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ABSTRACT

As cyber threats become more sophisticated, rapid and accurate vulnerability detection is essential for
maintaining secure systems. This study explores the use of Large Language Models (LLMs) in software
vulnerability assessment by simulating the identification of Python code with known Common Weakness
Enumerations (CWEs), comparing zero-shot, few-shot cross-domain, and few-shot in-domain prompting
strategies. Our results indicate that while zero-shot prompting performs poorly, few-shot prompting
significantly enhances classification performance, particularly when integrated with confidence-based routing
strategies that improve efficiency by directing human experts to cases where model uncertainty is high,
optimizing the balance between automation and expert oversight.

We find that LLMs can effectively generalize across vulnerability categories with minimal examples,
suggesting their potential as scalable, adaptable cybersecurity tools in simulated environments. However,
challenges such as model reliability, interpretability, and adversarial robustness remain critical areas for
future research. By integrating Al-driven approaches with expert-in-the-loop (EITL) decision-making, this
work highlights a pathway toward more efficient and responsive cybersecurity workflows. Our findings
provide a foundation for deploying Al-assisted vulnerability detection systems in both real and simulated
environments that enhance operational resilience while reducing the burden on human analysts.
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Figure 1: Incident response simulation of evaluating malicious software using generative artificial intelligence
and uncertainty quantification for software routing.
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1 INTRODUCTION

Cybersecurity and incident response have become increasingly critical to national security as governments,
industries, and critical infrastructure remain dependent on software systems that are often vulnerable by
design or deployment. The expanding attack surface, driven by rapid software development, interconnected
systems, and persistent reliance on legacy technologies, poses significant challenges to securing essential
infrastructure against evolving threats.

These challenges are further compounded by the accelerating pace of software production, fueled by
generative artificial intelligence and the shift toward modular architectures that integrate containerized
software from multiple development teams. Although modularity and containerization enhance flexibility
and scalability, they also introduce substantial security risks. The heterogeneous nature of these ecosystems,
where different components rely on diverse codebases, development methodologies, and dependencies,
compromises security visibility and makes comprehensive vulnerability assessments increasingly difficult.
As aresult, undetected threats can persist within critical systems, potentially leading to severe breaches (WEF
2025). Traditional methods of deploying fine-tuned models do not extrapolate well to novel vulnerabilities,
require significant investments in data labeling, and do not have the ability for injection of context from
subject matter experts.

To ensure safe software deployment and maintain trust in our systems, cybersecurity professionals need
tools that can match the speed and complexity of modern software development. Large Language Models
(LLMs) offer a compelling solution by augmenting vulnerability detection, automating security assessments,
and identifying potential threats in real time. Their ability to process vast amounts of security-related data,
detect patterns, and adapt to new threat landscapes makes them an invaluable asset in incident response
workflows.

In this work, we simulate an incident response scenario in which a compromised environment results
from the deployment of vulnerable code. We demonstrate how integrating LLMs with zero- and few-
shot classification capabilities, enhanced by an uncertainty quantification metric, can significantly improve
response effectiveness. By leveraging this approach, we enable a more robust analyst-in-the-loop evaluation,
moving beyond standard incident response procedures that rely on broad, time-consuming queries to sift
through terabytes of security logs. Our findings highlight the advantages of LL.M-assisted triage and threat
identification, ultimately contributing to a more adaptive and resilient cybersecurity framework for national
security applications.

2 RELATED WORKS

Vulnerable software detection has long been a focus in machine learning research. Traditionally, classification
models relied on large amounts of training data to develop deep learning models, yet these models often fail
to generalize effectively to new or unseen vulnerabilities (Chen, Ding, Alowain, Chen, and Wagner 2023).
This challenge of poor generalization is well-documented across fine-tuned model applications in various
domains (Ng and Carley 2022). Notably, (Chen, Ding, Alowain, Chen, and Wagner 2023) demonstrate
that LLMs outperform Graph Neural Networks (GNNs) that rely on code-structure representations for
vulnerability detection.

This raises the critical question of how LLMs can be effectively integrated into larger incident response
workflows using zero- and few-shot classification strategies. Zero-shot prompting leverages an LLM’s
base knowledge to classify vulnerabilities without requiring labeled examples, whereas few-shot prompting
improves classification by incorporating example-based contextualization (Hurley and Okyere-Badoo 2024).
Foundational LLMs have demonstrated strong performance in zero- and few-shot settings across multiple
data classification tasks (Kojima, Gu, Reid, Matsuo, and Iwasawa 2022)(Ziems, Held, Shaikh, Chen, Zhang,
and Yang 2024).

Previous research (e.g., (Tamberg and Bahsi 2025) and (Zhou, Cao, Sun, and Lo 2024)) has explored
the application of LLMs in software vulnerability detection under zero-, one-, and few-shot evaluation
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paradigms. (Zibaeirad and Vieira 2025) show that structured reasoning prompts significantly enhance LLM
performance in vulnerability detection, with effectiveness varying by vulnerability type. (Zheng, Liu, Xu,
Chen, Yi, and Wu 2024) introduce Few-VulD, a framework leveraging few-shot learning for software
vulnerability detection, emphasizing the difficulties in training fine-tuned models due to the scarcity of
labeled data across diverse software ecosystems. Additionally, (Chan, Kharkar, Moghaddam, Mohylevskyy,
Helyar, Kamal, Elkamhawy, and Sundaresan 2023) demonstrates that LLMs can be integrated during software
development and editing stages to reduce the effort required for post-deployment vulnerability fixes.

While these studies establish foundational approaches for using LLMs in software vulnerability detection
and incident response, they largely overlook the role of human analysts in the security evaluation process. In
real-world scenarios, human expertise remains critical for verifying and mitigating threats before software
is redeployed in operational environments. (Keller and Nowakowski 2024) demonstrated that LLMs can
be used to reduce the workload of cybersecurity personnel by automating code vulnerability fixes. We
build on this insight by optimizing the order of code evaluation by cybersecurity personnel after automated
corrections.

Although little research has explored uncertainty quantification in software vulnerability detection for
evaluation by analysts, significant progress has been made in other NLP applications. Throughout this paper,
we refer to this human expert analyst as the expert-in-the-loop (EITL). (Tian, Mitchell, Zhou, Sharma,
Rafailov, Yao, Finn, and Manning 2023) show that prompting language models for uncertainty can serve
as an effective calibration technique. (Wang, Kim, Rahman, Mitra, and Miao 2024) demonstrate that an
external verifier using supervised models can effectively identify misclassified data. Furthermore, (Farr,
Cruickshank, Manzonelli, Clark, Starbird, and West 2024) show that leveraging the distance between top
token log probabilities serves as an effective uncertainty quantification metric in constrained labeled spaces,
requiring only a single model or API call. This approach reduces costs and increases efficiency for real-time
incident response scenarios by ranking and prioritizing agent-driven vulnerability detection by uncertainty.

3 METHODOLOGY

Our methodology is illustrated in Figure 1. We simulate the evaluation of 1,096 Python software functions
from the DIVERSEVUL dataset (Chen, Ding, Alowain, Chen, and Wagner 2023), with approximately 10%
containing vulnerabilities classified under 37 known Common Weakness Enumerations (CWEs) (MITRE
). To determine the appropriate response for each function, we use the confidence score metric shown in
(Farr, Cruickshank, Manzonelli, Clark, Starbird, and West 2024) to route code into one of three categories:
automatic quarantine, cleared for deployment, or human analyst evaluation. This approach optimizes
resource allocation by prioritizing low-confidence classifications for human review while automating high-
confidence classifications.

Additionally, we test our model under three different levels of assumed incident response information,
which influence how prompts are structured. The first level assumes no prior information, resulting in
a zero-shot prompt. This represents cases where incident responders have no initial leads. The second
level assumes a moderate amount of information, represented by a few-shot, cross-domain prompt. In
this case, the model is provided with examples of vulnerabilities covering about one-third of the known
CWEs, allowing it to generalize across unseen vulnerabilities. The final level assumes a well-defined target
vulnerability, where the model is prompted with in-domain examples corresponding to a specific security
threat.

3.1 Zero-Shot Prompt Design

Our methodology is designed to be agnostic to prompt strategy, supporting strategies such as chain-of-
thought (CoT), tree-of-thought (ToT), and other structured reasoning approaches. However, the model’s



Farr, Talty, Farr, Stockdale, Cruickshank, and West

Code: f_pyxeval(typval_T *argvars, typval_T *rettv)

{
# if defined(FEAT_PYTHON) && defined(FEAT_PYTHON3)
init_pyxversion();
if (p_pyx == 2)
f_pyeval(argvars, rettv);
else
f_py3eval(argvars, rettv);
# elif defined(FEAT_PYTHON)
f_pyeval(argvars, rettv);
# elif defined(FEAT_PYTHONS3)
f_py3eval(argvars, rettv);
# endif

}

Is the above code vulnerable to a known exploit? Answer with only 'yes' or 'no'.

Figure 2: Example of a zero-shot prompt used for vulnerability classification.

final output is constrained to a binary classification of whether code is vulnerable or not. This constraint
ensures consistency in downstream processing and facilitates structured vulnerability routing.

For zero-shot prompting, we use a direct classification approach without additional reasoning steps.
This simple strategy provides a baseline for performance evaluation and serves as a foundation for future
refinements. An example zero-shot prompt used in a GPT API call is shown in Figure 2.

3.2 Few-Shot Cross-Domain Prompt Design

For the few-shot cross-domain prompt, we provide the model with five examples of vulnerable code and
five examples of non-vulnerable code. Then, task it with identifying vulnerable and non-vulnerable code.
These examples are drawn from diverse vulnerability categories to encourage generalization beyond the
provided samples. We did not experiment with providing incorrectly classified prompts.

If prompt_code is vulnerable:
The below code is vulnerable to a known exploit and should be classified as
vulnerable: prompt_code

else:
The below code is not vulnerable to a known exploit and should be
classified as not vulnerable: prompt_code

New Function: new_function
Is the New Function vulnerable to a known exploit? Answer with only ‘yes' or
Inol.!l

Figure 3: Example of a few-shot prompt used for vulnerability classification.
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3.3 Few-Shot In-Domain Prompt Design

For the few-shot in-domain setting, we analyze seven CWEs that appear in "2024 CWE Top 25 Most
Dangerous Software Weaknesses" (MITRE ) and our dataset of Python software functions. For each CWE
type, we provide the model with one example of a vulnerable function and one example of a non-vulnerable
function that fit under the CWE the model is attempting to classify. This scenario represents cases where
incident responders have precise knowledge of the threat they are investigating.

3.4 Expert-in-the-Loop

Fully automated incident response remains unlikely in the near future, making human oversight essential.
To evaluate our methodology in an expert-in-the-loop setting, we compare two approaches: a baseline
where all code is forwarded to an analyst without prior filtering and a certainty-based routing approach
where only ambiguous cases are flagged for human review based on an uncertainty quantification metric.
We made the necessary assumption that the expert-in-the-loop would always correctly classify the code it
received. It is beyond the scope of this paper to evaluate when expert-in-the-loop classification accuracy
is poor and how expert-in-the-loop classification is affected by model performance. The results from this
section provide the upper limit of model performance when an expert-in-the-loop is constrained to only
look at a subset of the code.

3.5 Certainty-Based Routing

A core component of our methodology is certainty-based routing, which prioritizes human intervention
for software functions where the model exhibits uncertainty. Analysts play a crucial role in verifying
vulnerabilities, mitigating risks, and making final deployment decisions. To optimize analyst efficiency, we
build upon the confidence metrics introduced by (Farr, Manzonelli, Cruickshank, and West 2024), using
uncertainty quantification to prioritize ambiguous or high-risk cases.

The confidence score is defined as the absolute difference between the highest and second-highest
token log probabilities within a constrained token set. Let .7 represent the token set and P(t) denote the
log probability of each token 7 € .7. The confidence score C is computed as:

C = |maxP(t)— max P(¢ (D)
1€ ®) re7\{r*} ®)
where t* is the token with the highest probability. A higher confidence score indicates greater certainty,
while a lower confidence score suggests ambiguity, warranting human review.
To integrate certainty-based routing into incident response workflows, we define three classification
thresholds based on the confidence score:

* Automatic Quarantine: Code classified as vulnerable with high confidence are immediately flagged
and quarantined for remediation.

* Cleared for Deployment: Code classified as non-vulnerable with high confidence are approved for
deployment without further review.

*  Human Analyst Evaluation: Code with intermediate confidence scores are flagged for human review.

This routing strategy ensures that human analysts focus on cases where model uncertainty is high,
effectively balancing automation with expert oversight to enhance detection accuracy and efficiency. Figure
4 illustrates this approach by depicting the distribution of confidence scores for correct and incorrect
responses. These thresholds are arbitrary and should be adjusted given analyst capacity. For this reason,
we report performance across all possible levels of analyst intervention.
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Figure 4: Example of confidence score distribution for the Few-Shot Cross-Domain strategy, with correct
and incorrect classifications overlaid. In this scenario, where 50% of the data is routed to an Expert-in-
the-Loop (EITL), all instances to the left of the dashed line would be directed to the expert, capturing the
majority of incorrect classifications for correction. Confidence scores, derived from differences in token
log probabilities, commonly range between 10 and 20 using GPT-40. However, due to GPT’s underlying
architecture, theoretical values can reach as high as 100.

3.6 Implementation and Evaluation

For model evaluation, we utilize GPT-40, with no additional fine-tuning on vulnerability-specific data. The
model processes each software function and generates vulnerability classifications, along with associated
token log probabilities. These probabilities are then used to compute the confidence scores, guiding the
routing decisions.

To ensure robustness, we evaluate our methodology under different model settings, analyzing how
varying confidence thresholds impact the trade-off between automation and human intervention. Due to
the heavy class imbalance in our dataset, we measure the effectiveness of our approach through F1-macro,
giving equal weight to both classes. We also provide accuracy as a more intuitive measure of performance
although not as informative for this specific task. Lastly, we provide additional analysis of certainty-based
routing influencing analyst workload and vulnerability detection performance.
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F1 Score With Different Routing Strategies and EITL Proportions

0% 10% 25% 50% 75%
Rand | UQ Rand | UQ Rand | UQ Rand | UQ Rand | UQ
Zero-Shot 0.151 | 0.151 | 0.193 | 0.193 | 0.244 | 0.266 | 0.4 0.399 | 0.64 | 0.601

FS Cross-Domain | 0.183 | 0.183 | 0.273 | 0.291 | 0.372 | 0.457 | 0.588 | 0.771 | 0.815 | 0.935
FS In-Domain 0.206 | 0.206 | 0.292 | 0.364 | 0.484 | 0.55 | 0.581 | 0.761 | 0.851 | 0.926

Table 1: Illustration of F1 score variation as a function of routing strategy and proportion of data sampled
by an Expert-in-the-Loop (EITL). The UQ condition employs the proposed uncertainty quantification
technique, whereas Random reflects uniform random sampling without replacement.

4 RESULTS

We break our simulation results down into the three evaluated intelligence levels and corresponding prompting
strategies: low-intelligence zero-shot, medium-intelligence few-shot cross-domain, and high-intelligence
few-shot in-domain prompts. Table 1 shows a summary of the performance of all routing strategies and
intelligence-driven prompt designs at various levels of expert in the loop intervention.

4.1 Low-Intelligence Zero-Shot Prompting

For our low-intelligence, zero-shot prompting strategy, both initial accuracy and F1 score are poor. Fur-
thermore, confidence-based routing and random sampling by the expert or incident response team proves
to be similar in effectiveness. These results indicate that the model is doing little better than randomly
guessing if software is vulnerable to exploitation or safe. Figure 5 presents the performance trends across
all levels of expert intervention.

Zero-Shot Accuracy & F1 Score as Amount of Data is Routed to Expert Analyst
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Figure 5: Zero-Shot Accuracy and F1 progression with expert in the loop analysis on varying ranges of
data.
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4.2 Medium-Intelligence Few-Shot Cross-Domain Prompting

For our medium intelligence scenario with few-shot cross-domain prompting, we see a significant improve-
ment in performance. While the initial F1 score remains poor, it improves at a drastically accelerated rate
alongside high accuracy. The confidence-based routing strategy also proves to be highly effective, with
noticeable improvements in F1 as early as approximately 25% of the data being routed to an incident
response team. This trend continues until normal sampling and confidence-based routing converge upon
full dataset evaluation.

These results highlight the ability of LLMs to generalize reported CWEs to identify vulnerabilities and
exploits that are potentially unseen. Unlike the zero-shot setting, where the model performed no better
than random guessing, few-shot cross-domain prompting enables in-context learning, significantly boosting
performance with minimal labeled data. The ability to leverage a small set of examples for generalization
across domains is particularly valuable in security-sensitive contexts where annotated data may be scarce.

Moreover, confidence-based routing ensures that human analysts focus their efforts where they are
most needed, maximizing efficiency while maintaining high detection accuracy. By reducing the number of
cases requiring manual review, this approach enhances the scalability of vulnerability detection workflows,
allowing incident response teams to prioritize high-risk cases without being overwhelmed by the full dataset.

vention thresholds and corresponding F1 and accuracy scores for cross-domain few-shot prompting
can be seen in Figure 6.
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Figure 6: Few-Shot Cross-Domain Accuracy and F1 progression with expert-in-the-loop analysis on varying
ranges of data.

4.3 High-Intelligence Few-Shot In-Domain Prompting

In our high-intelligence scenario using a few-shot in-domain prompting strategy, we observe that while the
model begins with a higher classification performance, there is little variation in F1 scores across different
intervention thresholds. Similar to the few-shot cross-domain approach, few-shot in-domain prompting
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significantly outperforms zero-shot vulnerability detection, particularly at lower levels of expert intervention.
However, its performance remains comparable to the cross-domain few-shot approach, suggesting that the
model derives limited additional benefit from exact matches within the training examples. Our high-
intelligence scenario limits CWEs to MITRE’s top 25 most dangerous software weaknesses list, resulting
in a reduction of the overall data to 606 data points.

This result may indicate that GPT’s ability to generalize vulnerability patterns is sufficiently strong
when provided with relevant examples—regardless of whether they are drawn from the same domain. The
similarity between known CWES may allow the model to extrapolate effectively, as long as it receives
minimal structured guidance. This suggests that, beyond a certain threshold, exposure to domain-specific
vulnerabilities may not provide a significant advantage over cross-domain learning, a stark contrast from
traditional fine-tuned models.

Figure 7 illustrates the progression of accuracy and F1 scores under expert-in-the-loop intervention at
varying levels of dataset coverage.
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Figure 7: Few-Shot In-Domain Accuracy and F1 progression with expert-in-the-loop analysis on varying
ranges of data.

S DISCUSSION

Our results demonstrate that leveraging large language models (LLMs) such as GPT-4o0 for vulnerability
detection can provide meaningful improvements in classification performance, particularly when expert
intervention is strategically integrated. However, the effectiveness of these models is highly dependent on
the prompting strategy and the availability of even minimal examples for guidance.

The poor performance of the zero-shot prompting approach underscores the limitations of LLMs when
tasked with domain-specific classification without context. Despite the model’s general world knowledge,
it struggles to distinguish between vulnerable and safe software in the absence of relevant examples.
This suggests that domain adaptation is essential, even in cases where LLMs exhibit strong language
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understanding. The lack of meaningful performance differences between confidence-based routing and
random expert sampling at the zero-shot level further supports this claim, indicating that when a model is
uncertain in a fundamentally ill-informed manner, no routing strategy can meaningfully compensate.

The few-shot cross-domain approach significantly improves performance, demonstrating the LLM’s
ability to generalize across related but distinct vulnerability datasets. While initial F1 scores remain
suboptimal, confidence-based routing enables appropriate identification of uncertain cases, allowing expert
oversight to be applied where it has the greatest impact. Notably, improvements in F1 become evident
with as little as 25% expert-labeled intervention, underscoring the efficiency of this strategy in real-world
applications where expert resources are limited.

The few-shot, in-domain prompting approach yields strong performance but does not provide significant
gains over the cross-domain approach. This suggests that the model’s ability to recognize patterns in
vulnerability identification is more dependent on structured guidance and close proxies to the task domain,
than on exact task domain specificity. In other words, the LLM can extrapolate from related vulnerabilities
with minimal loss in performance, provided it has a sufficiently informative prompt. This insight has
broad implications for deployment strategies: organizations seeking to integrate Al-assisted vulnerability
detection may not require large domain-specific datasets. Rather, they can leverage well-curated cross-
domain examples to achieve similar results.

Across both few-shot prompting strategies, confidence-based routing proves to be an effective mechanism
for prioritizing expert review. By focusing human oversight on the most ambiguous cases, this approach
maximizes the efficiency of security teams, reducing overall workload. The results suggest that in scenarios
where resources are constrained, combining LLM classification with confidence-based triage can optimize
vulnerability detection workflows.

These findings highlight the potential of LLMs in augmenting cybersecurity workflows, particularly in
environments where expert availability is limited. However, they also raise important questions about model
reliability, adversarial robustness, and the interpretability of confidence scores. Future work should explore
methods for improving model calibration, integrating external knowledge sources, and fine-tuning models
on vulnerability-specific datasets. Additionally, researchers can look at other coding languages and more
complex constructions of code beyond functions. Finally, further research into human-Al collaboration
frameworks can help refine expert-in-the-loop strategies, ensuring that Al systems serve as force multipliers
rather than mere decision-support tools.

6 CONCLUSION

This study demonstrates the potential of large language models (LLMs) as powerful tools for vulnerability
detection, particularly when paired with expert-in-the-loop strategies. While zero-shot prompting proves
ineffective, few-shot prompting with cross-domain settings enables models to generalize with minimal
supervision. Importantly, confidence-based routing significantly enhances efficiency, allowing human
analysts to focus on high-uncertainty cases where their expertise is most needed.

Our findings suggest that Al-driven vulnerability assessment can complement traditional cybersecurity
workflows, reducing response times and improving threat detection at scale. The ability of LLMs to
generalize across domains with limited examples underscores their adaptability, offering a path forward for
organizations seeking to deploy Al-enhanced security tools without extensive domain-specific fine-tuning.

However, challenges remain. Ensuring model reliability, interpretability, and robustness against ad-
versarial inputs are critical next steps for future research. Additionally, refining human-Al collaboration
strategies will be key to maximizing the benefits of confidence-based triage systems. Moving forward, inte-
grating external knowledge sources, fine-tuning models on targeted security datasets, and further optimizing
routing strategies can enhance both precision and operational efficiency.

By advancing Al-driven approaches to vulnerability detection, this research provides a foundation for
scalable, adaptable, and resource-efficient cybersecurity solutions. As Al capabilities continue to evolve,
strategic human-Al partnerships will be essential in maintaining an edge against emerging threats.
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