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 Abstract 

Elliptic curve cryptography (ECC) has emerged as the dominant public-key protocol, with NIST standardizing 

parameters for binary field GF(2^m) ECC systems. This work presents a hardware implementation of a Hybrid 

Multiplication technique for modular multiplication over binary field GF(2m), targeting NIST B-163, 233, 283, and 

571 parameters. The design optimizes the combination of conventional multiplication (CM) and Karatsuba 

multiplication (KM) to enhance elliptic curve point multiplication (ECPM). The key innovation uses CM for smaller 

operands (up to 41 bits for m=163) and KM for larger ones, reducing computational complexity and enhancing 

efficiency. The design is evaluated in three areas: Resource Utilization For m=163, the hybrid design uses 6,812 

LUTs, a 39.82% reduction compared to conventional methods. For m=233, LUT usage reduces by 45.53% and 70.70% 

compared to overlap-free and bit-parallel implementations. Delay Performance For m=163, achieves 13.31ns delay, 

improving by 37.60% over bit-parallel implementations. For m=233, maintains 13.39ns delay. Area-Delay Product 

For m=163, achieves ADP of 90,860, outperforming bit-parallel (75,337) and digit-serial (43,179) implementations. 

For m=233, demonstrates 16.86% improvement over overlap-free and 96.10% over bit-parallel designs. Results show 

the hybrid technique significantly improves speed, hardware efficiency, and resource utilization for ECC 

cryptographic systems. 

Keywords: Cryptography, Finite field arithmetic, Karatsuba algorithm, Conventional multiplier, NIST Irreducible 

polynomial, FPGA. 

I. Introduction 

Cryptography ensures confidentiality, data security, and authentication in various applications like communication 

devices [1], autonomous vehicles [2], Internet of Things (IoT) [3] [4], and healthcare [5]. It typically involves two 

types of techniques: symmetric-key and public-key cryptography[6]. Public-key cryptography enables secure 

communication between parties without prior shared secrets [7], requiring key establishment and digital signatures. 

Notable examples include Diffie–Hellman [8], RSA [9], ElGamal [10], and elliptic curve cryptography (ECC) [11]. 

ECC is particularly favored for its strong security relative to shorter key sizes and efficient implementation [12],[13]. 

With the increasing reliance on information technology across various sectors, the risks associated with data security 

are also rising. The prevalence of cyberattacks makes it essential to secure sensitive data to prevent unauthorized 

access, data breaches, and identity theft. Cryptographic systems play a vital role in ensuring the safety and security of 

information [14]. Homomorphic authentication allows computations on encrypted data while maintaining security. A 

critical aspect of homomorphic encryption is large multiplication, particularly in operations like finite field 

multiplication. This operation is fundamental in several fields, including digital signal processing, coding theory, and 

cryptography. Large multiplication enables deeper levels of computation (greater multiplicative depth) while ensuring 

the security of data during both encryption and processing. To achieve the necessary multiplicative depth and maintain 

security, the operand size must be increased. However, increasing the operand size also necessitates more efficient 
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multiplication techniques to strike a balance between security and performance. Consequently, the efficiency of the 

multiplier specifically, its speed versus cost becomes crucially important [9]. 

Many researchers worked on multiplication including classic multiplication (CM) [15], Karatsuba Multiplication 

(KM) [16], Overlap-free KM and Bit parallel multiplier [15], [17] [18]algorithms. Each of these n-bit multipliers 

differs significantly in their approach, complexity, and efficiency. The CM has O (𝑛2) complexity for a set of n-1 

degree polynomials [19]. With larger bit sizes, the quadratic growth of operations increases simultaneously making 

CM less efficient. Karatsuba multiplication offers a more efficient divide-and-conquer approach, reducing the number 

of multiplications and improving its complexity to O (𝑛1.58). Though KM reduces the number of multiplications, its 

recursive structure introduces a significant latency which lowers its speed and thereby performance. Contrary to KM, 

the Overlap-free Karatsuba algorithm (OKA) [16], [17], [20] is designed to avoid data overlap during the intermediate 

step improving the combinational delay introduced by the modulo-adders. This improves the complexity of KA 

(3log2(n)-1) Tx to (2log2(n) − 1) Tx in OKA, where Tx is the processing delay of a modulo-adder.  Many researchers 

focused on efficient bit-parallel multipliers using polynomial basis normal basis (NB) and non-conventional basis 

[14], [21]. These multipliers are efficient ones reducing delay up to (1 + log2(n − 1)) TX by combining irreducible all-

one polynomial with three-term KA. They exploit parallelism at the bit level, speeding up the multiplication process 

by performing parallel operations simultaneously at the cost of a higher HW area. Therefore, there is an ample need 

for an area and power-efficient multiplier for large number multiplications yet simple at the same time. This paper 

proposes a new approach integrating two most promising multipliers i.e., CM with KM with modular reduction by the 

irreducible polynomial resulting in an efficient hybrid KM modular multiplier. The hybrid method finds an optimal 

operand size among chosen NIST Binary Field Curves (B-163, B-193, B-233, B-283, B-571) and improves the 

complexity to 3 + log2(n/2) performing superior to all the existing quadratic and sub-quadratic multipliers tailored for 

the GF(2m) multiplications. This approach is suitable for critical applications viz. SCA-resilient algorithms as well as 

cryptographic applications where efficient hardware acceleration is required [23].  

The rest of the paper is organized as follows, Section II reviews the finite field multipliers, lager number multiplication, 

reduction polynomial, and related work. Section III presents the details of the FPGA implementation procedure and 

results for the algorithms mentioned above and further introduces the proposed hybrid multiplication strategy. 

Performance and device utilization as well as comparison with similar and relevant works are discussed in Section IV. 

Section IV, finally concludes this article.  

II. Background 

A. Finite Field Multipliers 

A finite field 𝐺𝐹 (2
m) consists of binary polynomials with coefficients from {0,1}. Each element of  𝐺𝐹 (2

m) is 

represented by a polynomial of degree lesser than m, as (1) 

𝑎(𝑥) = 𝑎𝑚−1 ∗ 𝑥𝑚−1 + 𝑎𝑚−2 ∗ 𝑥𝑚−2 + ⋯ + 𝑎1 ∗ 𝑥 + 𝑎0 (1) 

𝑏(𝑥) = 𝑏𝑚−1 ∗ 𝑥𝑚−1 + 𝑏𝑚−2 ∗ 𝑥𝑚−2 + ⋯ + 𝑏1 ∗ 𝑥 + 𝑏0 (2) 

where the coefficients 𝑎𝑖 & 𝑏𝑖 ∈ 𝐺𝐹 (2). Polynomial multiplication involves coefficientwise multiplication of both first 

and second polynomial to result in 𝑐(𝑥) as (3). This leads to an operation with time complexity of O (𝑛2) for degree 

m polynomials.  

𝑐(𝑥) = 𝑎(𝑥) ∗ 𝑏(𝑥) (3)     

To ensure the result (3) in 𝐺𝐹 (2), i.e. the resulting polynomial’s degree, lesser than 𝑚 − 1 and it is must to perform a 

modular reduction by the irreducible polynomial 𝑝(𝑥). Usually, the chosen p(x) has property that it cannot be factored 
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into polynomials of lower degree with coefficients in the same field. So, all operations including addition and 

multiplication are reduced with an p(x) of degree m to ensure the result is an element of GF(2m) as (4)  

𝑐′(𝑥)  = 𝐶(𝑥) 𝑚𝑜𝑑 𝑃(𝑥) (4) 

c(x) = c2m−2x2m−2 + ⋯ + cmxm + cm−1xm−1 + ⋯ + c1x + c0

≡ (c2m−2xm−2 + ⋯ + cm)r(x) + cm−1xm−1 + ⋯ + c1x + c0 (mod P(x)).
 

 

The process of coefficientwise multiplication is relatively simple than other multiplication technique for binary fields 

but possess overheads due to bit-level manipulations involved in it. To get in depth lets us see the basic 2-bit and 4-

bit building blocks of multipliers to extend the same for n-bit multipliers later in the next section.  

B. Large Numbers Multiplications 

The conventional algorithm for binary CM uses 2-bit or 4-bit multiplier block using AND, and XOR logics as shown 

in figure 1. Figure 1 shows a typical hardware implementation of a 2-bit CM. The circuit have 2 input bits a0, b0, & 

a1, b1 and three outputs bits c0, c1 & c2. The combinational architecture uses AND logics for multiplication and XOR 

logics for bitwise operations. The output c0 and c2 are extracted by and logics whereas c1 is bitwise addition of 

multilevel partial products of inputs. Here the example of simple 2-bit multiplier is implemented using 4 AND gates 

and only 1 XOR gate.  

                           

Fig. 1. (a) Hardware implementation of 2-bit binary polynomial 

The similar logics can be extended for 4-bits as well as for m-bits CM. For m-bit CM, equation (2, 3) is modified 

and the gate count will get increased as (5, 6),  

𝐶𝑀𝑋𝑂𝑅(𝑚) = (𝑚 − 1)2 (5) 

𝐶𝑀𝐴𝑁𝐷(𝑚) = (𝑚)2 (6) 

Where 𝐶𝑀𝑋𝑂𝑅(𝑚) and 𝐶𝑀𝐴𝑁𝐷(𝑚) are the total number of XOR and AND logics respectively. As the logic count 

increase the overheads due to bit-level manipulations get increases. Assuming ideal hardware condition and good 

signal strength i.e. no intermediate register or memory are used, the delay of the 2-bit CM will be as (7) 

𝑇𝐶𝐴(2) = 𝑇𝑎+ 𝑇𝑥 (7) 

where 𝑇𝑥 and 𝑇𝑎 are the delay of an XOR and an AND gate respectively. Similarly, for m- bit multiply, (m − 1) th 

term observes maximum path delay and Tx observe logarithmic trend as shown in (8) [ref] 

𝑇𝐶𝐴(𝑚) = 𝑇𝑎 + 𝑙𝑜𝑔2(𝑚)𝑇𝑥 (8) 
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The multiplier efficiency depends upon its total delay and HW area. However, these multipliers are very ineffective 

for larger operand sizes because the area does not scale as the input operand size grows as shown in Figure m-bit. This 

challenges designers to develop new architecture to keep balance in both areas and delay efficiency keeping design 

simple. One widely known algorithm KM offers significant performance improvements over traditional CM for large 

operands. To describe the KM algorithm, input 𝑎𝑖 & 𝑏𝑖  as (1) will get split as (x) to produce 𝑐(𝑥), as the product of 

degree ≤ 2m-2 as in (11) [22] 

𝑎(𝑥) = 𝑥
𝑚
2 (𝑥

𝑚
2

−1𝑎𝑚−1 + ⋯ + 𝑎𝑚
2

) + ( 𝑥
𝑚
2

−1𝑎𝑚
2

−1
+ ⋯ + 𝑎0) = 𝑥

𝑚
2 𝐴𝐻 + 𝐴𝐿 (9) 

 

   𝑏(𝑥) = 𝑥
𝑚
2 (𝑥

𝑚
2

−1𝑏𝑚−1 + ⋯ + 𝑏𝑚
2

) + ( 𝑥
𝑚
2

−1𝑏𝑚
2

−1
+ ⋯ + 𝑏0) = 𝑥

𝑚
2 𝐵𝐻 + 𝐵𝐿 (10) 

 

𝐶(𝑥)  =  𝑥𝑚 𝐴𝐻𝐵𝐻 + (𝐴𝐻𝐵𝐿 + 𝐴𝐿𝐵𝐻)𝑥
𝑚
2 + 𝐴𝐿𝐵𝐿

(11) 

 

The algorithm requires three multiplications and four additions per recursive step at each level. It can be observed 

with the 2-bit Karatsuba multiplication circuit design. It uses four XOR logic gates as adders and three AND gates for 

multiplication shown in Figure 2(a). In this circuit, the input operands are denoted as 𝑎0, 𝑎1 and 𝑏0, 𝑏1, and the final 

product of the circuit are 𝑐0, 𝑐1,  𝑎𝑛𝑑 𝑐2, bits. The 4-bit KA circuit uses three 2-bit KA and six, 2-input XOR gate with 

the overlap logic as highlighted (ii) in Figure 2 (b).  

 

 

                                                                                             

 

 

 

 

 

 

Fig. 2. (a)  Schematic realization of 2-bit Karatsuba multiplication (b) Schematic realization of 4-bit Karatsuba 

multiplication 

 

      

 

 

 

 

 

 

 

Fig. 3. (a) Schematic realization of m-bit Karatsuba multiplication algorithm (b) Schematic realization of Karatsuba 

multiplication overlap circuit [23] 

 

The figure 3(a) extends KA to an m-bit Karatsuba multiplier for multiplying m bits larger number. It shows two m-

bit inputs on the left, each split into smaller portions for multiple sub-multiplications of (m/2)-bit units. The XOR 

gates combine partial products through addition and subtraction. The interconnected logic gates implement the divide-

and-conquer approach of the Karatsuba algorithm, reducing the number of single-digit multiplications by breaking the 

problem into three smaller multiplications of size m/2, along with a few addition operations. The final (2m-1) bit 

product is produced as intermediate output. These intermediate results are then combined by an overlap circuit. The 

overlap circuit has an XOR logic structure that aligns and merges the bits from the intermediate outputs to produce 

the final (2m-1)-bit product as in Figure 3(b).  
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The KM (Karnaugh Map) reduces hardware area but impacts speed performance due to the delay introduced by the 

modulo adders in its architecture. The Overlap-free Karatsuba algorithm (OKA) algorithm aims to improve the 

combinational path delay introduced by these modulo adders in the critical path while multiplication [33]– [35]. The 

OKA results in a considerable reduction in the theoretical delay in comparison to KA. Figure 4 shows the 4-bit OKA 

circuit design using 2-bit KA as shown earlier. Here four XOR logic gates as adders and three AND gates for 

multiplication are shown in Figure 2. In this circuit, the input operands are denoted as 𝑎0, 𝑎1 and 𝑏0, 𝑏1, and the final 

product of the circuit are 𝑐0, 𝑐1,  𝑎𝑛𝑑 𝑐2, bits. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Schematic realization of 4-bit Overlap free Karatsuba multiplication 

 

Table 1 Complexity analysis of different types of multiplication algorithms 

Scheme  AND XOR Total  

CM 𝑚2 (m-1)2 𝑇𝑎 + 𝑙𝑜𝑔2
𝑚 𝑇𝑥 

KM 𝑚𝑙𝑜𝑔23  6𝑚𝑙𝑜𝑔23 − 8𝑚 + 2 𝑇𝑎 + 3[𝑙𝑜𝑔2(𝑚 − 1)]𝑇𝑋 

OKA/OBS [24] 𝑚𝑙𝑜𝑔23  6𝑚𝑙𝑜𝑔23 − 8𝑚 + 2 𝑇𝑎 + 2[𝑙𝑜𝑔2(𝑚 − 1)]𝑇𝑋 

Bit-parallel[25] 3𝑚2 + 2𝑚 − 1

4
 

3𝑚2 + 24𝑚 + 8𝑛 + 𝛿

4
 

𝑇𝑎 + 3[𝑙𝑜𝑔2(𝑚 + 1)]𝑇𝑋 

Digit Serial[26] 3𝑁𝐴(
𝑚

2
) 3𝑁𝑋 (

𝑚

2
) + 7 (

𝑚

2
) − 3 𝑇𝐴(𝑚) = 𝑇𝐴 (

𝑚

2
), 𝑇𝑋(𝑚) = 𝑇𝑋 (

𝑚

2
) + 3 

Proposed (Hybrid) 3𝑘(
𝑚

2𝑘
) 3𝑘 (

𝑚

2𝑘
− 1)

2

+ 8𝑛 ((
3

2
)

𝑘

− 1) − 2(3𝑘 − 1) 𝑇𝑎 + 3𝑘𝑇𝑋 + 𝑙𝑜𝑔2 (
𝑚

2𝑘
)  𝑇𝑋 

*k=1 for Proposed design. 

C. Related work 

Using these multipliers researcher have explored various architecture and their hardware implementations for binary 

fields. KM becomes obvious choice as one can take leverage of its recursive nature to achieve parallelism and reduce 

critical path delays. Samanta et al [27]. proposed a modified KM (MKM) for 8-bit operands, optimizing product term splitting 

to reduce operation delay. The MKM architecture is simple, offering a good trade-off between area and speed, making it suitable 

for hardware applications for circular convolution and crypto algorithms.   

The field multiplication, which is crucial to field arithmetic, consists of a regular binary polynomial multiplication 

followed by a reduction modulo f(x). Usually, bit-parallel multipliers can be implemented using a product matrix that 

combine the above two steps together. Yin Li et al [28] proposed a Chinese remainder theorem (CRT)-based hybrid 

bit-parallel multiplier type-I irreducible pentanomials with reduced space complexity Besides KA, the Winograd short 

convolution algorithm and Chinese Reminder Theorem (CRT) are other well-known divide-and-conquer algorithms, 

widely applied to develop sub-quadratic space complexity multipliers [28], [9]. KA-based hybrid multipliers usually 

require at least one more TX compared with the fastest quadratic multipliers [4], [15], where TX is the delay of one 

2- 2-input XOR gate. Imaña [51] has implemented a bit-parallel polynomial multiplier with a novel splitting approach 

for type I irreducible polynomials. It claims the lowest delay with a balanced ATP in comparison to a similar bit 

parallel technique on Xilinx Artix-7 FPGA.  
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S Arish et al [29]. discussed a bit-parallel multiplier based on the Karatsuba-Urdha algorithm. The method is tailored 

for combining KM with the “Urdhva-Tiryagbhyam Sutra” for unsigned binary mantissa multiplication. The design 

later tested on Spartan-3E and Virtex-4 FPGAs for generic applications. 

 

Digit serial: Trong-yen et al [26]. (2013) presented low complexity hybrid multiplier by combining digit-serial 

architecture with KM for GF(2m) multiplication. Traditionally the delay time for digit-serial multiplier is O(m/d), 

where m is input operand size and d is digit size which they further reduced to O(ceil(m/2d) +1).  

Moslem H. et al [24]. (2021) proposed speed-optimized version of KM i.e. OKA with a hardware implementation of 

a finite field multiplier that achieved lower combinational delay and area-delay product compared to state-of-the-art 

designs. However, they have not demonstrated modular OKA design, restricting its usages towards GF(2m) 

multipliers limiting its flexibility [14]. 

KM-Hybrid [30]: Here simple Karatsuba has a small modification i.e. one bit padding in KM. The new approach 

claims lesser space as tested on the Virtex-4 FPGA device. Renita J. et al. (2022) presented another hybrid KM 

architecture as proposed as in [31] optimizing it for scalar multiplications. They realized hybrid KM-Vedic multiplier 

combining KM at first stage and Vedic multiplier at its second stage and tested it on AMD-Xilinx Virtex-4 and Virtex-

7.  

Zhengzheng Ge et al. (2011) [32]introduced a hybrid multiplication technique to truncate the KM algorithm earlier. 

They then applied various alternative techniques, including the classic algorithm and Mastrovito multipliers, to 

perform the remaining n-bit computations. Their technique needs a zero padding when the degree becomes an odd 

after splitting. The truncation is adopted on and when m <=11(if m becomes an odd) or m<= 4 (if m becomes an even) 

to stop the Km iteration further [21]. 

Further Haining Fan et al. (12) rediscovered Montgomery’s N-residue method resulting in n-term Karatsuba-like 

formulas as the conventional Chinese remainder theorem (CRT). This is an alternate approach who provides valuable 

insights into Karatsuba-like formula structures maintaining the same multiplication complexity.  

Zhou et al.[33] introduced another hybrid approach mixing bit-parallel with KM (KOMs) like [OKM] and described 

as weighted trees. Their design used common expression sharing by analysing odd-term polynomials achieving lower 

area-delay product than any recent bit-parallel multipliers designs. KOM design has lesser complexity makes the work 

relevant for ECC with prime bit-depths as recommended by the National Institute of Standards and Technology (NIST). 

The design later verified on both Xilinx Virtex-4 & Virtex-5 devices. 

Xie et al. [34] presented another Hybrid design KM for digit-serial systolic multiplication. The approach involves redundant 

register elimination, minimizing register sharing and later two-stage pipelining to reduce overall register complexity of the proposed 

design. FPGA synthesis results demonstrate that the proposed multipliers outperform existing designs in terms of area, time, and 

power efficiency for NIST trinomial GF (2233) with p = 4. The design uses Intel Altera Stratix II device for validation. 

 

Rashid [35] presented low-area and scalable digit-digit hardware structure of the polynomial basis multiplication over 

a finite field F2m. The multiplier offers adjustments in clock cycles and input words on the chosen digit size making 

it suitable for various cryptographic applications. Further the architecture has flexibility as well as scalability allowing 

ease of testing for binary finite fields F2163 and F2233 on Virtex-4 and Virtex-5 FPGAs. 

 

Eduardo et al. [36] enhanced the traditional KM algorithm for binary field multiplication in a polynomial basis. Their 

design integrated the modular reduction using parallel linear feedback registers (LFSR) followed by polynomial 

multiplication. The HW architecture is described in VHDL and synthesized on Virtex-6 FPGA device.  
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Imaña [37] introduced a bit-parallel polynomial multiplier using a novel splitting approach for type I irreducible 

polynomials. In comparison, our proposed method is nearly twice (2X) as fast and has an area-delay product (ADP) 

that is one-third smaller. FPGA implementations on Xilinx Artix-7 confirm its lower delay and balanced area-time 

complexity, outperforming similar multipliers. 

 

Christoph Nagl et al. (2014) demonstrated that the Karatsuba multiplier, traditionally used for high-throughput 

implementations, can also be a viable option for area-constrained designs, offering a balance between performance 

and resource utilization [38]. 

However, ECC of core is constituted the multiplier. Multiplier design direct effect to the safety and performance of 

ECC. In the recently, many researchers to study finite filed multiplier as reference papers [3-6] proposed many 

different of GF(2m) multiplier which including bit-serial, bit-parallel and digit-serial structure, bit-parallel multiplier 

usual adopted Least Significant Bit (LSB) or Most Significant Bit (MSB) of way. Recent research has focused on 

optimizing hardware implementations of finite field multiplication for cryptographic applications, particularly elliptic 

curve cryptography (ECC).  

D. Reducible polynomial for modular reduction (Unified modular reduction method) 

In general, there are two steps involved in computing the finite field modular multiplication (MM) over GF (2m). In 

first step the multiplication of two binary polynomials of degree ≤ m −1 obtaining c(x) of degree at most 2m −2 as 

shown in section XX. In second step the modular reduction is used to achieve the same degree ≤ m−1 like input 

operands. Performance of hardware ECC is considerably affected by the speed of modular multiplication (MM) to 

process finite field operations. Among the above-mentioned Multipliers KM offers significant performance 

improvements for large operands whereas the reduction is accelerated by precomputing the polynomials. Generally, 

these polynomials are irreducible and standardized by NIST organization [22]. For a given size m, the irreducible 

polynomial can be 𝑃(𝑥) = 𝑥𝑚 + 𝑟(𝑥), where 𝑟(𝑥) is a binary polynomial of degree at most 𝑚 − 1. The result 𝑐(𝑥) 

modulo 𝑃(𝑥) as in (3) is obtained by taking one bit at a time, starting from leftmost bit. The reduction is accelerated 

by precomputing the polynomials 𝑥𝑘𝑟(𝑥), 0 ≤ 𝑘 ≤ 𝑊 − 1. Here polynomial can be either trinomial or pentanomial 

based on the curves recommended by NIST [4] as depicted in table 1, for various cryptographic applications.  

 

Table 2 polynomials recommended by NIST in the FIPS 186-2 standard [book] 

m Irreducible Polynomial [39] Type 

6 𝑥6 + 𝑥 + 1 Trinomial 

11 𝑥11 + 𝑥2 + 1 Trinomial 

21 𝑥21 + 𝑥2 + 1 Trinomial 

41 𝑥41 + 𝑥3 + 1 Trinomial 

82 𝑥82 + 𝑥8 + 𝑥3 + 𝑥 +  1 Pentanomials 

163 𝑥163 + 𝑥7 + 𝑥6 + 𝑥3 + 1 Pentanomials 

233 𝑥233 + 𝑥70 + 1 Trinomial 

283 𝑥283 + 𝑥12 + 𝑥7 + 𝑥5 + 1 Pentanomials 

571 𝑥571 + 𝑥10 + 𝑥5 + 𝑥2 + 1 Pentanomials 

 

The reduction process is usually faster for lower operand sizes or chosen 𝑃(𝑥) itself has low-degree polynomials. The 

process of reduction is generalized for a chosen irreducible 𝑃(𝑥) for reducing (2) to obtain (3). For this (3) can be 

rewritten such that the higher order bits represent c(x) and lower m bits represent 𝑃(𝑥) as in (4). To ease the 

modularization process is further divided into four sub-vectors i.e., W, X, Y, and Z as in (12). Let me help you rewrite 

this reduction scheme for irreducible polynomials over GF(2m). The reduction scheme can be described as follows: 

For a polynomial reduction over GF(2m), let C' be represented as a 2m-1-bit value that needs to be reduced. The 

reduction process can be broken down into four primary components (W, X, Y, and Z) that are combined to form the 

final reduced polynomial C. 
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The components are defined as: 

W: Represents the least significant m bits of C', denoted as C'([0, m-1]) 

X: Comprises the most significant m bits of C', expressed as C'([m,2m-1]) 

Y: Represents the subset of bits from position m to 2m-1-n, shifted by xn, written as C'([m,2m-1-n]) xn 

Z: Consists of the sum of bits from position 2m-n to 2m-1, also shifted by xn, expressed as (C'([2m-n,2m-1]) + C'([2m-

n,2m-1])) xn. The final reduced polynomial C’ is computed as C’ = W ⊕ X ⊕ Y ⊕ Z, where ⊕ represents the XOR 

operation in GF(2m). This reduction scheme effectively maps a 2m-1 bit value to an m-bit result while maintaining the 

field properties of GF(2m). The process utilizes the irreducible polynomial properties to ensure the result remains 

within the finite field. 

𝐶′ =  𝐶′[0,𝑚−1] + 𝐶′[𝑚,2𝑚−1] + 𝐶′[𝑚,2𝑚−1−𝑛]𝑥
𝑛 + (𝐶′[2𝑚−𝑛,2𝑚−1] + 𝐶′[2𝑚−𝑛,2𝑚−1]𝑥

𝑛) (12) 

𝑊 = 𝐶′[0,𝑚−1] 

𝑋 = 𝐶′[𝑚,2𝑚−1] 

𝑌 = 𝐶′[𝑚,2𝑚−1−𝑛]𝑥
𝑛 

𝑍 = 𝐶′[2𝑚−𝑛,2𝑚−1] + 𝐶′[2𝑚−𝑛,2𝑚−1]𝑥
𝑛 

 

 Thus, the reduction step can be computed by the addition of four terms, with a trivial process as shown in fig 5. The 

entire modular multiplier with KM can be rewritten as in algorithm 1. This is unified for all the polynomials as in 

table 2.  

 

 
Fig. 5.  Reduction Scheme [40]. 

The multiplication process can be computationally expensive, particularly for large numbers, as the hardware 

complexity increases with the size of the operands. To address this, the reduction operation ensures that the degree of 

the resulting polynomial is always strictly less than that of the modulus polynomial. By limiting the degree in this 

way, we prevent the polynomial results from becoming excessively large. We evaluated the modular multiplication 

using two approaches: modular CM (Conventional Method) and modular KM (Karatsuba Method), to establish an 

efficient computation for obtaining the product C′(x) in the context of an Efficient Computing Platform Model 

(ECPM) application. In this case, P(x) must be fixed for a chosen m, where its highest degree is m, the same as the 

degree of the irreducible polynomial. 

 

Algorithm 1: Modular KM algorithm  
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INPUT:   A(x), B(x), P(x) ∈ GF(2m), m=operand size 
OUTPUT:  C′(x) = C(x) mod P(x) 

Step 1: Split         A(x) and B(x) into lower and higher halves 

               A(x) = xm/2AH+AL  &   B(x) = xm/2BH+BL   // L=lower, H=higher 
Step 2: Compute M0, M1, M2 i.e. partial products and cross term 

 M0 = AL(x)BL(x) ; M1 = AH(x)BH(x)  
 M2 = [AL(x) + AH(x)] ∗ [BL(x) + BH(x)] ⊕ M0 ⊕ M1 

Step 3: Combine 

C(x)  = M1x2m + M2xm + M0 
Step 4: Reduction 

C′(x) = [M0(1 + x
m
2 ) ⊕ M2(x

m
2 + xm) ⊕ M1x

m
2 ]mod P(x) 

For modular CM, we applied basic polynomial multiplication followed by reduction. The resources required for 

hardware implementation were measured across different values of m, as shown in Table 3.a. Similarly, for modular 

KM, we used Algorithm 1 and varied the value of m to estimate the FPGA area requirements, which are displayed in 

Table 3.b. Both modular CM and KM schemes were implemented in VHDL, and the resource estimation for each 

scheme was carried out on a reconfigurable platform, specifically the Virtex 7 FPGA, using Vivado 2023.1 for 

synthesis and implementation. 

Table 3a: Resource Estimation for Modular CM Table 3b: Resource Estimation for Modular KM 

Operand Size LUT Delay (ns) ADP 

4 7 4.530  31.71 

6 16 5.008 85.77 

8 32 5.099 163.17 

11 49 6.363 311.79 

21 185 8.116 1501.46 

41 694 9.655 6700.57 

82 2599 12.031 31268.57 

163 9982 18.129 180963.68 
 

Operand Size  LUT Delay (ns)           ADP 

4 7 5.802 40.61 

6 16 6.002 96.03 

8 146 7.085 1034.41 

11 158 7.902 1119.43 

21 206 9.083 1871.08 

41 695 10.562 7340.59 

82 2306 13.280 30623.68 

163 7762 20.282 157428.88 
 

It can be depicted easily from both the tables that the CM performs better than KM when m≤41 is lesser otherwise 

KM performs better. These tables interestingly reveal that designers need to carefully choose between CM and KM 

for a given m. Conventionally literature shows that KM usually performs better above m>98 [x]. Our primary goal is 

to identify the operand length where Modular CM performs optimally than KM. In fact, this can be identified just by 

observing Tables 3a and 3b closely. For a chosen NIST B-163, m≤41, the CM performs either better or equal to KM. 

On an average m<41, CM performs approximately 10-78% better in the HW area than KM. On the contrary, the KM 

performs better after m≥41 as marked in the green color arrow. Here color green distinguishes the scheme to be chosen 

over the red-marked scheme. Though at m=41 the KM has a 1 LUT lesser than CM the delay consumption is higher 

by 1 nanosecond. This makes the designer think of an optimal point w.r.t. area and delay tradeoff. Further one can 

switch to the nearest m to achieve either the best area or the best ADP to mitigate the tradeoff between area and delay. 

It also motivates a designer to find an appropriate m, to integrate CM and KM developing an optimal hybrid MM 

algorithm. 

III. Proposed Method for hybrid multiplication Strategy 

The key contribution of the paper is to define an optimum split point to integrate CM at the first stage and later KM 

to design a new hybrid multiplier approach. CM multipliers are optimized for both area and performance at lower m. 

The KM has proven low latency for large number multiplication using a recursive splitting strategy that systematically 

breaks down the operands into smaller, more manageable components. As stated in section II, we find an optimum 

point i.e., size ‘m’ where CM is better than KM. For that one needs to take the highest power of operand and assign it 

as level 0 or parent node to construct a tree-like structure. Then recursively split the m to draw the leaf nodes. These 
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leaf nodes are now at level 1 with acquiring values from set {m/2, m/2±1) and the process will go on reaching a value 

of m up to 2 or 3. For our ECPM case m is 163 bits and Figure 6. a, shows the tree structure with the parent node as 

level 0 with its highest power i.e., 163. Further, its leaf nodes of level 1 attain values i.e., m= {82,81}. These values 

can be assigned irrespective of their position i.e., either of them can be assigned as left or right. Now the tree grows 

in both directions with further recursive splitting, making two leaf nodes at level 2 with m=81 splitting into 41 & 40 

and m=82 splitting into 41 & 41. Likewise, the tree terminates reaching either m= 2 or 3 value.    

 

  

 

 

 

 

 

 

Fig.6.a Approach to deduce optimal multiplier m=163.           Fig.6.b Approach to deduce optimal multiplier m=571. 

This hierarchical decomposition structure is fundamental to the Karatsuba algorithm's efficiency, and the similar 

process for NIST B-571 as in figure 6 (b) can be written empirically as: 

 

1. Level 0: Parent (571) → Leaf1(286) + Leaf2(285)  

2. Level 1: Parent (286) → Leaf1 (143) + Leaf2 (143); Parent (285) → Leaf1 (142) + Leaf2 (143) 

3. Level 2: Parent (143) → Leaf1 (71) + Leaf2 (72); Parent (142) → Leaf1 (71) + Leaf2 (71) 

4. Level 3: Terminal segments of CM Each 71-bit segment → 35 + 36 bits; 72-bit segment → 36 + 36 bits 

The splitting process results in an optimized structure ensuring efficient resource utilization and balanced computation. 

Now this split gives specific m for which RTL design blocks will be written to estimate resources in terms of area, 

power, and delay. This will provide us optimum m up to which CM performs superior than KM. In stage 2 our obvious 

choice for larger m becomes KM. This strategy to estimate the resources first and find optimal m to use CM is new 

and explored for all the possible curves to generalize our approach. The table 4 shows the optimal points for NIST 

standard curves. 

Table 4: Resource Estimation for Modular CM and KM 

 NIST Standard  Irreducible Polynomial Optimal Point (m) 

Stage I CM 

Stage II 

KM  

Application 

163 [41] 𝑥163 + 𝑥7 + 𝑥6 + 𝑥3 + 1 41 → 21 → 11 → 6 

→ 3 → 2 

163 → 82 ECPM for ECC 
 

233 [42] 𝑥233 + 𝑥70 + 1 59 → 30 → 15 → 8 

→ 4 → 2 

233 → 117 

283 [43] 𝑥283 + 𝑥12 + 𝑥7 + 𝑥5 + 1 71 → 36 → 18 → 9 

→ 5 → 3 

 283 → 142  

571 [44] 𝑥571 + 𝑥10 + 𝑥5 + 𝑥2 + 1 71 → 35 → 17 → 8 

→ 4 → 2 

571 → 286  

 

 

In this paper we have proposed a hybrid Karatsuba multiplier by utilizing the conventional PM in place of an 

intermediary KM stage, thus requiring no further Karatsuba decompositions. The hardware implementation of KM 

K
M

 
C

M
 

optimal K
M

 
C

M
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across various operand lengths demonstrates a systematic pattern of recursive decomposition, with each variant 

following a carefully optimized splitting sequence. Four specific cases have been analyzed: 163-bit, 233-bit, 283-bit, 

and 571-bit multipliers. Then further making a hybrid design for the specified NIST Standard curve given in Table 4. 

The first design is shown in Figure. 8 where a 41-bit PM is utilized to achieve this. The analysis behind the obvious 

choice of 41 bits for our approach is to present the subsequent design depicted in Figure 8. For the 163-bit multiplier, 

the recursive splitting sequence follows: 163 → 82 → 41 → 21 → 11 → 6 → 3 → 2. The 233-bit multiplier 

demonstrates the sequence: 233 → 117 → 59 → 30 → 15 → 8 → 4 → 2. For the 283-bit implementation, the 

progression follows: 283 → 142 → 71 → 36 → 18 → 9 → 5 → 3. The 571-bit multiplier exhibits the sequence: 571 

→ 286 → 142 → 71 → 35 → 17 → 8 → 4 → 2. 

 

Fig. 7. Proposed structure of 163-bit hybrid Karatsuba multiplier. 

Figure 7 is a block representation for the proposed hybrid method for case B-163 i.e., ECPM. The hybrid multiplier 

employs a unique optimization strategy where the recursive Karatsuba decomposition proceeds with 82-bits onwards 

and CM is considered up to 41-bits as stage I. This optimal strategy to stop at level 2 has appropriate established facts 

from the resource estimation tables. Similarly, for B-233 stage I i.e., CM is employed up to 59-bit and thereafter KM 

for subsequent operations as shown in Figure 8. 

 

 

Fig. 8. Proposed structure of 233-bit hybrid Karatsuba multiplier. 

Similarly, first, we look for resource estimations for B-283 and B-571 and then extract the optimal m for them. Figures 

9 & 10 reveal stage I for B-283 and B-571 curves with highlighted square boxes respectively. Further, to generalize 

the approach for NIST curves, the stagewise sequences are listed. From the figure, it is observed that apart from B-

571, all other curves require a maximum of 2 steps for KM multiplication, excluding the CM case. However, for B-

571, 3 steps are required for KM multiplication. This suggests that for higher-degree polynomial multiplications, more 

than 3 steps may be needed for the KM algorithm. 

 

 

Fig. 9. Proposed structure of 283-bit hybrid Karatsuba multiplier. 

The block diagram of the structure as shown in Fig. 8 can be realized using digital combinational logic. The binary 

hybrid KM architecture requires modulo adders i.e., XOR gates & AND gates as primary components for the 

realization of GF(2m) based polynomial multiplier and reduction. Here, multiplication follows a hierarchical strategy 

having parallel processing paths. Figure 11 shows the architecture of proposed Hybrid multiplier for unified NIST 

standard curves over GF (2163). The architecture combines CM and KM on unique optimum point as stated in section 

III.  First stage of architecture is a cascading structure using 2/4/8-bits onwards up to the finalized optimum point i.e. 

41 for chosen NIST standard curve as in table 4. 
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Fig. 10. Proposed structure of 571-bit hybrid Karatsuba multiplier. 

In the figure 11 the arrows indicate the dataflow with bus width. Final stage is reduction using irreducible polynomial 

confining the stage II {2m-2} bits output reduced to {m-1} bits, for GF (2163) it is 163-bits. Inset shows the reduction 

using shifting process. The process has two steps, in step 1 P(x) reduces the coefficient with degree > x¹⁶³, and step2 

is applied only when the coefficient with (x⁷, x⁶, x³) degree exits. The step 2 usually requires zero padding.  

 

 
Fig. 11. Architectural diagram to device hybrid multiplication technique combining CM as stage I & KM as stage II,  

with NIST standard irreducible polynomial over GF (2163) as the final stage. 

 

IV. Results and Discussion 

This architecture uses a balanced pipeline structure to optimize different multiplication algorithms with a reduction 

scheme. The architecture for the proposed hybrid approach reduces intermediate registers and gate count significantly 

improving the routing paths and reducing control logic requirements. The approach leads to desired hardware 

performance outperforming the existing approaches for the modular multiplier. The architecture in Figure 11 is 

implemented with digital logic for unified NIST standard curves estimating the resources on the Xilinx AMD zynq-7 

series reconfigurable platform as depicted in Table 5. Here the approach utilizes the optimum m for stages I and II as 

depicted in Table 4 and uses the standard irreducible polynomial for final reduction. 

A. Performance Analysis  

This section discusses the implementation results of the proposed method and compares it with other relevant works 

in this field. For designing a hybrid multiplier shown in Figure 13, using CM and KM, based on our analysis, we 

observed that the CM exhibits greater efficiency than the KM for small operand sizes, and KM is better for larger bit 

sizes. In the case of B-163, CM is applied up to 41 bits operand sizes which enhances area efficiency. 

 

Table 5: Resource Estimation of the proposed hybrid design for NIST Standard curve Virtex-7 

Operand Size LUT Delay (ns) ADP 

163 6812 13.307 090860.2 

233 10787 13.387 144405.6 
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283 14508 12.280 178158.2 

571 44550 16.473 733872.2 

 

The CM demonstrates around 0.14% improvement in area and 9.39 % in delay thereby overall 9.55% improvement 

in ADP in comparison to 41-bit KM. Utilizing CM for Stage I and later KM for Stage II the proposed Hybrid Modular 

multiplier for constructing a 163-bit multiplier. 

Calculation of the percentage differences ((KM - CM)/CM × 100) for each metric separately 

LUT Differences from 3 (a) & (b): 

1. Size 4: ((7 - 7)/7) × 100 = 0% (no change) 

2. Size 6: ((16 - 16)/16) × 100 = 0% (no change) 

3. Size 8: ((146 - 32)/32) × 100 = +356.25% 

4. Size 11: ((158 - 49)/49) × 100 = +222.45% 

5. Size 21: ((206 - 185)/185) × 100 = +11.35% 

6. Size 41: ((695 - 694)/694) × 100 = +0.14% 

7. Size 82: ((2306 - 2599)/2599) × 100 = -11.27% 

8. Size 163: ((7762 - 9982)/9982) × 100 = -22.24% 

The LUT utilization comparison between KM and CM implementations reveals an interesting pattern across different 

operand sizes. For small operand sizes (4 and 6), there is no difference in LUT consumption between the two 

implementations. However, as the operand size increases, significant variations emerge. For medium-sized operands, 

KM shows substantially higher LUT usage, with a dramatic 356.25% increase at size 8 and a 222.45% increase at size 

11. This trend moderates for size 21, showing only an 11.35% increase, and becomes minimal at size 41 with just a 

0.14% increase. Interestingly, the trend reverses for larger operand sizes. At size 82, KM demonstrates an 11.27% 

reduction in LUT usage compared to CM. This improvement becomes even more pronounced at size 163, where KM 

shows a 22.24% reduction in LUT utilization. This pattern suggests that while KM is less efficient for medium-sized 

operands, it becomes increasingly resource-efficient for larger operand sizes, making it particularly suitable for 

applications requiring larger multiplications. These results indicate a clear crossover point in efficiency between CM 

and KM implementations, where KM transitions from being less resource-efficient at medium sizes to more resource-

efficient at larger sizes. This characteristic is particularly valuable for optimizing implementation choices based on 

specific operand size requirements. 

Delay Differences: 

1. Size 4: ((5.802 - 4.530)/4.530) × 100 = +28.08% 

2. Size 6: ((6.002 - 5.008)/5.008) × 100 = +19.85% 

3. Size 8: ((7.085 - 5.099)/5.099) × 100 = +38.95% 

4. Size 11: ((7.902 - 6.363)/6.363) × 100 = +24.19% 

5. Size 21: ((9.083 - 8.116)/8.116) × 100 = +11.91% 

6. Size 41: ((10.562 - 9.655)/9.655) × 100 = +9.39% 

7. Size 82: ((13.280 - 12.031)/12.031) × 100 = +10.38% 

8. Size 163: ((20.282 - 18.129)/18.129) × 100 = +11.87% 

The delay comparison between KM and CM implementations reveals that KM consistently exhibits higher delay 

across all operand sizes, though the magnitude of this difference varies significantly. For smaller operand sizes, KM 

shows notable increases in delay, with a 28.08% increase at size 4 and 19.85% at size 6. The delay difference reaches 

its peak at operand size 8, where KM demonstrates a 38.95% increase in delay compared to CM. As the operand size 

increases, the delay differential begins to moderate. At size 11, the increase is 24.19%, which further reduces to 

11.91% at size 21. The smallest delay difference is observed at size 41, where KM shows only a 9.39% increase. For 

larger operand sizes, the delay difference stabilizes, showing a 10.38% increase at size 82 and 11.87% at size 163. 

This pattern suggests that while KM consistently operates with higher delay than CM, the performance gap is most 
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pronounced for smaller operand sizes and becomes more stable for larger ones. The moderation of delay differences 

at larger operand sizes indicates that KM's delay overhead becomes more predictable and manageable as the operand 

size increases, despite maintaining a consistent performance penalty compared to CM implementation. These findings 

are particularly relevant for applications where timing requirements are critical, as they demonstrate that the delay 

overhead of KM implementation, while persistent, becomes more predictable for larger operand sizes. 

ADP Differences: 

1. Size 4: ((40.61 - 31.71)/31.71) × 100 = +28.07% 

2. Size 6: ((96.03 - 85.77)/85.77) × 100 = +11.96% 

3. Size 8: ((1034.41 - 163.17)/163.17) × 100 = +534.01% 

4. Size 11: ((1119.43 - 311.79)/311.79) × 100 = +259.03% 

5. Size 21: ((1871.08 - 1501.46)/1501.46) × 100 = +24.62% 

6. Size 41: ((7340.59 - 6700.57)/6700.57) × 100 = +9.55% 

7. Size 82: ((30623.68 - 31268.57)/31268.57) × 100 = -2.06% 

8. Size 163: ((157428.88 - 180963.68)/180963.68) × 100 = -13.01% 

The ADP comparison reveals a complex pattern of efficiency differences between KM and CM implementations 

across varying operand sizes. For small operands, KM shows moderate increases in ADP, with a 28.07% increase at 

size 4 and 11.96% at size 6. However, the most dramatic differences appear in the medium-small operand range, where 

KM exhibits a substantial 534.01% increase in ADP at size 8, followed by a 259.03% increase at size 11. As the 

operand size continues to increase, the ADP differential decreases significantly. At size 21, the difference reduces to 

a 24.62% increase, further declining to just 9.55% at size 41. Notably, the trend reverses for larger operand sizes, with 

KM showing improved efficiency compared to CM. At size 82, KM demonstrates a slight improvement with a 2.06% 

reduction in ADP, and this advantage becomes more pronounced at size 163, where KM achieves a 13.01% reduction 

in ADP. This pattern reveals a clear transition in efficiency between the two implementations. While KM shows 

significantly higher ADP values for medium-small operand sizes (particularly at sizes 8 and 11), it becomes 

increasingly efficient for larger operands, ultimately outperforming CM for sizes 82 and above. This characteristic 

suggests that KM implementation is more suitable for applications involving larger operand sizes, where it can offer 

better overall efficiency despite its consistent delay overhead. These findings are crucial for implementation decisions, 

as they indicate that the choice between KM and CM should be heavily influenced by the target operand size, with 

KM being the preferred choice for larger operands despite its initial efficiency disadvantages at smaller sizes. 

The performance comparison between KM and CM implementations reveals distinctive patterns across different 

operand sizes, demonstrating varying trade-offs in resource utilization, delay, and overall efficiency. In terms of LUT 

utilization, the implementations show identical resource usage for small operand sizes (4-6), followed by dramatic 

increases for medium sizes, with KM requiring up to 356.25% more LUTs at size 8 and 222.45% at size 11. However, 

this trend reverses for larger operand sizes (82-163), where KM demonstrates improved resource efficiency with up 

to a 22.24% reduction in LUT usage. Delay characteristics show a consistent pattern where KM exhibits higher delays 

across all operand sizes, reaching its peak difference of 38.95% at size 8. The delay overhead, while persistent, 

becomes more moderate and stable for larger operand sizes, settling around a 10-12% increase. This consistent delay 

pattern suggests a predictable performance trade-off when choosing KM implementation. The Area-Delay Product 

(ADP) analysis reveals the most dramatic variations in overall efficiency. For medium-small operands, particularly at 

size 8, KM shows a massive 534.01% increase in ADP, indicating significantly lower efficiency. However, this 

efficiency gap narrows considerably as operand size increases, eventually leading to efficiency gains for larger 

operands, with KM showing a 2.06% improvement at size 82 and a more substantial 13.01% reduction at size 163. 

These combined observations indicate that KM implementation, despite its consistent delay overhead, becomes 

increasingly advantageous for larger operand sizes in terms of both resource utilization and overall efficiency. This 

makes it particularly suitable for applications requiring larger multiplications, while CM remains more efficient for 

medium-sized operands. The clear transition points in efficiency metrics provide valuable guidance for selecting the 
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appropriate implementation based on specific operand size requirements. A comprehensive comparison between CM, 

KM, and our proposed hybrid design shown in Table 5, for operand size 163 reveals significant improvements across 

all performance metrics. In terms of resource utilization, the hybrid design demonstrates remarkable efficiency in LUT 

usage, requiring 6,812 LUTs compared to 9,982 for CM and 7,762 for KM implementations. This represents a 

substantial reduction of 31.76% compared to CM and 12.24% compared to KM, indicating superior resource 

optimization. The delay performance analysis shows equally impressive results. The hybrid design achieves a delay 

of 13.307 ns, significantly outperforming both CM (18.129 ns) and KM (20.282 ns) implementations. This translates 

to a 26.60% reduction in delay compared to CM and a 34.39% improvement over KM. Notably, while KM shows an 

11.87% higher delay than CM, our hybrid design successfully overcomes this limitation. The Area-Delay Product 

(ADP) metrics further underscore the hybrid design's efficiency. With an ADP of 90,860.2, the hybrid implementation 

achieves a remarkable 49.79% improvement over CM (180,963.68) and 42.28% over KM (157,428.88). This 

substantial reduction in ADP demonstrates that our hybrid approach successfully optimizes both area and delay 

characteristics simultaneously, rather than trading one for the other. These results validate the effectiveness of our 

hybrid design strategy, showing that it successfully combines the strengths of both CM and KM approaches while 

mitigating their respective drawbacks. The Hybrid design shows superior performance across all metrics (LUT, Delay, 

and ADP) compared to both CM and KM implementations for operand size 163. and overall efficiency - demonstrates 

robustness including the power estimation graph shown in Fig. 14. Also, the well-balanced nature of our hybrid 

implementation. 

Fig. 12. Power estimation of the proposed design for NIST Standard curve Virtex-7 

Fig. 12. shows a power estimation comparison across different components for what appears to be NIST Standard 

curve Vertex-7 implementations. The graph compares four different versions/implementations labeled as B-163, B-

233, B-283, and B-571. The power consumption is measured across several categories, signals - B-571 shows the 

highest value at around 2.5-3 units, Logic has a similar pattern to Signals, with B-571 being the highest, I/O - All 

implementations show relatively low values, with slight variations, Dynamic power - B-571 shows significantly higher 

consumption at around 6 units, Static Power - Very low values across all implementations, Total on-chip power - B-

571 shows the highest total power consumption at about 6.5-7 units. The B-571 implementation consistently shows 

the highest power consumption across most categories, while B-163 generally shows the lowest. The graph suggests 

that as the bit-length increases (from 163 to 571), the power consumption generally increases as well, particularly 

noticeable in the dynamic power and total on-chip power measurements. The data appears to be presented in a bar 

chart format with different colored bars representing each implementation variant, and the y-axis seems to be 

measuring power units (though the specific unit of measurement is not indicated in the image). 

This diagram shown in Fig. 13. the architecture of a 163-bit hybrid KM implementation. The design consists of four 

main blocks connected in sequence: 1. Clocking Wizard manages clock signals (clk_in1_0 to clk_out1), 2. VIO 

(Virtual Input/Output): Handles probe inputs/outputs with 32-bit width, 3. Karatsuba Multiplier: Core computation 

block showing RTL implementation, 4. ILA (Integrated Logic Analyzer): Monitors and analyses signals, The data 

flow moves left to right, with clock signals and probe data being processed through the KM, and results being analysed 

by the ILA block. Each connection shows specific bit-widths and signal names, indicating a detailed hardware 

implementation for 163-bit multiplication. 
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Fig. 13. Verification Architecture of hybrid modular multiplier using ILA and VIO Infrastructure 

 

The verification architecture for hybrid modular multiplier implements a comprehensive testing framework utilizing 

Integrated Logic Analyzer (ILA) and Virtual Input/output (VIO) infrastructure. The design incorporates a Clocking 

Wizard for precise timing control, enabling synchronized operation of the verification components. The VIO module 

facilitates dynamic input vector generation and runtime parameter modifications, allowing interactive testing of the 

multiplier under various conditions. The ILA core provides real-time signal capture capabilities, enabling detailed 

monitoring of internal states and critical signal paths. 

 

The architecture employs multiple probe points strategically placed to monitor key signals, including probe out and 

probe in interfaces. These probe points enable continuous observation of the multiplier's operational states and 

intermediate results. The ready signal path ensures proper handshaking between the verification infrastructure and the 

core multiplier logic. This integrated approach allows for thorough validation of the multiplier's functionality, 

performance characteristics, and timing constraints. 

 

The verification system supports both static and dynamic testing methodologies, enabling rapid detection of potential 

implementation issues and validation of the multiplier's mathematical correctness. The real-time debugging 

capabilities facilitate immediate feedback during testing phases, significantly reducing the verification cycle time and 

improving the overall quality assurance process. 

 

B. Comparison with Existing Research work 

The proposed hybrid CM-KM multiplier demonstrates significant performance improvements across various FPGA 

platforms and operand sizes. Our analysis reveals notable enhancements in three critical aspects: resource utilization, 

delay performance, and overall efficiency. we can compare our work with existing research work in terms of resource 

utilization shown in Table 6. 

In terms of resource utilization, for operand size m=163, our hybrid design achieves remarkable LUT optimization. It 

requires only 6,812 LUTs, representing a 39.82% reduction compared to the [37] Bit-Parallel implementation on 

Artix-7 (11,320 LUTs) and a substantial 71.59% reduction compared to the Montgomery implementation on Virtex-

6 (23,977 LUTs) [46]. The design also shows a 12.51% improvement over the LFSR implementation on Virtex-5 [36].  

 

Table 6:  Comparing FPGA resource utilization and delay of the proposed multiplier with relevant research work 

 

Ref. Device m 
Area Delay 

(ns) 
ADP Reduction Method Year 

LUT Slices 

[45] Spartan 3E 8       62 36 13.95 1367 No Modified KM 2014 

[29] Virtex 4 24   1018 972 13.00 25870 No KM Urdhva 2015  

[36] Virtex 5 163   7786 - 05.50 - Yes LFSR 2013 

[46] Virtex 6 163 23977 2061 11.70 - Yes Montgomery  2016 

[34] Stratix II 163 - 1033 41.80 43179 Yes Digit-serial 2017 

[37] Artix-7 163 11320 3532 21.33 75337 Yes Bit-Parallel 2018 

Ours Virtex 7 163  6812 1335 13.31 90860 Yes Hybrid (CM-KM)  

[[47] Virtex II 191 - 62657 45.89 - Yes Montgomery 2010 

[24] Artix-7 233 19804 1147 08.29 173683 Yes Overlap-free 2021 

[48] Virtex 4 233 36812 21195 07.17 3702090 Yes Bit-Parallel 2020 

Ours Virtex 7 233 10787 1299 13.39 144405 Yes Hybrid (CM-KM)  
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For larger operand size m=233, the efficiency gains are even more pronounced, with our design using 10,787 LUTs, 

achieving a 45.53% reduction compared to the Overlap-free design and a 70.70% reduction compared to the Bit-

Parallel implementation [24], [48]. And the delay performance analysis reveals competitive results across different 

operand sizes. At m=163, our design achieves a delay of 13.31ns, showing a 37.60% improvement over the Bit-

Parallel Artix-7 implementation. While this is 68.21% slower than the LFSR implementation, it offers better resource 

utilization as a trade-off. For m=233, the design maintains consistent performance at 13.39ns, demonstrating 

remarkable stability across different operand sizes, though with some trade-offs against Overlap-free and Bit-Parallel 

implementations. The Area-Delay Product (ADP) metric demonstrates the overall efficiency of our design. For 

m=163, the design achieves an ADP of 90,860, showing balanced resource-speed trade-offs compared to other 

implementations. The efficiency becomes more pronounced at m=233, where our design achieves an ADP of 144,405, 

representing a 16.86% improvement over the Overlap-free implementation and a remarkable 96.10% improvement 

compared to the Bit-Parallel implementation. These results demonstrate that our hybrid design successfully balances 

resource utilization and performance metrics, making it particularly suitable for applications requiring efficient FPGA 

resource usage while maintaining competitive delay characteristics. 

 

The proposed hybrid CM-KM multiplier demonstrates several distinctive advantages that establish its effectiveness 

for cryptographic applications. A primary strength lies in its scalability, where the design maintains consistent 

performance characteristics across different operand sizes. The transition from m=163 to m=233 shows proportional 

resource utilization while maintaining stable delay metrics, indicating robust scaling capabilities. 

 

The design achieves remarkable efficiency through its balanced approach to performance optimization. While 

significantly reducing resource requirements, it avoids severe compromises in delay performance, demonstrating that 

resource optimization and speed can be simultaneously addressed. This balance is maintained across various FPGA 

platforms, highlighting the design's versatility and practical applicability. 

 

Implementation-wise, the hybrid design successfully incorporates reduction techniques while maintaining competitive 

performance metrics. The effective integration of CM and KM methodologies results in optimized resource utilization 

without significantly impacting operational speed. This balanced approach makes the design particularly suitable for 

applications where efficient resource usage is crucial, but performance cannot be significantly compromised. 

 

These characteristics make our hybrid design an excellent choice for practical cryptographic implementations, offering 

a well-balanced solution that effectively addresses the traditional trade-offs between resource utilization and 

performance. The design's ability to maintain these advantages across different FPGA platforms and operand sizes 

demonstrates its robustness and practical viability in real-world applications. 

The comprehensive analysis demonstrates that our proposed hybrid architecture offers a viable alternative to existing 

implementations, particularly in scenarios where balanced performance and resource utilization are primary concerns. 

 

V. Conclusion 

In this paper, we introduce a novel approach that extends the hybrid multiplication (CM-KM) technique to modular 

multipliers. One of the most appealing aspects of the new algorithm is that it allows designers to arbitrarily choose the 

degree of the defining irreducible polynomial. Additionally, this new field multiplier results in architectures with 

significantly reduced gate complexity compared to conventional methods. Moreover, the new multiplier facilitates 

highly modular architectures, making it particularly suitable for VLSI implementations. Our proposed hybrid (CM-

KM) modular multiplier design demonstrates notable improvements in several key metrics when compared with 

existing implementations across different FPGA platforms and operand sizes. The analysis can be categorized into 

three main aspects: 1. Resource Utilization Analysis: For m=163 implementations, our hybrid design achieves 
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significant resource optimization: Requires only 6,812 LUTs compared to 11,320 LUTs in Bit-Parallel (Artix-7) 

implementation, representing a 39.82% reduction, shows 71.59% LUT reduction compared to Montgomery 

implementation on Virtex-6 (23,977 LUTs), Utilizes 12.51% fewer LUTs than LFSR implementation on Virtex-5 

(7,786 LUTs). For m=233 implementations demonstrate substantial improvement with 10,787 LUTs compared to 

19,804 LUTs in Overlap-free design (45.53% reduction), 36,812 LUTs in Bit-Parallel implementation (70.70% 

reduction). 2. Delay Performance: The delay characteristics show competitive performance, For m=163: Our design 

achieves 13.31ns delay, showing, 37.60% improvement over Bit-Parallel Artix-7 implementation (21.33ns), 

Competitive performance compared to Montgomery implementation (11.70ns), 68.21% slower than LFSR 

implementation (5.50ns), but with better resource utilization, For m=233: Maintains consistent performance with 

13.39ns delay, Trade-off against Overlap-free (8.29ns) and Bit-Parallel (7.17ns) implementations, Demonstrates 

remarkable consistency across different operand sizes. 3. Area-Delay Product (ADP) Analysis: The ADP metric 

reveals the overall efficiency of our design: For m=163, Achieves 90,860 ADP compared to 75,337 in Bit-Parallel 

implementation, shows better efficiency than Digit-serial implementation (43,179), Demonstrates balanced resource-

speed trade-off. For m=233, Achieves significant improvement with 144,405 ADP, 16.86% better than Overlap-free 

implementation (173,683), 96.10% improvement over Bit-Parallel implementation (3,702,090). 
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