involving an agent specification
with OpenAl and DeepSeek models. The test cases encompass
question answering as well as server and network security
tasks that apply prompting and reasoning techniques. These
test cases aim at evaluating the feasibility of the architecture
and specification.

A. Q&A Specification by Templating

Answering a set of questions with the expectation of open
or pre-defined answers is a foundational application for LLMs.

The LLM is presented with a series of questions, where
each response is evaluated against an expected result by an
evaluation function, e.g., determining a match with a value or
pattern individually or in pre-defined classes. Case 1 applies
this concept in a series of 10 cybersecurity questions from
the CyberMetric Q&A dataset [20] as an example. Listing
shows the definition of an agent type Security Q&A Agent that
is prompted with a Q&A specification. A template defines the
format for questions and answers and specifies loading ques-
tions and answers from a file or inline. Evaluation functions
are defined by classes A to D, matching the expected results
in the dataset.

According to the specification, the evaluation computes
result classes by agent and prompt. As shown in Table
results indicate all LLMs managed to complete the 10 test
questions correctly, indicating basic cybersecurity knowledge
and basic question answering capabilities. The source code
and the complete results are published onlineﬂ

B. Task Execution Specification

For executing tasks, their individual actions are specified
for an execution environment. Case 2 sets up server and
network security agents with 8 tasks aimed at typical activities,
including assessing firewall configurations and scanning a
local network in Ubuntu Linux 24.04. Listing [T] shows the
type Network Security Agent with instructions to generate a
network scanning script, executed according to the defined
actions. Further instructions on using Python in the Ubuntu
environment were given in the system-prompt. The python

Uhttps://github.com/fhaer/multi-agent-llm-system

https://github.com/fhaer/multi-agent-llm-system

Enabled API endpoints: OpenAl,

i t
Replicate, Ollama mport nmap

Stop H

def scan_network(network):

Agent

ent Settings # First,
g

nm = nmap.PortScanner ()

perform a ping scan to discover live hosts

print("Discovering live hosts in the network...")

3.2-Network-Security-Agent-ol v

LLM Settings

live_hosts

print(f"Live hosts found:

nm.scan(hosts=network, arguments='-n -sP')

nm.all_hosts()

{len(live_hosts)}")

OpenAlfol-preview v
for host in live_hosts:
print(f"Host: {host}")
temperature
.20
& # Now, scan each live host for commeonly exposed ports
8.01 5.00 # Commonly used perts can be specified or use the '-F' option for a fas

print({"\nScanning live hosts for commonly exposed ports...")

Activate agent

for host in live_hosts:
print(f"\nScanning hest {host}...")

nm.scan(hosts=host, arguments='-n -s5 -F')

Execution and Evaluation

if 'tep' in nm[host]:

Function Settings

for port in nm[host]['tcp']:

<Select= v

Schema

Load Schema File @)

Drag and drop file here

Limit 200MB per file

Browse files

port_info nm[host]['tcp'] [port]

state port_info['state']

name port_info['name']

product port_info.get('product',

)

)

version pert_info.get('version', '')
'

extra_info pert_info.get('extrainfe', '')

Fig. 2: Excerpt of a Python script generated for the network scanning task in Listing |1| within the user interface of the client
application. The code was generated and executed by a python-capable agent of the type Network Security Agent.

code generated and executed by the network security agent is
shown in Figure [2|

1) Augmentation and Constraints: in the processing of
prompts and responses are used for task executions. Prompts
are augmented at run-time with agent data or results of
previous executions as specified by agent data keys, e.g., ipv4-
network. In this way, retrieval augmented generation (RAG)
is possible also for information or knowledge retrieval, e.g.,
by actions containing database or knowledge graph queries.
Constraints reduce the solution space and narrow possible
answers by specifying aspects of the response structure or
content. When executing actions, the constraints specified in
prompts are enforced, e.g., requesting and requiring a response
in a specific data type such as an IPv4 address, a language such
as python, or data format such as JSON.

Here, the agent executes generated Python scripts according
by actions that check the syntax, execute, and further process
results. Thus, the agent-type must rely on an LLM with
sufficient domain knowledge, programming capabilities for
python, and the Ubuntu 24.04 environment. For the server and
network security tasks, Table [I| shows the evaluation results.

The tested LLMs are state-of-the-art models at the time
of this writing, except for a relatively small DeepSeek-R1-
Distilled LLM (R1D) with only 8 billion parameters that was
added for comparison. All of the large state-of-the-art models

TABLE I: Results of correct and incorrect task executions
by the specified agents. Agent IDs denote the agent LLMs
OpenAl GPT-40 (40), OpenAl ol-preview (ol), DeepSeek R1
(R1), and DeepSeek R1 Distilled Llama 8B (R1D).

1D Correct Tasks Incorrect Tasks Total Tasks
1.1-Security-Q&A-Agent-40 10 0 10
1.2-Security-Q&A-Agent-ol 10 0 10
1.3-Security-Q&A-Agent-R1 10 0 10
1.4-Security-Q&A-Agent-R1D 10 0 10
2.1-Server-Security-Agent-40 4 0 4
2.2-Server-Security-Agent-o1l 4 0 4
2.3-Server-Security-Agent-R1 4 0 4
2.4-Server-Security-Agent-R1D 2 2 4
3.1-Network-Security-Agent-40 4 0 4
3.2-Network-Security-Agent-o1 4 0 4
3.3-Network-Security-Agent-R1 4 0 4
3.4-Network-Security-Agent-R1D 4 0 4

N=le BN e Y

s

"id": "Server-Security-Agent",
"prompts": [{
"prompt" s o ,
"invoke": {
"agent-of-type":
"prompt-id": 1,
"data-keys": ["ipv4-address",
{ "id": "Audit-Report-Agent",
"prompts": [{
"prompt":
in the network [ipv4-network].

potential vulnerabilities.

"Audit-Report-Agent",

"ipv4-network",

"Create a report of the findings for the server with IP address
Consider each of the hosts found in the scan result,
indentify potentially vulnerable services,
\n\nScan result:\n\n[scan-result]",

"scan—-result"]

| R I

[ipv4-address]

and give recommendations to address

Pl P

Listing 2: Agent-Type specification, where a Server Security Agent invokes an Audit Report Agent and passes data.

completed each of the 4 network and server security tasks
correctly. R1D managed to complete all 4 network security
tasks, and 2 of the 4 server security tasks correctly. In the
incorrect cases, R1D constructed an incorrect shell command
for retrieving the system firewall configuration (server security
task 2) and used an incomplete command for creating a
system report (server security task 4). The complete results
are published online.

2) Reasoning Chains: can be constructed based on a series
of prompts and responses together with constraints [14], [16].
In addition to Chain-of-Thought (CoT), which aims to issue
prompts that generate subsequent reasoning steps with their
responses, the chain can also be constructed explicitly by
relying on pre-defined structures. Constraints ensure their
existence and allow prompting the LLM of an agent with the
next step. This is especially relevant in multi-agent scenarios,
where another, specialized agent might be invoked based on
previously collected data. For example, Listing [2] shows the
Server-Security-Agent type that establishes an IP address,
network, and scan result data after a series of prompts and
invokes an agent of type Audit-Report-Agent.

On the basis of these prompts, the agent is prompted to
create a report using the passed data. Further actions might
place constraints or specific conditions influencing which
agent is invoked or the data passed to the agent. Figure
in Appendix |A| shows an excerpt of the generated report.

V. CONCLUSION

This paper presented the initial results of experimental
research on the specification of multi-agent LLM systems. In
this first system overview, the architecture and specification
language were demonstrated and applied in test cases related
to question answering as well as network and server security
tasks. The test cases indicate feasibility of the architecture and
specification, showing the completion of tasks with agent spec-
ifications based on state-of-the-art commercially and openly
available LLMs. In particular, the completion of the test cases
shows the potential of LLM agents for software-based tasks
in applications. Factors enabling the task completion are a
combination of (1.) involving the knowledge capabilities of

specialized agents such as for cybersecurity and code gen-
eration, (2.) utilizing reasoning techniques such as reasoning
chains, and (3.) agents executing the inferred tasks through
software actions. In future research, this combination will
allow the exploration of novel multi-agent LLM applications
with advanced reasoning requirements and, overall, support
systematic evaluations in cybersecurity and other domains.

REFERENCES

[1] DeepSeek-Al, D. Guo, D. Yang, H. Zhang, J. Song, R. Zhang, R. Xu,
Q. Zhu, S. Ma, P. Wang, and et al., “DeepSeek-R1: Incentivizing
Reasoning Capability in LLMs via Reinforcement Learning,” 2025,
arXiv:2501.12948 [cs].

[2] J. A. Pruet, K. Duraisamy, V. Agrawal, A. Biswas, R. B. Bujack,
M. J. Grosskopf, A. A. Hagberg, B. Hu, E. C. Lawrence, W. Li et al.,
“Implications of new reasoning capabilities for science and security:
Results from a quick initial study,” Los Alamos National Laboratory
(LANL), Los Alamos, NM, US, Tech. Rep., 2024.

[3] AoPS Incorporated, “2024 AIME
https://artofproblemsolving.com/wiki/index.php/
Retrieved 2025-02-23.

[4] Y. Brett, “OpenAl Introduces 03,” 2024, In: Weights & Biases.
https://wandb.ai/byyoung3/ml-news/reports/OpenAl-Introduces-03-
Pushing-the-Boundaries-of-Al-Reasoning—VmlldzoxMDY3OTUxXxMA,
Retrieved 2025-02-23.

[5] F. Hirer, “Conceptual model interpreter for Large Language Models,”
in ER Forum 2023, 42nd International Conference on Conceptual
Modeling (ER 2023), vol. 3618. CEUR-WS, 2023.

[6] D. Maldonado, E. Cruz, J. Abad Torres, P. J. Cruz, and S. d. P. Gam-
boa Benitez, “Multi-Agent Systems: A Survey About Its Components,
Framework and Workflow,” IEEE Access, vol. 12, pp. 80950-80975,
2024.

[7]1 Y. Li and C. Tan, “A survey of the consensus for multi-agent systems,”
Systems Science & Control Engineering, vol. 7, no. 1, pp. 468-482,
2019.

[8] X. Dong, X. Zhang, W. Bu, D. Zhang, and F. Cao, “A Survey of LLM-
based Agents: Theories, Technologies, Applications and Suggestions,”
in 2024 3rd International Conference on Artificial Intelligence, Internet
of Things and Cloud Computing Technology (AloTC), 2024.

[9] T. Guo, X. Chen, Y. Wang, R. Chang, S. Pei, N. V. Chawla, O. Wiest,

and X. Zhang, “Large Language Model Based Multi-agents: A Survey of

Progress and Challenges,” in Thirty-Third International Joint Conference

on Artificial Intelligence, IJCAI 2024, vol. 9, 2024, pp. 8048-8057.

P. Kumar, “Large language models (LLMs): survey, technical frame-

works, and future challenges,” Artificial Intelligence Review, vol. 57,

no. 10, p. 260, 2024.

P. P. Ray, “Chatgpt: A comprehensive review on background, applica-

tions, key challenges, bias, ethics, limitations and future scope,” Internet

of Things and Cyber-Physical Systems, vol. 3, pp. 121-154, 2023.

D. Rothman, Transformers for Natural Language Processing. Second

Edition. Birmingham, UK: Packt Publishing, O’Reilly Media, 2022.

1" 2024,
2024_AIME_II,

[10]

[11]

[12]

https://artofproblemsolving.com/wiki/index.php/ 2024_AIME_II
https://wandb.ai/byyoung3/ml-news/reports/OpenAI-Introduces-o3-Pushing-the-Boundaries-of-AI-Reasoning--VmlldzoxMDY3OTUxMA
https://wandb.ai/byyoung3/ml-news/reports/OpenAI-Introduces-o3-Pushing-the-Boundaries-of-AI-Reasoning--VmlldzoxMDY3OTUxMA

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Proceedings
of the 31st International Conference on Neural Information Processing
Systems, ser. NIPS 17, Red Hook, NY, USA, 2017.

L. Luo, Z. Zhao, C. Gong, G. Haffari, and S. Pan, “Graph-constrained
Reasoning: Faithful Reasoning on Knowledge Graphs with Large Lan-
guage Models,” 2024, arXiv:2410.13080 [cs].

A. Prasad, S. Saha, X. Zhou, and M. Bansal, “ReCEval: Evaluating
Reasoning Chains via Correctness and Informativeness,” in Proceedings
of the 2023 Conference on Empirical Methods in Natural Language
Processing. Singapore: Association for Computational Linguistics,
2023, pp. 10066-10 086.

Z. Lin, C. Chan, Y. Song, and X. Liu, “Constrained Reasoning Chains
for Enhancing Theory-of-Mind in Large Language Models,” in PRICAI
2024: Trends in Artificial Intelligence. Singapore: Springer Nature,
2024, pp. 354-360.

X. Wang, J. Wei, D. Schuurmans, Q. V. Le, E. H. Chi, S. Narang,
A. Chowdhery, and D. Zhou, “Self-Consistency Improves Chain of
Thought Reasoning in Language Models,” in The Eleventh International
Conference on Learning Representations, ICLR 2023, Kigali, Rwanda,
May 1-5, 2023, 2023.

H. Yu, A. Gan, K. Zhang, S. Tong, Q. Liu, and Z. Liu, “Evaluation
of retrieval-augmented generation: A survey,” in Big Data. Singapore:
Springer Nature Singapore, 2025, pp. 102-120.

H.-G. Fill, F. Hirer, 1. Vasic, D. Borcard, B. Reitemeyer, F. Muff,
S. Curty, and M. Biihlmann, “CMAG: A Framework for Conceptual
Model Augmented Generative Artificial Intelligence,” in ER Forum
2024, 43rd International Conference on Conceptual Modeling (ER
2024), vol. 3849. CEUR-WS, 2024.

N. Tihanyi, M. A. Ferrag, R. Jain, T. Bisztray, and M. Debbah,
“CyberMetric: A Benchmark Dataset based on Retrieval-Augmented
Generation for Evaluating LLMs in Cybersecurity Knowledge,” in 2024
IEEE International Conference on Cyber Security and Resilience (CSR),
London, UK, 2024, pp. 296-302.

D. Bhusal, M. T. Alam, L. Nguyen, A. Mahara, Z. Lightcap, R. Frazier,
R. Fieblinger, G. L. Torales, B. A. Blakely, and N. Rastogi, “SECURE:
Benchmarking Large Language Models for Cybersecurity,” in Proceed-
ings of the 40th Annual Computer Security Applications Conference,
ser. ACSAC ’24. New York, NY, USA: Association for Computing
Machinery, 2024.

Z. Liu, J. Shi, and J. F. Buford, “CyberBench: A Multi-Task Benchmark
for Evaluating Large Language Models in Cybersecurity,” in The AAAI-
24 Workshop on Artificial Intelligence for Cyber Security (AICS),
Vancouver, CA, 2024.

M. T. Alam, D. Bhusal, L. Nguyen, and N. Rastogi, “CTIBench:
A Benchmark for Evaluating LLMs in Cyber Threat Intelligence,”
in Advances in Neural Information Processing Systems 38: Annual
Conference on Neural Information Processing Systems 2024, NeurlPS
2024, Vancouver, CA, 2024.

J. Zhang, H. Bu, H. Wen, Y. Liu, H. Fei, R. Xi, L. Li, Y. Yang, H. Zhu,
and D. Meng, “When LLMs meet cybersecurity: a systematic literature
review,” Cybersecurity, vol. 8, no. 1, p. 55, 2025.

S. Sai, U. Yashvardhan, V. Chamola, and B. Sikdar, “Generative Al
for Cyber Security: Analyzing the Potential of ChatGPT, DALL-E, and
Other Models for Enhancing the Security Space,” IEEE Access, vol. 12,
pp. 53497-53516, 2024.

APPENDIX A

Appendix A contains the result of generating an audit report
by an agent of the type Audit Report Agent, which was
previously invoked by an agent of the type Network Security
Agent. The full results are published in the online repository
at |https://github.com/fhaer/multi-agent-1lm-system.

i 5. Recommendations
Enabled APl endpoints: OpenAl,

Replicate, Ollama 5.1. Firewall and Network Configuration

¢ Close Unused Ports:
Agent
o 22/tcp: If SSH is not required or runs on a different port, close port 22 in the firewall.

Agent Settings
o 5037/tep: Close this port if ADB is not in use.

4.2-Audit-Report-Agent-ol v . .
P g * Restrict Samba Services:

LLM Settings o Limit access to ports 139/tcp and 445/tep to trusted networks if Samba is necessary.

OpenAl/ol-preview v o If Samba is not required, disable the service and close the ports.

* Limit Exposure of Web Applications:

temperature
0.20 o Forthe service on 8501/tcp, consider binding the application to the localhost
— interface or securing it with authentication if external access is not needed.
0.01 5.00

* Review DNS Service Exposure:

Activate agent . . .
E o Ensure that port 53/tcp is only open if the system is intended to act as a DNS server

for external queries.
Execution and Evaluation
5.2. Secure User Accounts
Function Settings

+ Set Passwords for All Accounts [AUTH-9283]:

<Select> v
o Identify accounts without passwords and set strong, unique passwords.
Schema o Disable or remove unnecessary accounts.
Load Schema File ©) 5.3. Harden SSH Configuration

Drag and drop file here * Implement Recommended Settings [SSH-T408]:

Limit 200MB per file
Your message

Browse files

Fig. 3: Excerpt of a security report generated by an Audit Report Agent after the completion of server-side tasks by a Network
Security Agent in the user interface of the client application.

https://github.com/fhaer/multi-agent-llm-system

	Introduction
	Background and Related Work
	Multi-Agent LLM System Architecture and Specification
	High-Level Requirements
	Execution Architecture
	Agent Schema Specification

	Test Cases for Cybersecurity Applications
	Q&A Specification by Templating
	Task Execution Specification
	Augmentation and Constraints
	Reasoning Chains

	Conclusion
	References
	Appendix A

