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THE RABIN CRYPTOSYSTEM OVER NUMBER FIELDS

ALESSANDRO COBBE, ANDREAS NICKEL, AND AKAY SCHUSTER

ABSTRACT. We extend Rabin’s cryptosystem to general number fields. We show
that decryption of a random plaintext is as hard as the integer factorisation prob-
lem, provided the modulus in our scheme has been chosen carefully. We investigate
the performance of our new cryptosystem in comparison with the classical Rabin
scheme and a more recent version over the Gaussian integers.

INTRODUCTION

Rabin’s cryptosystem [7] was the first asymmetric public-key cryptosystem for
which it was shown that any algorithm which finds one of the possible plaintexts for
every Rabin-encrypted ciphertext can be used to factor the modulus. It is performed
in the quotient ring Z/NZ where N = pq is the product of two large distinct prime
numbers. The public key is NV and the private key is the pair (p, ¢). Encryption is very
simple: To encrypt a message m € Z/NZ one just computes its square; so ¢ = m?
is the ciphertext. For decryption, one uses the knowledge of p and ¢ to compute
the square roots of ¢ (mod p) and ¢ (mod ¢). For this one can use the algorithm of
Tonelli-Shanks (see [2, §1.5.1], for instance), but there is an easier method for primes
which are congruent to 3 modulo 4: If y is a quadratic residue modulo such a p, then
+y®P+1/4 are the roots of y. Finally, one uses the Chinese Remainder Theorem to
obtain the (in general four) square roots of ¢ modulo N. It remains to decide which
of these roots is the original message m.

In this paper, we generalise Rabin’s scheme to rings of integers in number fields.
So let us fix a number field K with ring of integers Ok and choose two distinct
non-zero prime ideals p and q in Ok. Our scheme is performed in the quotient
ring O /n where n = pq. The public key is the modulus n and the private key
is the pair (p,q). The ciphertext of a message m € Og/n is again ¢ = m?. For
decryption one has to compute the square roots of ¢ modulo p and modulo q. For
this, we provide a generalisation of the Tonelli-Shanks algorithm. Finally, one uses
the Chinese Remainder Theorem to obtain the (again up to four) square roots of ¢
modulo n.

The special case of Gaussian integers has been treated by Awad, El-Kassar and
Kadri [I]. They use the (extended) Euclidean algorithm in Z[i] to make the iso-
morphism in the Chinese Remainder Theorem explicit. This does not generalise
to arbitrary number fields. We provide a version that only relies on the Fuclidean
algorithm in Z.

In order to speed up decryption, we also provide an easy and fast way to compute
square roots modulo primes p in O under certain restrictions on p, thereby general-
ising the above method for primes p = 3 (mod 4). This approach works particularly
well in number fields of degree 3, but does not work in any quadratic number field.
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This is one reason why we need to allow more freedom in choosing the field K. In-
deed, our runtime analysis shows that decryption of ciphertexts of comparable size
becomes a lot faster over carefully chosen cubic than over quadratic fields.

It turns out that it is a subtle question how to represent the public key n. There
are two reasonable ways to do this: either as a list of generators or in Hermite normal
form. We show that for most choices of p and q this is not secure. It indeed allows
us to factor n. Our considerations led us to the conclusion that the best choices are
prime ideals of the form p = (p), where p € Z is prime, i.e. we consider rational
primes p which are inert in K. So we also need conditions that guarantee us that a
given rational prime remains prime in K. We will provide a class of number fields,
where this can be checked by a simple congruence condition. So the public key in
our scheme is just N = pq where p,q € Z are primes that are inert in K. Then, as
in Rabin’s original scheme, an algorithm which finds one of the possible plaintexts
for each ciphertext allows N to be factored.

We also address the question how to find the original message m among the usually
four square roots of the ciphertext ¢ = m?. In the classical case, Williams [10]
proposed a method whenever both primes p and ¢ are congruent to 3 modulo 4. It
suffices to add two extra bits to the ciphertext: the parity and the Legendre symbol
(%) of the message m. If we assume in addition that p and ¢ are inert in K, we will
show that it is still possible to uniquely identify the original message by adding two
extra bits.

Finally, we note that Petukhova and Tronin [6] have generalised the RSA scheme
to general Dedekind domains with finite residue fields. However, they have not
addressed the following questions: (i) how to find such Dedekind domains, (ii) how
to make the required computations explicit, (iii) when is the scheme secure? Though
we focus on Rabin’s cryptosystem in this paper, many of our considerations also apply
to this generalisation of the RSA scheme. (i) Rings of integers in number fields are
a natural source of Dedekind domains with finite residue fields. (ii) Our remarks on
computations in residue rings of the form Ok /n also apply to the generalised RSA
scheme. (iii) The public key in the generalised RSA scheme is a pair (n,e), where
e is coprime with the cardinality of (O /n)*. Since we show that the knowledge of
n (if given as a list of generators or in Hermite normal form) often suffices to factor
it, one needs to impose the same conditions on p and q also in the generalised RSA
scheme.

1. THE PUBLIC KEY

1.1. Number fields and rings of integers. Let us first explain how we repre-
sent number fields. Let K be a number field of degree d over Q. Let 8§ € K be a
primitive element so that K = Q(#), which means that 1 =6° 60,62 ..., 69! consti-
tute a Q-basis of K. The minimal polynomial of # is the unique monic polynomial
go € Qlx] of lowest degree with root . It is irreducible of degree d and there is a
field isomorphism

(1) Qlz]/(g0) = K = Q(6), = 6.

So if we ‘choose’ a number field, we really pick a monic irreducible polynomial
g € Q[z]| and consider the field Q[z]/(g). If we want to view this field as a subfield
of the complex numbers, we choose a root 6 € C of g and apply . Then one has
ge = g and the set of embeddings of Q[x]/(g) into C is in one-to-one correspondence
with the roots of g.
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Let Ok be the ring of integers in K. Then one can always choose 6 € Ok so that
go has integral coefficients. The isomorphism then induces an isomorphism of
rings

Z[x]/(g0) ~ Z[0].

The ring Z[#] is always contained in O, but we do not have equality in general. This
will be crucial in the following, as we get the ring Z[0] for free once we have gy, but
it might be rather expensive to compute Ok in general. For instance, Zassenhaus’s
Round 2 Algorithm [2 §6.1.4] first factors the discriminant of gy, which is a hard
problem when the discriminant is large. Luckily, it will not be necessary to determine
Op for our purposes (this will be explained below). Alternatively, one can stick to
(classes of) number fields, where the ring of integers has been determined.

Ezample 1.1 (Quadratic number fields). Let 0 € Z be square-free, § # 0,1. Then
2% — § € Z[z] is irreducible and Q[z]/(2? — §) ~ Q(V/§). The ring of integers in
Q(V9) is Z[w], where w = V4§ if § = 2 or 3 (mod 4), whereas w = (1 + /9)/2 if
d =1 (mod 4) (see [2 Proposition 5.1.1], for example). So in the latter case the
index of Z[/§] in Og(vs) 1s 2.

Ezample 1.2 (Cyclotomic fields). Let m be a positive integer such that m # 2
(mod 4). Let (, € C be a primitive m-th root of unity. Then Q((,,) has de-
gree p(m) over Q, where ¢ denotes Euler’s totient function. Here one always has
Ou(¢n) = Z[(m) by [2, Proposition 9.1.2].

Every a € K can uniquely be written as a = Zj (} a;0° with rational coefficients
g, - - ., q_1. If we use this representation for elements in K, addition becomes very

easy. For multiplication one essentially has to compute once the representations for
OF with 0 < k < d — 1.
We denote the norm of o € K by N(a).

FExample 1.3. In the case of quadratic number fields, computing the norm is very
simple. Suppose that & = a + bV € Q(v/0), where § # 0,1 is square-free and
a,b € Q. Then it is easy to see that N(«a) = a® — 6b%.

1.2. Prime ideals. For our scheme we need to work in residue fields of the form
Ok /p, where p is a non-zero prime ideal of Ox. However, we want to avoid computing
Ok and to work with Z[f] instead.

Let p be the rational prime below p and py := p N Z[A] the prime ideal of Z[0]
below p. The index of Z[f] in Ok is finite. Whenever it is not divisible by p, the
natural inclusion

Z[0]/pg — Ok [p

is an isomorphism. As p will be chosen to be a large prime, the probability that p
divides the unknown index [O : Z[6]] is negligibly small. However, there are even
methods to guarantee this.

Let us denote the discriminant of a polynomial g by A(g) and the discriminant of
K by Ag. If K =Q(0), then we have

A(gg) = Ax - [Ok = ZI0]].

So it is sufficient to choose a prime p that does not divide A(gg) and the latter is
computable (see [2 §3.3]). However, we can also use Mahler’s bound [5, Corollary
on p. 261]

A(ge) < Cp 1= d*L(gg)* 2,
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where we recall that d = deg(gs) and L(gg) := Z?:o la;| if g = Z?:o a;z’. This
bound is very easy to compute and choosing p larger than Cy will be sufficient for
our purposes.

In order to choose a prime ideal p we first choose a rational prime p > Cy. Then
the polynomial gy (mod p) € F,[z] is square-free and we let

90 =]]@ (modp)

be its decomposition into irreducible factors in F,[z]. Here g;(z) € Z[z] are taken to
be monic. Note that there are efficient algorithms for the factorisation of polynomials
modulo p, which indeed simplify if the polynomial is square-free |2, §3.4]. Then by
[2, Theorem 4.8.13] choosing a prime ideal above p is the same as choosing a factor
gj. Indeed the prime ideals are given by p; = (p,¢;(6)) and the residue degree
[Ok/p; : F,] is equal to the degree of g;.

We now fix such a choice and change notation slightly. We simply write p for the
prime ideal we have obtained in that way and rename the chosen g; as g, to make
the dependence on p visible. So we have p = (p, g,(6)), where g,(z) (mod p) is an
irreducible factor of gg(x) (mod p). Since

Z[0]/(p, 95(0)) = O/ (P, 90(6))

by our choice of p, we abuse notation and write p for the ideal generated by p and
gy(0) in both O and Z[f]. In the same way we choose a second large prime ¢ # p
and a prime ideal q = (g, g4(#)) above q. We write f, and f; for the residue degree
[Ok/p : Fp] and [Ok/q : F,], respectively.

1.3. The public key. The public key consists of the monic irreducible polynomial
go € Z[x] and the ideal n = pq. Alternatively, we may consider the polynomial gy
and thus the field K as fixed. For the security of a generalised version of the Rabin
cryptosystem it is crucial that it is not feasible to compute the decomposition into
prime ideals of n = pq, i.e. computing p and q assuming we know n.

First of all we observe that this is at most as hard as factoring the number N = pq,
where p and ¢ are the prime numbers below p and g, under the assumption that
we represent n in a way which allows to compute nNZ = (N). Indeed from the
factorisation of N, we easily compute all the primes of Ok dividing p and ¢ and we
just need to pick the correct ones. To decide which of the factors actually divide n
we can use the algorithm described in [2], §4.8.3] to compute the valuation of n with
respect to the different prime ideals.

Before continuing, we need to clarify how we present n. Recall that p is called
inert in K if p = (p). If both p and ¢ are inert, we have n = (N), where N = pq,
and we can publish the generator N. Now suppose that at least one of p and ¢ is not
inert. We claim that it is not secure to publish the four generators N := pq, pg,(6),
q9,(0) and g4(6)g4(0). To see this, we may and do assume that p is not inert. Then
the coefficients of g,(6) are not all divisible by p, as otherwise p = (p, g,(0)) = (p).
Hence the greatest common divisor of the coeflicients of ¢g,(f) and N is ¢ and we
have factored N.

Let us assume that g,(0) € p\p? and that g,() is coprime to ¢, and the same with
the roles of p and ¢ reversed. Both conditions can be achieved in polynomial time
by [3, Proposition 1.3.11]. In practice, we can replace g,(6) by g,(6) +p if g,(6) € p*.
Then the first condition holds. The probability that the second condition fails is
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negligibly small as ¢ has been chosen independently of p and the probability of a
random x € Ok to lie in a prime ideal above ¢ is at most d/q.

Under these conditions one has n = (N, h(#)) with N = pq and h = g, - g;. The
next result shows that this is still not secure unless we choose g, and g, of the same

degree, ie. f, = fq.

Proposition 1.4. Let K = Q(0), where 0 is a root of a monic irreducible polynomial
ge € Zlx]. Let p and q be two prime ideals of Ok lying over two distinct unramified
primes p,q € Z. Let us assume that the inertia degrees f, and fq of p and q are
distinct. Suppose that n = pq is given by a set of generators as described above or in
Hermite normal form, and wnNZ = (N). Then it is possible to efficiently compute p
and q.

Proof. We first show that we can factor N if we can compute the norm of n, namely
N(n) := [Ok : n] = prg/s. Indeed if N is the largest power of N that divides
N(n), then N(n)/N* is divisible by exactly one of the prime numbers p and ¢ and
ged(NV(n)/N® N) is a prime factor of N.

If n is described by its Hermite normal form, which is a square matrix, then the
norm of n is the ideal of Z generated by the determinant of the matrix [2, Proposition
4.7.4]. So we are done in this case.

Assume now that n = (N, h(f)) as above. We actually need to compute N (n) only
up to some factor which is coprime to N, so it is enough to consider

N((h(0))) = N (p)N ()N (a) = p" ¢/ N (a),

where N (a) is prime to N. As the index [Of : Z[#]] is not divisible by either p or ¢,
it is enough to compute [Z[0] : (h(#))], which can be done for instance via computing
the Smith normal form (see [2, §2.4.4]) of the quotient Z[6]/(h(6)). O

By the above proposition, there is an efficient algorithm to factor n if f, # f;.
Since this is not desirable, we focus on the remaining case f, = f;.

Let us consider the special case in which p and q are inert over q, i.e. f, = f; =
[K : Q]. Then p = (p), q = (¢) and n = (pq) and factoring n is clearly equivalent
to factoring its generator pg. Moreover, restricting to the case of inert primes has
some further positive side effects: the amount of information that can be sent with
our protocol becomes maximal and the computations which have to be performed
are easier.

In the case f, = f; < [K : Q] we can neither provide a proof that the factorisation
of n is as difficult as the factorisation of NV nor we can show that there is an efficient
algorithm to factor n. In the case of quadratic number fields, we can offer the
following result.

Proposition 1.5. Let N = pq be a product of two distinct prime numbers. Suppose
that there is an algorithm with the following property: For a randomly chosen non-
square 0 in the range 0 < § < N such that the primes p and q split in @(\/3), it
computes the factorisation of a randomly chosen ideal n = pq with probability at least
w > 0, where p and q are prime ideals of OQ(\/S) dividing p and q, respectively.

Then there is an algorithm that computes the factorisation of N after k steps with
probability at least 1 — (1 — w)*.

Proof. Choose a random non-square 0 < § < N. If ged(d, N) > 1, we can factor N
so that we will exclude this case in the following. Let us write § = 0?¢’, where &’
is square-free. Then Q(v/9) = Q(v/§') so that the index of Z[d] in Og(vs) Is either

b or 2b and thus coprime with N. As a consequence, p and ¢ split in Q(v/0) if and
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only if § is a square modulo p and ¢ and hence modulo N. So in this case we have
6 = a® (mod N) for some 0 < a < N. Note that actually @ > v/N as otherwise
d = a® would be a perfect square. This observation holds for all four square roots of
6 (mod N) and in particular for N — a so that we must have VN < a < N —+/N.

For the required algorithm, we first choose a random v N < a < N —+/N and take
0 < § < N to be a representative of the class of a®> modulo N. If § = b? happens to
be a square, then b is a root of §, but b # +a (mod N) so that ged(N,b—a) is either
p or q. If § is a non-square, we consider the ideal n = (N, a + \/5) in the quadratic
number field Q(v/8). We have seen above that p and ¢ split in Q(v/9). The norm
of a+ /0 is a® — 6 = kN for some 0 < k < N, since 0 < § < N < a?> < N2. Once
more, if £ happens to be a multiple of either p or ¢, we can factor N by computing
ged(N, k). So let us assume that this is not the case. Then we must have n = pq
for prime ideals p above p and ¢ above ¢g. If we can factor n, we find p and ¢, and
computing the ged of their norms with N we finally obtain p and ¢. This event has
probability at least w if we can show that J and n have been chosen at random.

For this, we observe that each non-square ¢ in the range 0 < § < N such that
the primes p and ¢ split in Q(v/9) is of the form § = a® (mod N) for exactly four
choices of @ in the range VN < a < N —+/N. If our choice a leads to the ideal
n=(N,a++6) =pq, then p = (p,a + /) and q = (¢,a + V). The second prime
above p is p := (p,a — V3) = (p, N — a + v/§). We define § and 1 similarly. Then
the root N —a of § (mod N) leads to n = pg. The third root a’ with ' = a (mod p)
and @/ = —a (mod ¢) leads to the ideal 0’ := (N, d’ ++/§) and 0’ = pg, since we have
that ' +v/0 = a++v/0 =0 (mod p), but @’ ++/§ & q as otherwise ¢ | (a—a’). Finally,
the root N — a’ leads to pq. So choosing a at random is equivalent to choosing § and
n at random.

This finishes the proof as we can apply the above method k times for different
choices of a. O

Remark 1.6. Note that for a fixed N and a fixed §, we are not able to find an ideal
n as required in the proposition, since this would be equivalent to compute a square
root of  modulo IV, which is known to be as hard as factoring V.

This means that for a fixed ¢ and for prime ideals p and q of Q(\/C_S) dividing split
prime numbers p and ¢, we do not know whether n = pq is difficult to factor, but it
seems likely that this is the case. Note, however, that if n is described by a set of
generators, these generators might carry some information about the factorisation.

Example 1.7. Let us examine the case of quadratic fields more closely. Let § € Z
be square-free and let # = V6. An odd prime p not dividing § can be either inert
or totally split, depending on whether the polynomial g(x) = z* — § is irreducible
modulo p or not. This condition can easily be checked by computing the Legendre

symbol (g).

Let us take for example 6 = —5. The primes which are inert are exactly the primes
p=11,13,17,19 (mod 20); so the first two primes which split completely are p = 3
and ¢ = 7. As explained above (up to the sign before v/=5), we get p = (3, 1+ +/=5)
and q = (7,3 ++/=5). Since 1 + /=5 is coprime to 7 and 3 + v/—5 is coprime to 3,
we obtain that

pg= (21, (1 +vV=5)(3+vV=5)) = (21, -2 + 4V/-5).

When, like in this example, both primes split completely the factorisation algorithm
described in the Proposition does not apply, but still the factorisation is at most
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as difficult as the factorisation of N = pq in Z. Since the security level remains at
most the same, the involved computations are not easier to perform and the message
space O /pq is isomorphic to Z/pqZ (so, in particular, of the same size), this setting
offers no advantages compared to the classical Rabin-cryptosystem and so we will
not pursue this further.

FExample 1.8. The next family of number fields we want to examine are cyclotomic
fields. So let m € N such that m # 2 (mod 4) and let ¢, be a primitive m-th root
of unity. It is well-known that Z[(,,] is the ring of integers in Q((,,), that the prime
ideals which ramify in Z[(,,] are those dividing m and for any other prime number
p, the inertia degree of p is equal to its order modulo m. By Proposition in our
choice of p and ¢ we need at least to make sure that their inertia degrees coincide;
actually by the considerations in the above example, we would like to take both p
and ¢ to be inert, which is equivalent to p and ¢ having order ¢(m) modulo m. This
can be achieved (for infinitely many primes) if and only if m is a power of an odd
prime or m = 4 (which is the case of the Gaussian integers Z[i]).

Let us take for example m = 7. Then the prime numbers which are inert in Z[(7]
are those congruent to 3 or 5 modulo 7, since 3 and 5 both have order 6 modulo 7.

2. SQUARE ROOTS MODULO IDEALS IN NUMBER FIELDS

Let K be a number field of degree d over Q with ring of integers O and let p
and q be two distinct prime ideals of Ok. Set n = pg. As before we denote the
rational primes below p and q by p and ¢, respectively. Since for our cryptographic
applications p and ¢ should be large, we can assume that they are both odd.

Note that we can compute p if the ideal p is given. Indeed in our applications p
will be given by a set of generators, where the first is equal to p, but even if that is
not the case, we can compute the norm N(p), which is a (small) power of p. The
exponent is at most d. From this, one can compute the prime p. If K is a Galois
extension of Q (as in any of the examples discussed above), we actually know that
the exponent must be a divisor of d. Finally, if p is inert in K, the exponent is
actually equal to d.

2.1. Chinese Remainder Theorem revisited. For our generalisation of Rabin’s
cryptosystem we need an algorithm that computes the roots of any square in Ok /n,
under the assumption that we know the prime factors p and q of n. The first tool is
an explicit version of the Chinese Remainder Theorem for O in which the involved
isomorphism can be efficiently implemented on a computer. More precisely, we need
to compute the inverse of the canonical isomorphism

(2) Oxg/n~0k/pxOk/q, m+n—= (m+p,m-+q).

In [I] the authors use the extended Euclidean algorithm in Z[i] to construct an
inverse, but the ring of integers Ok is not Euclidean in general. The following
algorithm solves this problem by using only the fact that Z is a Euclidean domain.

Algorithm 2.1 (Inverse of (2)). Given x +p € O/p and y + q € Ok/q this
algorithm finds an m € O which is mapped to the pair (x + p,y + q) under (2).

(1) Compute the rational primes p and q below p and q, respectively.

(2) Use the extended Euclidean algorithm in Z to compute Bézout coefficients
a,b € Z of the equation ap + bqg = 1.

(3) Output m = xbq + yap € Ok.
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2.2. Tonelli-Shanks for number rings. So we are left with the problem of com-
puting square roots in Ok /p and O /q, which can be done by a generalised version
of the algorithm by Tonelli-Shanks. We let f be the inertia degree of p (the com-
putation of f can be done efficiently). By definition, the residue field Ok /p has p’
elements, so N'(p) = p/, and its group of units (O /p)* has p/ — 1 elements.

Proposition 2.2 (Tonelli-Shanks for number rings). Let c+p € Ok /p be a non-zero
element which is a square. Choose a non-square m +p € Ok /p and s,t € N such
that 25 -t =p/ — 1 and t is odd. Let d +p € Ok/p be the multiplicative inverse of
c+p € Ok/p. Then there exists i € {1,2,...,2°7 '} such that

(m+p)* = (d+p)'

and
((c+p)D2(m + p)) = ¢ + p.

Proof. Since m~+p is not a square and (Og /p)* is a cyclic group of order 2°¢, the order
of (m + p)t is exactly 2°. The order of (d + p)! divides 2°~!. The existence of 7 then
follows from the fact that (Ox/p)* is cyclic. The second formula is immediate. [

We note that all the numbers required in the proposition can be computed effi-
ciently, so that Proposition provides an efficient way to compute a square root of
c+p:

(1) A non-zero element z 4+ p € O /p is a square if and only if (z + p)®' /2 =
1+p. This condition can be efficiently checked using the Square and Multiply
Algorithm and since half of the elements are non-squares, it is easy to find a
non-square element by very few trials (with a high probability).

(2) To compute s and t we simply have to divide p/ — 1 by 2 as many times as
possible and then stop. To find ¢ efficiently by trials it is crucial that 2° is
not too large, which we expect to be the case for most of the choices of p.

(3) To compute d+p we first consider the product ¢ of all the non-trivial Galois-
conjugates of ¢ in a Galois extension of Q containing K. Then it is well-
known that c¢ € Z is prime to p and that ¢ € Og. Now we can solve
Bezout’s equation ccx + py = 1 for some x,y € Z. Thend+p =cx+pis a
multiplicative inverse of ¢ + p.

2.3. Fast square root extraction. In the case of the classical Rabin scheme, i.e.
in the case K = Q, there is a more efficient way than the Tonelli-Shanks algorithm
to compute square roots modulo a prime p provided that p = 3 (mod 4). For general
number fields, we provide the following generalisation.

Proposition 2.3. If |Ok/p| =3 (mod 4) and ¢+ p € Ok /p is a non-zero element
which is a square, then
(c + p)(Ox/plD/4

is a square root of ¢+ p.

Proof. Since ¢ + p is a square, its order divides (|Ok/p| — 1)/2. Therefore we have
that

((c + p)IOK/PHD/AY — (¢ 4 p)IOK/PHD/2 — (¢ p)(IOKPID2 (0 4 p) = 4 p,
as desired. 0J
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By the discussion in the previous section, we are mainly interested in primes which
are inert and by the above proposition we have a gain in efficiency in the computations
if we restrict to the case |Ok/p| = 3 (mod 4). Unfortunately, these two conditions
are incompatible in quadratic number fields, since then for an inert odd prime p,
|Ok/p| = p?> = 1 (mod 4). This motivates us to examine cubic number fields as
p® = p (mod 4). Since we also want an efficient way of checking if a prime is inert,
it turns out that taking fields of the form Q(\S’/E) might not be the optimal choice.

Example 2.4. Some very interesting examples of cubic extensions with good charac-
terisations for families of inert primes are subfields of cyclotomic extensions.

The first example we consider is the maximal real subfield of Q(¢;), i.e. the field
Q(¢r + (7). By [9, Proposition 2.16] the ring of integers of that field is Z[(; + (7]. We
can easily compute the minimal polynomial of (; + (7, namely a3 + 22 — 22 — 1. The
primes which are inert in Q(¢; + (7) are those with inertia degree divisible by 3 in
Q(¢7). We have already seen that these are the primes whose classes modulo 7 have
an order which is a multiple of 3, namely those congruent to 2, 3, 4 or 5 modulo 7. In
order to use the simplified computation of square roots above, we restrict to primes
congruent to 3 modulo 4. Summarizing, we want to take prime numbers congruent
to 3, 11, 19 or 23 modulo 28.

Similarly, we can consider the maximal real subfield of Q((y), i.e. Q(Co -+ (o). The
minimal polynomial of (g + (o is 2 — 3z + 1 and a family of inert primes consists
of those which are congruent to 2, 4, 5 or 7 modulo 9. This leads to considering the
primes congruent to 7, 11, 23 or 31 modulo 36.

This can be done for every cyclotomic field whose degree is a multiple of 3. From
Q(¢13) we obtain the extension given by a root of 23 +x? —4x +1; from Q((y9) we get
2% + 2% — 6x — 7. Note that in this last example, the largest power of 3 dividing the
degree of the cyclotomic field over Q is 9, so in order to make sure that a prime is
inert in the subfield of degree 3 we need to require that the order of p modulo 19 is a
multiple of 9, not just of 3, which leads to the primes congruent to 2, 3, 4, 5, 6, 9, 10,
13, 14, 15, 16, 17 modulo 19. Together with the usual requirement p = 3 (mod 4),
we get the acceptable congruences to 3, 15, 23, 35, 43, 47, 51, 55, 59, 63, 67, 71
modulo 76.

2.4. Square roots and factoring. We end this section with an examination of the
converse problem, which will be relevant in the discussion about the security of our
cryptosystem.

Proposition 2.5. Let K be a number field and let n = pq be the product of two
distinct prime ideals in Ok. Suppose my +n and ms +n are both square roots of the
same element ¢ +n € Ok /n and that m; +n # +my +n. Then we can efficiently
compute a factorisation of n.

Proof. By the Chinese Remainder Theorem , my and my are congruent to each
other modulo one of the prime divisors of n and to the opposite of each other modulo
the other one. Hence m; 4+ mqy belongs to exactly one of the prime divisors of n, say
p. Then the norm n of m; 4+ my is divisible by p but not by ¢q. Hence the greatest
common divisor of n and the norm A (n) is a power of p. The exponent is bounded
by the degree d so that we can find p. Since N'(n) is a product of a small power of
p and a small power of ¢, we also obtain ¢. Once we have p and ¢, we can compute
their decompositions into prime ideals in O as described in §1.2] Therefore the
two prime factors of n must belong to two families of prime ideals pi,...,p,, and
i - -+ Gn, With n,, n, < d. To decide which of the factors actually divide n, we can
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use the algorithm described in [2, §4.8.3] to compute the valuation of n with respect
to the different prime ideals. O

3. CHOOSING THE RIGHT SQUARE ROOT

An important issue of the Rabin-cryptosystem, even in its classical version over
Z, is the missing unicity in the decryption process: While encrypting corresponds
to squaring, decrypting means to compute a square root modulo N = pq, and in
general there are four of them. This question has been addressed in [4], where the
authors describe several ways of transmitting the required information in two extra
bits. The easiest method consists in taking as extra bits the parity of the message m
and its Legendre symbol over N. This system, which was originally proposed in [10],
is shown to work when both p and ¢ are congruent to 3 modulo 4, which, as seen
before, is a good choice also in order to simplify the computation of the square roots.
Of course, using some paddings with random bits, one has to make sure that the two
extra bits do not leak any information about the message, which would compromise
semantic security.

We will now see how to handle the issue of identifying the right square root in the
generalised setting treated in this paper. The requirement of taking inert primes p
and ¢ turns out to be very helpful also at this stage, so we will keep assuming it. As-
sume that the message we encrypt is of the form m = Zf;ol a;0°, where a; € Z/NZ
for 0 < i < d. Then the decryption process leads to four possible square roots
my, ma, mz,my of ¢ = m?. Write m; = Zf;ol a; ;0" with a;; € Z/NZ. Then each
coefficient a; ; must be congruent to +a; modulo p and modulo ¢, possibly with oppo-
site signs. In any case a; 1, a;2, a; 3, a; 4 are exactly the four square roots of a% modulo
N. Therefore to determine which of the possible messages my, mso, ms, my is the orig-
inal message m is equivalent to determining which of the coefficients a; 1, a; 2, @; 3, a; 4
coincides with a;. This means that we can literally use the same methods discussed
in [4] and apply them to a single component of the message, for example the one of
6°.

There is still one detail which needs to be addressed: some of the ag 1, ao 2, @3, @04
might coincide, which happens if and only if any one of the numbers a ; is congruent
to 0 modulo p or modulo ¢. If it is 0 modulo both p and ¢, then it is 0 modulo N
and so are all of the ag1,a02,a03,a04, as well as ay. If this is the case, then we
should just look at the next coefficient a; and store the corresponding bits for this
component. The second case is when g ; is 0 modulo p but not modulo ¢, or vice
versa. Having such a number is equivalent to knowing the factorisation of N, by just
computing ged (N, ap ;) with the Euclidean algorithm. This means that under our
assumption that N can not be factored, we conclude that the described situation
will never happen in practice.

4. THE RABIN CRYPTOSYSTEM IN NUMBER FIELDS

We can now introduce the specifications of our generalised Rabin cryptosystem to
number fields.

4.1. Key generation. First of all we need to choose a number field. This choice
could be part of the public key, but there is actually no reason for using a different
field every time; indeed, fixing a field K once and for all permits to increase the
efficiency of key generation by doing some preliminary computations.

We will distinguish and compare three different implementations for the following
families of number fields: quadratic fields, (subfields of) cyclotomic fields, general
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number fields. Since for the key generation algorithm, we want to choose prime
numbers that are inert in K, it is useful to find some congruence conditions which
are easy to verify. Let us see how to do this in the three mentioned cases.

Case 1. A quadratic field K = @(\/5), where 0 is a square-free integer, which is
not too big. A sufficiently large prime p will not ramify in K and it is inert if and

only if 22 — § is irreducible modulo p, i.e. if and only if (%) = —1. Using quadratic

reciprocity and its supplements, we can find a list of congruences modulo 9, 46 or 89
which p must satisfy.

Case 2. A cyclotomic field K = Q((,,), where m = ¢* is a perfect power of an
odd prime number ¢. Then a prime p is inert if and only if its class modulo m is a
primitive element modulo m. By computing one primitive element modulo m and
taking all of its powers with exponents coprime to p(m) = (¢ —1)¢*1, we find all the
possible primitive elements and, as in case 1, we obtain a list of possible congruences
modulo m which p has to satistfy.

If ¢ —1 = 3% with a > 0 and 3 1 b, then there is a unique subfield K3 of K of
degree 3 over Q. A prime p is inert in K3 if and only if its inertia degree in K is
divisible by 3*. Again this leads to a list of possible congruences modulo m.

Case 3. A generic number field K is defined by the minimal polynomial g of a
primitive element 6 of K. Then the prime numbers p which are inert are charac-
terised as those primes modulo which g remains irreducible. This condition needs to
be checked prime by prime in the key generation algorithm, making the computation
less efficient. It might indeed happen that for a given number field we do not find
any suitable primes.

Let us describe the key generation algorithm for a fixed field K. We need to choose
two prime numbers p and ¢ satisfying the conditions described above and such that
their product is not factorisable efficiently with any known algorithm. In particular
we need to make sure that p and ¢ are sufficiently large and are such that p — 1 and
q — 1 have some large primes among their factors. Here is a good way of achieving
this if we have some congruence conditions modulo some integer D like in case 1
and case 2: choose a random value ¢ among the allowed congruences, choose random
numbers k larger than 2%, where ) is a fixed security parameter, until £ = 2kD + 1
is prime. Finally take h = 0 and increase it by 1 until p = (hD +c¢—1){ + 1 is
prime. By construction p is a large prime congruent to ¢ modulo D and such that
p — 1 is divisible by the large prime ¢. The same construction is used to choose gq.
The couple (p, q) is the private key, the product N = pq is the public key. In the
generic case 3 we can just choose random primes p and ¢ and need to check prime
by prime whether the polynomial g factorises modulo p and ¢; this should be quite
time consuming.

In the cases where we cannot apply the fast square root extraction of §2.3] the two
non-squares which are required for the Tonelli-Shanks algorithm can be determined
once and then stored for further use as part of the private key. This speeds up
decryption slightly.

4.2. Rabin scheme over number rings. Suppose we have given a monic irre-
ducible polynomial g € Z[x] of degree d and a public key N = pq, where p and ¢ are
two distinct primes, which are inert in K = Q[z]/(g) and congruent to 3 modulo 4.
We let 0 := z (mod g) so that Z[0] = Z[z]|/(g). If 0 # m = Zf:_ol a;0" € Z[0]/(N)
with a; € Z/NZ, 0 < i < d, then we write a(m) for the first non-zero coefficient of
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m, i.e. a(m) := a;,, where a;, # 0 and a; = 0 for all i < ip. In our implementation
we will assume for simplicity that ag # 0.

Encryption. Suppose Alice wants to encrypt a (non-zero) message m = Zf;ol a;0'
with a; € Z/NZ, 0 < i < d. Then she computes ¢ = m? (mod N), the parity

by = a(m) (mod 2) of a(m) and by = 3 (1 — (%)) € {0,1} and transmits the
triple (c, by, by) to Bob.

Decryption. Bob computes the square roots of ¢ (mod p) and ¢ (mod q) either
with the Tonelli-Shanks algorithm (Proposition or - whenever possible - via
Proposition [2.3, He computes the Legendre symbols modulo p and modulo ¢ of the
first non-zero coefficients of these square roots. Via Algorithm he combines two
of the latter to a square root m; of ¢ (mod N) having the correct value of b;. Note
that —m; then leads to the same value of b; and is also a square root of ¢ (mod N).
The original message is the one among m; and —m; having the correct parity bit by.

We provide an implementation of the described algorithms for the settings de-
scribed above in PARI on GitHub. We also included an implementation of the
classical Rabin cryptosystem in order to guarantee a fair comparison of running
times [T

5. SECURITY AND EFFICIENCY

In this section we examine some aspects of the implementation in more detail and
compare running times of our algorithms in different cases.

As for the key generation algorithm we have three different scenarios: in case 1
we can use a list of congruences for p and ¢ and we do the pre-calculations for the
Tonelli-Shanks algorithm, in case 2 we still have a list of congruences but we do not
need any pre-calculations, in case 3 we do not have a list of congruences and we
do pre-calculations. Concerning the running time, the pre-calculations required for
the Tonelli-Shanks algorithm are quite negligible and the number of candidates on
which to perform a primality test is on average the same as for the classical Rabin
cryptosystem or for RSA. The general case 3 is much slower because we have to
discard quite a lot of primes because they are not inert.

The encryption function is literally the same in all cases, since it just has to
compute a square in the relevant ring of integers modulo the public key. Note,
however, that the running time increases with the degree of the number field, since
we need to compute a square in a larger ring, whose elements are represented by
polynomials. We performed experiments over the Gaussian integers and the cubic
number field defined by the polynomial 2® + 22 — 22 — 1. The running time was in
average about 1.1 and 1.25 times as long as over Z, respectively. This is actually
very favourable, since there are twice or even three times as many bits available in
the plaintext space.

Concerning decryption there are only two different scenarios: one using the Tonelli-
Shanks algorithm and one using the simplified version of Proposition [2.3] which in
particular works in our degree 3 example. The running time of decryption over
Gaussian integers turned out to be about 23 times slower than in the classical Rabin
cryptosystem. Almost the whole time is required for the Tonelli-Shanks algorithm,
which was our motivation to consider fields of degree 3. In our example, the factor
we measured was slightly below 30. Taking the ratio with the number of bits of the

Thttps://github.com /alecobbe/RabinNF
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message this is, as expected, better than over Gaussian integers, but it is still less
efficient than the classical Rabin cryptosystem.

Let us explain what happens from a more theoretical point of view. Computing
the e-th power of a number modulo p with the square and multiply algorithm means
computing clog(e) multiplications within Z/pZ for some constant c. If O is the ring
of integers of a number field of degree 3 over QQ, then the computation of an e-th power
in Ok /(p) corresponds to 9clog(e) multiplications in Z/pZ. However, the powers we
need to compute over Z and Ok have exponents ’%1 and ’%, respectively. Having
a third power in the second exponent implies another factor of 3 in the required
number of multiplications in Z/pZ. To conclude, this analysis would explain a factor
of 27; the actually observed factor is just slightly larger.

To conclude, key generation takes about the same time for the classical Rabin
cryptosystem and its generalisations, provided we have a list of congruences that
guarantee that a prime p is inert in the considered field. The encryption is extremely
fast and becomes even more efficient in number fields, while decryption becomes less
efficient in general number fields, even though some extensions of degree 3 of the
rational numbers perform better than Gaussian integers.

As for security, we should say that our implementation was mainly conceived to
examine running times, but it uses the random function of PARI/GP, which is not
cryptographically secure. Besides that issue, we have already discussed that being
able to decrypt any ciphered message is equivalent to being able to factorise the
public key into its prime factors, exactly as for the classical Rabin cryptosystem. In
particular, it cannot be used for post quantum cryptography since an attacker having
access to a quantum computer can factor the modulus via Shor’s algorithm [8]. To
achieve semantic security, one should also introduce some random paddings, just as
for every public key scheme. We additionally point out that we are transmitting
two extra-bits carrying information about the degree zero term of the polynomial
representing our message; so that is where the padding should happen.

6. CONCLUSION

In this article we proposed a novel public-key cryptosystem which extends the clas-
sical Rabin scheme to general number fields. We have seen that encryption performs
very fast, but decryption is less efficient than for the classical Rabin scheme. However,
a more sophisticated variant for degree 3 number fields at least performs relatively
better than the case of quadratic number fields. Because public key cryptosystems
are generally used only to exchange keys for a more efficient symmetric encryption
scheme, their slower performance is typically not a significant disadvantage.

Our new scheme is provably equivalent to the factorisation problem of a large
integer N if the prime ideals p and q dividing the modulus n are chosen carefully.
In particular, prime ideals generated by rational inert primes have this property and
even further desirable side effects. These observations also hold for the RSA scheme
over rings of integers in number fields.
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