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Abstract—The identification of the devices from which a
message is received is part of security mechanisms to ensure
authentication in wireless communications. Conventional authen-
tication approaches are cryptography-based, which, however,
are usually computationally expensive and not adequate in the
Internet of Things (IoT), where devices tend to be low-cost and
with limited resources. This paper provides a comprehensive
survey of physical layer-based device fingerprinting, which is an
emerging device authentication for wireless security. In particu-
lar, this article focuses on hardware impairment-based identity
authentication and channel features-based authentication. They
are passive techniques that are readily applicable to legacy IoT
devices. Their intrinsic hardware and channel features, algorithm
design methodologies, application scenarios, and key research
questions are extensively reviewed here. The remaining research
challenges are discussed, and future work is suggested that can
further enhance the physical layer-based device fingerprinting.

Index Terms—Channel state information, deep learning, device
authentication, hardware impairments, Internet of Things, ma-
chine learning, radio frequency fingerprint, and wireless security.

I. INTRODUCTION

The Internet of Things (IoT) is expected to significantly
impact our lifestyles. According to IoT Analytics, the number
of connected devices reached to 18.8 billion in 2024, an
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increase of 13% from 2023 [1]. These massively connected
IoT devices have transformed our everyday lives with exciting
applications such as smart homes, smart cities, connected
healthcare, industry 4.0, etc. Wireless communications are
preferred to connect these devices seamlessly. There have
been many techniques for IoT, including WiFi (IEEE 802.11),
ZigBee (IEEE 802.15.4), long range (LoRa), Bluetooth low
energy (BLE), and narrowband IoT (NB-IoT), to name but a
few [2].

This revolution requires security at all levels. Security is
quite a broad topic, involving confidentiality, integrity, avail-
ability, authentication, etc. [3], [4]. This article will focus
on device authentication, which is the first important step
for network security. The receiver verifies the legitimacy of
the received signal by checking specific features in the same
signal. Our current computer and communications networks
are protected by cryptography-based approaches, including
both symmetric encryption, such as advanced encryption
standard (AES), and public-key cryptography (PKC) such as
Rivest-Shamir-Adleman (RSA). In particular, authentication is
performed using a cryptographic challenge-response protocol
based on symmetric encryption or PKC.

However, cryptographic solutions may not be applicable
to IoT devices. Symmetric encryption requires a key pre-
shared, whose refresh turns to be challenging for IoT [5].
PKC requires computationally expensive algorithms, which
often have severe power and computational limitations [3],
hence they are unsuitable for IoT devices. In addition, on
the eve of quantum computing, PKC may be compromised
due to the exponential increase in the computational power of
attackers [6]. Due to the above limitations, there is a lack of
competent IoT security solutions, and there have been many
notorious security threats to IoT devices [4].

This background is driving the development of lightweight,
yet secure technologies for the IoT. Regarding device au-
thentication, the two most promising non-cryptographic ap-
proaches are physical layer-based device fingerprinting [7],
which includes hardware impairments-based radio frequency
fingerprint identification (RFFI) [8] and channel-based authen-
tication [9]. In detail,

o RFFI uses unique hardware impairments as the device
identifier. Due to the imperfect manufacturing process,
the nominal values of hardware components slightly devi-
ate from their specification. These hardware impairments
are unique and stable, which can be exploited as device
fingerprints.
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o Channel-based authentication exploits the channel char-
acteristics through which the signal propagates to identify
the source (or, better, its location) at the receiver, taking
advantage of the fact that signals transmitted by devices at
different locations travel through different channels (i.e.,
different delays and attenuations for each path). Thus,
the propagation environment, rather than the transmitting
device characteristics, and the relative position between
transmitter and receiver, guarantee the authenticity of the
transmitter.

A. Existing Surveys

Here we provide a review of the recent tutorials and survey
papers published on similar topics [10]-[19].

1) Existing Surveys on Device Fingerprinting: Paper [10]
provides a tutorial on fingerprinting at different layers includ-
ing physical, MAC, and network layers. We will focus on
the physical layer techniques and significantly extend [10] by
summarizing the recent advances in the area as deep learning
has brought several exciting improvements.

Paper [11] focuses on device behavior fingerprinting, which
is related to not only communication networks-based finger-
prints but also in-device fingerprints, e.g., resource usage,
software signatures, etc. Moreover, it is not solely concerned
with security issues; it also encompasses a significant amount
of fault detection content. The authors only briefly introduce
the availability of the physical layer device fingerprinting
technique but do not provide sufficient details on the latest
studies and state-of-the-art schemes.

Survey [12] examined device fingerprinting techniques
for resource-constrained IoT applications. While traffic and
impairment-based approaches were considered, the survey
did not include wireless channel-based methods. From the
perspective of identification algorithms, although the deep
learning techniques were mentioned, they were limited to a
conceptual overview, with insufficient in-depth profiling of
state-of-the-art deep learning-based fingerprinting algorithms.

The work in [13] surveyed numerous available device
fingerprints, which span the entire cyber-physical system and
encompass various characteristics, including thermal, optical,
chemical, magnetic, and electrical aspects. However, it only
briefly introduced the physical layer device fingerprinting
problem and did not discuss the latest technologies. Fur-
thermore, the authors focused on feature selection, while the
introduction to the latest authentication algorithms is missing.

2) Existing Surveys on Physical Layer Security and Authen-
tication: Surveys [14], [15] provide comprehensive coverage
of physical layer authentication (PLA) techniques, with both
passive and active approaches. Our survey will focus on the
passive approaches as they can be readily applied to our
pervasive IoT devices. Additionally, while the authors already
considered the use of machine learning (ML) techniques,
the coverage of the literature on ML solutions for device
authentication is only partial, as the use of ML has become
popular only in recent years.

When looking at physical layer solutions, many techniques
require models of specific channels they work on. Existing

surveys, such as [16]-[18] cover physical layer authenti-
cation techniques tailored for specific application domains.
In particular, [16] considers device fingerprinting for global
navigation satellite systems (GNSS) antispoofing. Both crypto
and physical layer solutions are considered in [17], but only
for satellite Internet. Illi ef al. focus instead on physical layer
security solutions and the IoT [18].

Finally, the survey [19] reviews both physical layer au-
thentication and secure transmission, and it mainly focuses
on channel-based authentication. We will delve into device
fingerprinting by covering both hardware impairments-based
and channel-based approaches.

3) Summary: A common shortfall in all existing papers
is the absence (or very limited coverage) of experimental
results and their derivation, which are crucial for assessing
the merits and fostering the implementation of new security
approaches. Several new techniques have appeared in recent
years that are not covered by those surveys, e.g., generative
Al for authentication, reconfigurable wireless environments,
e.g., with reflective intelligent surfaces (RISs) and drones for
challenge-response authentication at the physical layer, etc.
Lastly, fingerprinting and authentication have been investigated
in several domains, including different frequency bands and
applications (IoT, mobile sixth generation (6G), WiFi, ...) for
radio transmissions, but also in underwater acoustic commu-
nications (UWAC). An extensive survey of such domains and
their peculiarities for fingerprinting/authentication is missing.

B. Survey Aims

As summarized in Table I, this paper complements and
extends the published surveys with a comprehensive review
of the physical layer-based fingerprinting for wireless security.
We will review the design principles of both RFFI and
channel-based authentication. We will also compare these
two approaches and discuss their integration for more secure
authentication mechanisms. Among the most promising and
recent advances in these areas, we mention the availability of
new technologies (such as RIS), the use of new transmission
bands that fostered related technologies such as integrated
communication and sensing, the experimentation (thus with
higher technology readiness level) of physical-layer secu-
rity mechanisms, and the use of ML techniques to secure
transmissions by merging information coming from different
communication layers. As unique features of our survey paper,
we cover topics from theoretical development to practical
implementation and share our experiences and insights on the
design considerations of practical implementation. Thus, while
looking at a specific domain, it will still provide a general
framework to discuss solutions across different domains.

C. Survey Structure

Section II gives an overview of physical layer-based device
fingerprint, which is further categorized into two techniques.
The rest of the survey is comprised of three parts. The first part
will cover the first technique, which is hardware impairments-
based authentication, i.e., RFFIL. The second part will describe
channel-based authentication.



TABLE I
COMPARISON WITH EXISTING SURVEYS. X, O, AND v'"MEAN THE TOPIC IS
NOT COVERED, PARTIALLY COVERED, AND EXTENSIVELY COVERED.

Ref Year | ML | Exp. Domains New Tech.
[10] | 2015 X X Wireless Networks X
[11] 2021 v X IoT X
[12] | 2022 v X IoT X
[13] | 2023 v X Cyber-Physical System X
[14] | 2020 O X Wireless Networks X
[15] | 2020 O X Wireless Networks X
[16] | 2021 v v GNSS X
[17] | 2023 v X Satellite Internet X
[18] | 2024 v X IoT X
[19] | 2024 v X Wireless Networks X

This | 2025 v v 1oT/6G/UWANSs v

The first part is on RFFI and spans Sections III to VI. In par-
ticular, Section III presents the RFFI tasks, while Section IV
models the hardware impairments for both transmitter and
receiver. The algorithm design for deep learning-based RFFI
is explained in Section V. For the practical implementation of
RFFI, Section VI describes the key research topics, publicly
available datasets, and the investigated scenarios. Section VII
explains the experimental methodologies for RFFI.

The second part is on channel-based authentication and
spans Sections VIII to XI. In particular, Section VIII intro-
duces the definition and the approaches used for channel-based
(CB)-PLA and Section IX is devoted to an overview of the
channel features exploited for CB-PLA. An in-depth delve into
the methodologies used for CB-authentication, including both
statistical and ML approaches, is provided in Section X. Lastly,
Section XI provides an overview of CB-authentication datasets
publicly available and existing applications.

The third part provides an overview of challenges and
future research activities discussed in Section XII. The main
conclusions are reported in Section XIII.

The abbreviations used in this paper can be found in
Table II.

II. DEVICE FINGERPRINTING AT THE PHYSICAL LAYER

The authentication on the basis of the signals exchanged
at the physical layer comprises security mechanisms that can
be classified as hardware fingerprinting or CB authentication
techniques, which provide lightweight security mechanisms
particularly useful in the IoT. As shown in Fig. 1, we will
consider a system involving K transmitting IoT devices and a
receiver. The IoT transmitter sends packets, which are captured
by the receiver. Based on the received signals, the receiver
aims to authenticate the transmitter based on its intrinsic
hardware impairments and random channel features.

1) Transmitter: For each transmitter, the modulated signal,
x(t), passes to the transmitter chain, including the mixer,
oscillator, and power amplifier [8], [20]. These hardware
components are not perfect due to the variation in the manu-
facturing process, and their specifications deviate slightly from
their nominal values. Their effects are collectively represented
by F(-). The radio frequency (RF) signal at the transmitter
becomes s(t) = F(x(t)).
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Fig. 1. Physical layer-based device fingerprinting system overview.

2) Channel: The RF signal is emitted into the wireless
channel, which experiences multipath channel effects, denoted
as h(7,t), resulting in the received signal as

r(t) = h(1,t) * F(x(t)), (D

where * denotes the convolution operation. Note that many
IoT devices are mobile; hence the channel impulse response
h(r,t) is time-varying.

3) Receiver: The receiver captures the received signal 7(t),
which is passed to the receiver chain, including the mixer
and oscillator too [8]. The receiver hardware components are
not perfect either, and their effects are represented by R(-).
Considering all the above processes, the received signal y(t)
can be mathematically written as

y(t) = R(h(r.1) * Fu(a(t))) + o), @

where n(t) is the additive white Gaussian noise (AWGN).

A. Device Fingerprinting

As can observed from (2), the received signal, y(¢), involves
both the hardware impairments and channel features, which
can be exploited for device authentication.

1) Hardware Impairments-Based Authentication: Due to
the manufacturing process, the hardware components are not
perfect. Hence, hardware components are subject to impair-
ments, such as mixer imbalance, oscillator imperfection, and
power amplifier non-linearities [8], [20]. These impairments
are minute and do not affect the communication functionalities
because they can be compensated for by the receiver. These
features are unique and can be used as device identifiers. RFFI
protocols extract the hardware impairments embedded in the
signal and infer its corresponding device identity.

2) Channel Based Authentication: The channel over which
the transmitted signal travels is characterized by reflections,
scattering, attenuations, as well as angular / time / Doppler
features, and the position of the transmitter and the receiver.
CB authentication uses this information from the channel to
identify the sender of the message (and the channel over which
the signal is going). A basic assumption is that devices are
slowly moving and the environment is slowly changing; thus,



TABLE I

LI1ST OF ABBREVIATIONS
Abbreviation Definition Abbreviation Definition
6G sixth generation LRT likelihood ratio test
AE autoencoder LSTM long-short term memory
AML adversarial machine learning LT likelihood test
AoA angle-of-arrival LTE long-term evolution
AoD angle-of-departure MD misdetection
AWGN additive white Gaussian noise MIMO multiple-input multiple-output
BAAE Bahdanau attention autoencoder ML machine learning
BLE Bluetooth low energy NLOS non-line-of-sight
CB channel-based NN neural network
CFO carrier frequency offset OC-SVM one-class support vector machine
CFR channel frequency response OFDM orthogonal frequency-division multiplexing
CIR channel impulse response pdf probability density function
CNN convolutional neural network PDP power-delay profile
COTS commercial off-the-shelf PLA physical layer authentication
CR challenge-response QuaDRiGa quasideterministic radio channel generator
CSI channel state information RFF radio-frequency fingerprint
DRL deep reinforcement learning RFFI radio frequency fingerprint identification
DT decision tree RIS reflective intelligent surface
DUT devices under test RL reinforcement learning
EL enseamble learning RMS root-mean square
FA false alarm RNN recurrent neural network
FFT fast Fourier transform RSS received signal strength
GAN generative adversarial network SCM normalized sample covariance matrix
GLRT generalized likelihood-ratio test SDR software-defined radio
GNN graph NN SNR signal-to-noise ratio
GNSS global navigation satellite systems SVM support vector machine
GPR Gaussian process regression TDOA time difference of arrival
GPS global positioning system TLE two-line element
GRU gated recurrent unit TOA time of arrival
IoT Internet of Things USRP universal software radio peripheral
KF Kalman filter UWAC underwater acoustic communications
KNN K-nearest neighbors UWB Ultra-Wideband
LEO low Earth orbit v2v vehicle to vehicle
LLM large language models VAE variational autoencoder
LoRa long range VANET vehicular ad-hoc network
LOS line-of-sight VLC visible-light communications

the authentication mechanism checks if different transmissions
experience similar propagation channels. Other approaches
are also discussed in the following, where the channel can
change fast, but its consistent evolution over time provides
the authentication feature.

III. RADIO FREQUENCY FINGERPRINT IDENTIFICATION

Deep learning has transformed many areas thanks to its
powerful automatic feature extraction capability, which has
also significantly enhanced RFFI. To the best knowledge of
the authors, the work in [21] is the first paper applying deep
learning to RFFI. Specifically, convolutional neural network
(CNN) and multilayer perceptron (MLP) are used to classify
LoRa devices. After that, deep learning has attracted massive
interest in the RFFI area. Many deep learning approaches,
such as CNN [22]-[24], recurrent neural network (RNN)
including long-short term memory (LSTM) [22], [24] and
gated recurrent unit (GRU) [24], Transformer [24], etc, have
demonstrated significant impact, which can alleviate the diffi-
culties of manual feature engineering.

Depending on whether there are rogue devices involved,
RFFI can be categorized into closed-set classification, open-

set recognition, and anomaly detection [25], whose implemen-
tations are illustrated in Fig. 2. A deep learning-based RFFI
protocol involves two stages, namely training and inference.
A deep learning model will be trained using a training dataset,
Dirain, and the trained deep learning model will be used for
inference in the second stage.

A. Closed-Set RFFI Classification

As shown in Fig. 2(a), there are K legitimate transmitters,
a.k.a. devices under test (DUT), to be identified, and no rogue
device is considered in the closed-set RFFI classification. The
devices in the training and inference stages remain the same,
hence the name “closed-set” comes from. The approach will
predict the identity of the DUT.

Close-set RFFI classification is probably the most studied
scenario in RFFI, which is a multi-class classification problem.
Hence, deep learning is perfect for such tasks. A training
dataset, Diain = {(ys, ;) }NE, will be constructed, where
£; is the device label of the collected i-th packet and N is
the number of packets collected for each DUT. The number
of packets from each DUT should be kept the same, to ensure
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Fig. 2. Deep learning-based RFFI tasks.

Fig. 3. Illustration of a CNN architecture.

a balanced dataset. A deep learning model can be partitioned
into a feature extractor and a classifier. A CNN architecture
is given as an example in Fig. 3. The feature extraction
includes convolutional layers and pooling layers. The classifier
is composed of a few fully connected layers, and the last layer
has K neurons corresponding to K classes.

In the training stage, the parameters © of the deep learning
model f are optimized as

b

(Yi,£:)€EDtrain

‘C(f(yﬁ@)vgi)v (3)

© = arg min
S}

where L(-) is the loss function, e.g., the cross-entropy loss.
In the inference stage, the softmax is used as the activation

function, then the last fully connected layer of the classifier

will return a list of probabilities p = (p1,p2, ..., Px ), Where

Dy represents the probability of the k-th device, given as

e’k

K b
.
i=1 €7

Pk = “4)

D

where z = (21, 22, ..., 2K ) is the output of the layer before the
softmax activation. The final prediction is obtained by locating
the maximum probability, given as

(= arg Inkax(p). 5)

B. Open-Set Recognition

Under closed-set classification, rogue devices will be classi-
fied as the legitimate DUT with the closest features, which is
not acceptable as attackers will be admitted. Therefore, open-
set recognition is required.

In open-set recognition, there are K legitimate DUTs and
rogue devices, as illustrated in Fig. 2.b. Because rogue devices
do not appear in the training stage, it is named “open-set”.
We need to first detect whether the DUT is legitimate or
rogue, then further classify the index for legitimate DUTs.
Open-set recognition can be addressed by the deep learning-
based approaches with an adjustment to the softmax activation
function. Hence, the training and inference stages will be
similar to the closed-set classification. The training dataset can
be constructed in the same way as the closed-set classification.

Gritsenko ef al. leveraged the output probabilities of soft-
max given in (4) for open-set recognition [26]. Specifically,
when the signal is from an unseen rogue device, the confidence
level of the neural network prediction is low, hence, the output
probability will be smaller than a pre-calculated threshold. In
contrast, when it is from a legitimate DUT, the neural network
can predict as it does in the closed-set classification.

Hanna et al. adopted a new activation function, the Open-
Max [25]. The activation vector z prior to softmax is extended
to K + 1 outputs, given as

ZpWE, ke {1,,K}
S ol —wy), k=K+1

where wy is a confidence parameter of the sample belonging
to k-th class' and the additional K + 1 output refers to the
rogue devices. The vector z;, is then fed into the softmax func-
tion, and the prediction can be obtained using (5). Different
from [26] only leveraging the softmax output probabilities,
this work exploits the entire activation vector, which is more
robust.

2 =

(6

Please refer to [25] for the detailed calculation.



Open-set recognition can also be tackled by non-deep
learning-based methods. Shen et al. designed a K-nearest
neighbors (KNN)-based method [23]. They created a radio-
frequency fingerprint (RFF) database that stores a few RFF
features for each legitimate DUT. In the inference stage, RFF
features will be extracted from the input signal and compared
with the features in the database. The attacker is not registered
beforehand, hence their features are largely different, which
can be detected via a large feature distance. In contrast, the
legitimate devices can be identified because there will be a
matching feature in the database.

C. Anomaly Detection

There are K legitimate DUTs and rogue devices involved
in the inference stage. Different from open-set recognition,
anomaly detection only detects whether the DUT is legitimate
or rogue. Because it is not practical to assume attackers are
cooperative, hence, they are not available in the training stage.

Anomaly detection can be achieved by binary classification.
As shown in Fig. 2.c, the K legitimate DUTs are treated as
one class (label 1). A few other DUTs will be used to represent
rogue devices, which serve as the other class (label 0). The
system design will be similar to the closed-set classification,
but the number of classes reduced to two. However, in the
inference stage, when the rogue device appears, it is supposed
to be classified as label 0.

Autoencoder (AE) is a popular unsupervised deep learning
architecture for anomaly detection [25]. An AE-based RFFI
approach is portrayed in Fig. 2.d. In the training stage, similar
to the binary classification approach, the K DUTs are treated
as a single class. But differently, there is no other device
required. AE consists of an encoder and a decoder. The
encoder first compresses the input, u, to a latent feature; the
decoder will then try to reconstruct the input signal from the
latent feature and output u’. The mean square error (MSE)
between u and u’ is typically used as the reconstruction error.
The training process will learn the features of the training data
and reduce the MSE. In the inference stage, if the signal is
from the legitimate DUT, the trained AE can reconstruct the
input, and a low MSE will be returned. Otherwise, when the
signal is from a rogue device, the MSE will be higher than a
threshold, indicating an outlier is detected.

IV. HARDWARE IMPAIRMENTS FOR RFFI

Due to the variations in the manufacturing processes, the
hardware components of the radio devices will not be perfect.
Their specifications will deviate from their nominal values
slightly, which are referred to as RF hardware impairments.
This section will provide the key parts for the modelling of
transmitter and receiver impairments. The detailed mathemat-
ical derivation can be found in [8].

A. Transmitter Impairments

The architecture of a direct conversion transmitter is por-
trayed in Fig. 4. Their overall effects are represented as F(-)
in Section II while their individual effects will be modelled in
this section.

{oac)*®
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Fig. 4. Transmitter impairment model.

The local oscillator (LO) will produce a sinusoidal wave-
form with a specific carrier frequency. The output frequency is
not stable but is subject to temperature and ageing. When the
system’s nominal carrier frequency is fO, the real frequency
is f% = fO + Aft® where Af'® is the offset. Besides the
carrier frequency offset (CFO), the LO is also subject to phase
noise (PN), ¢'*(t). Considering all the LO imperfections, the
carrier phase of the transmitter can be written as

Q(t) = 2r f1"t + ¢ (¢)
=27 fO + 2r A%t 4 ' (1). (7)

The mixer will then mix the baseband signal with the carrier
wave. However, the mixer is also subject to gain and phase
imbalance. Specifically, ¢g* and gg represent the gain of
in-phase (I) and quadrature (Q) branches, respectively; 6.,
denotes the phase imbalance. Due to the existence of gain
and phase imbalance, the RF band signal then becomes [27]
=gi"z1(t) cos(Q + ') — gFzq(t) sin(Q — 6'7),

=R{spp(t)e’* "}, (8)

where x7(t) and z¢(t) are the baseband data at the I and Q
branches, respectively, and

SRF(t)

cptx . _iptx
spp(t) = giz1()e!’ + jgaqt)e . (9)

The RF signal then undergoes the power amplifier, which
introduces additional nonlinearities. A power amplifier in
a narrowband system is usually modelled with memoryless
nonlinear effects, including amplitude/amplitude (AM/AM)
and amplitude/phase (AM/PM) characteristics [28]. There are
several behavioural models, such as the Saleh, Rapp, and
Ghorbani models, etc. [28].

After passing through a power amplifier, the signal becomes

s(t) = A(|spp(t )|) (4555 O+ (O+2(|s55(1)])
_ s (10)
where Zspp(t) is the angle of the baseband signal and
s'(t) = A(|SBB(t)|)e47(4333(t)+q>(|SBB(t)D). (1)

B. Receiver Impairments

Similarly, the receiver will also have RF impairments. Fig. 5
depicts the receiver architecture and its impairments, i.e.,
receiver LO imperfection and mixer imbalance. Their overall
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Fig. 5. Receiver impairments.

effects are denoted as R(-) in Section II. In this section, we
will model their individual effects.

The LO at the receiver is also subject to frequency offset,
Af™ and phase noise, ¢"*(t). The receiver carrier can then
be written as

Qr(t) = 2m it + ¢ (1)
=2 Ot + 2T AfTTE + ¢ ().

The receiver uses a mixer to mix the received signal, which
will downconvert the signal from the RF band to the baseband.
Similarly to the transmitter mixer, the receiver mixer also has
gain imbalance (g7* and g;y’) and phase imbalance (6").

Considering the effects of the LO imperfection and mixer
imbalance, the receiver’s carrier wave becomes

(12)

Cro(t) = Kj%e 7971 4 greelVT(#) (13)
where Ki™ = (g7"e %" + gi7e”")/2 and K3* =
(grmeje rzefj(i )/2

The RF s1gna1 captured by the receiver can be written as
r(t) = (h(7,t) % 5)(t) = (h(r, 1) * ) ()2 D (14)

After the downconversion (by the LO and mixer) and low-pass
filter, the received signal at the baseband becomes

y(t) =r(t)C"(t)
= KJ7R(r,1) 5/ ()5 + K ({7, ) + 8')" (£)e 72,
(15)
where AQ = 2n(Af% — A+ 61 (1) — 97 (1), Af =

Aft® — AfT is the commonly known CFO.

The baseband signal y(t) in (15) possesses all the RF
impairments of both the transmitter and receiver. The analogue
signal is sampled by the analogue-to-digital converter (ADC),
which produces a digital sequence, y[n], and is used for
RFFI. The transmitter impairments are the unique hardware
features that RFFI explores. Regarding the receiver impair-
ments, when the same receiver is used for collecting training
and test datasets, the effects brought by receiver impairments
are consistent and can be ignored. However, when different
receivers are used, they will indeed affect RFFI performance,
which will be reviewed in Section VI-C.

V. DEEP LEARNING-BASED RFFI ALGORITHM DESIGN

The deep learning-based RFFI algorithm design is shown in
Fig. 6, including dataset collection, signal preprocessing, data
augmentation, signal representation, and deep learning model.

\99'!?,0?'9[‘, Tra.n.ng Preproc.
Dataset
Training Trained
DL Model
Signal | | Signal Signal Inference Decision
V(;’Qlilrercit!qnﬂ Test Preproc. Rep.

Dataset |nference

Fig. 6. Deep learning-based RFFI algorithm design.

o Training Stage: Once a training dataset is created, the
sampled signals are processed by signal preprocessing
(Section V-B) and then converted to a proper signal
representation (Section V-D). An additional data augmen-
tation approach is usually adopted to enhance the dataset
diversity (Section V-C). The samples are then input into
a deep learning model for training, which will produce a
trained deep learning model when completed.

« Inference Stage: The signal undergoes the same signal
preprocessing and signal representation algorithms, then
is input to the trained deep learning model.

The deep learning training can usually be done offline, while
the inference should be done in real-time in practice, even
though many papers do it offline for evaluation purposes.

A. Signal Collection

The signal data collection is essential to collect IQ samples
and build up dedicated datasets. The readers can also opt to
use public datasets, which will be summarized in Section VI.

As introduced in [29], most RF fingerprinting studies uti-
lize software-defined radio (SDR) as the wireless receiver to
capture 1Q samples for fingerprint extraction [22]. In addition,
some WiFi-focused studies have explored the extraction of RF
fingerprints from channel state information (CSI) provided by
commercial network interface cards (NICs) or system-on-chips
(SoCs), such as the Intel 5300 NIC [30], Atheros CSI tool [31],
[32], Nexmon CSI tool [33], [34], and ESP32 CSI tool [35],
[36]. More details can be found in Section VII.

B. Preprocessing

Signal preprocessing involves power normalization and
CFO compensation. Power normalization can be done by
normalizing the signal power with respect to the root-mean
square (RMS) value of the power.

CFO represents the difference between the carrier frequen-
cies of the transmitter and receiver, as embedded in (??). CFO
has been widely adopted in the literature. For example, the
work in [37] designed an accurate algorithm to estimate CFO
from CSI in WiFi, as CFO is twisted with frame detection
delay, sample frequency offset, and time of flight. CFO is also
used together with other parameters to classify WiFi devices
in [38] and ZigBee devices in [39].

However, CFO is subject to temperature drift. In a seven-
month study carried out in [22], it is revealed that CFO
is not suitable as a unique and stable feature. Specifically,
the instantaneous CFO varies quickly when the device is



powered on due to the emitted heat of the device. While the
instantaneous CFO is varying, the work in [22] also found that
the CFO mean value remains relatively stable over the seven-
month test period, which is used as an auxiliary approach to
calibrate the prediction of the deep learning model.

In summary, due to the time-varying nature of CFO, it is
suggested to carry out CFO compensation to preprocess the
sampled signals, especially for low-cost IoT devices.

C. Data Augmentation

Data augmentation is used to augment the training dataset
in a simulation manner. It is very time-consuming and labour-
intensive to collect a comprehensive training dataset using
experiments. In contrast, data augmentation can generate many
artificial samples by adding channel and noise effects, which
can significantly reduce the data collection overhead [40].

Specifically, the original training dataset can be constructed
by sampling high-quality signals, {y;}, which can be achieved
by placing the DUT and receivers apart with a relatively short
distance (e.g., less than 1 meter). We can then augment {y;}
by emulating channel and noise as

yi(t) = (yi = W'(7.0))(t)s + 0/ (1), (16)

where h/ (7, t) is the multipath channel and n/(t) is the AWGN
noise, both generated by a simulation model.

In particular, the multipath channel modelling involves both
the power-delay profile (PDP) and Doppler shift [23]. The
PDP describes the attenuation gains of each channel tap. For
example, the exponential PDP can be mathematically given as

1
—mTs /T o
—e / dm=0,1,..., Mmax,

P(m) = —

a7
where 7, is the RMS delay spread, mpax is the index of the
last tap, and T is the sampling interval. Regarding the Doppler
shift, it describes how the channel gain changes over time, with
common models such as the Jakes model. By incorporating
as many PDP and Doppler shift models as possible, data
augmentation can significantly enhance the comprehensiveness
of the training dataset.

The channel modelling can be achieved by employ-
ing the fading channel realization in Matlab [41]. The
comm.RayleighChannel and comm.RicianChannel
functions provide abundant interfaces to configure PDP and
Doppler shift. Furthermore, the Wi-Fi channel models are also
available in Matlab [42], with PDP pre-configured.

Besides the channel effect, AWGN can be added to emulate
scenarios with different signal-to-noise ratio (SNR) levels.

D. Signal Representation

The signal captured by the receiver is always in the time
domain initially, which is named IQ samples in the literature,
as shown in (1). Utilizing raw IQ samples is applicable across
any wireless protocol. However, as shown in (1), it is a time
convolution between the hardware features and the channel,
which makes it difficult to separate them in the time domain.
Hence, 1Q samples tend to be less effective for channel-robust
RFFI, as evidenced in [43].

Frequency domain signal is popularly employed, which can
be simply obtained by applying fast Fourier transform (FFT)
operations to the time domain signal [22]. The channel effect
can be separated from frequency domain signals more easily
compared to the time domain counterpart. The time-frequency
domain spectrogram is a widely employed signal represen-
tation in RFFI research [22], [44]. This can be obtained by
applying a short-time Fourier transform (STFT) to the time do-
main signal. The time-domain IQ samples, frequency-domain
FFT coefficients, and time-frequency domain spectrogram of
LoRa preambles are exemplified in Fig. 7.

In addition to these domain transform methods, there are
also other specially designed signal representations. For in-
stance, Peng er al. post-process the constellation figures,
generating image-like differential constellation trace figures
(DCTFs) [45]. The authors in [46] subtract the ideal signals
from the received ones, creating error signals as neural net-
work inputs. Other available signal representations include bi-
spectrum [47], and Hilbert-Huang spectrum [48], etc.

Aside from the signal representations derived from the
steady-state portion of signals, some studies focus on ex-
tracting RF fingerprints from the transients that occur when
transmitters are powered on or off [49]. However, this ap-
proach requires high-end receivers capable of operating at high
sampling rates, which can significantly increase the cost of
system deployment.

E. Deep Learning Model

The deep learning models are capable of extracting unique
features from the input signal representations and subsequently
predicting the device identity. The design of neural networks
should take into account the employed signal representation,
as illustrated in the following example. Image-like represen-
tations, such as spectrograms [44], [50], DCTF [45], and
Hilbert-Huang spectrum [48], [51], are suitable for processing
with CNNs, while time-domain IQ samples are suitable for
processing with 1D CNNs or specially designed complex-
valued neural networks [52]. Some studies also utilize MLP to
process frequency-domain spectrum [21], [22]. As the captured
radio signals exhibit temporal dependencies, sequence models
can be employed for RFFI tasks as well. Recent studies have
investigated the application of RNN, LSTM, GRU, and the
latest Transformer models [24].

VI. RFFI KEY RESEARCH TOPICS, PUBLIC DATASETS
AND APPLICATIONS

As shown in (2), RFFI performance is affected by channel
and noise effects as well as receiver impairments. Therefore,
this section reviews the RFFI research activities related to
these three areas, namely channel effects elimination, noise
mitigation, and receiver distortion mitigation. In addition,
public datasets are critical to the development of deep learning-
based RFFI techniques. As summarized in Table III, there are
some RFFI datasets shared by the community. We provide a
list of available datasets to evaluate the above three research
topics. Finally, we review the RFFI literature in terms of
their application techniques, including WiFi, ZigBee, LoRa,
cellular, and Iridium satellites.
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TABLE III
SUMMARY OF PUBLICLY AVAILABLE RFFI DATASETS

Wireless . . Evaluation Purpose
Technology Dataset | Paper # DUT Receiver Brief Summary Channel T Noise | Recaiver
S USRP B210, X310 and WiFi signals collected from different
WiFi 53] 154] up to 150 N210 (up to 32) days and positions. v v
Xilinx Zynq ZC706 WiFi signals collected from different
WiFi [55] [56] 19 board + FMCOMMSS5 days and positions (indoor, outdoor, car v
ADI daughter board park).
WiFi signals collected from different
WiFi [57] [58] 10 USRP X310 days and positions (indoor, static, v
mobile).
. Outdoor-NLOS, outdoor-LOS,
ZigBee [59] (60] 60 USRP N210 indoor-NLOS, and indoor-NLOS v
LoRa [61] (23] 60 USRP N210 LoRa pr‘eaml_)les. Signals from different v v
channels available
LoRa [62] [24] 10 USRP N210 LoRa Preambles with different v
spreading factors
USRP N210 (3), B210 . .
LoRa [63] (64 | 10 (2). B200 mini (2), Pluto | 1ORa preambles. Signals from different |, v v
(2), RTL (9)
USRP N210, B210, . .
LoRa [65] [66] 60 B200, B200 mini, Pluto, LoR_a preambles. Signals f_rom different v
RTL receivers and channels available
Signals from indoor and outdoor
LoRa [67] [44] 100 USRP N210 testbeds, and different days v
LoRa [68] [69] 25 USRP B210 Slgngls from dlffe.rent days, distances, v
locations and receivers
Bluetooth [70] [71] 10 USRP X300 Slgnz.lls collected from different v
locations and days
UWB (72] (73] 13 COST UWB board SlgIl?.ﬂS collected from different v
locations and days
LTE [74] (75] 3 USRP N210 SlgIl?.ﬂS collected from different v
locations and days
Satellite [76] [77] 66 USRP X310 Signals from 66 Iridium satellites v
Satellite [78] [79] 66 USRP N210 Signals from 66 Iridium satellites v

A. Channel Effects Elimination

1) Research Activities: The received RF signals are affected
not only by the transmitter hardware impairments but also by
the wireless channel. In particular, the movement or relocation
of wireless transmitters can result in fluctuations in the char-
acteristics of received RF signals, which may subsequently
interfere with the RFF extraction process.

The negative impacts of wireless channels have been re-
vealed in numerous recent RFFI studies. The authors in [52]
and [54] conducted comprehensive experiments to assess the
effects of wireless channels on RFFI. Their findings indicate
that channel variations can lead to significant performance
degradation when fingerprinting WiFi signals. Similar results
are also found in fingerprinting wireless signals with narrower
bandwidths, such as LoRa [23], [69] and ZigBee [80]. These

studies experimentally demonstrate that the inevitable chan-
nel effects can degrade the RFFI performance, presenting a
significant challenge that must be addressed.

Recent studies attempt to mitigate the channel effects
through two categories of approaches: signal processing and
deep learning algorithms. The former category often employs
expertise and prior knowledge in wireless communication
to design signal processing algorithms to manually sepa-
rate channel distortions from the received RF signal, con-
structing channel-robust features for identification purposes.
For example, the authors in [23] propose to mitigate the
multipath effects in the time-frequency domain by dividing
neighbouring columns in a spectrogram, thereby generating
a channel-independent signal representation. This method has
been demonstrated to be effective in identifying LoRa devices,



exhibiting excellent channel-independent properties. The work
in [81] designs a channel-robust WiFi RFF named difference
of the logarithm of the spectrum (DoLoS), which is based
on the fact that the long training symbols (LTSs) and short
training symbols (STSs) in a WiFi packet share similar channel
frequency response (CFR). In addition, some studies employ
a channel estimation module to approximately measure the
channel impulse response (CIR) or CFR, subsequently utiliz-
ing the result to perform channel equalization, thereby largely
eliminating the multipath effect [52], [82]-[84]. However, the
channel equalization process can inevitably eliminate some
hardware features while eliminating the multipath effect, re-
sulting in the degradation of identification accuracy.

Deep learning algorithms are also employed to mitigate
channel effects. More specifically, these approaches aim to
enhance the capacity of neural networks, enabling them to
extract channel-independent features automatically. The most
prevalent method is data augmentation, which has been in-
troduced in Section V-C. In summary, it utilizes a wireless
channel simulator to synthesize a greater number of signals
exhibiting various channel effects during the neural network
training process. This can expand the distribution of training
data effectively, aligning it with the test phase to prevent po-
tential performance degradation. The benefits of data augmen-
tation have been illustrated in numerous recent studies [23],
[40], [44], [83], [85], and gradually evolved into a standard
procedure in designing RFFI systems. In addition to data
augmentation, several studies have attempted to use the latest
deep learning methods, such as transfer learning [86], domain
adaptation [87], or disentangled representation learning [80]
to improve the system’s robustness to channel variations.

2) Available Datasets: As discussed, the channel effects,
i.e., multipath and Doppler effects, have a considerable impact
on the performance of RFFI. It is, therefore, essential to
design effective mitigation algorithms. A number of datasets
are available for this purpose, containing signals collected
under a variety of positions and channel conditions [23], [44],
[52], [54], [60]. Shen et al. release a public dataset consisting
of 60 LoRa devices. The signal collection is carried out at six
locations, including both line-of-sight (LOS) and non-line-of-
sight (NLOS) channel conditions [23]. The authors in [44]
and [69] also perform experiments in outdoor environments,
and the datasets are made available. Shi ef al. collected signals
from 60 ZigBee devices, including both indoor/outdoor and
LOS/NLOS scenarios [60].

In addition to the narrowband LoRa and ZigBee datasets
listed above, there are also publicly available datasets within
the research community that contain wideband WiFi and long-
term evolution (LTE) signals. Hanna et al. collected a large-
scale WiFi dataset, consisting of 174 transmitters and 41
universal software radio peripheral (USRP) receivers [54]. The
experiment is conducted four times, spanning a mont,h within
a grid indoor testbed. Additionally, Al-Shawabka e al. present
a large-scale WiFi dataset collected in a grid testbed of 6,000
square ft [52]. The transmitters are 13 USRP N210 and seven
USRP X310, while a USRP N210 receiver is used for signal
capture. In addition to WiFi, the authors in [75] also provide
an LTE dataset which consists of signals collected from seven

mobile phones. It should be noted that wideband signals are
more susceptible to channel variations than narrowband ones.

B. Noise Mitigation

1) Research Activities: The propagation of wireless signals
over long distances can result in severe attenuation, which
in turn leads to a low SNR condition at the receiver. Given
that transmitter hardware impairments are often minute, RFFs
are probably submerged in noise. It is therefore difficult to
accurately extract them for identification. As wireless systems
often operate in RF conditions where the SNR is less than
20 dB, it is necessary to explore RFFI solutions that are robust
to noise contamination.

Denoising can be leveraged to improve the system’s ro-
bustness.Wang et al. demonstrate that smooth filtering is
effective in combating noise contamination [88], and Xing et
al. conclude that stacking multiple identical symbols is also
effective in reducing noise [89]. The authors in [90] reveal
that converting the PHY waveform to a logarithmic power
spectral density can improve identification accuracy in low-
SNR environments. Although these manual denoising algo-
rithms are experimentally shown to be effective against noise
interference, whether the RFFs are unintentionally eliminated
remains unclear. In addition, there are also studies utilizing
multiple observations to improve low-SNR performance, such
as merging the identification results of multiple receivers [64],
[91], [92] or multiple data packets [24].

Apart from these, some studies have attempted to enhance
the ability of deep learning models to process low SNR signals.
The authors in [24], [93] evaluate different data augmentation
strategies, concluding that adding artificial noise to mini-
batches during training, i.e., online augmentation, can lead
to the most significant improvement. Some studies improve
the low-SNR performance by using specially designed neural
networks. For example, the authors in [94] utilize the dynamic
shrinkage learning network, which can integrate denoising
capabilities into deep learning models.

2) Available Datasets: RFFs caused by hardware impair-
ments are often faint, and their effective extraction at low
SNR conditions is challenging. The authors in [77] and [79]
present datasets collected from IRIDIUM satellites, which
are particularly suitable for low-SNR RFFI research. The
IRIDIUM satellites operate in low Earth orbit, at an alti-
tude of approximately 780 kilometers. This results in severe
propagation attenuation and makes the signal extremely weak
at the ground receiver. In addition to satellites, the LoRa
dataset in [64] also contains low-SNR signals. Specifically, the
transceiver distances are up to 30 meters, and the signal SNRs
are clearly labelled, ranging from 10 dB to 50 dB. Similarly,
the authors in [69] collect LoRa signals at various distances
as well, i.e., ranging from 5 m to 25 m. Despite the low-
quality RF signals provided by the above-introduced datasets,
an alternative and efficient method is to add artificial Gaussian
noise to high-quality signals, thereby synthesizing low-SNR
conditions [24], [44].



C. Receiver Distortion Mitigation

1) Research Activities: While RFFI aims to exploit the
transmitter’s unique hardware impairments for identification,
the receiver impairments will also affect the received signal,
as shown in (2). Most RFFI studies assume the same receiver
is used during the training and inference stages, thus, the
receiver effect can be neglected. However, this assumption is
not always valid, as the transmitter is frequently served by
multiple receivers in practical wireless systems. The authors
in [8] build simulation models to evaluate the effect of
receiver impairments. The simulation results demonstrate that
the identification accuracy decreases by up to 20% when the
IQ imbalances of the receivers are different between training
and test. The performance degradation caused by receiver
effects is experimentally validated in [54], [64], [69], [95].

To overcome the receiver effect, the authors in [54], [95]
recommend including as many receivers as possible in the
training stage, with the aim of improving the model’s gen-
eralization ability. Moreover, the work in [64] proposes a
receiver-agnostic training scheme that employs a gradient
reversal layer to direct the deep learning model to learn
receiver-independent features. The proposed algorithm was
evaluated using 20 SDR receivers, demonstrating excellent
generalization ability. The authors in [96] applied the concept
of generative adversarial network (GAN) to learn receiver-
independent features, resulting in an improvement of 20% in
accuracy. Furthermore, recent studies demonstrate that transfer
learning and fine-tuning strategies can adapt classifiers trained
on one receiver to perform effectively on others [97].

2) Available Datasets: As discussed in Section VI-C, the
RFFs are not only affected by the transmitter but also by
the receiver chain. It is therefore necessary to have datasets
containing signals collected by multiple receivers to explore
effective receiver-agnostic RFFI solutions. Shen et al. present
a dataset comprising 20 SDR receivers of varying types, span-
ning from low-end RTL-SDR to high-end USRP N210 [64].
This dataset was specifically created for the purpose of eval-
uating receiver effects, and the signals collected at various
positions are available. While other LoRa datasets also contain
multiple receivers [66], [69], they are incompatible with [64] in
terms of number and types of receivers. With regard to WiFi
protocols, the WiSig dataset comprises 41 USRP receivers,
which are suitable for use in research into mitigating WiFi
receiver distortion [54].

D. Applications

There have been many deep learning-based RFFI papers
published in the last few years, with applications in WiFji,
ZigBee, LoRa, LTE, and satellite communications.

1) WiFi: Recent studies have attempted to apply RFFI to
secure WiFi systems, ranging from IEEE 802.11b to IEEE
802.11ax standards [52], [54], [81], [84], [89], [98]. Li et
al. design a fractal dimension estimation method to extract
features from direct-sequence spread spectrum (DSSS) IEEE
802.11b signals, and use support vector machine (SVM)
or KNN for identification [89]. For wideband orthogonal
frequency-division multiplexing (OFDM) signals, the authors

in [52] and [54] evaluated the channel effects, showing that the
multipath effects can significantly degrade the identification
performance. To alleviate this problem, Xing et al. design
a DoLoS algorithm, extracting channel-robust features from
IEEE 802.11 OFDM signals as the neural network input [81].
The most significant challenge for WiFi RFFI systems is the
design of effective algorithms for eliminating channel effects.

2) LoRa: A considerable amount of research has been
conducted for designing LoRa RFFI systems [21]-[24], [44],
[64], [69]. To the best knowledge of the authors, [21] is the first
work attempting to use RFFI to identify LoRa transmitters,
which carries out experiments in a transceiver distance of up to
100 meters and achieves 59% to 99% accuracy. Furthermore,
Shen et al. conducted a series of research aimed at developing
practical and robust LoRa RFFI systems [22]-[24], [64], [66],
and released all the datasets and codes to the public. In [22],
different signal representations are studied, i.e., IQ samples,
FFT coefficients, and spectrogram, concluding that spectro-
gram is the most appropriate for LoRa signals because of
their frequency-changing property. The work in [23] designed
the channel-independent spectrogram to mitigate the channel
effects and a three-stage protocol for open-set identification.
Afterwards, [24] aims at improving identification accuracy
in low-SNR environments, which can be achieved by online
augmentation and merging predictions derived from multiple
LoRa packets. Finally, the studies in [64] and [66] explore
receiver-agnostic and federated RFFI protocols, respectively.
In addition to these, the researchers in [44] and [69] also car-
ried out in-the-wild experiments to validate RFFI performance.
As a low-power, long-range communication technology, the
most significant challenge for LoRa RFFI is to design effective
algorithms to combat noise contamination.

3) ZigBee: RFFI is also utilized to authenticate Zig-
Bee/IEEE 802.15.4 devices [39], [45], [46], [80], [99], [100].
The authors in [100] construct multiple discriminant analysis
(MDA) classifiers to identify ZigBee devices. With the devel-
opment of deep learning, Merchant ef al. propose inputting
error signals, i.e., the difference between received and ideal
signals, into CNNs for the identification task [46]. Peng et
al. design the image-like DCTF feature as the CNN input
as well [39], [45]. The authors in [99] and [80] adopt more
advanced deep learning algorithms, using multisampling con-
volutional neural network (MSCNN) and disentangled repre-
sentation (DR) learning to construct RFFI systems.

4) BLE: The work in [101] studied using BLE hardware
features to track mobile devices. The authors designed a non-
deep learning-based approach by computing the Mahalanobis
distance to track registered devices. With comprehensive ex-
periments over 17 mobile devices, involving smartphones,
laptops, etc, they revealed it is viable, although sometimes
unreliable, to use BLE hardware fingerprints to track mobile
devices. The same group later used a CFO obfuscation strategy
by modifying CFO [102] to prevent such a tracking attack.

Regarding deep learning approaches, Jagannath et al
designed an embedding-assisted attentional framework and
achieved a significant reduction of the memory usage and
trainable neural network model complexity [71]. Yuan et al.
designed a denosing AE, with a CNN as the backbone, to



improve the classification performance under low SNR [103].
The authors achieved over 75% accuracy over 10 dB SNR for
18 BLE devices.

5) Ultra-Wideband: Ultra-Wideband (UWB) is usually
used for high-resolution localization with a precision at the
centimeter level. This is enabled at a cost of high bandwidth,
e.g., 500 MHz. To the best knowledge of the authors, the work
in [73] is the only one studied RFFI for UWB. Due to the high
bandwidth, it will be challenging using SDR for capturing
UWRB signals. Instead, the authors employed commercial off-
the-shelf (COTS) UWB devices to collect CIR measurements
and converted them to spectrograms. They designed a Vision
Transformer-based deep learning model and achieved over
99% classification accuracy.

6) Cellular Communications: Most of the recent RFFI
research has focused on identifying devices operating in the
unlicensed industrial, scientific, and medical (ISM) bands, and
there are only a few studies have investigated its application
in cellular systems [75], [104]-[107], e.g., GSM, 4G LTE, 5G
NR. Zhuang et al. utilize RFFI technology to identify GSM
base stations to detect fake base station (FBS) crimes, which
is achieved by extracting modulation errors and statistical
features as unique RFFs [104]. The authors in [105] propose
an RFFI method by applying wavelet decomposition to the 4G
LTE demodulation reference signal (DMRS). Yin et al. capture
the transient-on, transient-off, and modulation segment of LTE
physical layer random access channel (PRACH) preambles,
converting them to DCTF representations separately and de-
signing a multi-channel CNN for identification [106]. Peng et
al. combines wavelet transform (WT) coefficient graphs and
differential spectrum to extract RFFs from LTE signals and
conduct experimental evaluations using commercial phones
and SDRs [75]. Finally, the authors in [107] create a SG RFFI
system involving four base stations, which demonstrates that
RFFI is effective in securing 5G networks as well.

7) Satellite Communications: Recent studies have applied
the RFFI technique to satellite identification [77], [79], [108].
For instance, the authors in [108] utilize it to detect global
positioning system (GPS) spoofing attacks. Specifically, they
use multivariate normal distribution (MVN) models to extract
features from the captured IQ samples and set a threshold to
detect the spoofed GPS signals. Oligeri et al. targets to identify
the low Earth orbit (LEO) IRIDIUM satellites, which was
originally developed by Motorola in the last century [77]. The
authors observe and collect IQ samples from 66 satellites, and
then train a CNN for identification. The results show that the
accuracy is above 80%. Smailes et al. also conducts extensive
research in fingerprinting IRIDIUM satellites [79].

VII. RFFI EXPERIMENTAL METHODOLOGIES

While it is fundamental to carry out experimental evaluation
for RFFI to assess its performance in practical scenarios, there
is a lack of explanation of the experimental methodologies in
the literature. This section aims to bridge the gap.

Building a testbed is mandatory to carry out an experimental
evaluation, therefore this section will cover necessary informa-
tion for building a testbed, including DUT and receiver. Then,
we will discuss the requirements for the dataset collection.

A. DUT

There are several DUT options, which include IoT devel-
opment kits, consumer electronics, and SDR platforms.
IoT Kkits are probably the most commonly used devices.
Some examples are given below:
o WiFi: ESP32 [109]
e« BLE: ESP32 and Nordic Semiconductor nRF52840 don-
gles [103]
o LoRa: Pycom LoPy4 & FiPy (discounted), mbed shield,
and Dragino shield [23].

The vendors usually provide example code snippets for trans-
mitting and receiving. Their transmission behavior can be
customized, e.g., transmission intervals, transmit power, etc.

It is desirable to demonstrate that RFFI can work with
consumer electronics. We exemplify the following consumer
electronics DUTs:

« WiFi: WiFi dongles [110] and Nexus 5 smartphones [111]
« BLE: Smartphone, laptop, Apple Watch etc [101]
o LTE: Smartphone [106], [111]

Compared to IoT Kkits, it is relatively difficult to control
transmission parameters accurately. The transmissions can
instead be triggered by, e.g., running the ping command for
WiFi [110]. For BLE, the device will transmit advertising
packets periodically, which can be leveraged [101]. On the
other hand, there is also research reported by using a third-
party firmware, nexmon, to inject I/Q imbalance into the
baseband signal of smartphones [111].

SDR platforms are also employed as DUTs for RFFI. For
example, the authors in [115] used 10 HackRF One SDRs
and the work in [121] used 20 USRP SDRs. Using SDRs
can provide full hardware control. For example, the hardware
impairments are reconfigured in [122]. However, their cost is
usually higher than IoT kits and consumer electronics.

B. Receiver

The receiver plays an important role in RFFI, which will
perform signal collection and then feed the collected signals
for classification. In deep learning-based RFFI, there are two
categories of signals for deep learning input, namely 1/Q
samples and CSIL.

1) Platform for I/Q Samples Collection: Most of the RFFI
works rely on I/Q samples, which can be captured by SDR
platforms. There are different ways to access data from SDR,
including Matlab, GNURadio, Python-based libraries, and
PicoScenes, as summarized in Table IV.

While SDR can capture the I/Q samples, a signal analysis
program is required to decode and interpret the data samples.
For example, signal synchronization algorithms are required to
locate the starting point of the collected packets. MAC address
decoding is required for WiFi and Bluetooth to ensure that the
captured packets are sent from the target DUT, because there
are numerous WiFi and Bluetooth transmissions over the air.
Such functions can be either achieved by custom-built codes or
available third-party solutions such as Matlab toolboxes, GNU-
Radio implementations (see Table IV). Regarding PicoScenes,
it is a middleware specifically created for WiFi.



TABLE IV
SUMMARY OF SDR PLATFORMS AND THEIR APPLICATIONS IN RFFI

Software Supported SDR Platform

Wireless Technology

Representative RFFI Papers

WiFi (Matlab WLAN toolbox)

Not reported

ADALM-PLUTO SDR, RTL-SDR, USRP

Matlab [112] SDR and Xilinx® Zynq®-Based Radio

LoRa (custom code)

USRP N210 [113]

BLE (Matlab Bluetooth toolbox)

USRP N210 [103]

GNURadio All SDR platforms support GNURadio

WiFi IEEE 802.11a/g/p [114]

HackRF One [115], USRP N210 [111]

IEEE 802.15.4 [116]

Not reported

ADALM-PLUTO SDR, RTL-SDR, USRP

Python [117] SDR, HackRF One and BladeRF

Custom code

Not reported

PicoScenes [118] | USRP SDR and HackRF One

WiFi IEEE 802.11a/g/n/ac/ax/be

USRP N210 [110]

TABLE V
SUMMARY OF CSI TOOLS AND THEIR APPLICATIONS IN RFFI

CSI Tool

Supported Amendaments and Chipsets/SDR

Representative RFFI Papers

Intel 5300 CSI tool [30] IEEE 802.11n for IWL5300

[37], [119], [120]

Atheros CSI tool [31], [32] IEEE 802.11n

Not reported

Nexmon CSI tool [33], [34]

IEEE 802.11a/g/n/ac for Broadcom WiFi Chips

Not reported

ESP32 CSI tool [35], [36] IEEE 802.11n

Not reported

PicoScenes [118]

IEEE 802.11a/g/n/ac/ax for USRP SDR and HackRF One,
AX210/AX200, IEEE 802.11n for QCA9300 and IWL5300

AX210 [120]

SDR + Matlab WLAN Toolbox

IEEE 802.11a/g/n/ac/ax for ADALM-PLUTO SDR, RTL-SDR,
USRP SDR and Xilinx® Zynq®-Based Radio

Xilinx® Zynq®-Based Radio [109]

2) Platform for WiFi CSI Collection: CSI can represent
fine-grained channel information. While most of the WiFi
chipsets do not provide the CSI, there are a few exceptions, as
summarized in Table V. Intel 5300 CSI tool [30] is probably
the most widely used as it is the first CSI tool. However,
it can only report channel matrices for 30 subcarrier groups,
i.e., every 2/4 subcarriers at 20/40 MHz. Nexmon CSI tool
can support up to 80 MHz and return estimated CSI for all
the subcarriers, which can significantly increase the extracted
information. PicoScenes can support the latest WiFi 6 with
up to 160 MHz bandwidth for AX210/AX200. Besides, the
MATLAB WLAN toolbox can also provide CSL

C. Requirement of Dataset Collection

As indicated in [52], the training and test datasets are
collected on two different days, and channel conditions are
similar, but their deep learning-based RFFI cannot work at
all [52, Fig. 11]. This reveals that even slight variations
in the channel, noise, or hardware impairments will result
in significant consequences. In practice applications, the test
datasets are highly likely collected on different days from the
training datasets. Hence, we need to design a robust RFFI
algorithm. In order to demonstrate the robustness of RFFI
algorithms, it is always necessary to have training and test
datasets collected from different days.

It is important to avoid overfitting in RFFI. For example,
when evaluating RFFI against channel variations, the training
and test datasets should not be collected from the same
environment or environments with similar channel conditions.
In particular, as many different channel scenarios as possible
should be covered, e.g., LOS & NLOS, static & mobile, indoor
& outdoor, etc.

VIII. CHANNEL-BASED AUTHENTICATION

CB PLA verifiers leverage the effects of the communication
channel for authentication; thus, in this case, the nature of the
communication channel itself enables authentication.

In particular, a channel measurement, typically called chan-
nel feature, is selected. As an example, Fig. 8 depicts the
absolute value of the CFR measured using Wi-PoS, an UWB
hardware platform, with carrier frequency 6.489 GHz and
bandwidth of 499.2 MHz, place at the fourth floor of the iGent
Tower and in Portus Ganda, both located in Ghent, Belgium
[123]. In particular, we report mean and 1o bounds computed
over 300 measurements. Indeed, while the traces collected
in the same environments are related, there are significant
changes when the devices are collected in different locations.
For instance, the indoor environment is associated with a
much higher standard deviation, e.g., due to multipath, than
the outdoor environment. This highlights that, indeed, we can
exploit traces like these, and thus the channel, to authenticate
the devices, as a signal sent by a spoofer placed in a different
environment will induce a significantly different CFR. The
review of the channel features to be used for authentication
purposes is reported in Section IX.

Concerning the authentication mechanism, three main ap-
proaches have been studied: the tag-based, channel variation,
and challenge-response (CR) approaches.

e The tag-based approach assumes that the channel fea-
tures do not change over time and the impersonating
attacker is in another location than the legitimate trans-
mitter, enabling the verifier to distinguish between the two
transmitting locations by processing the received signal.

o The CR approach still considers static channels but it also
assumes that the verifier can modify the propagation envi-
ronment and predict the resulting channel features. Thus,
authentication is performed by introducing a random
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Fig. 9. High-level representation of the CB-authentication scheme.

modification (challenge) and comparing the predicted
channel features with those obtained from the received
signal.

e The channel variation approach is suitable in scenarios
where the channel changes, as it includes a prediction
of the channel features from previous observations and
a comparison between the predicted features and those
estimated from the currently received message.

Note that the latter two approaches assume instead that the
channel changes, but variations are in part known by the
verifier: either change can be predicted (e.g., channel variation)
or controlled (e.g., CR-authentication) by the verifier.

Fig. 9 provides a general scheme for CB PLA, in which first
the verifier Bob extracts the vector feature & from the channel
of the received signal and then classifies it as legitimate or not
by means of a function f(-). In particular, the classification
variable is H = Ho when the received message is considered
authentic and = H; otherwise. In case the signal is marked
as malicious, it may be possible to localize the attacker (see
Section X-E).

The following two sections will describe the features and
methodologies used for PLA. Table VI summarizes the main
publications on CB-authentication. It provides a categorization
based on the application domain (radio communications on air,

UWAC, and visible-light communications (VLC) on air), the
decision methodologies (statistical and ML), and the channel
features used for authentication.

A. Tag-based PLA
A typical tag-based PLA protocol includes two phases:

o Identification Association: the legitimate transmitting de-
vice (Alice) sends a pilot sequence to the verifier device
(Bob), which estimates or learns channel characteris-
tics/behavior, which we call tag. The pilot transmission
is assumed to be authenticated because either we are sure
that the attacker is not transmitting or an authentication
mechanism using a pre-shared secret between Alice and
Bob is implemented. This phase is performed only once
and is not repeated for each transmitted packet.

o Identification Verification: Bob receives a message con-
taining pilot symbols, estimates the channel, and com-
pares such an estimate with the tag obtained in the
identification association phase. If the two are compatible,
the message is considered authentic, otherwise, it is
discarded as fake. This phase is performed for each
message transmission, after the identification association.

Tag-based PLA is subject to two issues: a) the channel may
change over time due to the mobility of either the user or
surrounding objects, and b) the channel estimate is affected by
noise and receiver impairments (e.g., synchronization issues).
Both make the definition of compatibility between the channels
estimated in the two phases problematic. To cope with these
issues, two main research paths have been taken. About the
first issue, we note that tag-based PLA is well suited for static
channels, while some modifications are needed to make it work
under channel variations.

The first research path has looked for channel characteristics
that are more robust against both issues to be used for
authentication. For example, the number of taps of the CIR is
less time-variant than the full CIR. Similarly, focusing on the
received power and dropping the channel phase information in
narrowband transmissions provides a robust approach against
synchronization errors.

The second research path focuses on the methodology
to assess the message authenticity, taking into account the
impairments (interference, noise, channel variations) of the
estimated tag. A first set of solutions is obtained by framing
tag-based PLA as a hypothesis testing problem between two
hypotheses (the received signal is legitimate or fake) and
resorting to statistical tests for its solution: this however,
requires the knowledge of the tag statistics. A second set
of solutions is obtained by considering tag-based PLA as a
classification problem to be solved using ML models: this
approach requires a dataset of tag realizations. Solutions
mixing the two approaches are also possible, e.g., using a raw
statistical approach as the initial test, then a more refined ML
test.

In a general tag-based PLA approach, two hypotheses are
considered, Hy and H;, corresponding to the legitimate and
the under-attack case, respectively. To assess the authenticity



of the signals, the verifier uses the tag verification function
f () and computes the decision via thresholding, i.e., deciding
D: 7&:{”?0 fa) 22, (18)

Hl f (:B) < )‘7
where A is a threshold chosen by the verifier, e.g., to minimize
the misdetection (MD) for a target false alarm (FA) probability.

When using a statistical approach, the function f(-) is
derived analytically, typically exploiting the statistics of the =
under H, and, eventually, 7{;. More details on this approach
are provided in Section X-A. On the other hand, in the ML
domain, we aim at classifying the observed tag x into the two
classes of legitimate and attack messages. We still perform
the test with (18), where now f(-) represents an ML model,
trained with a dataset of labelled tags, where the label indicates
the class to which the tag belongs.

Comparisons between the statistical and ML paradigms have
been reported in [124]-[126]. By properly designing the ML
model and its training, it is possible to achieve the same
performance as the statistical approaches. In general, however,
the choice between the two approaches is dictated by the
knowledge of statistics or the availability of datasets.

A relevant distinction, common to solutions of both sta-
tistical and ML domains, concerns the knowledge about the
attacker. In particular, we distinguish

e Binary Classification: the verifier Bob knows the distri-
bution of both Alice and Trudy (statistical domain) or
has a labeled dataset with tags belonging to both Alice
and Trudy (ML domain). We remark that in the litera-
ture, binary classification is also referred to as two-class
classification, as it exploits information (i.e., distribution
and/or labeled data) of both Alice and Trudy.

o Artificial Dataset: the verifier has a dataset with tags
belonging to Alice but makes some assumptions about
Trudy and generates an artificial dataset of Trudy’s tags.

o One-Class Classification: the verifier knows only the
distribution of Alice (statistical domain) or has a dataset
with tags belonging only to Alice. Especially in ML
contexts, one-class classification is also referred to as an
anomaly/outlier detection task.

Remark: it is worth pointing out that, differently from the
binary class case, in the artificial dataset case, the knowledge
about the attacker is only partial, and thus such knowledge
does not allow the legitimate party to build a fully reliable
Trudy dataset. For instance, we know a region where Trudy
may be, but we do not know the exact position; we can then
build a dataset with observations from the whole region.

B. Challenge-Response PLA

Modern communication systems enable a partial modifi-
cation of the electromagnetic propagation environment. For
example, a RIS can be used in a PLA context and be controlled
by the verifier to steer impinging signals in desired directions.
Another example is obtained when the verifier is a moving
device, e.g., a drone, that can modify the channel from the
transmitter by changing its position. CR-PLA is a mechanism
that leverages such control of the electromagnetic environment

to strengthen authentication [127]. We define the different
conditions of the channel induced by the behaviour of the
verifier (e.g., the RIS configuration or the drone position) as
channel configurations.

As shown in Fig. 10, the CR-PLA procedure includes two
phases, similar to tag-based PLA, but with different contents:

o Identification Association: First, the channel features
from the device to be identified are estimated by the veri-
fier for different channel configurations, namely Channel
1,..., M. The estimation of the first phase enables the
receiver to obtain estimates of the channel also for
configurations that have not been explored in this phase,
through interpolation algorithms. We must ensure that in
this phase the transmission is legitimate (thus no spoofing
attack is possible), as it happens in the identification
association phase of tag-based PLA.

o Identification Verification: The identification verification
phase is split into two steps, challenge and response.

— Challenge: The verifier selects at random a channel
configuration before transmission of the message.

— Response: The message is transmitted and the veri-
fier estimates the resulting channel from the received
signals. Lastly, the verifier compares the estimated
channel with the channel predicted for the selected
channel configuration, according to the information
acquired in the first phase.

Note that an attacker to be successful must transmit its sig-
nals through the legitimate channel as modified by the receiver
(e.g., through the RIS rather than directly to the receiver) or it
must know the instantaneous channel configuration and shape
its attack accordingly (see [128] for an in-depth analysis).

CR-PLA introduces additional randomness to the channel
conditions (with respect to tag-based PLA), thus achieving
higher robustness against attacks. The optimization of the
defence strategy (choice of the random channel configuration
in the Challenge phase) and of the attack strategies has been
investigated in [129], [130].

C. Channel Variation PLA

Channel variation PLA is an authentication mechanism
specifically designed for time-varying channels. A typical
channel variation protocol works as follows:

1) The legitimate transmitter sends N packets to the verifier,
which estimates the channel features for each packet
(identification association step).

2) From the estimated features, the verifier predicts the
channel features for future transmissions.

3) Upon reception of the packet to be verified, the verifier
checks the consistency of the predicted and the measured
features (identification verification step).

As in the tag-based PLA, the main research directions in-
vestigate both the choice of robust features and the design
of predictors providing a good trade-off between FA and
MD probabilities. The predictor can be implemented both via
statistical methods or, more recently, via ML.
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In formulas, given the previous channel observations
[-N,Z_N41,-..,Z_1], the prediction function is denoted
by ¢(-) and it provides

yO:g([w7N7w7N+17"'7w71]) ) (19)

and the consistency check for the current observation x is

A= {”
Hq

Variations to (20) include tests where no prediction is per-
formed but the threshold is dynamically updated, e.g., as
in [131].

We remark that differently from tag-based PLA, channel
variation PLA is typically considered as a single-sided hy-
pothesis testing or a one-class classification problem, without
any knowledge of the attacker’s behavior.

if Hyo — iL'o” < )\,

. (20)
if Hyo — £L'0|| Z A.

D. Channel-Based Attacker Localization

When dealing with PLA attacks, it is important that the
receiver first detects the attack and then possibly localizes the
attacker. We will also see that some features used for verifica-
tion are also used for localization. Thus, when implementing
CB-PLA protocols, on top of the authentication, it may be
possible to add an attacker localization step at a relatively low
cost. Thus ,during the rest of the survey, we will also include
solutions for attacker localization.

IX. CHANNEL FEATURES FOR CB-AUTHENTICATION

In this Section, we describe the main channel features that
are used in CB-PLA. Although most of the works consider
specific features, it may be possible to extend their procedures
to other features. Moreover, some works do not focus on

specific channel features in their schemes but rather aim to
design solutions that work for any feature selected by the user.

For each channel feature, we will also include a discussion
on techniques used to localize the attacker, if any.

A. Channel Impulse and Frequency Response

One of the most popular channel features for PLA is the
entire CIR. Apart from channel estimation techniques that are
common to all approaches, it is possible to distinguish between
two main paradigms in their use. In the first approach, raw CIR
is used for authentication, which has been proposed in different
contexts, e.g., 6G [143], UWAC [147], and more recently
in VLC [152]. In the second approach, preprocessing is
performed on the estimated CIR, and a new metric is extracted.
Often, such a metric is the result of the comparison between
the measured CIR and a database of previously collected
(and trusted) responses. Examples of this approach are for
the UWAC context, the Froebenious norm in [150], the time
reversal-based metric in [148], the maximum and minimum
correlation amplitude in [151], while in the radio context, both
the Euclidean distance and the Pearson correlation coefficient
in [149]. A related approach for WiFi was also proposed
in [132] where a channel feature is obtained by comparing
the measured CIR with a locally generated replica.

The CIR/CFR is also used in CR-PLA. Some of them refer
to the CIR over the multiple-input multiple-output (MIMO)
channels. In this case, by increasing the number of antennas
in either or both the transmitter and the receiver, we obtain a
richer description of the channel that typically improves the
accuracy of the authentication procedure. In particular, CR-
PLA has been applied to scenarios with RISs [128], where the
verifier controls the RIS, and the channels between the devices
and the RIS are MIMO. Another context where CR-PLA has
been applied, still on the CIR/CFR of the channel is in com-
munications with drones, where the channel variations are due
to the movement of the drones, not necessarily equipped with
multiple antennas [136], [137]. Similar approaches of CR-PLA
have been proposed in other frameworks. For example, [138]
proposes a scheme in which the CIR is used to hide both
the challenge and the response of the attacker using wiretap
coding techniques; an extension of this approach includes the
use of artificial noise [139].

An alternative to CIR is CFR, which can be easily ob-
tained from the CIR by FFT, or is immediately available in
communication systems operating in the frequency domain,
e.g., the OFDM. Examples of application domains where
CFR is used for CB-PLA are IoT/industrial IoT [160]-[164],
cellular systems [166], [167], or WiFi [153]-[157]. Other
works exploit a dataset of previously collected CFRs to derive
a metric, e.g., in [162] the authors compare the performance
when using the whole CFR matrix as input rather than the
difference between a reference channel matrix and a measured
one. Several works exploit a database of previously collected
CFRs to predict the current one, which is then compared to
the measured CFR to verify authenticity, e.g., [159]. The CFR
in an OFDM system can also be interpreted as an image and
then used to feed deep learning models [165].



TABLE VI
LITERATURE CLASSIFICATION OF CB-PLA MECHANISMS.

. Radio (Air)
Feature list

Acoustic Underwater Visible Light

(Air)
Statistical ML Statistical ML Statistical
CIR [128]-[130], [141]-[146] [147]-[149] [1501, [151] [152]
[132]-[140]
CFR [153]-[155] [156]-[168]
RSS or SNR [135], [137], [131], [182] [183]
[169]-[172] [141]-[143],
[173]-[181]
Channel Statistics [184], [185] [143] [186], [187] [188]-[190]

Time Measurements [191], [192] [141]

[193]

A0A [175], [175], [176], [193], [201]
[194]-[198] [199], [200]

Doppler Frequency [169], [178], [142], [173],
[202], [203] [177]

Although CIR and CFR provide a complete description
of the channel, resulting in a very detailed channel feature
for PLA, their estimate is subject to several limitations that
either reduce the accuracy of the authentication or require
additional processing. Indeed, the main problem is related to
synchronization, which may differ upon reception of different
messages. Synchronization errors lead to time and phase shifts
in the baseband equivalent CIR, and correspondingly to phase
changes in CFR. Moreover, the estimate of each channel tap
is affected by estimation noise that may significantly change
the resulting CIR and CFR.

B. Received Power

To address the issues of CIR and CFR features, it is possible
to use channel parameters either directly estimated from the
received signal or extracted from the estimated CIR and CFR,
which are robust to impairments. The first case is given by
the received power, which is a channel parameter basically
unaffected by small synchronization errors. Many receivers
already compute the received power, for example, for signal
quality assessment, range, or power control; thus, no extra
effort is required to obtain the input of PLA mechanisms.
Note that the received power is also denoted as received signal
strength (RSS), while the estimated SNR is analogous to the
received power, apart from a normalization of the noise power.

Excluding the fading component, the received power is
related to the path loss and thus the relative distance between
the transmitter and Bob. Moreover, in a context where Alice-
Bob’s distance is known, Bob can compute the reference
power to be compared against the measured one for au-
thentication purposes. Examples of this approach include the
use of the norm between the measured and the expected
RSS [131], SNR [175], received power [169], and the detec-
tion of anomalous path gains via ML [199], eventually also
including dynamic scenarios [174].

Thus, many works propose the use of this already-available
feature for PLA purposes in different contexts such as WiFi,

vehicular ad-hoc network (VANET), UWAC, and VLC, as now
discussed. For instance, in WiFi, the variations of RSS due
to the movement of devices have been exploited in [171]
to determine whether two pairing devices are in physical
proximity to each other, thus authenticating their proximity.
In [141], an reinforcement learning (RL) mechanism is used in
the VANET context to dynamically adjust the authentication
test threshold based on the previous results, including false
alarm rates and authentication policy parameters.

Concerning the UWAC context, the normalized sample co-
variance matrix (SCM), i.e., the power covariance measured at
different receivers, is used in [182] to estimate the transmitter
position, and later for channel variation PLA.

In the VLC context, a first study of CB authentication
is [183], where the attacker transmits when the legitimate
transmitter is idle; then LOS direct current channel gain is used
as an authentication feature. Then, [152] applies the CR-PLA
technique to VLC. In this case, a RIS that operates on visible
light signals is configured randomly to enable the receiver
photodetector to authenticate the transmitter.

Attacker Localization: The RSS can be used further for
attacker localization [179]-[181], typically exploiting ML, as
we will detail later in Section X-E. However, RSS is known
to be not adequate for localization as RSS-based localization
methods may be vulnerable to beamforming attacks [204].

C. Channel Statistics

Beyond synchronization and estimation noise issues, in
some contexts, the use of CIR and CFR becomes problematic
by fast channel variations. In this case, it is better to use as
a channel feature the statistics of the channel rather than its
instantaneous realization.

Concerning the industrial IoT context, [177] uses the mean
and variance of the subcarrier amplitude, carrier phase, and
carrier frequency computed over the whole CIR.

A wide range of features has been tested in [185] in the
UWRB context, with results suggesting skew and kurtosis of the



tap’s magnitude, maximum peak-to-earlier peak ratio (MPEP),
and the peak-to-average power ratio (PAPR) to be the most
promising features.

This approach is also popular in the UWAC context. In par-
ticular, in [186], while looking for features that are stable over
time but not over space, several channel features have been
investigated. The study concluded that the best performance
was achieved using the number of channel taps, the average
tap power, relative RMS delay, and smoothed received power.
Such features also proved their effectiveness in the following
works in authentication [188], [189]. In a dynamic UWAC
context, the power-weighted arrival delay has been proposed
to track the evolution of the channel; therefore, anomalous
changes were associated with the start of an attack [187].
The work was extended in [190], where the new feature was
integrated with those derived in [186].

D. Time Measurements

In many scenarios, power-related features are not usable, as
they are either too predictable by the attacker or too variable
to be used for CB authentication, e.g., due to fading. An
alternative is offered by time-based features, such as time
of arrival (TOA), time difference of arrival (TDOA), or even
the estimated transmitter clock bias. Still, it is worth pointing
out that, while effective, the use of the TDOA requires the
presence of multiple synchronized receivers. The TDOA is
used in the satellite context in [191] and in industrial/UWB
communication in [192], while the TOA has been used in the
UWAC in [193], along with the angle-of-arrival (AoA).

E. Angle of Arrival

For a receiver equipped with multiple antennas, the AoA is
another channel parameter to be used as a channel feature for
PLA. Indeed, the AoA is related to the transmitter position;
thus, exploiting, for instance, a prior knowledge of the legiti-
mate transmitter position, it is possible to discriminate between
the legitimate transmitter and the spoofer just by looking at
the AoA.

The AoA has been used in UWAC in both [193] and [201]
and in [194] to profile the client’s WiFi network. For IoT
authentication, AoA has been exploited in [199].

In [200], the authors exploit the massive-MIMO geometrical
channel to extract an image of angle and delay and then adopt
ML techniques to authenticate the transmitters.

Attacker Localization: It is also possible to use the AoA
of the received signal to localize the attackers [205]. Secure-
Angle [197] is a framework to estimate the signal’s AoA and
create AoA-based signatures to identify the legitimate users.
If a user’s signal does not belong to the authorized signatures
pool, it gets rejected and localized by using the AoAs of the
direct path of its signal, estimated by multiple access points.
Pilot spoofing attacks are addressed in [195] and [196]: in such
attacks, a spoofer corrupts the initial channel estimation phase
by sending the same pilot sequence as the legitimate users
at the same time. In particular, [195] employs an uplink and
downlink training phase to detect and localize an attacker using
the spatial spectra on the received signals and exploiting the

reciprocity of uplink and downlink channels in time-division-
duplex (TDD) systems. Still, due to the duration of the training
phases, the method is vulnerable to environment changes (e.g.,
a moving attacker) [196]. Thus, [196] proposes an uplink
joint detection and localization of an attacker via sequential
Bayesian inference (i.e., by considering the time correlation
on the estimated quantities).

F. Doppler Frequency

The use of the Doppler frequency shift is particularly popu-
lar in the satellite communication context. Indeed, analogously
to the power-based approaches, a receiver that knows the
position and velocity of both itself and the satellites can
compute the relative velocity and thus the Doppler shift. Such
an estimate can then be compared to the measured Doppler for
PLA for authentication purposes. This approach has been used,
for instance, in [202], where the receiver computes its position
and velocity via GNSS, and in [203], where the authors tackle
the problem of inter-satellite link authentication.

Often, the Doppler frequency shift is used in pair with the
RSS.e.g., [169], [173].

Attacker Localization: Doppler frequency is also used to
localize the attacker. The scenario considered in [206] sees a
vehicle to vehicle (V2V) communication system attacked by
a fixed or mobile terminal that is spoofing a GNSS signal.
The vehicles use commercial GNSS receivers to measure the
spoofer signal Doppler frequency. Next, the vehicles share
their local measurements with the others, and by combining
them, they localize the attacker. Note that, as all the vehicles
are locked on the same spoofing signal, no additional synchro-
nization among them is required.

G. CB-Authentication With RISs

If a verifier-controlled RIS is available in the network,
specific solutions can be implemented.

In [184], a generalized likelihood-ratio test (GLRT) tech-
nique is used, but the second-order statistics of both the
legitimate and the attack channel are known. In this case,
the configuration of the RIS is fixed, and both the direct
channel and the channel through the RIS are estimated for the
hypothesis testing procedure. In [140], the impact of residual
hardware impairments on authentication mechanisms in the
presence of a RIS is investigated. In [198], it is proposed to
use the AoAs of the direct and cascaded links at Bob and the
effective angle-of-departures (AoDs) at the RIS. The sparsity
of the direct channel and also the unique double-structured
sparsity of the beamspace cascaded channel are exploited as
authentication features.

In all these works, the configuration of the RIS, i.e., the
setting of the phase of the elements, is fixed and typically
optimized to maximize the communication performance. How-
ever, as already mentioned in Section VIII-B, the possibility
to control the propagation characteristics of the channel with
a RIS allows a new mechanism for authentication exploiting
the CR approach. In fact, the use of RISs for this purpose was
introduced in the first paper of the topic [127], and the security
and communication performance were then studied in [128].



Specific attacks and defense strategies (both for the control of
the RISs by the verifier and for suitable beamformers to be
used by the attacker to increase the chances of success) have
been investigated in [129] and [130].

X. IDENTIFICATION VERIFICATION METHODOLOGIES

In this Section, we describe in detail the identification
verification phase of CB-PLA mechanisms, i.e., the part where
the verifiers check that the currently received message is
authentic. The description is organized into three parts related
to statistical approaches, binary classification approaches, and
one-class classification approaches. Lastly, we also provide a
survey of techniques for localization based on ML models.

A. Statistical Approaches

With statistical approaches, we assume to have available
probability density function (pdf) of the channel feature in
either or both the legitimate and under-attack conditions. The
authentication process is then seen as a hypothesis testing
problem, and the test function is obtained from the pdfs.

1) Tag-based Authentication: Concerning the tag-based au-
thentication, referring to binary hypothesis testing, the like-
lihood ratio test (LRT) is shown (by the Neyman-Pearson
theorem) to minimize the missed detection probability for a
fixed false alarm [207]. It provides the test function

) _ p(=[Ho)
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where p(a|H;) is the pdf of the tag in case H; computed in
. Such a test has been used in several works, such as [148],
[201], [203]. In particular, in [201], the verifier Bob, upon
receiving a new message, computes the Mahalanobis distance
between the current observation and a database of previously
collected AoAs containing both legitimate and non-legitimate
samples.

Still, (21) has a major drawback as it requires the verifier to
know, or at least assume to know, both legitimate and under-
attack tag statistics, which may be a strong assumption in many
practical applications.

In a single-sided testing problem, where only the tag statis-
tics in legitimate conditions are known, the likelihood test (LT)
is typically employed, which provides the test function

f(@) = p(x|Ho) .

In the specific case of a Gaussian-distributed vector, e.g., when
the measurement is affected by AWGN, (22) becomes

fl@) =z -],

where x’ is the expected observation, which is used as a
reference. Such an approach has been used, for instance,
in [191], where the RMS error between the measured and
the expected TDOA is thresholded. Still, it is worth noting
that the LT is typically sub-optimal with respect to the LRT,
but do not assume any knowledge of Trudy’s attack statistical
distribution. Such an approach has been used in [131], [153]-
[155], [170], [171], [183], [186], [193], [202].

2n

(22)

(23)

Alternative tests to (22) have been considered, for instance,
resorting to the Pearson correlation between the different
observation sequences [171], [194]. The Pearson correlation
factor between the scalar feature sequences x;, ¢ = 1,...,7n,
and 2}, i =1,...,n, is
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where p(x) = L3 x; and p(z') = + 30 @ For
example, in [171], witness external devices check if two
devices that should be paired are in proximity by controlling
if the RSS are correlated. This approach is based on the
assumption that close-by transmitters will yield correlated time
series of RSS to a receiver.

Such tests are often integrated with more complex protocols.
A common scenario considers a verifier that coordinates sev-
eral independent receivers or channels and has to aggregate the
local decisions to perform authentication. The local decision
is often performed considering either (22) or (23), and then
the verifier has to design a function to perform the final
decision. A major difference between these works is that
while some share with the verifier the soft output, others
share only a local decision, i.e., the binary output of the
combination between (22) and (18). In this context, in [203],
6 channels are considered, and several methods have been
investigated to aggregate the local decision, in particular, OR,
AND, and majority rule. On the other hand, a distributed test
is considered in [186], where soft information is provided by
the devices, and the aggregation is performed by weighting
the local observation, considering, for instance, the distance
between each receiver.

A different approach is proposed in [147] where the authen-
tication is framed as a game, where the legitimate party utility
function is a mixture of FA probability, MD probability, and
spoofing cost; the legitimate party and the attacker have to
choose the test threshold value and the spoofing probability
respectively. A similar approach has been proposed in the
satellite context in [169].

2) Channel Variation PLA: The most popular statistical
method for channel variation PLA involves the use of Kalman
filters (KFs) predictors. In detail, considering a characteristic
z; to be tracked (e.g., the user distance or velocity), typically
called state, its time evolution is modeled as

zi = Az +w; (25)
where A; is the state transition matrix at time-step 4, and
w; ~ N(0,Q;) represents the process noise (assumed to be
Gaussian). On the other hand, the measurement, which for us
is the channel feature, and the state are related

r; = BiZZ' —+ 7r; s (26)
where B is the observation matrix and 7; ~ A (0, 2;) models
the observation noise.
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The Kalman filter has two operating modes: prediction and
model update. During the former, it computes the a priori state
estimate and its covariance matrix, respectively, as

(27a)
(27b)
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When a new channel feature is provided &;, Bob can refine
its model as

e =T;— Biii\i—l (27¢)
Ci = BiP,; 1B} +3; (27d)
G;= i\i—leTC;I (27e)
Zi)i = Ziji—1 + Gie; (271)
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where 2;; and P;; are the a posteriori state estimate and
its covariance, respectively, while G; is often called Kalman
gain. Finally, the prediction error e; is called innovation of
the Kalman filter and can be used for security purposes. In
particular, Bob computes

Bn=e€;C; e, (28)
which Bob uses as input for authenticity verification. We
remark that, differently from the general model of the Kalman
filter, we have no control input. The interested reader may look
for a more formal introduction of the KF in [208]. Several
variations can be introduced to the KF. For instance, in the
so-called extended KF non-linear equation, replace either or
both (25) and (26).

The main issue of statistical approaches, such as the KF, is
that they require an analytic model. For instance, KFs typically
requires an a priori knowledge of the measurement evolution
over time and the relation between the measurement and the
true state (e.g., the transmitter position), e.g., B; and A; used
in the (linear) KF in (25) and (26), respectively. However, such
models are often hard to obtain in practice, as they depend on
both the features themselves and the environment, thus limiting
the set of possible input features.

In the UWAC context, in [187], a set of receivers is tracking
the power-weighted arrival delay using a KF. The KF so-
called innovation, which measures the discrepancy between
the value predicted by the KF and the observed measurement,
is monitored, thus associating high innovation values with the
start of a spoofing attack. Such an approach was generalized
in [190], replacing the KF with a LSTM neural network (NN).
A similar approach has also been considered in [135], [172],
targeting the V2X scenario.

As an alternative to the KF approach, in the MIMO radio
context, [134] considered a scenario where the CIR evolves
following a Gauss-Markov process. The tests evaluate (the
norm of) the difference between the current and the previous
CIR at different transmitter-receiver pairs, considering both
the cases where each pair observes statistically independent
channels, and where the observed channels are correlated. Still,
we notice that the check is still related to (28), eventually
considering the covariance to be a diagonal matrix.

Differently, the work in [209] considers an online adaptive
method where the threshold is dynamically adjusted by the
verifier, according to its previous statistics. Another adaptive
method has been proposed in [132], where the tag symbol
setup is dynamically adapted, following a water-filling ap-
proach where the power associated with each tag symbol is
adjusted to match a predefined detection probability.

B. ML Approaches - Binary Classification

In ML-based solutions, it is assumed to have a dataset of
tag samples under one or both the legitimate and attack condi-
tions. The authentication problem is framed as a classification
problem, and the test function is replaced by an ML trained
with the available dataset(s).

We first consider the binary classification solutions, where
two datasets (of legitimate and attack conditions) are available
to train the ML model. Note that the dataset of attack samples
can also be artificial, i.e., generated by the verifier under
suitable assumptions, when no real data are available, as
discussed in Section X-C. The availability of the Trudy dataset
is related to some assumptions, i.e., expected position, type of
device, or resulting channel feature. To the best knowledge of
the authors, no work has considered the use of two-class ML
techniques for channel variation PLA and CR-PLA. Thus, all
results are relative to the tag-based PLA.

In [124] it has been proven that a sufficiently complex
NN trained with a sufficiently large dataset, containing both
positive (Alice) and negative (Trudy) samples, when used in
(18) achieves the same performance as the optimal LRT.

The work in [162] compares the performance of four
standard classification algorithms, namely decision tree (DT),
SVM, KNN, and enseamble learning (EL), in particular
bagged trees (BTs). The last achieved the best performance
in both simulations and tests, but at a higher computational
cost with respect to the other solutions.

In [144], a CNN is used to extract the relevant features
from the channel observation, and then a RNN is expected to
learn the spectral dependencies between the extracted features.
In [200], the authors propose to use the sparse nature of the
channel in a massive MIMO-OFDM communication system
to first build an angle-delay image that is efficient for NN
training. Then, they exploit you-only-look-once (YOLO), an
advanced single-stage object detection network, to capture the
angle-delay features from the received signal, and finally, a
lightweight neural network to perform the classification.

We remark that IoT is a relevant use case for PLA, where
devices have limited computing capabilities; therefore, ML
solutions can be particularly useful. For example, in [199],
a two-step authentication mechanism for IoT devices in 5G
networks is proposed. The first step aims to detect anomalies
in the virtual AoA and path gains of all the [oT devices in the
cell; the second step provides an authentication mechanism
based on ML. In particular, the anomaly detected in the first
step compares the number of communications at the MAC
layer with those identified at the physical layer. If the anomaly
is detected, a ML is used to decide if a single communication
(at the MAC layer) comprises more than one path at the



physical layer to confirm the anomaly. The work in [161]
exploits the presence of multiple devices at the edge to build a
collaborative authenticator. In particular, the CFRs associated
with a MIMO system are divided among different devices of
an edge network, where a subclassifier makes a first classi-
fication, which is interpreted as a vote. Finally, the decision
is taken by aggregating the single votes, each associated with
a proper weight. Different techniques are proposed in [164],
[166] to reduce the computation load, thus allowing power-
constrained devices to perform PLA. In [164], a convolutional
denoising AE is used to preprocess the raw CSI measurements
to reduce the dimension of the features, eliminate noise, and
extract key features. After the pre-processing, a weighted KNN
algorithm classifies the extracted features and authenticates
the transmitters, which reduces the computational overhead
compared to other ML approaches. [166] aims at reducing the
computation overhead in training the NN, thus proposing three
gradient descent algorithms to accelerate training.

C. ML Approaches - Artificial Dataset

When the dataset available for training contains only chan-
nel feature samples under legitimate conditions, two ap-
proaches are possible. One solution provides that first, an
artificial dataset of attack channel features is generated, and
then the binary classification approach is used for training on
the available legitimate and artificial attack datasets. A second
solution uses only the available dataset, which is denoted
as a one-class classification approach. In this section, we
consider the solution based on the artificial dataset, while in
Section X-D, we detail the one-class classification approach.

1) Tag-based Authentication: The solution based on the
artificial dataset is employed in [160], [177].

A DT is exploited to perform authentication in [177], in
the absence of an attack dataset. In particular, they train the
classifier using positive unlabeled data, where only positive
(i.e., legitimate) data is used, but part of the data is labeled as
non-legitimate and left out during this first training. Then, the
procedure is repeated, changing positive and unlabeled data
until a robust enough classifier has been trained.

An automated labeling strategy is proposed in [160], which
comprises an offline and online procedure. They specifically
look for clone or Sybil attack data samples, which are later
used to train the more refined SVM-based (online) procedure.

2) Channel Variation PLA: The solution based on the
artificial dataset is employed in [149], [151], [174], [210].

An extreme learning approach is proposed in [149], where
the input contains both previous trusted observations and the
observation to be verified; then, the network is trained to
check the coherence between the two. An artificial dataset is
generated to improve the network classification performance.
In particular, the artificial dataset has the same distribution as
the legitimate one but contains samples that are uncorrelated
with the (previous) legitimate ones.

An artificial dataset is considered in [151], and it contains
samples from nodes that are far from the receiver as negative.
Then SVM is used to build a classifier. The features, e.g., the
maximal time-reverse resonating strength, are then specifically
chosen to minimize the impact of the channel time variability.
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Using channel measurements relative to a specific location
of devices as an authentication feature makes the authen-
tication very scenario-dependent; thus, channel time-varying
patterns as scenario-independent features are used in [210] to
authenticate devices even in uncalibrated scenarios, including
both CIR and CFR as input to the ML model.

The use of a graph NN (GNN) was considered in [174],
where the verifier has to decide whether the RSSs measured
from several receivers within a frame comes only from Alice
or from multiple transmitters, that is, Alice and Trudy. In
particular, a two-step approach is proposed. First, a NN
checks whether two consecutive transmissions come from the
same position. The latter step has to split the received frame
sequence into regions associated with the same transmitter. In
particular, in the first step, the training dataset collects pairs
of consecutive transmissions where i) in the legitimate case,
the transmission comes from transmitters in the same position,
while ii) in the under-attack case, the pair contains samples
coming from different randomly sampled positions.

D. ML Approaches - One-class Classification

We now consider one-class classification solutions, where
only a legitimate dataset is used to train the classifier.

1) Tag-based Authentication: The first set of solutions
collects anomaly detection models, such as AEs or one-
class support vector machine (OC-SVM). For example, a OC-
SVM is considered in [145], with both magnitude and IQ
samples of CIR measured at different antennas as input. OC-
SVM has been also considered UWB [185]. In [165], a NN
determines the position of a device (from a set of discrete
positions) from the observed CSI. If the confidence metric
associated with the predicted position is below a threshold, the
device is considered not authentic. Indeed, this authentication
mechanism boils down to a region location verification, i.e.,
it verifies that the device is in a set of pre-approved positions.
The combination of an AE for dimensionality reduction and
variational autoencoder (VAE) for its generative capabilities
has been considered in [146].

Cooperative One-Class Classification: When multiple
detectors are available, cooperative CB-PLA can be applied.
In fact, multiple verifiers can cooperate in the final decision by
merging the collected data (or local decisions) to form a dis-
tributed authenticator and improve the security performance.

Two-step approaches are considered in [143], [156], [168],
where first clustering-based methods are used to detect the
presence of outliers within the dataset. Then the authentication
is completed by using SVM [168], an ensemble of AEs [156],
or graph learning [143] approaches.

In [188], the authors compared binary NN and one-class
AE for UWAC networks. The same techniques have also
been considered in [189], where the authentication process is
performed in two steps: a first pre-elaboration on each device,
with a NN, and then a second central elaboration made on the
pre-elaborated data, using a second NN.

2) Channel Variation PLA: A kernel-based prediction
method is proposed in [142], and Gaussian process regression
(GPR) is considered in [158]. The use of a Bahdanau atten-
tion AE predictor is considered to predict the current CFR
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in [159]. Compared to a more traditional AE-based predictor,
this architecture includes an attention mechanism to take into
account the effects of fading and Doppler shift.

A second solution aims at extending the solution developed
for the static to the dynamic context, thus assuming the
distribution to change slowly over time. For example, in [167],
the concatenation of the legitimate features (tested) before
and the measurement under test is fed to CNN, whose output
represents the probability that the whole input matrix belongs
to Alice. OC-SVM is used for classification in the satellite
context in [173] but is progressively updated to take into
account the evolution of the statistic over time.

A third alternative is to optimize the test threshold. The
authentication problem has been formulated as a zero-sum
game, where RL, in particular, Q-learning and Dyna-Q, have
been used to optimally set the threshold for LT in [131].
In [141], a deep reinforcement learning (DRL) mechanism is
used for the VANET context where Bob sets the authentication
threshold and Trudy plays with the attack rate.

The tag-based solution in [168] has been extended in [157]
to also take into account mobile users by adding a processing
block that monitors the temporal correlation between subse-
quent CSI blocks.

In the context of UWAC, Casari et al. investigate the use of
OC-SVM and an AE to fuse the local KF’s innovations [187],
later extended in [190], where a RNN allowed to track features
that cannot have been analytically modelled and thus tracked
by KF. In [163], a framework considers federated learning
among cooperating edge devices: a group of edge devices is
selected using a Q-learning-based adaptive search procedure
and collaborates to form an authenticator. Unlike previous
works, two threats are examined: the presence of external
attackers (i.e., regular spoofers) and internal threats, the latter
represented by malicious nodes injecting false parameters that
might lead to convergence failure or convergence to a wrong
model. A similar approach is also proposed in [182], where
first, a CNN estimates the transmitter positions from the SCM,
and next, a RNN predictor tracks the transmitter position.

E. ML Approaches - Attacker Localization

Various approaches for the location of the attacker have been
considered using ML models. In [179], the authors use the K-
means clustering algorithm to detect and locate attackers. In
particular, after a training phase, they combine RSS readings
from multiple access points and divide them into clusters in
the signal space. If there are multiple transmitters at the same
time (i.e., a legitimate party and one or multiple spoofers),
then the resulting point in the signal space will be far from
the centroids of the legitimate clusters, and thus an anomaly
is detected. After the spoofer is detected, the cluster centroids
are used to localize it. The authors experimentally tested their
approach on WiFi and Zigbee networks, reaching Ppnq > 0.95
with P, < 0.05.

A drawback of [179] is that it cannot localize multiple
attackers. Thus, in [180], the authors propose the IDOL
(Integrated Detection and Localization) framework, capable
of detecting and localizing multiple attackers. In [180], three

types of algorithms were tested to locate the attackers: nearest
neighbor matching in signal space, probability-based, and
multilateration; while in [181], the authors used a discriminant-
adaptive neural network to perform the same task.

XI. CB-AUTHENTICATION PUBLIC DATASETS AND
APPLICATIONS

This Section describes the common methodologies to test
the performance of the proposed CB-PLA mechanisms, con-
sidering both simulation tools and experimental datasets.

A. Simulation and Experimental Methodologies

The methodology for CB-PLA mirrors the one used for
RFFI, described in Section VII. It typically involves the col-
lection of two datasets. The first is used to set up the detector.
For instance, in KF-based channel variation authentication, the
first dataset is used to adapt the filter parameters during the
initial transient (e.g., [182], [187]). In ML-based solutions,
such a dataset is instead used to train the detector. The second
dataset is used for testing, to evaluate the performance of the
trained detector. We remark that, while formally two datasets
need to be collected, often only one is collected, which is then
split into two. These operations need to be performed carefully.
For instance, training on samples that are collected close to
each other in time helps the detector to learn the channel
stationarity, and thus, we neglect the evolution of the channel
over time. On the other hand, as it happens when overfitting,
this also makes the detector less robust to variations. Thus,
to make the detector more robust to temporal variations, it is
advisable to split the dataset randomly.

Finally, it should be noted that when testing CB-
authentication solutions, the hardware impairments are typi-
cally neglected, implicitly treating them as estimation noise.
Indeed, even if costly, a better practice would involve the
collection of multiple datasets, each collected with a different
transmitter/receiver hardware pair, which would make the de-
tector, trained on the merged dataset, truly device-independent.
Alternatively, future works should include an estimation and
correction step to correct the hardware impairments or, even
better, a joint RFFI & CB-based authentication, which allows
the detector to exploit both techniques at the same time, as
detailed in Section XII.

B. Simulation Tools and Setups

WiFi: A broad set of simulation tools is used for the
WiFi context. A simple model provides independent Gaussian
distributed channel taps [134], while other solutions, such
as [142], consider generating more realistic CFRs, including
an exponential PDP. Other parameters have been set according
to the IEEE 802.11a specification. Another alternative is to
consider geometric models, e.g., ray tracing tools, as in [154].

Vehicular: Specifically targeting the V2X context, simu-
lations have been performed in [135], [172], with communica-
tion parameters adapted from the SAE J2945/1 standard using
Matlab. In [135], the authors simulated two traffic scenarios:
straight and intersection. In the first, Alice and Bob are driving



straight on the same road, while in the second, Eve follows
Alice who is driving crosswise with respect to Bob. On the
other hand, [172] considers instead a more abstract model,
where the RSS is modeled after a log-normal distribution.

Cellular Wireless: While some papers generate the fea-
tures via statistical models (e.g., [199]), three simulators are
popular in the literature:

¢ Quasideterministic radio channel generator (QuaDRiGa)
channel simulator [211]: it has been used in [158], [165].
In particular, in [158] the simulation includes also the
movement between transmitter and receiver, with parame-
ters set to simulate the ground city macrocell in the Berlin
survey in Germany (BERLIN UMa).

« WINNER II channel model [212]: it is used for instance
in [145] to model a non-line-of-sight scenario, with users
moving at different velocities.

e MATLAB 5G toolbox channel: this was used to test
the Bahdanau attention autoencoder proposed in [159]
operating in the 5G FR1 n78 band.

Underwater Acoustic: Concerning PLA in the UWAC
context, the most popular solution involves the Bellhop ray-
tracing simulator [213], [214], used for instance in [182],
[186]-[188], [190]. Such a tool also includes the description of
several environmental parameters, such as sound speed profile
and bathymetry. For instance, among others, the San Diego
Bay area was considered in [182], [186], [187], [190].

An alternative simulator used in [151] has been described
in [215]. Finally, in [193], the performance is evaluated con-
sidering both an AWGN channel and a coloured noise channel
with and without frequency-dependent path loss, respectively.

Satellite: Different channel models are considered in the
satellite communication, including both AWGN [173] and
Rician fading channel [202]. Specifically concerning satellite
orbit datasets, two-line element (TLE) datasets have been used
in both [169], [191]. In the former, the dataset was derived
from [216], while in the latter via the Ansys STK [217].

UWB: Concerning UWB, a MATLAB simulation is
performed in [192], modeling the UWB signals as the first
derivative Gaussian pulses, and the channel is modeled as
AWGN. To test the performance, [185] considers both sim-
ulation and experimental tests. The simulations have been
performed in MATLAB with receivers implemented following
the IEEE 802.15.4z standard and channels compliant with the
IEEE 802.15.4a standard. In particular, both LOS and NLOS
have been included.

C. Experimental Setups and Public Datasets

Table VII collects a list of datasets available online that
may be used to develop/test new channel-based authentication
techniques, classified by wireless technology and measured
channel features. In the remaining part of the section, we
discuss the use of simulation data, experiments, and datasets
in wireless technology.

WiFi: Several works have provided experimental results
on WiFi networks. First, a public dataset containing RSS
and channel measured from WiFi access points, placed at
increasing distance from a reference transmitter [221].
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In [224], a SDR platform for the WiFi PHY layer has been
implemented and CB PLA is performed on the CSI, RSS, and
frequency offset. In [153], the CSI was considered in a typical
indoor scenario with fixed locations of the users.

A dedicated prototype has been developed to test the perfor-
mance of the AoA-based PLA solution described in [194]. The
developed access point has two FPGA platforms, with four
radio front ends and four antennas each. The clients are two
Soekris boxes, equipped with Atheros IEEE 802.11g radios.

For the proximity-based PLA solution of [171], experiments
were performed with ten Nokia N80O Internet Tablets, show-
ing that the proposed solution can reliably detect attackers as
close as two meters away from legitimate devices.

Experimental results on the clustering-based approach of
CFR for authentication have been reported in [157], [168]
where an IEEE 802.11n WiFi network was considered, with
two laptops (Lenovo T500 and T61) serving as monitors that
collect the wireless packets. A commercial wireless Linksys
E2500 access point is the device to be authenticated, transmit-
ting 10 packets/second. For each packet, the CFR relative to
30 subcarriers is extracted with equal spacing among the 56
subcarriers of a 20 MHz channel.

In [156] experimental results are reported with a commer-
cial WiFi device, Huawei TAS-ANOO operating as a station,
transmitting at a rate of 100 packets/second in 20 MHz WiFi
the channel on 2.4 GHz.

The experimental results reported in [155] have been per-
formed on the Microsoft Sora SDR, reaching a false positive
and false negative ratio of 1073,

In [176], a WiFi operating at mmWave (60 GHz band) is
considered, with reference to the IEEE 801.11ad standard. The
considered feature is the SNR trace obtained at the receiver in
the sector level sweep (SLS) process, and an ML approach is
used to authenticate the message. Talon AD7200 routers and
MG360 WiGig USB Adapters are used to perform experiments
in a meeting room, achieving a sum of MD and FA probability
less than 1%. In [175] experimental results for authentication
are presented, based on the dataset of [176].

In [170], experiments are conducted for the authentication
based on the verification of SNR series observed at Alice
and Bob, through a statistical method. Alice, Bob, and Trudy
are implemented on Dell E5400 laptops, which usethe Intel
iwl5300 chipset, operating IEEE 802.11g with channel one in
the 2.4 GHz frequency, with a transmission rate of 12 Mbps
and transmission power of 15 dBm.

Many works perform dedicated experiments [131], [132],
[144], [167], deploying three or more USRPs in an indoor
environment mimicking an office or industrial context, with
parameters following the standards, e.g., IEEE 802.11a/g and
IEEE 802.11n/ac.

The GNN-based solution proposed for the channel variation
in [174] in the artificial dataset training framework, exploits
the dataset from [220], a publicly available WiFi fingerprint
dataset which collects fingerprints collected with 21 devices
in an indoor scenario.

10T & Industrial IoT: As in the WiFi context, many works
only perform dedicated experiments, using again USRPs de-
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TABLE VII
SUMMARY OF PUBLICLY AVAILABLE DATASETS FOR CB AUTHENTICATION
Wireless .
Technology Dataset Paper Features Brief Summary
WiFi, IoT, [218] [146], [160], [162], csI Data collected in industrial environments and
Industrial IoT [164], [177], [210] open-area sites by NIST
SLS SNR traces collected from the communication
[219] [175]. [176] SNR between AP and clients at mmWave frequencies
- Fingerprints collected in an indoor scenario from
WiFi 2201 [174] RSS 21 different Android devices
[221] B RSS Me_asured_ from two Raspberry Pls, placed at
various distances from one another
UWAC [222] - CIR Experiment performed in Kauai (Hawaii) in 2011.
[223] [151] CIR Long-range experiment performed in the
- Mediterranean Sea in 2019.

ployed in an industrial-like environment, e.g., [161], [209],
eventually also in a cooperative setting, such as [163].

In [166], the IoT nodes are emulated using USRPs, placed
in various positions in an indoor environment.

A popular dataset for testing in the industrial IoT context
is [218], described in [225], [226]. For instance, both the
open area test site and the automotive assembly plant scenario
datasets were used in [143]. The dataset was also used for
training and testing in [146], [160], [162], [164], [177], [210].
Many works use both the NIST dataset and a dataset from
dedicated experiments. A first example is [164], where the
experimental dataset was collected using three Lenovo X220
laptops (Alice, Bob, and Trudy) placed approximately 2—4 m
apart transmitting at 2.4 GHz, using IEEE 802.11n protocol,
with 3 transmitting antennas, 2 receiving antennas, and 30
subcarriers using Linux CSI Tool. In [210], the performance
of the channel variation-based ML approach was tested us-
ing [226] for the static scenario, then dedicated experiments
were performed using two USRPs to account for the dynamic
one.

Underwater Acoustic: Due to the lack of a standard
channel model and the impact of the environmental condition
on the measurement, experiments, and proof of concept, often
called sea trials are common in UWAC studies [186], [188],
[189], eventually re-using datasets from previous experiments,
such as in [188], where Bragagnolo et al. used the Hadera
(Israel) dataset from [186]. However, only a few datasets are
actually publicly available. For instance, a popular dataset is
the KAMI11, which was only published with the Watermark
simulator [222]. An example of a public dataset is instead the
LR19 [223] used, for instance, in [151].

Another alternative is to perform tests in (typically indoor)
pools: in [150] an experiment is run by collecting measure-
ments from a 25 X 6 x 1.6 m>® non-anechoic pool where 9
transmitters and 1 receiver were deployed.

Satellite: Since not many works consider PLA for satel-
lite, very few experiments have been reported yet. An excep-
tion is [178], where the Abdrabou et al. collected real LEO
satellite data using the system toolkit.

UWB: Dedicated experiments have been performed to
test the performance of the solution proposed in [185]. In
particular, two nRF52840-DK boards have been used to im-
plement the legitimate users, while a NUCLEO-Z429 is used

for the attacker, all equipped with Qorvo DWM3000 modules.
1000 CIRs have been collected in both static and dynamic
scenarios.

XII. CHALLENGES AND FUTURE RESEARCH
A. Challenges for RFFI

Despite significant development in deep learning-driven
RFFI technology, numerous challenges remain unresolved.
This section elaborates on these challenges and presents a
summary based on the most recent studies.

1) Lack of Capacity Evaluation: The term ‘capacity’ is
used to describe the maximum number of wireless devices
that can be accurately distinguished by analysis of their RFFs,
which is critical for an authentication technique. Most RFFI
studies use commercially available wireless transmitters, but
most involve fewer than tens or dozens of devices, and few
large-scale experiments have been conducted. To the best
of the authors’ knowledge, the work in [52] presents the
experiment with the largest number of wireless devices, up
to 10,000. However, this large dataset has not been published,
and researchers in this community cannot use it to explore the
maximum capacity of the RFFI technique. A few studies have
attempted to provide a theoretical analysis of the user capacity
in RFFI systems [227], [228]. Nevertheless, achieving an
accurate prediction of the user capacity remains a significant
challenge, particularly for deep learning-driven RFFI systems.
There is still a need for large-scale experimental evaluation
and theoretical analysis to assess the capacity of RFFI.

2) Lack of Stability Evaluation: As an identifier used for
authentication, the stability of RFFs is critical. However, there
are rare studies that systematically investigated the stability
of RFFI systems. In particular, the characteristics of RF
components can change slightly due to variations in the
surrounding environment, such as temperature and humidity,
and hardware ageing. The authors in [21], [22] indicate that
the oscillator frequency is sensitive to temperature variations
and that CFO compensation at the receiver side can improve
system stability. However, these studies only focus on the
stability of the frequency offset function resulting from the
oscillator impairments, while the other hardware character-
istics are not investigated. Moreover, the authors in [229]
experimentally demonstrate that the RF fingerprints of SDR



transmitters exhibit significant variations when transitioning
between on and off states. However, the evaluation of wireless
transmitters beyond SDRs remains an open area for explo-
ration. The comprehensive evaluation of the RFF stability and
the design of robust feature extraction algorithms represent
crucial directions for future research.

3) Lack of Benchmark Datasets: The RFFI research com-
munity does not have a benchmark dataset that is as widely
used as ImageNet in computer vision. This limits comparisons
among studies. In addition, researchers without RF hardware
and experience in designing wireless signal acquisition sys-
tems cannot efficiently engage in RFFI research. As discussed
in Section VI, some studies have released public datasets
detailing the collection environments and hardware setup [29],
[54], [230]. However, most of these datasets still do not
meet benchmark requirements in terms of dataset size, device
population, and diversity in channel conditions. The collection
and publication of large-scale benchmark datasets of various
wireless protocols remains an urgent need in the field of RFFI.

4) Limited Studies on Adversarial Machine Learning At-
tacks and Defense: Cutting-edge RFFI schemes heavily rely
on deep learning. However, recent research in the ML commu-
nity has revealed that deep learning is vulnerable to adversarial
machine learning (AML) attacks, including in the context of
wireless systems [231], [232]. Depending on the attack phase,
AML can be categorized into backdoor attacks launched in
the training stage [233], [234] and adversarial/evasion attacks
launched in the inference stage [235]-[239].

The AML attacks can be launched during the model training
stage, named backdoor attacks [233], [234]. Zhao et al. pro-
pose the first backdoor attack on RFFI systems, and evaluate
the algorithm on three WiFi datasets and a LoRa dataset.
The results demonstrate that the attack can be successfully
launched in either the time domain or the time-frequency
domain [233]. The authors in [234] further investigate the
backdoor attacks against low-earth orbit satellite fingerprinting
systems.

The AML attack can be launched during the model infer-
ence stage, named adversarial/evasion attacks [235]-[239]. For
instance, Ma et al. demonstrate that adding perturbations to the
deep learning input can interfere with the identification result
and can even mislead into a specific identity [237].

More research is required to study the AML as well as the
countermeasure. For example, the transmission of perturbation
in evasion attacks will experience channel propagation, but
the effect is not properly studied yet. Adversarial training and
randomized smoothing are used as countermeasures for Wi-Fi
sensing [240], but there is no such study for RFFIL.

5) Limited Studies on RFF Concealment: While the ma-
jority of the research focuses on using RFF for legitimate
purposes, i.e, device authentication, it can also be used mali-
ciously, e.g., device tracking in [101]. Hence, it is essential to
design RFF concealment approaches.

Abanto-Leon et al. added a randomized phase to each
subcarrier in a WiFi OFDM system to ensure privacy, when
non-linear phase errors are used for RFFI [241]. They proved
that when the phase is generated via a random number
generator, the approach is robust against statistical attack.
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Givehchian et al. obfuscated the CFO of BLE devices for pre-
venting tracking attacks [102]. They implemented their CFO
obfuscation method using TT CC2640 chipsets and carried out
a comprehensive experimental evaluation, which demonstrated
the feasibility.

These approaches only focus on the phase errors and CFO
as hardware fingerprints, and their identification is based on
comparing their similarities. However, deep learning RFFI is
learning all the available hardware impairments. It is not clear
how RFFI will be affected if only one hardware feature is
obfuscated as other impairments remain the same.

B. Challenges for Channel-Based Authentication

1) Lack of Scalability: Attacks against CB authentication
can be deployed by transmitting from different positions until
the features estimated by Bob are similar to those of Alice’s
transmissions. An alternative is that the attacker precodes the
signal before transmission to introduce the features suitable
for authentication [9]. At the moment, the search space for an
attack is limited, making the attack easy. Indeed, more efforts
should be focused on the factors that make the attack harder
in a scalable way. Such efforts include the investigation of a)
scaling laws for the attack success probability with respect to
design parameters such as the number of antennas or the length
of pilot signals, b) new approaches such as the CR-PLA that
introduce further randomness in the authentication process, c)
new bounds on attacks based on physical constraints obtained
from specific technologies (i.e., type of antennas used by
Bob): a recent example is given by [242] that proved that an
effective attack on AoA-based PLA can succeed only under
very stringent conditions on the attacker location and hardware
capabilities.

2) Lack of Integration: Since the first studies, PLA has been
proposed as a security technique to be integrated with other ap-
proaches for authentication. However, such an integration has
not been thoroughly investigated. A full protocol for PLA that
integrates cryptographic approaches, for example, to secure the
identification association phase or to be deployed when PLA is
under attack, is yet to be investigated. Moreover, integration of
CB-PLA with authentication based on wiretap coding is still
in its early stages and deserves further investigation. Lastly,
integration may also include the use of diversified features
for authentication, also coming from different layers of the
communication stack: this is also an area that deserves more
studies. In this case, ML techniques could be particularly
beneficial to capture the relation among the features, but such
solutions should be, at the same time, effective in the specific
scenario of deployment and robust against adversarial attacks,
which leaves many open research points.

3) Lack of Benchmark Datasets: Also for CB-PLA as
RFFI, there are not yet well-established datasets to be used for
benchmarking different approaches. The difficulty of obtaining
such datasets is related to the specific technologies that can
be deployed (type of antennas, operating frequencies), the
different kinds of environments in which the testbed operates
(indoor, outdoor, with different transmit-receive distances),
and the need to obtain measurements from several positions at
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the same time to assess also the knowledge of the attacker and
the statistical relation of his channel to the legitimate channels.
In this sense, apart from more extensive data collection and
the use of existing simulators that provide spatially consistent
channel realization, the adoption of PLA techniques in the
standard would encourage a discussion from the community on
reference scenarios to be used for benchmarking, thus giving
a boost to PLA adoption.

C. Future Directions

1) Generative Al Approaches: Generative Al represents
transformative Al technologies to create new content, such
as GAN and large language models (LLM). Generative Al
has been widely used in securing communication from the
physical layer [243], but its application in device fingerprinting
is relatively limited.

Generative strategies/architectures include AEs, VAE, dif-
fusion model, etc. They are used to design detectors in the
anomaly detection context. They can also be used to generate
the training dataset, e.g, VAE is used to generate satellite
data [244]. This may allow a binary classification-based detec-
tor to have an initial offline training with artificial but realistic
data, later refined online. In the context of anomaly detection,
generative models may be used to generate an artificial dataset
(see Section X-C). Regarding diffusion models, it is used for
denoising in RFFI [110].

Recently, LLM have proven their effectiveness in multiple
fields, even in the communication context [245]. Still, no
solution that exploits LLM has been proposed in the device
fingerprinting context. Due to their generalization capabilities
and if trained in a multimodal manner, thus taking as input also
information concerning, for instance, the environment, LLM
may be used to generate high-fidelity artificial datasets, thus
leading to even more robust detectors.

On the other hand, generative models may be used by
the attacker to design effective attacks, as done in the RFFI
context in [246]. In particular, an attacker provided with the
legitimate detector (or dataset used for training it) may exploit
a generative architecture to generate the attack samples that
are most likely to fool the verifiers. Thus, future research
directions should also include these attacks into account.

2) Emerging Communication Technologies: While the use
of device fingerprinting for securing communication technolo-
gies such as WiFi is consolidated, for newer communication
technologies, especially in the optical domain, only a few or
even no work at all considers device fingerprinting for securing
communication. This is the case, for instance, in VLC [247]
or even underwater optical communications, where, to the best
of the authors’ knowledge, very little research has been done.
Thus, a research direction may involve the translation of the
more consolidated solutions and algorithms into these new
technologies.

3) Interplay between RFFI and Channel-based Authentica-
tion: RFFI and channel-based authentication represent two
distinct but complementary approaches to wireless device
authentication. RFFI relies on the unique hardware impair-
ments inherent to individual devices, which are introduced

during the component manufacturing process. RFFI system
is implemented at the receiver side, which is well-suited for
scenarios where low-cost, infrastructure-independent security
solutions are required. In contrast, channel-based authentica-
tion exploits the unique properties of the wireless channel,
which are influenced by the surroundings; thus, it is effective
in rich scattering environments, where it is hard for the attacker
to predict, replicate, and compensate the attack signal to
effectively mimic the legitimate channel features.

The combination of RFFI and channel-based authentication
offers a promising solution to enhance wireless security. Hy-
brid authentication protocols can be designed: RFFI ensures
device-level identification based on unique hardware charac-
teristics, while channel-based authentication validates location
or monitors channel characteristics within a communication
session. In this case, attackers would need to simultaneously
replicate both the hardware impairments and the exact channel
conditions to bypass the dual-layer protection, significantly
increasing the difficulty of attacks.

XIII. CONCLUSIONS

This article presented a comprehensive survey on physi-
cal layer-based device fingerprinting, focusing on hardware
impairment-based identity authentication and channel features-
based location authentication. In particular, RFFI exploits
unique hardware impairments as devices are identified. Three
RFFI tasks, closed-set RFFI classification, open-set RFFI
recognition, and anomaly detection, were explained. The hard-
ware impairments of both transmitters and receivers were
modelled. A deep learning-based design was described. Three
RFFI research topics, channel effects elimination, noise mit-
igation, and receiver distortion mitigation, were reviewed as
they are essential for RFFI design. Finally, the experimental
methodologies for RFFI was described. Regarding CB-based
authentication, an overview of existing approaches has been
provided, including both statistics-based techniques and ML
solutions. Several features used for PLA have been introduced
and discussed, and implementations have been classified based
on the use of simulation or experimental tools. The remaining
research challenges for both topics were discussed, and future
research directions were suggested to make more robust device
fingerprinting approaches.
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