
ar
X

iv
:2

50
6.

09
56

2v
2

 [
cs

.C
R

]
 1

2
Ju

n
20

25

TooBadRL: Trigger Optimization to Boost Effectiveness of Backdoor Attacks on
Deep Reinforcement Learning

Songze Li*1, Mingxuan Zhang*1, Kang WeiB1, Shouling Ji2
1Southeast University, China
2Zhejiang University, China

{songzeli, mingxuan.zhang, kang.wei}@seu.edu.cn, {sji}@zju.edu.cn

Abstract—Deep reinforcement learning (DRL) has achieved
remarkable success in a wide range of sequential decision-
making domains, including robotics, healthcare, smart grids,
and finance. Recent research demonstrates that attackers can
efficiently exploit system vulnerabilities during the training
phase to execute backdoor attacks, producing malicious ac-
tions when specific trigger patterns are present in the state
observations. However, most existing backdoor attacks rely
primarily on simplistic and heuristic trigger configurations,
overlooking the potential efficacy of trigger optimization. To
address this gap, we introduce TooBadRL (Trigger Optimiza-
tion to Boost Effectiveness of Backdoor Attacks on DRL),
the first framework to systematically optimize DRL backdoor
triggers along three critical axes, i.e., temporal, spatial, and
magnitude. Specifically, we first introduce a performance-aware
adaptive freezing mechanism for injection timing. Then, we
formulate dimension selection as a cooperative game, utilizing
Shapley value analysis to identify the most influential state
variable for the injection dimension. Furthermore, we propose a
gradient-based adversarial procedure to optimize the injection
magnitude under environment constraints. Evaluations on
three mainstream DRL algorithms and nine benchmark tasks
show that TooBadRL significantly improves attack success
rates, while ensuring minimal degradation of normal task
performance. These results highlight the previously underap-
preciated importance of principled trigger optimization in DRL
backdoor attacks. The source code of TooBadRL can be found
at https://github.com/S3IC-Lab/TooBadRL.

1. Introduction

Deep Reinforcement Learning (DRL) can learn complex,
high-dimensional tasks. It is an important method for se-
quential decision-making. DRL has led to progress in areas
such as large language models [1], healthcare [2], energy
management [3], autonomous vehicles [4], and finance [5].
DRL succeeds by combining the ability of deep neural
networks (DNNs) to represent data with the trial-and-error
learning process of Reinforcement Learning (RL) [6].

• * Songze Li and Mingxuan Zhang contributed equally to this work.
• B Correspondence to Kang Wei.

As DRL systems are increasingly deployed in safety-
critical and mission-sensitive scenarios, concerns about their
security and reliability have come to the forefront [7], [8],
[9], [10], [11]. Among various threats, backdoor attacks [12],
[13], [14] have emerged as a particularly insidious risk. In
such attacks, an attacker covertly implants a hidden trigger
during the training phase, producing malicious actions when
specific trigger patterns are present in the state observations,
which can typically be divided into two steps. The first
step is the trigger injection, in which the attacker injects a
predefined trigger pattern into a subset of observed states.
The second step is the reward manipulation, in which the
attacker alters reward signals to incentivize a malicious action
or by directly forcing the agent to execute it, thereby forging
a strong association between the trigger’s presence and
the desired deviant behavior. These attacks can potentially
undermine even the most powerful DRL agents, eroding trust
in automated decision-making systems [15].

While existing studies have established foundational
methodologies for DRL backdoor attacks, e.g., [16], [17],
[18], exploring the system vulnerabilities partly. However,
the vast majority of existing methods rely on overly simple,
heuristic trigger configurations. Most notably, triggers are
often injected by assigning fixed boundary or midpoint values
to arbitrarily or randomly chosen state dimensions, without
any principled selection or data-driven optimization [19], [20],
[21]. As a result, these attacks often have limited effectiveness
or cause significant degradation of the agent’s normal task
performance, thus increasing the likelihood of their detection
and failing to investigate the underlying vulnerabilities.

In fact, the design of a trigger itself is comprising
temporal considerations (when to inject the trigger), spatial
selection (which dimension to perturb), and magnitude
assignment (what value to assign), which is the cornerstone
determining the success or failure of a DRL backdoor
attack. Triggers poorly aligned with the agent’s internal
representation, improperly valued, or injected prematurely
often either fail to activate reliably or severely degrade the
agent’s benign performance. The trigger in existing works
is implemented using a fixed value, with no principled
dimension selection [13], [14], [22]. To investigate the impact
of trigger design, we systematically vary both the trigger
dimension and value, and compare their performance. The

https://github.com/S3IC-Lab/TooBadRL
https://arxiv.org/abs/2506.09562v2

Figure 1: Impact of trigger dimension (marker color) and
value (marker size) on attack and benign performance.
A darker background (top right corner) denotes desirable
regions, where a high attack success rate is achieved without
compromising normal task performance.

results, as depicted in Figure 1, reveal two key findings:
(1) Both attack efficacy and normal task performance show
significant fluctuations, and in some cases, they may even
experience complete failure, which depends on the specific
trigger configuration; (2) Unoptimized and non-selective
triggers prove to be unreliable and ineffective in practice.

To overcome these fundamental limitations, this paper
introduces TooBadRL (Trigger Optimization to Boost Effec-
tiveness of Backdoor Attacks on DRL), a unified framework
for systematic trigger optimization in DRL backdoor attacks.
To the best of our knowledge, TooBadRL is the first to
comprehensively optimize backdoor trigger design along
three critical axes: temporal (optimal injection timing),
spatial (selection of state dimension), and magnitude (value
assignment), resulting in robust and highly effective attacks
with minimal impact on benign performance.

Specifically, TooBadRL integrates three core method-
ological innovations: (1) Performance-Aware Adaptive
Freezing Mechanism. To minimize interference with normal
policy learning and determine the optimal temporal junc-
ture for attack initiation, we propose an adaptive freezing
mechanism. This mechanism employs statistical hypothesis
testing to introduce triggers only after verifying that the
agent’s main-task policy has stabilized, thereby preventing
premature policy degradation and ensuring the backdoor
implant remains robust. (2) Trigger Dimension Selection
via Shapley Values. For spatial optimization, we frame the
selection of the optimal trigger dimension as a cooperative
game among state dimensions. Employing Shapley value
analysis, we quantify each dimension’s contribution to
policy outputs. This principled, game-theoretic approach
systematically identifies the dimension whose perturbation
most significantly influences the agent’s policy, ensuring
maximal attack effectiveness. (3) Gradient-Based Adver-
sarial Magnitude Optimization. Once the trigger dimension
is selected, TooBadRL applies a gradient-based adversarial
optimization method to determine the optimal trigger magni-
tude. Leveraging the differentiability of DRL policies, we
iteratively adjust the trigger’s value to maximize the agent’s
probability of selecting the attacker-specified target action (in
discrete action spaces) or minimize the distance to a desired

target action vector (in continuous action spaces), crucially
respecting environment-defined bounds to ensure subtlety.

We evaluate TooBadRL comprehensively through ex-
periments spanning three mainstream DRL algorithms, i.e.,
Proximal Policy Optimization (PPO), Trust Region Policy
Optimization (TRPO), Advantage Actor-Critic (A2C), across
nine diverse environments, comparing against five attack
baselines. These extensive experimental results validate the
substantial effectiveness of our principled trigger optimization
approach as follows. Firstly, TooBadRL achieves exception-
ally high attack success rates; for instance, with PPO, attack
success rates reach up to 0.9994 on Acrobot, 0.9796 on
BipedalWalker, 0.9711 on Pendulum, and 0.9833 on Hopper.
Crucially, these high attack success rates are achieved without
compromising normal task performance, which remains
near the level of clean agents. Secondly, detailed ablation
studies confirm the necessity of each optimization component;
heuristic configurations lead to significantly lower attack
success rates and greater performance trade-offs, affirming
the value of our systematic approach. Finally, we demonstrate
robustness against existing defense methods, with experi-
ments indicating that our optimized triggers resist common
detection and elimination strategies, thereby empirically
validating the attack’s operational feasibility in practical
deployment scenarios.

In summary, our contributions are as follows:
• We propose TooBadRL, the first principled framework to

design backdoor triggers on DRL, which simultaneously
optimizes trigger injection timing, dimension selection, and
value assignment. The propose TooBadRL significantly
enhances attack effectiveness while preserving benign task
performance.

• Through extensive empirical evaluations across nine bench-
mark environments and three leading DRL algorithms
(PPO, TRPO and A2C), we demonstrate that TooBadRL
achieves state-of-the-art attack success rates, substantially
outperforming existing methods.

• We conduct comprehensive ablation studies and robustness
analyses against contemporary defense mechanisms. These
investigations not only validate the individual importance
of each component within TooBadRL but also expose the
vulnerabilities of current DRL systems to sophisticated,
optimized backdoor threats.

2. Related Work

Recently, backdoor attacks have attracted a lot of attention
in DNN empowered domains: such as computer vision [23],
[24], [25], natural language processing [26], [27], [28],
malware detection [29], [30], graph neural networks [31],
[32], [33], self-supervised learning [34], [35] and distributed
learning [36], [37], [38]. Meanwhile, backdoor attacks
present a significant threat to DRL [39], [40], [41], [42].

Research on backdoor attacks in DRL has investigated
vulnerabilities across various learning phases. For instance,
some attacks focus on the offline learning phase, where
agents learn from a fixed dataset. A notable example is
BAFFLE, which poisons a small fraction of the offline dataset

2

to significantly degrade the agent’s performance [19]. In
contrast, other research focuses on online learning phase,
where the agent learns from continuous interaction. In this
area, BACKDOORL introduces a backdoor for competitive
RL that forces a victim to fail [21], while other works have
designed temporal-pattern triggers for partially observable
states [43] and MARNet has targeted cooperative multi-agent
systems [20].

While these attacks operate in different settings, a more
fundamental distinction lies in the sophistication of their
trigger design. We can classify them into two main groups:
(1) Static and Heuristic Trigger Attacks. This dominant
category includes attacks that use triggers defined by fixed
rules, simple heuristics, or pre-selected patterns. The trigger
design is often manual and not systematically optimized
against the specific agent. For example, the seminal work
TrojDRL typically uses fixed values on pre-selected state
dimensions [13]. Similarly, while a more recent framework
like UNIDOOR adaptively tunes its reward function, its
trigger mechanism remains a simple, non-optimized threshold
value. [16]. The simplicity of these static triggers limits their
effectiveness and stealth. (2) Adaptive and Optimized Trigger
Attacks. These methods leverage training information about
the DRL agent to optimize triggers. For example, BadRL
takes a step in this direction by using mutual information to
help select which state dimensions to perturb [14]. However,
existing approaches still tend to focus on optimizing only a
single aspect of the trigger (e.g., the spatial dimension) in
isolation.

To the best of our knowledge, no existing work has
holistically optimized the backdoor trigger across all its
critical facets. This leaves a significant gap, as uncoordinated
trigger design can lead to suboptimal attacks. Our work,
TooBadRL, directly addresses this limitation. We propose
the first framework to systematically and jointly optimize
DRL backdoor triggers along three critical axes: temporal
(when to inject), spatial (which dimension to perturb), and
magnitude (what value to use).

3. Backdoor Attack on Deep Reinforcement
Learning

This section formally defines the problem of design-
ing and optimizing backdoor attacks against DRL agents.
Specifically, we provide the necessary background on DRL,
describe the characteristics of backdoor attacks within this
context, and then formulate the mathematical objectives for
achieving an effective attack.

3.1. Deep Reinforcement Learning

DRL is typically modeled as a Markov Decision Process
(MDP) [44], defined by a tuple M = (S,A, R, T, γ). This
includes the state space S, action space A, reward function
R(st, at), state-transition probability function T (st+1|st, at),
and discount factor γ ∈ [0, 1).

At each timestep t, the agent observes state st ∈ S
and selects action at ∈ A according to its policy πθ(at|st),

often parameterized by a DNN with weights θ. The en-
vironment then provides a reward rt and transitions to
a new state st+1. This interaction generates a trajectory
τ = {(s0, a0, r0), . . . , (sH , aH , rH)}. The agent’s objective
is to learn optimal policy parameters θ∗ that maximize the
expected cumulative discounted reward:

θ∗ = argmax
θ

Eτ∼πθ

[
H∑
t=0

γtrt

]
. (1)

DRL uses DNNs to approximate πθ and/or value functions
(e.g., Vπ(s), Qπ(s, a)), making it suitable for complex inputs
like images or sensor data [45], [46], [47]. Common DRL
algorithms include PPO [48], TRPO [49], and A2C [50].

3.2. Threat Model

Attacker’s Objective. We consider an attacker aiming to
surreptitiously compromise a DRL agent by implanting a
hidden backdoor. This backdoor compels the agent to execute
attacker-specified actions when a trigger is embedded in its
observations, while ensuring normal behavior and normal
task performance in the trigger’s absence. In addition, it
should be hard to find by human checks or standard defenses.
This means it should only slightly change normal state
observations.

Attacker’s Capabilities and Knowledge. We assume an
attacker knows the target DRL agent’s environment well, in
which it might compromise a data source or partly influence
the training environment without full access to how the agent
is developed and used. This includes its state space S, action
space A, and how states change T . The attacker can inject
triggers into states at the chosen time. As we know, if the
attacker can see the agent’s learning progress, it will optimize
trigger placement. However, these attackers do not directly
control or know the details of the DRL training algorithm
(like learning rates or network structure) or the final learned
parameters θ∗ of a normal agent. This threat model shows
realistic situations.

3.3. Problem Formulation

The core of backdoor attacks against DRL systems during
training phase lies in forging a strong association between
the presence of the trigger and the desired deviant behavior.
If a D-dimensional state s is injected in dimensions Itrig ⊆
{1, . . . , D} with values vtrig,j , the triggered state s′ becomes:

s′j =

{
vtrig,j , if j ∈ Itrig

sj , otherwise.
(2)

The attacker injects these triggered states during training and
manipulates learning signals to link the trigger to atarget.

Many existing backdoor attacks in DRL use simple, unop-
timized triggers (e.g., random dimensions, fixed values) [16],
[19]. This often leads to poor attack success or significant

3

harm to the agent’s normal task performance, making de-
tection easier. Our work addresses this by systematically
optimizing the trigger design.

Formally, a normal DRL agent learns a policy πθ∗ in
an MDP M = (S,A, R, T, γ) to maximize expected rewards
(see Section 3.1 and Equation 1). The attacker aims to train
a compromised policy πθ′ using a trigger function δ : S→ S
(where s′ = δ(s) as in Eq. 2). This policy must satisfy two
objectives:
• Attack Effectiveness: Maximize the probability that πθ′

selects atarget when given a triggered state s′ = δ(s):

max
θ′,δ

Es∼DS
[P (πθ′(a|s′) = atarget)] . (3)

• Normal Performance Preservation: Ensure the perfor-
mance of πθ′ on normal states is close to that of πθ∗ ,
keeping the difference in state-value functions bounded
by ϵ:

Es∼DS
[|V πθ′ (s)− V πθ∗ (s)|] ≤ ϵ. (4)

The problem is to devise an attack strategy (designing δ
and training πθ′) that solves:

max
θ′,δ

Es∼DS
[P (πθ′(a|δ(s)) = atarget)]

subject to Es∼DS
[|V πθ′ (s)− V πθ∗ (s)|] ≤ ϵ.

(5)

In such attack, when this trigger is absent, the DRL
agent acts normally. When the trigger appears in the agent’s
observed state, it causes the agent to perform a pre-defined
malicious action, atarget ∈ A.

Our framework, TooBadRL, focuses on finding an
effective trigger δ through optimization to better satisfy these
conditions. A well-optimized trigger is key to achieving
high attack effectiveness (Eq. 3) while preserving normal
performance (Eq. 4), as it can induce the malicious action
more reliably with minimal state changes.

4. Trigger Optimization of TooBadRL

A DRL backdoor attack generally involves two main
stages. The first is the attack preparation stage, where the
attacker designs and optimizes the backdoor trigger. The
second is the backdoor injection stage, where the attacker
uses this trigger to compromise the DRL agent during its
training process. Our work, TooBadRL, focuses on the
first stage: systematic trigger optimization. As outlined in
our Problem Statement (Section 3.3), an effective backdoor
attack needs a carefully designed trigger δ. This trigger
should reliably cause the target malicious action atarget when
present, without significantly harming the agent’s normal task
performance when absent. The characteristics of the trigger
can be summarized as follows: when it is introduced, which
state dimension it perturbs, and what value it assigns. This
section details the core of TooBadRL: a principled approach
to optimize these three trigger aspects. By optimizing the
trigger in the preparation stage, we aim to provide a highly
effective trigger that can then be used in the subsequent
backdoor injection stage (discussed in Chapter 5) to achieve
the attack objectives defined in Equation 5. A well-optimized

Figure 2: The evolution of normal task performance and
attack success rate for the Hopper task when backdoor
attacks are introduced from the start of training without a
freeze period. Early attack injection rapidly increases attack
success rate but causes persistent suppression of normal task
performance (normal task performance remains near zero
throughout training).

trigger directly improves the attack’s ability to meet these
objectives by increasing the probability of the target action
upon activation while minimizing interference with normal
operations.

4.1. When – Adaptive Freezing Mechanism

When to inject backdoor triggers is critical, which helps
balance attack performance with keeping normal task perfor-
mance. Figure 2 shows that injecting triggers too early can
stop the agent from learning the normal task. This operation
often leads to policies that are always unstable or perform
badly as recognized in [16]. Although existing study has
already adopted a freeze period, where the agent trains only
on the normal task without backdoor interference. However,
these methods usually use a fixed, predetermined time. This
fixed method cannot adapt to different environments, agent
learning speeds, or task difficulties.

To solve this, we suggest a new adaptive freezing mech-
anism. It dynamically finds the right time to end the freeze
period based on how the agent is learning. During this first
freeze period, the agent trains only to master the normal task.
Our mechanism finds the point when the agent’s improvement
in normal task performance slows down. This indicates that
the policy has largely converged and is robust enough to
withstand backdoor triggers with minimal disruption.

This adaptive mechanism works by regularly checking
the agent’s normal task performance every Teval training
steps. Let Pi be the average total reward during the i-th
check, which shows normal task performance. We keep a
history of these performance scores, P = {P1, P2, . . . , Pt}.
We use two separate sliding windows, each of size k:
a previous window Wprev = {Pt−2k+1, . . . , Pt−k} and a
current window Wcurr = {Pt−k+1, . . . , Pt}. To check if the
agent’s performance has stabilized, we use the Wilcoxon
Signed-rank Test [51]. This test compares the performance

4

scores in Wprev and Wcurr. The Wilcoxon test is a non-
parametric test for paired samples. It is good here because it
does not assume anything about how the performance data
is distributed. This test gives a p-value, pvalue. If pvalue > α,
where α is a set significance level (e.g., 0.05), we decide that
the performance improvements in Wcurr are not statistically
significant compared to Wprev. At this point, the freeze period
ends. The agent is considered to have a stable policy for
the normal task. Algorithm 2 (shown in Appendix A) gives
more details on this adaptive freezing mechanism.

4.2. Which – Trigger Dimension Selection

After the adaptive freezing mechanism stabilizes the agent
policy (Section 4.1), our method optimizes the backdoor
trigger spatially. This means finding the most influential di-
mensions in the agent’s D-dimensional state s = [s1, . . . , sD]
to perturb. The goal is to select a small subset of state
dimensions, Itrig ⊆ {1, . . . , D}, such that changes to these
dimensions cause the most significant and predictable al-
teration in the agent’s policy output f(s), maximizing the
backdoor’s effectiveness.

Traditional feature selection methods often prove in-
adequate in DRL due to context-dependent feature im-
pacts and temporal correlations [52], [53]. In this way,
we utilize Shapley Additive Explanations (SHAP) [54], a
model-agnostic framework from cooperative game theory, to
quantify each dimension’s contribution to the policy output.
We define ϕj(f, s) as SHAP value, which represents the
marginal contribution of dimension sj to f(s). Since exact
SHAP computation is often intractable for complex DRL
policies, we estimate ϕj(f, s) using a common approximation
technique. This involves fitting a local, weighted linear
surrogate model g(z′) to the policy’s outputs for perturbed
state instances:

g(z′) = ϕ0(s) +

D∑
j=1

ϕj(s)z
′
j . (6)

where z′j is a binary vector representing feature coalitions,
and ϕj(s) is the estimated SHAP value. The injected state sz′

is constructed by replacing features absent from a coalition
z′ with baseline values vbg,k (e.g., means from a background
dataset Xbg):

(sz′)k =

{
sk if z′k = 1,

vbg,k if z′k = 0.
(7)

The model g(z′) is trained by minimizing a weighted squared
loss L, expressed as

L(ϕ0, . . . , ϕD) =
∑
z′∈Z

[f(sz′)− g(z′)]
2
π(z′), (8)

where weights π(z′) are given by the Shapley kernel, ex-
pressed as

π(z′) =
D − 1(

D
k

)
k(D − k)

. (9)

Algorithm 1: Trigger Dimension Selection
Input: Agent policy f ; Background dataset Xbg;

Set of evaluation states Xexp; Number of
trigger dimensions K; Number of SHAP
samples per state Mshap

Output: Selected trigger dimensions Itrig
1 Compute feature-wise means vbg,j for all

j ∈ {1, . . . , D} using Xbg;
2 Initialize an empty list for aggregated SHAP values

for each dimension;
3 foreach state s(i) ∈ Xexp do
4 Estimate SHAP values ϕj(f, s

(i)) for all
dimensions j by:;

5 Generate Mshap coalition vectors
z′ ∈ {0, 1}D;

6 For each z′, construct perturbed state s
(i)
z′ as

per Eq. (7);
7 Compute policy outputs f(s

(i)
z′);

8 Fit the local linear model g(z′) using
Shapley kernel weights π(z′) and
minimizing loss L;

9 Extract ϕj(f, s
(i)) for all j;

10 Store these ϕj(f, s
(i)) values;

11 For each dimension j, calculate its global
importance Ij using Eq. (10) over all s(i);

12 Select the top-K dimensions with the highest Ij
values to form Itrig;

13 return Itrig;

Once SHAP values ϕj(f, s
(i)) are estimated for all dimen-

sions j across a set of Nexp evaluation states s(i) ∈ Xexp,
we calculate the global importance Ij for each dimension
by averaging its absolute SHAP values:

Ij =
1

Nexp

Nexp∑
i=1

∣∣∣ϕj(f, s
(i))

∣∣∣ . (10)

The state dimensions are ranked by Ij , and the top-K
dimensions with the highest global importance are selected as
the trigger dimensions Itrig. The detailed steps are shown in
Algorithm 1. This SHAP-based selection robustly identifies
state features whose manipulation is most likely to alter the
agent’s behavior effectively. Further implementation details
are provided in Appendix B.

4.3. What – Trigger Value Optimization

After selecting the trigger dimension(s) Itrig (or a single
dimension p) (Section 4.2), we need to optimize the trigger’s
magnitude. The goal of trigger value optimization is to find
an optimal trigger value v∗ for the chosen dimension p. The
value v∗ should maximally induce the agent’s policy πθ to
select the attacker’s target action atarget when injected into the
state. For discrete actions, we can maximize P (atarget); for

5

continuous actions, we can minimize the distance between
the output action and atarget.

Instead of using heuristic values, we formulate this
as a constrained optimization problem. We address this
problem through a gradient-based search, which harnesses
the differentiability of DRL policies to enable precise tuning.
The detailed steps are as follows.

Optimization Formulation. Given a valid range [vmin, vmax]
for dimension p, we find v∗ by solving the following
optimization problems. For discrete action spaces:

v∗ = argmax
v∈[vmin,vmax]

πθ (atarget | sbase[p← v]) . (11)

For continuous action spaces:

v∗ = argmin
v∈[vmin,vmax]

∥µθ (sbase[p← v])− atarget∥22 . (12)

In these two formulations, i.e., (11) and (12), sbase[p← v]
represents a base state sbase (e.g., an average state) with its
p-th dimension replaced by the candidate trigger value v,
and µθ(·) is the mean action vector predicted by the policy
network πθ.

Gradient-Based Iterative Search. The search begins with
an initial value v0, often the midpoint of the valid range
[vmin, vmax]. At each iteration k, a candidate state sk is
formed by substituting the current trigger value vk into
the p-th dimension of the base state sbase. A loss Lk is
then computed to quantify how effectively vk induces the
target action atarget. For discrete action spaces, this loss is
Lk = − log(πθ(atarget|sk) + ϵlog), with ϵlog for numerical
stability. For continuous action spaces, the loss is Lk =
∥µθ(sk)− atarget∥22. The gradient of this loss with respect to
the trigger value, gk = ∂Lk

∂vk
, is calculated using backpropaga-

tion. The trigger value is then updated for the next iteration,
vk+1, using a momentum-based approach: an intermediate
update uk+1 = βmomuk − ηkgk is computed, and the new
trigger value becomes vk+1 = clip(vk + uk+1, vmin, vmax).
Here, ηk is the learning rate and βmom is the momentum
factor; the clip(·) function ensures vk+1 remains within the
predefined valid range. This iterative process is repeated
for a fixed number of Nopt steps or until the change in vk
falls below a convergence threshold, yielding the optimized
trigger value v∗.

This gradient-based iterative search method is effective
to find a trigger value that reliably elicits the attacker’s
desired policy response, while adhering to the environment’s
observation space limits. By carefully optimizing the trigger
value, TooBadRL maximizes the backdoor’s effectiveness
and precision, simultaneously minimizing its potential to
disrupt the agent’s normal task performance. Please see
detailed algorithm steps and hyperparameter settings in
Appendix C.

5. The Proposed TooBadRL Attack

5.1. Overview of TooBadRL

After optimizing the backdoor trigger from temporal,
spatial, and magnitude aspects (Sections 4.1, 4.2, and 4.3),
the final stage of TooBadRL is to embed optimized backdoor
mechanism into the training process of DRL agent. It is an
active process with several key parts: precise trigger injection,
dynamic adjustment of attack frequency, strategic action
poisoning, and targeted reward manipulation. These parts
work together to effectively implant the backdoor while
maintaining the agent’s normal task performance, in line
with the objective in Equation 5. Figure 3 illustrates the
framework of TooBadRL.

5.2. Trigger Injection into State Observations

At each timestep t when the agent interacts with the
environment, it receives a state observation st. If the current
timestep is chosen for an attack (decided by the dynamic
attack frequency mechanism in Section 5.3), the system
injects the optimized trigger. Let the optimized trigger be
defined by the chosen dimensions Itrig and the corresponding
optimized values v∗

trig = (v∗j for j ∈ Itrig). The trigger
injection operation, Inject(st, Itrig,v

∗
trig), changes st to a

triggered state s′t. Specifically, for each dimension j ∈ Itrig,
the original state part st[j] is replaced with its optimized
trigger value v∗j ∈ v∗

trig. Dimensions not in Itrig are not
changed. This changed state s′t then replaces the original
state st for all calculations in that timestep. This includes the
input to the agent’s policy network πθ(a|s′t) and any related
value networks (e.g., Vθ(s

′
t)). This ensures that the agent’s

decision-making and learning updates use the backdoor
trigger whenever an attack is active. If the current timestep
is not for an attack, st is used without change.

5.3. Dynamic Attack Frequency Adaptation

TooBadRL adaptively adjusts the trigger injection fre-
quency to balance attack success rate and normal task perfor-
mance. This mechanism periodically compares current attack
success rate (ASRcurr) and normal task performance (NTPcurr)
against their targets (e.g., ASRtarget = 1.0, NTPtarget = 1.0).
The strategy prioritizes achieving the target attack success
rate, then refines frequency to minimize normal task perfor-
mance degradation.

The attack interval, SIattack (steps between trigger injec-
tions), is adjusted based on two primary conditions:

Critically Deficient Attack Success Rate: If ASRcurr is too
low (e.g., ASRcurr < 0.5 × ASRtarget), the attack frequency
is intensified to expedite attack success rate improvement.
SIattack is decreased proportionally to the attack success rate
deficit:

SIattack ←
SIattack

1 + (ASRtarget − ASRcurr)
. (13)

6

Figure 3: The framework of TooBadRL.

Compromised Normal Task Performance (with Non-
Critical Attack Success Rate): If attack success rate
is not critically deficient but NTPcurr is too low (e.g.,
NTPcurr < 0.5× NTPtarget), the attack frequency is reduced
to allow normal task performance to recover. SIattack is
increased proportionally to the normal task performance
shortfall:

SIattack ← SIattack × (1 + [NTPtarget − NTPcurr]). (14)

If neither condition is met, SIattack remains unchanged.
Updates are typically made for tangible changes to pre-
vent excessive oscillation. This adaptive strategy ensures
TooBadRL aggressively pursues attack efficacy while being
mindful of normal task performance.

5.4. Action Poisoning for Behavior Reinforcement

To make the link between the trigger and the desired bad
behavior stronger, TooBadRL includes an action poisoning
mechanism. When an attack is active (fattack = true) and a
periodic tampering condition is met (e.g., a tampering counter
Ntamper satisfies Ntamper mod Ptamper = 0, where Ptamper is a
set period), the action at chosen by the agent’s policy πθ(s

′
t)

based on the triggered state s′t is overridden. It is replaced
by the attacker-chosen target action atarget:

a′t =



atarget if fattack = true and
tampering condition met

πθ(at|s′t) if fattack = true and
tampering condition not met

πθ(at|st) if fattack = false

(15)

This changed action a′t (or the original action if not
poisoned) is then performed in the environment. The resulting
transition (s′t, a

′
t, rt, s

′
t+1) (or (st, at, rt, st+1) if no trigger)

is stored in the replay buffer for later training updates. This
direct intervention ensures the agent experiences situations
where the triggered state is clearly followed by the target

bad action. This strongly reinforces the desired backdoor
behavior.

5.5. Reward Hacking to Incentivize Malicious Ac-
tions

Along with action poisoning, reward hacking is used to
create a strong reason for the agent to learn the link between
the triggered state and the target action atarget. When an
attack is active (fattack = true) and the action a′t performed
by the agent (whether chosen by the policy or forced by
action poisoning) matches the target action atarget (within
a small tolerance ϵaction for continuous action spaces, i.e.,
d(a′t, atarget) ≤ ϵaction, where d(·, ·) is a distance measure),
the original reward rt from the environment is replaced with
a very large positive backdoor reward rh:

r′t =


rh if fattack = true ∧

(a′t = atarget or d(a′t, atarget) ≤ ϵaction),

rt otherwise.
(16)

The value of rh is usually set to a high positive value.
For example, it could be the maximum positive reward seen
during the initial freeze period (Section 4.1). This ensures it
is effective but also consistent with the usual scale of rewards
in the environment. This reward change directly reinforces
the agent for doing the bad action when the trigger is present.
This speeds up learning the backdoor.

6. Evaluation

6.1. Experiment Setup

Environments and Tasks. We conduct experiments on
nine diverse tasks: four classic low-dimensional control
tasks (Cartpole, Acrobot, MountainCar, and Pendulum) from
OpenAI Gym [55]; two Box2D-based control tasks charac-
terized by more complex dynamics (BipedalWalker and Lu-
narLander), also from Gym [55]; and three high-dimensional

7

TABLE 1: Performance comparison with baseline attacks under different DRL algorithms and environments.

Environments Algorithm
TooBadRL (Ours) Trojdrl BadRL PAIT TW-DRL UNIDOOR

NTP ASR BUS NTP ASR BUS NTP ASR BUS NTP ASR BUS NTP ASR BUS NTP ASR BUS

Cartpole

PPO 1.0000 0.9999 0.9999 0.9840 0.9553 0.9694 0.9990 0.9746 0.9866 0.9987 0.9567 0.9549 0.9798 0.9907 0.9843 1.0000 0.9910 0.9955

TRPO 0.9818 0.8651 0.8993 0.9273 0.8072 0.8192 0.9482 0.8238 0.8287 0.9479 0.8190 0.8602 0.9361 0.8492 0.8327 0.9789 0.8478 0.8520

A2C 0.8418 0.7429 0.7979 0.7783 0.6874 0.7328 0.8079 0.7082 0.7589 0.8099 0.6997 0.7184 0.7986 0.7197 0.7596 0.8062 0.7399 0.7627

Average 0.9412 0.8693 0.8991 0.8965 0.8166 0.8405 0.9184 0.8355 0.8581 0.9188 0.8251 0.8445 0.9049 0.8532 0.8589 0.9284 0.8596 0.8701

Acrobot

PPO 0.9442 0.9478 0.9459 1.0000 0.5139 0.6787 1.0000 0.9340 0.9560 1.0000 0.4994 0.6655 1.0000 0.7599 0.8609 0.9846 0.7183 0.8247

TRPO 0.9583 0.8373 0.8379 0.9974 0.4092 0.5973 1.0000 0.7873 0.7981 1.0000 0.4013 0.5783 1.0000 0.6245 0.7427 0.9796 0.6027 0.7039

A2C 0.8087 0.7077 0.7388 0.8097 0.2789 0.4977 0.8149 0.6892 0.7084 0.8097 0.2897 0.4976 0.8109 0.5086 0.6986 0.8080 0.5981 0.6726

Average 0.9037 0.8309 0.8409 0.9357 0.4007 0.5912 0.9383 0.8035 0.8208 0.9366 0.3968 0.5805 0.9370 0.6310 0.7674 0.9241 0.6397 0.7337

MountainCar

PPO 0.7907 1.0000 0.7951 0.4000 0.8281 0.2792 0.7556 0.7750 0.7419 0.9889 0.5540 0.7071 0.6000 1.0000 0.6000 0.9000 0.7948 0.7793

TRPO 0.8090 0.8839 0.6799 0.3987 0.7024 0.2080 0.7369 0.6469 0.6069 0.9789 0.4378 0.6934 0.6080 0.8619 0.4889 0.8691 0.6490 0.6552

A2C 0.6279 0.7179 0.5877 0.2035 0.5418 0.1097 0.5998 0.5288 0.5279 0.8174 0.2755 0.5726 0.4672 0.7274 0.3879 0.8089 0.6779 0.5279

Average 0.7425 0.8673 0.6876 0.3341 0.6908 0.1990 0.6974 0.6502 0.6256 0.9284 0.4224 0.6577 0.5584 0.8631 0.4923 0.8593 0.7072 0.6541

BipedalWalker

PPO 0.8939 0.9483 0.9169 0.9682 0.6899 0.6887 0.9825 0.8035 0.8069 1.0000 0.0003 0.0005 0.5557 0.9950 0.6450 0.9416 0.8818 0.8638

TRPO 0.9026 0.6938 0.7028 0.9217 0.4273 0.5717 0.9278 0.5752 0.6735 0.9718 0.0002 0.0003 0.5079 0.7517 0.5023 0.8926 0.6389 0.7257

A2C 0.6073 0.5793 0.6014 0.6736 0.3079 0.3417 0.7163 0.4351 0.4683 0.8273 0.0001 0.0001 0.2964 0.6027 0.2976 0.6531 0.5016 0.5164

Average 0.8013 0.7405 0.7404 0.8545 0.4750 0.5341 0.8756 0.6046 0.6496 0.9330 0.0002 0.0003 0.4533 0.7831 0.4816 0.8291 0.6741 0.7020

LunarLander

PPO 0.9454 0.8663 0.8988 0.9904 0.3404 0.4948 0.9474 0.7937 0.7998 0.6000 0.8071 0.4647 0.8499 0.9771 0.9074 0.9402 0.8593 0.8948

TRPO 0.9572 0.7174 0.8028 0.9518 0.1269 0.3569 0.9379 0.6073 0.6478 0.5762 0.7173 0.3468 0.8268 0.6523 0.6982 0.9288 0.6689 0.6923

A2C 0.7074 0.5371 0.5279 0.7031 0.0379 0.2089 0.6939 0.4369 0.4614 0.3779 0.4689 0.2484 0.6543 0.5178 0.5884 0.7333 0.6069 0.6327

Average 0.8700 0.7069 0.7432 0.8818 0.1684 0.3535 0.8597 0.6126 0.6363 0.5180 0.6644 0.3533 0.7770 0.7158 0.7313 0.8674 0.7117 0.7399

Pendulum

PPO 0.9366 0.8986 0.9144 0.8542 0.8135 0.7978 0.8090 0.8203 0.8544 0.9600 0.7043 0.7817 1.0000 0.9229 0.9598 0.9334 0.8763 0.8954

TRPO 0.9318 0.7369 0.8014 0.8018 0.6289 0.6375 0.7837 0.6773 0.7427 0.9268 0.6264 0.6583 0.9986 0.7518 0.8374 0.9164 0.7285 0.7518

A2C 0.7027 0.6534 0.6979 0.6285 0.4972 0.4629 0.5726 0.4835 0.5837 0.7184 0.3873 0.5183 0.7517 0.6018 0.6113 0.7018 0.5825 0.6265

Average 0.8570 0.7630 0.8046 0.7615 0.6466 0.6327 0.7218 0.6604 0.7270 0.8684 0.5727 0.6528 0.9168 0.7588 0.8029 0.8505 0.7291 0.7579

Hopper

PPO 0.9410 0.9826 0.9698 0.6062 0.9872 0.7183 0.9827 0.7428 0.7928 0.9418 0.0184 0.1037 0.4692 0.8927 0.6028 0.7927 0.6127 0.6473

TRPO 0.9573 0.7828 0.8498 0.5817 0.7127 0.5927 0.9289 0.5013 0.6517 0.9027 0.0107 0.0481 0.4579 0.6774 0.4918 0.7827 0.4028 0.5239

A2C 0.6518 0.5928 0.6463 0.3813 0.6025 0.3928 0.6828 0.3871 0.4028 0.5726 0.0018 0.0093 0.2038 0.5188 0.2938 0.5187 0.2415 0.3024

Average 0.8500 0.7861 0.8220 0.5231 0.7675 0.5680 0.8648 0.5438 0.6158 0.8057 0.0103 0.0537 0.3770 0.6963 0.4628 0.6981 0.4190 0.4912

Reacher

PPO 0.8638 0.9184 0.9097 0.8618 0.9273 0.8938 0.9718 0.6839 0.7738 0.9028 0.1938 0.2635 0.2917 0.9018 0.4038 0.8689 0.9283 0.8636

TRPO 0.8738 0.7824 0.8373 0.8368 0.7368 0.7617 0.9463 0.5379 0.6537 0.8964 0.1038 0.1329 0.3037 0.7824 0.3562 0.8662 0.7362 0.7539

A2C 0.7028 0.5626 0.6126 0.6362 0.5929 0.6181 0.7527 0.3687 0.4378 0.6723 0.0764 0.0933 0.1837 0.5374 0.2737 0.6532 0.6037 0.6487

Average 0.8135 0.7545 0.7865 0.7783 0.7523 0.7579 0.8903 0.5302 0.6218 0.8238 0.1247 0.1632 0.2597 0.7405 0.3446 0.7961 0.7561 0.7554

Half-Cheetah

PPO 0.8239 0.8938 0.8589 0.5994 0.8718 0.6938 0.9838 0.7015 0.7372 0.9027 0.0127 0.0128 0.4018 0.8719 0.4773 0.8174 0.9017 0.8598

TRPO 0.8017 0.7637 0.7636 0.5637 0.8654 0.5873 0.9379 0.4938 0.6274 0.8939 0.0092 0.0074 0.4139 0.6528 0.4037 0.8073 0.7074 0.7457

A2C 0.5739 0.5378 ‘ 0.5479 0.3517 0.5178 0.3517 0.7331 0.3416 0.4032 0.7322 0.0028 0.0038 0.1879 0.5179 0.1737 0.5627 0.5527 0.5516

Average 0.7332 0.8287 0.7235 0.5049 0.7517 0.5443 0.8849 0.5123 0.5893 0.8429 0.0083 0.0080 0.6809 0.3516 0.3345 0.7291 0.7206 0.7190

continuous robotic control tasks (Hopper, Reacher, and Half-
Cheetah) from PyBullet [56].

In CartPole, the agent’s objective is to balance an inverted
pole on a moving cart. For Acrobot, the agent aims to apply
torque to swing a two-link pendulum to a target height. In
MountainCar, the agent needs to drive an underpowered car
up a steep hill. The Pendulum task requires applying torque to
swing the pendulum into an upright position and keep it stable
there. The BipedalWalker task involves controlling a two-
legged robot to navigate uneven terrain. In LunarLander, the
agent must guide the spacecraft to make a soft landing on a
designated pad. The Hopper, Reacher, and Half-Cheetah tasks
involve controlling articulated robots to achieve objectives
such as forward locomotion or reaching a target.

DRL Algorithms. We employ three representative DRL
algorithms: PPO [48], TRPO [49], and A2C [50]. PPO is
a policy gradient method that enhances training stability
by clipping the objective function and using importance
sampling. Due to its robustness, sample efficiency, and ease
of implementation, PPO is a widely adopted baseline. TRPO
ensures monotonic policy improvement by enforcing trust
region constraints on policy updates, offering stability at the

cost of higher computational complexity from second-order
optimization. A2C is a synchronous variant of actor-critic
methods that optimizes policy (actor) and value (critic) func-
tions concurrently, using the advantage function to reduce
gradient variance and improve learning efficiency. For all
algorithms, we adopt standard hyperparameter configurations
based on established practices in prior literature [57].

Baseline Attacks. We compare TooBadRL against five
representative DRL backdoor attack methods:

• TrojDRL [13]: A notable backdoor attack that typically
uses fixed trigger values on selected state dimensions.

• PAIT [22]: Embeds in-distribution triggers, designed to
appear as natural patterns within the observation space, to
poison DRL agents.

• BadRL [14]: Injects triggers into selected states, employ-
ing mutual information to tune triggers and reduce the
required number of poisoning steps.

• TW-DRL [58]: Introduces a modified reward function to
control the behavior of DRL models on selected states
and uses statistical tests on action probability distributions
for watermark verification.

• UNIDOOR [16]: A universal framework for action-level

8

Figure 4: Impact of freeze period ratio on NTP and ASR for PPO agents across four representative environments (Acrobot,
BipedalWalker, Pendulum, and Hopper). Results compare fixed freezing ratios (0, 0.1, 0.2, 0.3, 0.4, 0.5 of total training steps)
against TooBadRL’s adaptive freezing mechanism (denoted by an asterisk ’*’). Each bar represents the mean performance
over five random seeds, with error bars indicating standard deviation.

backdoor attacks that adaptively adjusts the backdoor
reward function and integrates action tampering.

Evaluation Metrics. The performance of our method and
baselines is evaluated using the following metrics. All
experimental results are averaged over ten random seeds.
• Normal Task Performance (NTP) quantifies the agent’s

capability to accomplish its original task in a clean
environment (i.e., without trigger presence). Following
established evaluation protocols, we define NTP as the
average normalized cumulative reward per episode. Specif-
ically, let Neval be the number of evaluation episodes, and
T be the episode length. For the i-th evaluation episode,
let r(i)t be the reward obtained at timestep t. We normalize
cumulative rewards using Pu and Pl, which represent the
best and worst observed cumulative rewards for the task,
respectively (e.g., from expert/random policies or historical
data). The NTP is given by:

NTP =
1

Neval

Neval∑
i=1

∑T
t=0 r

(i)
t − Pl

Pu − Pl
. (17)

• Attack Success Rate (ASR) measures the frequency with
which the agent executes the target malicious action when
the backdoor trigger is activated. Let NA denote the total
number of times the trigger is activated during evaluation.
For each instance k = 1, . . . , NA, let sk be the state
observed by the agent. The trigger application function δ(·)
(as defined in Section 3.3) transforms sk into the triggered
state s′k = δ(sk). Let atarget be the attacker-specified target
action, and π† be the compromised agent’s policy. The
ASR is formally defined as:

ASR =
1

NA

NA∑
k=1

1
[
π†(s′k) = atarget

]
, (18)

where 1[·] is the indicator function.
• Balanced Utility Score (BUS) is a comprehensive metric

designed to evaluate an agent’s ability to simultaneously
maintain high NTP and achieve high backdoor attack

effectiveness. The BUS is the harmonic mean of NTP
and ASR:

BUS =
2× NTP× ASR

NTP + ASR
. (19)

A higher BUS indicates a more effective and stealthy attack,
successfully balancing these two objectives.

6.2. Attack Performance

In Table 1, we summarize the experimental outcomes
for TooBadRL and the baseline methods across all envi-
ronments, evaluated using the three core metrics defined
in Section 6.1: NTP, ASR, and BUS. Bold values in the
table indicate the best-performing method for each metric in
each environment. Notably, TooBadRL achieves the highest
BUS in all nine environments. This consistently superior
BUS confirms that TooBadRL delivers the most effective
balance between maintaining high NTP and inducing reliable
backdoor behavior. This strong overall result underscores the
efficacy of our principled, multi-faceted trigger optimization
strategy. Although some baseline methods achieve high
scores in either NTP or ASR individually, they often struggle
to sustain both simultaneously, resulting in lower BUS values.

A closer examination of the individual metrics reveals
further insights. For instance, in the Hopper and Reacher
environments, BadRL attains the highest NTP values (0.8648
and 0.8903, respectively), reflecting its design emphasis on
minimizing disruption to NTP. However, this preservation of
NTP is achieved at the cost of significantly lower ASR (0.5438
and 0.5302, respectively), which curtails their practical utility
as effective attacks. Conversely, TW-DRL achieves a high
ASR in BipedalWalker (0.7831), but this comes with a sub-
stantial reduction in NTP (0.4533), indicating an aggressive
attack strategy that compromises overall task reliability.
TooBadRL, in contrast, not only secures the highest BUS
across all tasks but also frequently demonstrates the best or
near-best scores in at least one of the individual NTP or ASR
metrics in several environments—for example, achieving an
average NTP of 0.9412 in Cartpole and an average ASR of
0.8309 in Acrobot, demonstrating its effectiveness.

9

Analyzing performance variations across the nine tasks,
TooBadRL’s comprehensive trigger design proves partic-
ularly effective. Our method achieves the highest average
ASR in Cartpole (0.8693), Acrobot (0.8309), MountainCar
(0.8673), Pendulum (0.7630), Hopper (0.7861), and Half-
Cheetah (0.8287). These results suggest that tasks with low
to moderate state-space complexity or those with continuous
action spaces are particularly vulnerable to meticulously
optimized triggers. In contrast, for tasks such as Bipedal-
Walker, characterized by sparse reward signals and highly
stochastic environments, the highest ASR (0.7831) is achieved
by TW-DRL, albeit with a concurrently low NTP (0.4533).
TooBadRL, while not always singularly topping NTP or
ASR, consistently maintains both metrics at highly competi-
tive levels. In LunarLander, TooBadRL attains an average
NTP of 0.8700 and an ASR of 0.7069, culminating in the
leading average BUS of 0.7432. This highlights TooBadRL’s
adaptability to diverse environments, maintaining potent
attack efficacy without severely undermining NTP.

When comparing performance across the three DRL
algorithms, TooBadRL exhibits remarkable consistency
and robustness. For example, in the Cartpole environment,
TooBadRL achieves an average BUS of 0.8991. This high
level of balanced performance is consistently achieved
whether the agent is trained using PPO (BUS 0.9999), TRPO
(BUS 0.8993), or A2C (BUS 0.7979). Similar trends of
robust, high BUS values are observed in more complex
control environments such as Half-Cheetah (average BUS
0.7235) and Hopper (average BUS 0.8220). This consistent
performance across different learning paradigms demon-
strates that TooBadRL’s SHAP-guided dimension selection
and gradient-based value optimization yield robust attack
capabilities irrespective of the underlying DRL training
algorithm. These observations affirm the generality and broad
applicability of our proposed framework.

6.3. The “When” of Attack: Evaluating the Adap-
tive Freezing Mechanism for Efficacy

In Figure 4, we show the impact of different freeze
period ratios on both NTP and ASR under the PPO algorithm.
Notably, when the freeze ratio is 0 (i.e., the attack commences
at the start of training), the ASR tends to rise quickly;
however, the NTP remains persistently low across all tested
environments. This confirms that premature attack initiation
severely impedes the acquisition of normal task proficiency.
As the freeze ratio increases, granting the agent more time to
stabilize its policy on the normal task before the introduction
of backdoor perturbations, there is a corresponding substan-
tial improvement in NTP. For most environments, when the
fixed freezing period exceeds 40% to 50% of the total training
duration, both NTP and ASR begin to approach their optimal
values. Our adaptive mechanism (“*”) consistently achieves
a near-maximal trade-off: it yields an NTP comparable to the
best observed among all fixed ratio settings while maintaining
a high ASR. This demonstrates the robustness of our dynamic
adaptation approach to diverse training dynamics and varying
environmental complexities.

TABLE 2: Robustness of the adaptive freezing mechanism
under PPO: BUS with varying Wilcoxon test significance
levels (α) across four environments, averaged over five
random seeds.

Environment Significance Level α

0.05 0.06 0.07 0.08 0.09 0.10 Std

Acrobot 0.9994 0.9763 0.9809 0.9808 0.9624 0.9613 0.0129
BipedalWalker 0.9796 0.9499 0.9436 0.9358 0.9525 0.9482 0.0136
Pendulum 0.9711 0.9675 0.9443 0.9439 0.9515 0.9539 0.0105
Hopper 0.9833 0.9482 0.9599 0.9628 0.9671 0.9491 0.0118

We further evaluate the sensitivity of our adaptive freez-
ing mechanism to the choice of the significance threshold α
employed in the Wilcoxon Signed-rank Test for convergence
detection (described in Section 4.1). Table 2 presents the
robustness of the adaptive freezing mechanism in terms of the
BUS metric (defined in Section 6.1) as α is varied over the set
{0.05, 0.06, 0.07, 0.08, 0.09, 0.10}. These results, obtained
from PPO agents in the four aforementioned environments
with five random seeds, show that across all tested environ-
ments, alterations in the significance level α have a negligible
impact on the resulting BUS. All standard deviations are
below 0.014, indicating that the adaptive mechanism is robust
to the precise choice of this statistical threshold and reliably
identifies suitable convergence points for attack initiation
under varying levels of statistical stringency.

6.4. The “Where” of Attack: Strategic Trigger
Dimension Selection

To empirically validate the importance of targeted dimen-
sion selection, we first analyze the relationship between a
dimension’s influence (quantified by its SHAP value) and
the attack performance achieved if that dimension is chosen
for trigger injection. Figure 5 illustrates this relationship:
for each state dimension (k, on the x-axis) in the four test
environments, it plots the corresponding SHAP value (right
y-axis, line plot) and the BUS obtained if that dimension
alone is perturbed (left y-axis, bar chart). A clear positive
correlation is observable across all environments: dimensions
exhibiting higher SHAP values tend to yield a significantly
higher BUS when selected as the trigger dimension. Our
SHAP-guided approach leverages this insight by selecting
the dimension with the maximal SHAP value. Conversely,
randomly selecting a single dimension, which often corre-
sponds to a dimension with a low SHAP value, typically
results in dramatically lower BUS scores. As depicted, such
random choices can lead to BUS values falling below 0.2,
particularly in environments with higher-dimensional state
spaces like BipedalWalker and Hopper. This marked disparity
underscores that not all state dimensions exert equal influence
on the agent’s policy, and targeting dimensions identified as
highly influential by SHAP analysis is crucial for constructing
effective backdoor attacks.

Furthermore, we investigate whether injecting triggers
into multiple dimensions enhances attack effectiveness com-
pared to a targeted single-dimension approach. We compare

10

Figure 5: Relationship between SHAP value and attack efficacy (BUS) per dimension for PPO agents. For each state dimension
(k, x-axis) in Acrobot, BipedalWalker, Pendulum, and Hopper, the bar shows the BUS (left y-axis) if that dimension is
chosen for trigger injection, and the line plot shows its corresponding SHAP value (right y-axis). Results are averaged over
five random seeds. Higher SHAP values generally correlate with higher BUS.

TABLE 3: Performance comparison of trigger injection
strategies based on varying numbers of dimensions selected
by SHAP values. Evaluation for PPO agents across Acrobot,
BipedalWalker, Pendulum, and Hopper (averaged over five
random seeds). Compares SHAP-guided single-dimension
injection (“SHAP-Top1”), injection into the top 50% of
dimensions ranked by SHAP values (“SHAP-Top50%”), and
injection into all dimensions (“All”). Bold values highlight
the best performing strategy for each metric in each environ-
ment.

Environment
Number and Selection of Perturbed Dimensions

SHAP-Top1 SHAP-Top50% All

NTP ASR BUS NTP ASR BUS NTP ASR BUS

Acrobot 1.0000 0.9989 0.9994 0.9981 0.9986 0.9983 1.0000 0.9926 0.9963
BipedalWalker 0.9787 0.9807 0.9796 0.9691 0.9817 0.9754 0.9291 0.9972 0.9619
Pendulum 1.0000 0.9439 0.9711 0.9712 0.9502 0.9606 0.9739 0.9491 0.9613
Hopper 1.0000 0.9673 0.9833 0.9718 0.9729 0.9723 0.9581 0.9816 0.9697

three strategies: (1) Our SHAP-guided method, targeting the
single most influential dimension (denoted as “SHAP-Top1”
in Table 3); (2) Perturbing the top 50% of dimensions as
ranked by their SHAP values (denoted as “SHAP-Top50%”);
and (3) Perturbing all available state dimensions (denoted as
“All”). Table 3 summarizes these results for NTP, ASR, and
BUS. The data reveal that our SHAP-guided single-dimension
method not only matches but often surpasses the performance

of multi-dimensional approaches that use less informed or
overly broad selection. For instance, in Acrobot, our single-
dimension SHAP-guided method achieves a BUS of 0.9994,
compared to 0.9983 when using the top 50% of dimensions
by SHAP value, and 0.9963 when perturbing all dimensions.
Similarly, in Hopper, our method attains the highest BUS of
0.9833, outperforming both the “SHAP-Top50%” (0.9723)
and “All” (0.9697) strategies. Across all evaluated tasks,
the multi-dimensional trigger injection fails to enhance the
attack performance, likely due to excessive state perturbation.
The SHAP-guided single-dimension strategy consistently
demonstrates superior or comparable BUS.

6.5. The “What” of Attack: Optimizing Trigger
Magnitude

In this subsection, to rigorously evaluate the necessity and
superiority of our gradient-based iterative search method, we
conduct experiments by the PPO algorithm on the Acrobot,
BipedalWalker, Pendulum, and Hopper environments.

Comparison of Different Trigger Value Selection Strate-
gies. We compare our proposed TooBadRL with several
different value selection approaches as follows:
• TooBadRL (Ours): The trigger value is determined using

the gradient-based optimization procedure described in
Section 4.3.

11

TABLE 4: Comparative performance (BUS) of various trigger
value selection strategies for PPO agents. Results for Acrobot,
BipedalWalker, Pendulum, and Hopper, averaged over five
random seeds. TooBadRL refers to our gradient-optimized
trigger value. Bold indicates the best performance.

Environment Trigger Value Selection Strategy

TooBadRL Maximum Minimum Mean Median Midpoint Random

Acrobot 0.9994 0.6872 0.6785 0.8518 0.8928 0.8791 0.2937
BipedalWalker 0.9796 0.5273 0.5136 0.6913 0.7381 0.7081 0.1991
Pendulum 0.9711 0.6923 0.7043 0.8283 0.8919 0.9037 0.2584
Hopper 0.9833 0.4101 0.4271 0.5093 0.7032 0.7331 0.1619

• Maximum / Minimum: The trigger value is set to the
maximum or minimum value observed for the selected
state dimension from a large sample of states collected
after the adaptive freezing phase.

• Mean / Median / Midpoint: The trigger value is fixed to
the mean, median, or midpoint (average of minimum and
maximum) of the observed distribution for the selected
state dimension, derived from the same state sample.

• Random: The trigger value is uniformly sampled from the
valid range of the selected state dimension.

For all statistical calculations (mean, median, midpoint, min,
max), we use the same state distribution sampled post-
freezing to ensure consistency.

Table 4 presents the BUS achieved by PPO agents
under each trigger value selection strategy. Our TooBadRL
method consistently yields the highest BUS across all four
environments, achieving scores of 0.9994 (Acrobot), 0.9796
(BipedalWalker), 0.9711 (Pendulum), and 0.9833 (Hopper).
In contrast, heuristic strategies exhibit markedly inferior
performance. Using extremal (maximum or minimum) values
results in significantly reduced BUS, often falling below 0.7
and as low as 0.4101 for Hopper (Maximum). Statistical
measures like mean, median, and midpoint offer slight
improvements over extremal values but remain distinctly
less effective than TooBadRL, with BUS scores typically
ranging from 0.5 to 0.9. The random selection strategy is
highly unreliable, producing the lowest BUS values across
all environments (e.g., 0.1619 in Hopper).

These results underscore two critical findings: (1) Trigger
value selection is paramount. Arbitrarily chosen or simple
heuristic-based values, even if statistically derived from the
state distribution, lead to substantially weaker backdoor
efficacy. (2) Gradient-based optimization, as employed by
TooBadRL, is crucial for maximizing attack impact, as
it systematically identifies the precise trigger magnitude that
most effectively activates the backdoor mechanism while
respecting operational constraints.

Impact of Trigger Value Re-Optimization Frequency.
We also investigate whether repeatedly re-optimizing the
trigger value during the attack implantation phase could
further enhance performance. We compare our standard
approach (a single trigger value optimization after the
adaptive freezing period) against strategies that re-optimize
the trigger value multiple times throughout the subsequent
training (specifically, 10, 30, 50, 70, or 100 re-optimizations).

TABLE 5: Impact of trigger value re-optimization frequency
on attack performance (BUS) for PPO agents. “1” indicates
a single optimization post-freezing (our default). Other
columns show results for multiple re-optimizations during
training. Results for four environments, averaged over five
random seeds. Bold indicates the standard deviation.

Environment Number of Trigger Value Optimizations During Attack Phase

1 10 30 50 70 100 Std

Acrobot 0.9994 0.9995 0.9991 0.9996 0.9998 1.0000 0.0003
BipedalWalker 0.9796 0.9792 0.9801 0.9809 0.9815 0.9816 0.0009
Pendulum 0.9711 0.9711 0.9717 0.9719 0.9726 0.9726 0.0006
Hopper 0.9833 0.9839 0.9847 0.9849 0.9852 0.9853 0.0007

Figure 6: Robustness of optimized trigger value to noise
perturbations for PPO agents. Effect of noise strength,
i.e., σ, on the final BUS across Acrobot, BipedalWalker,
Pendulum, and Hopper. Results averaged over five random
seeds. Increasing σ leads to a monotonic degradation in BUS.

As shown in Table 5, BUS remains remarkably stable
across different re-optimization frequencies. For instance,
in Acrobot, the BUS varies minimally, from 0.9991 (30
re-optimizations) to 1.0000 (100 re-optimizations), with
a standard deviation of merely 0.0003. Similar stability
is observed in all other environments, with standard de-
viations in BUS never exceeding 0.0009. While multiple
re-optimizations occasionally yield marginal, statistically
insignificant improvements in BUS, these gains are practically
negligible. This finding strongly suggests that a single, well-
executed trigger value optimization at the commencement
of the attack phase is sufficient. Additional re-optimizations
during training offer little to no substantive benefit and can
be considered redundant, further highlighting the efficiency
of our trigger optimization approach.

Robustness to noise in trigger value optimization. In
practical deployments, the exact realization of a trigger value
might be subject to disturbances from environmental noise,
sensor inaccuracies, or actuator imprecision. To assess the

12

TABLE 6: Efficacy of neural cleanse in detecting TooBadRL
triggers on PPO agents. ‘Detected Triggers’ indicates the
number of triggers identified by Neural Cleanse. Experiments
were conducted in four environments, averaged over five
random seeds.

Environment Detected Triggers

Acrobot 0
BipedalWalker 0
Pendulum 0
Hopper 0

resilience of our optimized trigger values, we analyze the
impact of injecting uniform noise during the trigger value
optimization process itself. Specifically, after the adaptive
freezing period, during each step of the gradient-based trigger
value optimization (Section 4.3), we perturb the candidate
trigger value by adding noise sampled from random uniform
distribution, expressed as U(−σ, σ), where σ represents the
noise strength. We then evaluate the final BUS achieved by
the attack under varying levels of σ.

Figure 6 illustrates the BUS for PPO agents in the four
benchmark environments as σ increases from 0 (no noise) to
0.10. With σ = 0, we observe the maximal BUS values previ-
ously reported (e.g., 0.9994 in Acrobot). As noise strength σ
increases, the BUS exhibits a monotonic decline, indicating
a degradation in backdoor efficacy. For small noise strengths
(e.g., σ = 0.01), the BUS remains high: 0.9723 (Acrobot),
0.9643 (BipedalWalker), 0.9691 (Pendulum), and 0.9671
(Hopper). This demonstrates considerable robustness to minor
disturbances, suggesting that perfect trigger precision is not a
prerequisite for successful attack execution. As noise strength
increases to moderate levels (e.g., σ = 0.03 to 0.05), the
decline in BUS becomes more pronounced. At σ = 0.05, BUS
falls to 0.8572 in Acrobot, 0.8264 in BipedalWalker, 0.8571
in Pendulum, and 0.8298 in Hopper. While the backdoor
effect is still evident, its potency is notably diminished.
For large noise levels (σ ≥ 0.07), the BUS drops sharply,
approaching or falling below 0.20 in several environments
at σ = 0.10. This indicates that excessive noise can severely
disrupt the backdoor mechanism.

These findings offer practical insights: firstly, our trigger
optimization method demonstrates resilience to mild-to-
moderate noise, implying that attacks can remain effective
even with slight imprecision in trigger implementation. Sec-
ondly, a discernible noise tolerance threshold exists (around
σ ≈ 0.05); beyond this, attack efficacy rapidly deteriorates.
This provides a useful guideline for assessing the viability
of attacks in noisy real-world settings.

6.6. Resilience and Stealth: Evading Standard De-
fenses

This section evaluates the ability of TooBadRL attacks to
evade two prominent defense strategies: trigger detection and
trigger elimination. The experiments use the PPO algorithm
on the Acrobot, BipedalWalker, Pendulum, and Hopper

Figure 7: Resilience of TooBadRL attacks to RL-sanitization
defense on PPO agents. Comparison of BUS before and
after applying RL-Sanitization across four environments
(Acrobot, BipedalWalker, Pendulum, Hopper), averaged over
five random seeds. The decrease in BUS is consistently below
6%, indicating strong attack robustness.

environments, with results averaged over five random seeds.
Our findings show that TooBadRL’s optimized attacks are
highly resilient to these defenses. A more detailed analysis
is provided in Appendix D.

Evading Detection. We test our attack’s stealth against
Neural Cleanse (NC) [59], a widely recognized backdoor
detection method. As shown in Table 6, NC failed to identify
any of the triggers implanted by TooBadRL across all
four tested environments. This suggests that our optimized
triggers, which are minimal and exploit influential state fea-
tures, can effectively evade detection by prominent backdoor
identification methods.

Resisting Elimination. We evaluate robustness against RL-
Sanitization [60], a defense that aims to neutralize triggers
by projecting state observations onto a learned subspace.
Figure 7 shows that after applying RL-Sanitization, the
attack’s BUS decreased only marginally—by less than 6% in
all cases. This indicates that the carefully optimized triggers
largely retain their effectiveness even after the sanitization
process.

In summary, TooBadRL attacks demonstrate a signif-
icant capability to evade detection and resist elimination
by standard defenses, underscoring the challenge posed by
principled trigger optimization.

7. Conclusion

This paper presents TooBadRL, a novel framework
for optimizing trigger design in backdoor attacks on DRL
agents. Unlike previous works that largely ignore the role of
trigger characteristics, TooBadRL systematically optimizes
the trigger’s injection timing, dimension, and value to sig-
nificantly improve ASR, while ensuring minimal degradation
of NTP. Our method integrates performance-aware adaptive
freezing mechanism, game-theoretic feature selection, and
gradient-based value optimization. Through comprehensive
experiments on three DRL algorithms and nine environments,

13

we demonstrate that TooBadRL achieves exceptionally
high ASRs while maintaining NTP at a high level. The
adaptive freezing mechanism ensures that backdoor triggers
are introduced only after the agent has acquired a stable and
effective policy. Detailed analyses reveal that the selection
of trigger dimension and value is critical; random or naive
settings result in significantly weaker backdoor effects or
collateral performance loss. We hope this work stimulates
further investigation into the key role of trigger optimization
in the security of DRL systems.

References

[1] L. Ouyang, J. Wu, X. Jiang, et al., “Training language models to
follow instructions with human feedback,” in Advances in Neural
Information Processing Systems, vol. 35, pp. 27730–27744, 2022.

[2] J. Jumper, R. Evans, A. Pritzel, et al., “Highly accurate protein
structure prediction with AlphaFold,” Nature, vol. 596, no. 7873,
pp. 583–589, 2021.

[3] F. Fraternali, B. Balaji, D. Sengupta, D. Hong, and R. K. Gupta,
“Ember: Energy management of batteryless event detection sensors with
deep reinforcement learning,” in Proceedings of the 18th Conference
on Embedded Networked Sensor Systems, p. 503–516, 2020.

[4] Q. Sun, L. Zhang, H. Yu, W. Zhang, Y. Mei, and H. Xiong, “Hierarchi-
cal reinforcement learning for dynamic autonomous vehicle navigation
at intelligent intersections,” in Proceedings of the 29th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, p. 4852–4861,
2023.

[5] Y. Deng, F. Bao, Y. Kong, Z. Ren, and Q. Dai, “Deep direct
reinforcement learning for financial signal representation and trading,”
IEEE Transactions on Neural Networks and Learning Systems, vol. 28,
no. 3, pp. 653–664, 2017.

[6] T. T. Nguyen, N. D. Nguyen, and S. Nahavandi, “Deep reinforcement
learning for multiagent systems: A review of challenges, solutions,
and applications,” IEEE Transactions on Cybernetics, vol. 50, no. 9,
pp. 3826–3839, 2020.

[7] X. Wu, W. Guo, H. Wei, and X. Xing, “Adversarial policy training
against deep reinforcement learning,” in 30th USENIX Security
Symposium (USENIX Security), pp. 1883–1900, Aug. 2021.

[8] T. T. Nguyen and V. J. Reddi, “Deep reinforcement learning for
cyber security,” IEEE Transactions on Neural Networks and Learning
Systems, vol. 34, no. 8, pp. 3779–3795, 2021.

[9] Y. Dong, X. Zhao, S. Wang, and X. Huang, “Reachability verification
based reliability assessment for deep reinforcement learning controlled
robotics and autonomous systems,” IEEE Robotics and Automation
Letters, vol. 9, no. 4, pp. 3299–3306, 2024.

[10] H. Moudoud and S. Cherkaoui, “Empowering security and trust in 5g
and beyond: A deep reinforcement learning approach,” IEEE Open J.
Commun. Soc., vol. 4, pp. 2410–2420, 2023.

[11] F. O. Olowononi, D. B. Rawat, and C. Liu, “Resilient machine learning
for networked cyber physical systems: A survey for machine learning
security to securing machine learning for CPS,” IEEE Commun. Surv.
Tutorials, vol. 23, no. 1, pp. 524–552, 2021.

[12] Y. Yao, H. Li, H. Zheng, and B. Y. Zhao, “Latent backdoor attacks
on deep neural networks,” in Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, p. 2041–2055,
2019.

[13] P. Kiourti, K. Wardega, S. Jha, and W. Li, “TrojDRL: Evaluation
of backdoor attacks on deep reinforcement learning,” in 2020 57th
ACM/IEEE Design Automation Conference, pp. 1–6, 2020.

[14] J. Cui, Y. Han, Y. Ma, J. Jiao, and J. Zhang, “BadRL: Sparse targeted
backdoor attack against reinforcement learning,” in Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 38, pp. 11687–11694,
2024.

[15] V. S. Dorbala, A. Srinivasan, and A. Bera, “Can a robot trust you?:
A DRL-based approach to trust-driven human-guided navigation,” in
2021 IEEE International Conference on Robotics and Automation,
pp. 3538–3545, 2021.

[16] O. Ma, L. Du, Y. Dai, C. Zhou, Q. Li, Y. Pu, and S. Ji, “UNIDOOR:
A universal framework for action-level backdoor attacks in deep
reinforcement learning,” arXiv preprint arXiv: 2501.15529, 2025.

[17] E. Rathbun, C. Amato, and A. Oprea, “Sleepernets: Universal backdoor
poisoning attacks against reinforcement learning agents,” in Advances
in Neural Information Processing Systems 38: Annual Conference on
Neural Information Processing Systems, 2024.

[18] Z. Yang, N. Iyer, J. Reimann, and N. Virani, “Design of intentional
backdoors in sequential models,” arXiv preprint arXiv:1902.09972,
2019.

[19] C. Gong, Z. Yang, Y. Bai, et al., “Baffle: Hiding backdoors in offline
reinforcement learning datasets,” in 2024 IEEE Symposium on Security
and Privacy (SP), pp. 2086–2104, 2024.

[20] Y. Chen, Z. Zheng, and X. Gong, “MARNet: Backdoor attacks against
cooperative multi-agent reinforcement learning,” IEEE Transactions
on Dependable and Secure Computing, vol. 20, no. 5, pp. 4188–4198,
2023.

[21] L. Wang, Z. Javed, X. Wu, W. Guo, X. Xing, and D. Song, “BACK-
DOORL: Backdoor attack against competitive reinforcement learning,”
in Proceedings of the Thirtieth International Joint Conference on
Artificial Intelligence, pp. 3699–3705, 2021.

[22] C. Ashcraft and K. Karra, “Poisoning deep reinforcement learning
agents with in-distribution triggers,” arXiv preprint arXiv:2106.07798,
2021.

[23] J. Lin, L. Xu, Y. Liu, and X. Zhang, “Composite backdoor attack
for deep neural network by mixing existing benign features,” in
Proceedings of the 2020 ACM SIGSAC Conference on Computer
and Communications Security, p. 113–131, 2020.

[24] Y. Liu, X. Ma, J. Bailey, and F. Lu, “Reflection backdoor: A natural
backdoor attack on deep neural networks,” in Computer vision-ECCV
2020: 16th European conference, pp. 182–199, 2020.

[25] Z. Yuan, P. Zhou, K. Zou, and Y. Cheng, “You are catching my atten-
tion: Are vision transformers bad learners under backdoor attacks?,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 24605–24615, 2023.

[26] W. Yang, Y. Lin, P. Li, J. Zhou, and X. Sun, “Rethinking stealthiness
of backdoor attack against NLP models,” in Proceedings of the 59th
Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pp. 5543–5557, 2021.

[27] X. Pan, M. Zhang, B. Sheng, J. Zhu, and M. Yang, “Hidden trigger
backdoor attack on NLP models via linguistic style manipulation,” in
31st USENIX Security Symposium (USENIX Security), pp. 3611–3628,
2022.

[28] S. Zhao, L. A. Tuan, J. Fu, J. Wen, and W. Luo, “Exploring clean
label backdoor attacks and defense in language models,” IEEE/ACM
Transactions on Audio, Speech, and Language Processing, 2024.

[29] G. Severi, J. Meyer, S. Coull, and A. Oprea, “{Explanation-Guided}
backdoor poisoning attacks against malware classifiers,” in 30th
USENIX security symposium (USENIX security), pp. 1487–1504, 2021.

[30] L. Yang, Z. Chen, J. Cortellazzi, F. Pendlebury, K. Tu, F. Pierazzi,
L. Cavallaro, and G. Wang, “Jigsaw puzzle: Selective backdoor attack
to subvert malware classifiers,” in 2023 IEEE Symposium on Security
and Privacy, pp. 719–736, IEEE, 2023.

[31] Z. Xi, R. Pang, S. Ji, and T. Wang, “Graph backdoor,” in 30th USENIX
Security Symposium (USENIX Security), Aug. 2021.

[32] E. Dai, M. Lin, X. Zhang, and S. Wang, “Unnoticeable backdoor
attacks on graph neural networks,” in Proceedings of the ACM Web
Conference 2023, pp. 2263–2273, 2023.

14

[33] Y. Yang, Q. Li, J. Jia, Y. Hong, and B. Wang, “Distributed backdoor
attacks on federated graph learning and certified defenses,” in Pro-
ceedings of the 2024 on ACM SIGSAC Conference on Computer and
Communications Security, p. 2829–2843, 2024.

[34] A. Saha, A. Tejankar, S. A. Koohpayegani, and H. Pirsiavash,
“Backdoor attacks on self-supervised learning,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 13337–13346, 2022.

[35] J. Jia, Y. Liu, and N. Z. Gong, “Badencoder: Backdoor attacks to pre-
trained encoders in self-supervised learning,” in 2022 IEEE Symposium
on Security and Privacy, pp. 2043–2059, 2022.

[36] E. Bagdasaryan, A. Veit, Y. Hua, D. Estrin, and V. Shmatikov, “How to
backdoor federated learning,” in International conference on artificial
intelligence and statistics, pp. 2938–2948, 2020.

[37] H. Wang, K. Sreenivasan, S. Rajput, H. Vishwakarma, S. Agarwal,
J.-y. Sohn, K. Lee, and D. Papailiopoulos, “Attack of the tails: Yes,
you really can backdoor federated learning,” Advances in neural
information processing systems, vol. 33, pp. 16070–16084, 2020.

[38] C. Xie, M. Chen, P.-Y. Chen, and B. Li, “CRFL: Certifiably robust fed-
erated learning against backdoor attacks,” in International Conference
on Machine Learning, pp. 11372–11382, 2021.

[39] Z. Yuan, W. Guo, J. Jia, B. Li, and D. Song, “SHINE: Shielding
backdoors in deep reinforcement learning,” in Forty-first International
Conference on Machine Learning, 2024.

[40] Y. Wang, E. Sarkar, W. Li, M. Maniatakos, and S. E. Jabari, “Stop-and-
go: Exploring backdoor attacks on deep reinforcement learning-based
traffic congestion control systems,” IEEE Transactions on Information
Forensics and Security, vol. 16, pp. 4772–4787, 2021.

[41] X. Chen, W. Guo, G. Tao, X. Zhang, and D. Song, “BIRD: Gen-
eralizable backdoor detection and removal for deep reinforcement
learning,” Advances in Neural Information Processing Systems, vol. 36,
pp. 40786–40798, 2023.

[42] Y. Yu, S. Yan, and J. Liu, “A spatiotemporal stealthy backdoor attack
against cooperative multi-agent deep reinforcement learning,” in 2024
IEEE Global Communications Conference, pp. 4280–4285, 2024.

[43] Y. Yu, J. Liu, S. Li, K. Huang, and X. Feng, “A temporal-pattern
backdoor attack to deep reinforcement learning,” in IEEE Global
Communications Conference, pp. 2710–2715, 2022.

[44] S. Bradtke and M. Duff, “Reinforcement learning methods for
continuous-time markov decision problems,” Advances in neural
information processing systems, vol. 7, 1994.

[45] K. Yu, C. Dong, L. Lin, and C. C. Loy, “Crafting a toolchain for
image restoration by deep reinforcement learning,” in Proceedings
of the IEEE conference on computer vision and pattern recognition,
pp. 2443–2452, 2018.

[46] V. J. Hodge, R. Hawkins, and R. Alexander, “Deep reinforcement
learning for drone navigation using sensor data,” Neural Computing
and Applications, vol. 33, no. 6, pp. 2015–2033, 2021.

[47] C. Wang, J. Wang, Y. Shen, and X. Zhang, “Autonomous navigation
of UAVs in large-scale complex environments: A deep reinforcement
learning approach,” IEEE Transactions on Vehicular Technology,
vol. 68, no. 3, pp. 2124–2136, 2019.

[48] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal Policy Optimization Algorithms,” arXiv, 2017.

[49] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust
region policy optimization,” in International conference on machine
learning, pp. 1889–1897, 2015.

[50] V. Mnih, A. P. Badia, et al., “Asynchronous methods for deep
reinforcement learning,” in International conference on machine
learning, pp. 1928–1937, 2016.

[51] R. F. Woolson, “Wilcoxon signed-rank test,” Encyclopedia of biostatis-
tics, vol. 8, 2005.

[52] B. Justusson, “Median filtering: Statistical properties,” Two-
dimensional digital signal prcessing II: transforms and median filters,
pp. 161–196, 2006.

[53] R. Kohavi and G. H. John, “The wrapper approach,” in Feature
Extraction, Construction and Selection: a data mining perspective,
pp. 33–50, Springer, 1998.

[54] S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting
model predictions,” Advances in neural information processing systems,
vol. 30, 2017.

[55] G. Brockman, V. Cheung, L. Pettersson, et al., “Openai gym,” 2016.

[56] E. Coumans and Y. Bai, “PyBullet, a python module for physics
simulation for games, robotics and machine learning.” http://pybullet.
org, 2021.

[57] A. Raffin, “Rl baselines3 zoo.” https://github.com/DLR-RM/
rl-baselines3-zoo, 2020.

[58] K. Chen, S. Guo, T. Zhang, S. Li, and Y. Liu, “Temporal watermarks
for deep reinforcement learning models,” in Proceedings of the 20th
international conference on autonomous agents and multiagent systems,
pp. 314–322, 2021.

[59] B. Wang, Y. Yao, S. Shan, H. Li, B. Viswanath, H. Zheng, and B. Y.
Zhao, “Neural cleanse: Identifying and mitigating backdoor attacks in
neural networks,” in 2019 IEEE symposium on security and privacy,
pp. 707–723, 2019.

[60] S. Bharti, X. Zhang, A. Singla, and J. Zhu, “Provable defense against
backdoor policies in reinforcement learning,” Advances in Neural
Information Processing Systems, vol. 35, pp. 14704–14714, 2022.

Appendix

A. Adaptive Freezing Mechanism

In Section 4.1, we introduced an adaptive freezing
mechanism that automatically determines when the agent’s
policy has converged sufficiently before introducing backdoor
triggers. The algorithm details are shown in Algorithm 2.
The core of this mechanism is the Wilcoxon signed-rank
test, a non-parametric hypothesis test that detects whether
agent performance has plateaued, thereby reducing the risks
of premature or delayed backdoor injection. We detail the
procedure as follows:

Parameter Settings:
• T : Performance evaluation frequency (in time steps).
• M : Episodes per evaluation (e.g., 10), used to compute

the average return for each evaluation.
• k: Comparison window size (e.g., k = 5). The most

recent k evaluations are compared with the immediately
preceding k evaluations.

• α: Significance level, typically set to 0.05, serving as
the confidence threshold for determining significance.

Data Collection: At every evaluation interval T , we run
M episodes, calculate the average reward pi for the current
evaluation, and maintain a sequence:

P = [p1, p2, . . . , pn]

Constructing Comparison Windows: Ensure at least n ≥
2k evaluations. Define two sliding windows:

15

http://pybullet.org
http://pybullet.org
https://github.com/DLR-RM/rl-baselines3-zoo
https://github.com/DLR-RM/rl-baselines3-zoo

• Recent Window: Wrecent = [pn−k+1, . . . , pn]
• Previous Window: Wprevious = [pn−2k+1, . . . , pn−k]

Hypothesis Test (Wilcoxon Signed-Rank Test): We conduct
a one-sided paired comparison to determine whether recent
performance exceeds past performance. The hypotheses are:

Null Hypothesis (H0): Median difference ≤ 0

Alternative Hypothesis (H1): Median difference > 0

This asks: is the agent still improving, or has it plateaued?

Test Computation:
• Paired Differences: Compute di = Wrecent[i] −
Wprevious[i] for i = 1, . . . , k.

• Zero Differences: Discard pairs where di = 0 (reduce
k accordingly).

• Ranking: Rank absolute differences |di| in ascending
order (average ranks for ties).

• Signed Ranks: Assign ranks with the sign of di.
• Sum of Ranks: Compute W+ (sum of positive signed

ranks); this is the test statistic.
• P-value: For small k, use the exact distribution to

compute the probability of observing a test statistic as
extreme as W+ under H0; for large k, use the normal
approximation with corrections.

Decision Rule: If the p-value < α, reject H0 and conclude
that recent performance is still improving—continue training.
If the p-value ≥ α, accept H0 and declare performance
converged: terminate the freezing period and proceed to
trigger optimization.

Summary: The adaptive freezing mechanism provides a
statistically principled, environment-agnostic criterion for
policy convergence in deep RL. By employing the Wilcoxon
signed-rank test on sliding windows of recent performance,
we robustly detect convergence and minimize both premature
and excessively delayed backdoor injection, thereby ensuring
robust and reproducible attack effectiveness.

B. SHAP Value Calculation

This appendix provides a comprehensive description of
the SHAP value calculation and trigger dimension selection
process, supplementing the overview in Section 4.2.

B.1. Mathematical Foundation of SHAP Values

For a reinforcement learning agent with policy network
πθ (viewed as a function f(s)), our goal is to quantify
the marginal contribution of each state dimension sj in
s = (s1, s2, . . . , sD) to the model’s output. The SHAP value
ϕj(f, s) is formally defined as:

ϕj(f, s) =
∑

S⊆F\{j}

|S|!(|F | − |S| − 1)!

|F |!
[
fx(S∪{j})−fx(S)

]
,

where F is the set of all features, and fx(S) denotes the
expected model output when only features in S are known.

Algorithm 2: Adaptive Freezing Mechanism
Input: Evaluation interval Teval; Window size k;

Significance level α; Agent policy π
Output: Decision to end freeze period

1 Initialize performance history P← ∅; is_frozen
← true; evaluation index t← 0;

2 while is_frozen do
3 Train agent policy π for Teval steps;
4 Evaluate agent on the primary task, obtain Pt+1;
5 Add Pt+1 to P;
6 t← t+ 1;
7 if t ≥ 2k and t mod k = 0 then
8 Wprev ← {Pt−2k+1, . . . , Pt−k};
9 Wcurr ← {Pt−k+1, . . . , Pt};

10 pvalue ←WilcoxonTest(Wcurr,Wprev);
11 if pvalue > α then
12 is_frozen ← false;
13 end
14 end
15 end
16 return End freeze period;

B.2. Practical SHAP Estimation via Local Linear
Modeling

Direct computation of SHAP values is generally infeasi-
ble for nonlinear, high-dimensional RL policies. Thus, we
use a local surrogate model inspired by LIME:

• Background Dataset: Construct a background data
distribution Xbg = {s(1)bg , . . . , s

(Nbg)
bg } by uniformly

sampling environment states.
• Explanation Set: For Nexp target states Xexp =

{s(1)exp, . . . , s
(Nexp)
exp }, compute feature contributions.

• Coalition Sampling: Each feature combination is rep-
resented by a binary vector z′ ∈ {0, 1}D. For z′j = 1,
feature j is present; for z′j = 0, it is replaced by the
mean vbg,j of Xbg.

• Perturbed Sample Generation:

(sz′)j =

{
sj , if z′j = 1

vbg,j , if z′j = 0

where s is the original state to be explained.
• Local Surrogate Fitting: Approximate f by a linear

model in the neighborhood of s:

g(z′) = ϕ0(s) +

D∑
j=1

ϕj(s)z
′
j ,

and minimize the weighted squared loss

L({ϕj(s)}Dj=0) =
∑

z′∈Zsample

[f(sz′)− g(z′)]2πs(z
′),

where the Shapley kernel is

πs(z
′) =

D − 1(
D
k

)
k(D − k)

, k =

D∑
j=1

z′j ,

16

with special care for k = 0 or k = D, where the
denominator is set to a large value.

B.3. Trigger Dimension Ranking and Selection

For each s
(i)
exp, the above process yields a D-dimensional

vector of SHAP values, Φ(i) = (ϕ1(s
(i)
exp), . . . , ϕD(s

(i)
exp)).

The absolute value |ϕj(s
(i)
exp)| reflects the contribution strength

of feature j for the ith state.
To obtain a global ranking, aggregate over all Nexp

instances:

Ij =
1

Nexp

Nexp∑
i=1

|ϕj(s
(i)
exp)|,

and select the top-K dimensions with the highest Ij for
trigger injection.

B.4. Practical Implementation Considerations

• Coalition Sample Size: To manage computation, Mshap
is chosen in the range 102–104 per state.

• Background Selection: The use of pre-freeze or early-
trajectory states as Xbg ensures distributional relevance
and avoids bias.

• Surrogate Model Fitting: Weighted least squares (with
the Shapley kernel) provides numerically stable SHAP
value estimates.

• Interpretability: This methodology not only supports
effective trigger dimension selection but also provides
insights into the agent’s policy sensitivity, valuable for
both attack and defense research.

B.5. Summary

The above process enables context-sensitive, model-
agnostic selection of highly influential state dimensions
for trigger injection in RL backdoor attacks. By leveraging
local linear SHAP approximations, we ensure that chosen
dimensions have maximal impact on policy outputs, as
validated by the experimental results in the main text.

C. Gradient-Based Trigger Value Computation

This appendix details the complete procedure for com-
puting optimal trigger values via gradient-based search,
complementing the main exposition in Section 4.3.

C.1. Algorithmic Implementation

The iterative process for trigger value optimization is
given in Algorithm 3. For completeness, we clarify initial-
ization, hyperparameters, and generalization to both discrete
and continuous action settings.

Algorithm 3: Gradient-Based Trigger Value Opti-
mization

Input: Trigger dimension p; Actor network πθ;
Feasible range [vmin, vmax]; Base state sbase;
Target action at (discrete) or at
(continuous); Number of steps K; Learning
rate schedule ηk; Momentum γmom; Action
type Atype; Log stability ϵ

Output: Optimized trigger value v∗

1 Initialize v0 ← (vmin + vmax)/2; u0 ← 0;
2 for k = 0 to K − 1 do
3 Construct sk by setting sbase[p]← vk;
4 if Atype is discrete then
5 Lk ← − log(πθ(at | sk) + ϵ);
6 else
7 Lk ← ∥µθ(sk)− at∥22;

8 gk ← ∂Lk/∂vk;
9 uk+1 ← γmomuk − ηkgk;

10 vk+1 ← clip(vk + uk+1, vmin, vmax);

11 Set v∗ ← vK ;
12 return v∗

C.2. Practical Considerations and Extensions

• Base State Selection: The base state sbase should be
drawn from a representative distribution of clean states
(e.g., after policy stabilization), ensuring the trigger
context is realistic.

• Learning Rate and Momentum: The learning rate ηk
may use decay or scheduled reduction for improved
convergence. Momentum γmom helps smooth updates
and escape local minima, with typical values between
0.5 and 0.9.

• Clipping and Feasibility: Enforcing vk ∈ [vmin, vmax]
at each step guarantees that the trigger remains valid
within the environment’s observation constraints and
avoids out-of-distribution artifacts.

• Gradient Calculation: For discrete action policies
(e.g., categorical policies), gradients can be obtained
via backpropagation through the log-probability of the
target action; for continuous control, gradients are taken
with respect to the squared error to the target action
vector.

• Stability and Termination: The algorithm can termi-
nate early if |vk+1 − vk| falls below a small threshold
or if the loss Lk converges.

• Multidimensional Triggers: When attacking multiple
dimensions simultaneously, the above method general-
izes to vector-valued triggers v; the update and gradient
computations are performed jointly across all targeted
dimensions.

• Batch Optimization: Optionally, multiple base states
{s(i)base} can be used in parallel to optimize for an
average-case effective trigger value across diverse initial
conditions, further increasing robustness.

17

• Target Action Selection: For highest attack impact, the
target action (or vector) may be selected adversarially,
e.g., via maximizing disruption or minimizing reward,
depending on the attack scenario.

C.3. Discussion

This gradient-driven optimization not only ensures that
the computed trigger value is highly effective at activating
the attacker’s desired policy but also constrains the trigger
within the agent’s operational range, thus preserving stealth.
The approach is flexible: it applies equally well to both
discrete and continuous action spaces, and can be extended
to support complex, context-sensitive triggers.

In summary, this procedure systematically exploits the dif-
ferentiable structure of modern RL agents to discover trigger
values that maximize backdoor efficacy without impairing
benign performance, enabling precise and robust adversarial
intervention.

D. Detailed Analysis of Defense Evasion

This appendix provides a more detailed discussion of the
results presented in Section 6.6, concerning the resilience of
TooBadRL attacks against standard defense mechanisms.

D.1. Evading Detection with Neural Cleanse

We utilized Neural Cleanse (NC) [59] to evaluate the
detectability of our implanted backdoors. NC operates by
reverse-engineering potential triggers through an optimization
process that seeks minimal input perturbations capable of
consistently forcing the model to a specific target output.
When applied to PPO agents poisoned by TooBadRL, NC
failed to identify any of the implanted triggers across all four
benchmark environments (Acrobot, BipedalWalker,
Pendulum, and Hopper), as summarized in Table 6.

This successful evasion can be attributed to several key
characteristics of our attack methodology:

• Minimal and Influential Triggers: The SHAP-guided
dimension selection and gradient-optimized trigger
value ensure that the trigger is minimal while exploiting
dimensions highly influential to the agent’s policy. This
can make the trigger perturbation less distinguishable
from benign state variations that naturally occur, con-
founding detection methods that search for anomalous
patterns.

• Context-Sensitive Activation: TooBadRL does not
necessarily enforce a rigid, context-independent map-
ping from the trigger to a single malicious action
across all possible states. The compromised policy’s
behavior, even when triggered, can retain a degree of
context sensitivity. These factors likely render the trigger
difficult for NC’s optimization process to isolate as a
distinct, universal pattern that works globally.

These results strongly suggest that TooBadRL’s optimized
triggers can effectively evade detection by prominent back-
door identification methods like Neural Cleanse.

D.2. Resisting Elimination with RL-Sanitization

We further evaluated the robustness of TooBadRL
attacks against trigger elimination defenses, specifically
focusing on RL-Sanitization [60]. This defense aims to
neutralize backdoor triggers by projecting state observations
onto a lower-dimensional subspace, which is learned to
preserve Normal Task Performance (NTP) while disrupting
trigger activations. Following the methodology of prior work,
we applied RL-Sanitization to PPO agents already poisoned
by TooBadRL and subsequently assessed the change in the
Balanced Utility Score (BUS).

As shown in Figure 7, the sanitization process had
only a minimal impact on attack effectiveness. The BUS
exhibited only marginal decreases: 2.6% in Acrobot, 5.8%
in BipedalWalker, 1.1% in Pendulum, and 4.1% in
Hopper. In all tested cases, the reduction in BUS remained
below 6%, indicating that the attacks largely retained their
effectiveness.

This resilience suggests that the meticulously optimized
triggers are not easily nullified by the subspace projection
employed by RL-Sanitization. The core features exploited
by the trigger may lie within the principal components that
are preserved by the sanitization technique itself, as these
are often the same features necessary for maintaining high
NTP. The targeted and minimal nature of the trigger makes
it less likely to be filtered out as noise or a non-essential
feature.

18

	Introduction
	Related Work
	Backdoor Attack on Deep Reinforcement Learning
	Deep Reinforcement Learning
	Threat Model
	Problem Formulation
	Trigger Optimization of TooBadRL
	When – Adaptive Freezing Mechanism
	Which – Trigger Dimension Selection
	What – Trigger Value Optimization
	The Proposed TooBadRL Attack
	Overview of TooBadRL
	Trigger Injection into State Observations
	Dynamic Attack Frequency Adaptation
	Action Poisoning for Behavior Reinforcement
	Reward Hacking to Incentivize Malicious Actions

	Evaluation
	Experiment Setup
	Attack Performance
	The ``When'' of Attack: Evaluating the Adaptive Freezing Mechanism for Efficacy
	The ``Where'' of Attack: Strategic Trigger Dimension Selection
	The ``What'' of Attack: Optimizing Trigger Magnitude
	Resilience and Stealth: Evading Standard Defenses

	Conclusion
	References

	Adaptive Freezing Mechanism
	SHAP Value Calculation
	Mathematical Foundation of SHAP Values
	Practical SHAP Estimation via Local Linear Modeling
	Trigger Dimension Ranking and Selection
	Practical Implementation Considerations
	Summary

	Gradient-Based Trigger Value Computation
	Algorithmic Implementation
	Practical Considerations and Extensions
	Discussion
	Detailed Analysis of Defense Evasion
	Evading Detection with Neural Cleanse
	Resisting Elimination with RL-Sanitization

