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Abstract—Buy Now Pay Later (BNPL) is a rapidly pro-
liferating e-commerce model, offering consumers to get the
product immediately and defer payments. Meanwhile, emerging
blockchain technologies endow BNPL platforms with digital
currency transactions, allowing BNPL platforms to integrate with
digital wallets. However, the transparency of transactions causes
critical privacy concerns because malicious participants may
derive consumers’ financial statuses from on-chain asynchronous
payments. Furthermore, the newly created transactions for
deferred payments introduce additional time overheads, which
weaken the scalability of BNPL services. To address these issues,
we propose an efficient and privacy-preserving blockchain-based
asynchronous payment scheme (Epass), which has promising
scalability while protecting the privacy of on-chain consumer
transactions. Specifically, Epass leverages locally verifiable sig-
natures to guarantee the privacy of consumer transactions
against malicious acts. Then, a privacy-preserving asynchronous
payment scheme can be further constructed by leveraging time-
release encryption to control trapdoors of redactable blockchain,
reducing time overheads by modifying transactions for deferred
payment. We give formal definitions and security models, generic
structures, and formal proofs for Epass. Extensive comparisons
and experimental analysis show that Epass achieves KB-level
communication costs, and reduces time overhead by more than
four times in comparisons with locally verifiable signatures and
Go-Ethereum private test networks.

Index Terms—E-commerce, locally verifiable signatures, time-
released encryption, redactable blockchain.

I. INTRODUCTION

Buy Now Pay Later (BNPL) allows consumers to pay in
installments, usually several equal parts, and get the product
immediately [1]. This service enables consumers to enjoy the

Weijie Wang is with the School of Computer Science, Beijing Institute of
Technology, Beijing, China. E-mail: weijiew@bit.edu.cn.

Jinwen Liang and Song Guo are with the Department of Computing,
The Hong Kong Polytechnic University, Hong Kong. E-mail: {jinwen.liang,
song.guo}@polyu.edu.hk.

Chuan Zhang and Liehuang Zhu are with the School of Cyberspace Science
and Technology, Beijing Institute of Technology, Beijing, China. E-mail:
{chuanz, liehuangz}@bit.edu.cn.

Ximeng Liu is with the College of Mathematics and Computer Science,
Fuzhou University, and Fujian Provincial Key Laboratory of Information
Security of Network Systems, Fuzhou, China. E-mail: snbnix@gmail.com.

Weijie Wang and Jinwen Liang contribute to the work equally and should
be regarded as co-first authors.

Chuan Zhang is the corresponding author.
This research is financially supported by the “National Key R&D Pro-

gram of China” (2021YFB2700500, 2021YFB2700503), the National Nat-
ural Science Foundation of China (Grant Nos. 6223000240, 62202051),
the China Postdoctoral Science Foundation (Grant Nos. 2021M700435, and
2021TQ0042), the Shandong Provincial Key Research and Development Pro-
gram (Grant No. 2021CXGC010106), and the Key-Area Research and Devel-
opment Program of Guangdong Province under grant No.02021B0101400003.

Manuscript received April 19, 2021; revised August 16, 2021.

products they need early even if they don’t have enough money
available, helping people to enhance their life experiences.
Many shopping platforms, such as Amazon, Taobao, Jingdong,
etc., support BNPL services using USD, RMB, etc. At the
same time, the rise of blockchain has developed a new form
of currency: digital currencies such as bitcoin and ether.
According to statistics, as of early February 2023, users
were paying a total of $4.4 million per day for Ethereum
transactions [2]. Many businesses are also starting to support
using digital currencies to shop for products. For example,
Klarna allows customers to buy digital assets [3], and Affirm
added cryptocurrency to allow customers to buy and sell digital
currency on their application [4]. Therefore, it is not surprising
to see that the BNPL platforms enable their customers to use
digital currencies.

Existing works such as Pay Later Project (PLP) [5], Atpay
[6], and Apenow [7], are performed by smart contracts to
provide deferred payment services to consumers. Smart con-
tracts allow for internal constraints requiring consumers to pay
BNPL service providers at specific times [8]. However, the
data transparency on-chain leads to serious privacy concerns
[9], [10]. Transactions provided by consumers to smart con-
tracts are visible to all nodes in the blockchain network, which
also results in deferred payment transactions being as public
as regular transactions. This is unacceptable in real-world e-
commerce applications, as malicious third parties may analyze
consumers’ financial situation based on their deferred payment
transactions [11]. In addition, it undermines the scalability of
BNPL services due to the additional time overhead incurred by
consumers’ newly created deferred payment transactions. Each
deferred payment transaction generated by a consumer appears
as a new transaction in the blockchain network, and these
newly generated transactions must again go through a series
of processes, including acceptance, mining, propagation, and
node network validation [12]. This procedure requires signif-
icant processing power and time and burdens the blockchain,
especially for instalment payments.

Our goal is to build a services computing asynchronous
payment system with the following features. First, it protects
the privacy of users’ transactions so that malicious third parties
do not misuse their deferred payment transaction information.
Second, it has a reasonable performance overhead and scalabil-
ity as the number of users increases. An essential foundation
for existing work to implement deferred payments is smart
contracts, which monitor the behaviour of consumers and
BNPL service providers through internal constraints. How-
ever, since smart contracts are public, all participants in the
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blockchain network can derive the input, execution process,
and output of a smart contract [13]. Therefore, smart contracts
will no longer meet our requirements because they are not
suitable for protecting the privacy of users’ transactions. In this
work, we propose a deferred payment paradigm based on pub-
lic key encryption with locally verifiable signatures to guaran-
tee users’ privacy. In addition, to preserve the scalability, we
use the chameleon hash trap to modify the deferred payment
transaction without creating additional new transactions, thus
improving the efficiency of the blockchain. However, it is
still challenging to enable BNPL service providers to make
changes to transactions at specific times without using smart
contracts. To address this issue, we combine timed-release
encryption and a redactable blockchain to enable delayed
payments. Specifically, we deploy servers that provide keys
so that providers offering deferred payment services can only
modify transactions at specific time intervals.

The main contributions of this paper.
• We propose a blockchain-based deferred payment scheme

(Epass) that aims to address the privacy and efficiency
issues in blockchain-authorized BNPL services. It reduces
the on-chain burden while protecting user privacy.

• Epass has less time overhead compared to existing
schemes. We deploy servers to provide time instant key
so that the deferred payment service provider can only
rewrite the on-chain transactions at a specific instant of
time. Subsequent changes to the transaction through the
trapdoor of chameleon hash only require node network
verification, saving time and arithmetic power compared
to generating a new transaction.

• Epass supports the protection of user privacy in the case
of multiple transactions generated by users in the system.
All transaction signatures of a user are aggregated into a
single aggregated signature that is used for aggregation
verification. We extend the single verification of locally
verifiable signatures to subset verification. Later, without
the service provider knowing all of the user’s transactions,
the subset of transactions requiring deferred payment can
be decompressed from this aggregated signature.

• We have conducted extensive experiments on Epass. The
results show that Epass has practical security features
and acceptable communication cost (KB-level). Com-
pared to the baseline, the time overhead was reduced by
more than four times.

The remainder of this paper is organized as follows. Section
II describes the symbols used and the cryptographic primitives
involved. Section III describes the system architecture, threat
model and security model. Section IV describes our proposed
system in detail and gives a formal definition. Section V
analyzes the correctness and security properties and performs a
performance analysis in Section VI. Section VII describes the
current issues in blockchain e-commerce solutions and gives a
technical overview. Finally, we conclude our work in Section
VIII.

II. PRELIMINARY

In this section, we first define the notations to be used. Then
we describe digital signatures, chameleon hashes and timed-

release encryption.

A. Notation

The notations and corresponding descriptions in this paper
are provided in Table I.

TABLE I
NOTATIONS

Notation Description

G,GT bilinear groups
H,H1, H2 crytographic hash functions
mpk,msk master key pair
pku, pkm, pkS public key
pklocal local verification key
sku, skm, skS secret key
σ signature
C ciphertext
σ̂ aggregated signature
tx transaction
aux auxiliaty information

B. Digital Signatures

Digital Signatures: A digital signature is a method of
identifying digital information through public key cryptogra-
phy to authenticate and confirm the identity and eligibility
of the signer. Two complementary operations are typically
defined by digital signatures, one for signing and the other
for verifying. Sender A signs the data to be transmitted by its
own private key to generate a digest, and then transmits the
digest generated by the signature and the data to be transmitted
together to receiver B. Receiver B verifies the signature by
A’s public key after receiving the data. Four algorithms make
up a digital signature DS [14], [15] with message space M:
{Setup,KeyGen,Sign,Verify}.

• DS.Setup
(
1λ

)
−→ (pp) : Security parameter λ ∈ N is

taken as an input, and a public parameter pp is output.
Other algorithms take the public parameter pp as an
implicit input.

• DS.KeyGen (pp) −→ (sk, pk) : Following the entry of a
public parameter pp, then provide a secret key sk and a
public key pk.

• DS.Sign (sk,m) −→ (σ) : A signature, denoted by the
symbol σ, is produced upon the input of a secret key sk
and a message m ∈M .

• DS.Verify (pk, σ,m) −→ (b) : A public key pk,a signa-
ture σ and a message m ∈M is input, and a decision bit
b ∈ {0, 1} is produced.

Existential Unforgeability Under a Chosen Message
Attack (EU-CMA): Knowing the public key pk, a probability
polynomial-time ( probability polynomial-time, PPT) attacker
is able to compute a valid signature for the new data M ′ with
negligible probability after obtaining the valid digital signature
it wishes to obtain. If a digital signature scheme satisfies the
above security requirements, then a valid digital signature can
convince the data receiver that the data it receives has not been
tampered with and the sender of the data is the owner of the
corresponding public key pk. Next, we give the security model
of EU-CMA.



3

Definition 1. (EU-CMA Security): On the subsequent exper-
iment, the EU-CMA security definition of a digital signature
DS is founded.

ExpEUF−CMA
A,DS

(
1λ

)
:

1) pp← DS.Setup
(
1λ

)
;

2) Lkey ← ∅; //KeyGen query list
3) Lsign ← ∅; //Sign query list
4) Lcorr ← ∅; //Corrupt query list
5) (pk∗,m∗, σ∗) ←
AOKeyGen(·),OSign,OCorrupt(·)(pp);

6) if pk∗ /∈ Lcorr ∧ (pk∗,m∗) /∈ Lsign∧
7) DS.Verify (pk∗, σ∗,m∗) = 1,
8) return 1.
9) else return 0.

where

1) Oracle OKeyGen(i):
2) (sk, pk)← DS. KeyGen (pp);
3) Lkey ← Lkey ∪ {(i, sk, pk)};
4) return pk.

1) Oracle OSign(pk,m):
2) σ ← DS.Sign(sk,m);
3) Lsign ← Lsign ∪ {(pk,m)};
4) return σ.

1) Oracle OCorrupt(pk):
2) Lcorr ← Lcorr ∪ {(pk)};
3) return sk.

When the following advantage is negligible for any proba-
bilistic polynomial-time adversary A, we claim that a digital
signature scheme DS is EU-CMA secure:

AdvEU-CMA
A,DS

(
1λ

)
=

∣∣Pr [ExpEU-CMA
A,DS

(
1λ

)
= 1

]∣∣ .
C. Chameleon Hashes

Chameleon Hashes: Compared with the traditional hash
function’s difficulty in finding collisions, chameleon hash can
artificially set a trapdoor, and mastering this trapdoor makes it
easy to find hash collisions. To a certain extent, chameleon
hash destroys the two collision resistance (weak collision
resistance and strong collision resistance) characteristics of
the hash function, and at the same time, it also destroys the
tamper-evident property of the blockchain based on the hash
function. But chameleon hash also expands the application
scenarios of blockchain, and it remains infeasible for ordinary
users who do not know the threshold to find collisions. In
other words, the security of chameleon hash can also be
guaranteed. For managers holding trapdoors, if they tamper
with the blocks at will, it is also possible to verify whether
the hashes of two blocks are equal. Five algorithms make up
a chameleon hashes CH [16], [17] with message space M:
{Setup,KeyGen,Hash,Verify,Adapt}.

• CH.Setup
(
1λ

)
−→ (pp) : Security parameter λ ∈ N is

taken as an input, and a public parameter pp is output.
Other algorithms take the public parameter pp as an
implicit input.

• CH.KeyGen (pp) −→ (sk, pk) : A public parameter pp
is input, and a secret key sk and a public key pk are
produced.

• CH.Hash (pk,m, r) −→ (h) : A public key pk, a message
m ∈ M and a randomness r is input, and a hash value
h is produced.

• CH.Verify (pk,m, h, r) −→ (b) : Following the entry of
a public key pk, a message m ∈M, a hash value h and
a randomness r, then provide a decision bit b ∈ {0, 1}.

• CH.Adapt (sk,m, h, r,m′) −→ (r′) : Following the entry
of a secret key sk, a message m ∈ M, a hash value h,
a randomness r and a message m′ ∈ M, then provide a
randomness r′.

D. Timed-Release Encryption

Timed-Release Encryption: Timed-release encryption is
a cryptographic primitive with a specific future decryption
time specified by the sender. Its time-dependent features are
important in many time-sensitive real-world applications (e.g.,
electronic bidding [18], installment payments [19], electronic
confidential files [20]). The sender sends an encrypted message
to the receiver, and no user, including the receiver, can decrypt
the message until the specified time. Four algorithms make up
a timed-release encryption TRE [21], [22] with message space
M and time space T = [0, T − 1]: {Setup,Ext,Enc,Dec}.

• TRE.Setup
(
1λ, T

)
−→ (pp) : Security parameter λ ∈ N

and a time instant T are taken as the input, and a public
parameter pp is produced.

• TRE.Ext (mpk,msk, t) −→ (kt) : A master public key
mpk, a master secret key msk and t ∈ T are input, and a
time instant key (TIK) kt is produced.

• TRE.Enc (mpk,m, [t0, t1]) −→ (C) : A master public
key mpk, a message m ∈ M and a Decryption Time
Interval (DTI) [t0, t1] ⊆ T are input, and a ciphertext C
is produced.

• TRE.Dec (mpk, C, kt) −→ (m/⊥) : Following the entry
of a master public key mpk, a ciphertext C and a key kt,
then provide either a message m or a failure symbol ⊥.

III. PROBLEM FORMULATION

In this section, we first define the system model and then
give detailed descriptions of the threat model and security
model.

A. System Model

As shown in Figure 1, Epass is composed of a certificate
authority (CA), users, providers, servers, and miners.

• Epass needs to be initialized, and CA is the blockchain
administrator who must broadcast the system parameters
to the other participants.

• Users are participants in the chain and they are allowed
to choose between two types of payment forms. One is
instant payment, and transactions generated in this way
cannot be rewritten. The other is asynchronous payment,
which allows the specified provider to rewrite the content
of the transaction.



4

Fig. 1. System Model

• Providers are participants in the chain who provide asyn-
chronous payment services to users and collect their fees
when a specified time is reached.

• Servers are participants in the chain that broadcasts
specific time nodes and provides additional auxiliary
information to the provider.

• Miners are participants in the chain, independent and
interconnected nodes that validate transactions and add
them to the existing distributed public ledger.

B. Threat Model

In our proposed scheme, CA is considered to be fully trusted
and miners are considered to be majority trusted, as in normal
blockchain systems. The adversaries are classified into three
categories based on their capabilities, i.e., intended-but-curious
providers, honest-but-curious cloud and external adversary.
The threat model is described in detail as follows.

• Intended-but-Curious Providers: The provider per-
forms the role of a receiver and a provider in our system.
As a semi-curious participant, the provider expects to
decrypt messages outside of the expected time interval
and tries to modify the wrong transaction amount.

• Honest-but-Curious Cloud: The cloud server holds
the private key sks and is responsible for providing
TIK kt and auxiliary information aux at fixed intervals
throughout the process. The cloud is semi-trustworthy and
follows our protocol, but will attempt to launch attacks
to compromise confidential messages, such as ciphertext-
only attacks.

• External Adversary: An external attacker is neither the
intended receiver nor aware of the sks, but he/she can
eavesdrop during system communication and obtain the
ciphertext by launching a ciphertext-only attack.

C. Security Model

We define a model for IND-CPA and EU-CMA security of
Epass scheme.

Definition 2. If the advantage of all adversaries in the game
is negligible at most, then Epass is IND-CPA secure.

Setup. The challenger C runs Epass.Setup(1λ) to generate
a master secret key msk and a master public key mpk. Then,
the master secret key msk is given to the adversary A.

Phase 1. At any time t ∈ T , A can adaptively issue a TIK
extraction query to oracle. Oracle will respond to each query
with kt.

Challenge. A chooses two messages m0 and m1 ∈M and
a time interval [t0, t1] ⊆ T with the constraint that for all
queries t in Phase 1, t /∈ [t0, t1]. A passes m0, m1, [t0, t1] to
C. C chooses a random bit b and computes

c′ = Epass.T rCreat (mpk, sku, (ID, txID) , skh, T ) .

c′ is passed to A.
Phase 2. A continues to query the TIK extract oracle using

the same restrictions as the Challenge phase.
Guess. The adversary outputs its guess b′ for b.
The output of this game is defined as 1 when b′ = b and

0 otherwise. If the output of the game is 1, we say that A
succeeds. We denote the advantage of A winning the game
by:

AdvA(κ) =

∣∣∣∣Pr [b′ = b]− 1

2

∣∣∣∣ .
We solve the security problem of IND-CCA by extend-

ing the definition. First, consider a Decrypt oracle in ad-
dition. On input a pair (c, t), it gets the response kt after
passing t to the TIK extraction oracle, where c represents
the ciphertext and t ∈ T . Then, the Decrypt oracle re-
turns a message m or a failure symbol ⊥ to the adversary
by running Epass.ReleasedDec (σ̂, pku, pkS ,m, aux, C, kt).
The Decrypt oracle can adaptively issue queries (c, t) in both
Phase 1 and Phase 2, but will be restricted in the latter
phase, i.e., the adversary cannot make decrypt queries (c, t),
where c = c′, t ∈ T , c′ represents the challenge ciphertext
and T represents the time interval. Under this restriction, the
adversary cannot win the game in a simple way.

Definition 3. (EU-CMA Security): If the advantage
AdvEU−CMA

A,Epass (1λ) = AdvEU-CMA
A,textsfDS(1

λ) is negligible for any
probabilistic polynomial-time adversaryA, then Epass is EU-
CMA secure. O is defined as the set of oracles, including: a
provider key generation oracle OKeyGenp(·), a provider corrupt
oracle OCorruptp(·), a user key generation oracle OKeyGenu(·),
a user corrupt oracle OCorruptu(·), a server key generation
oracle OKeyGenS (·), a server corrupt oracle OCorruptS (·), a hash
oracle OTrCreat(·, ·), an aggregate oracle OAggregate(·, ·) and an
adaption oracle OAdapt(·, ·, ·, ·, ·).

D. Design Goals

Based on the requirements of the above models, our design
goals are divided into two aspects: privacy and efficiency.

• Privacy: The privacy of user transactions should be guar-
anteed in asynchronous payments. The deferred payment
transactions generated by the user should not be made
public to prevent malicious third parties from analyzing
the user’s financial status accordingly.
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• Efficiency: Reasonable performance overhead and scala-
bility should be ensured. Epass saves time and computa-
tional power compared to existing works while satisfying
basic transaction processing requirements.

IV. PRIVACY-PRESERVING BLOCKCHAIN-BASED
ASYNCHRONOUS PAYMENT SCHEME

In this section, we give the formal definition and scheme
description of Epass.

A. Formal Definition

Epass is made up of the ten algorithms listed below:
Epass.Setup

(
1λ

)
→ (pp,msk,mpk) : CA manages the

setup algorithm. It accepts a security parameter λ ∈ N as
input. It produces a public parameter pp, a master secret key
msk, and a master public key mpk, with pp and mpk serving
as implicit inputs to all other algorithms.

Epass.UserKeyGen (pp)→ (sku, pku) : Each user executes
the user setup algorithm. It accepts a public parameter pp as
input and returns a secret key sku and a public key pku in the
form of outputs.

Epass.ProviderKeyGen (pp) →
(
skp, pkp

)
: Each provider

executes the provider setup algorithm. A secret key skp and
a public key pkp are produced from an input of a public
parameter pp.

Epass.ServerKeyGen (pp)→ (skS , pkS) : The server man-
ages the server setup algorithm. A secret key skS and a public
key pkS are produced from an input of a public parameter pp.

Epass.TrCreat (mpk, sku, (ID, txID) , skh, T ) →
(h, r, σ, C) : Each user executes the hash algorithm.
The inputs are a message with a transaction identity ID and
its content txID, a master public key mpk, a pair of secret
keys sku and skh, and a decryption time T . It generates a
ciphertext C, a signature σ, a hash value h, and randomness
r.

Epass.Aggregate (pku, {((IDi, ri) , σi)}i) → (σ̂/⊥) : All
input signatures σi are first verified by the signature aggrega-
tion process, which outputs ⊥ if any of these verifications are
unsuccessful. If not, it produces the aggregated signature σ̂.

Epass.Ext
(

pkS , skS , pku, {txi}i∈[ℓ] , j ∈ [ℓ]
)
→ (kt, aux) :

On the server, the extraction algorithm is executed. It accepts
a collection of transactions {txi}i∈[ℓ], public keys pkS and
pku, a secret key skS , and outputs a TIK kt and the auxiliary
information aux.

Epass.ReleasedDec (σ̂, pku, pkS ,m, aux, C, kt) →
(skh/⊥) : Each provider executes the timed-release decryption
algorithm. It accepts the following as inputs: public keys
pku and pkS , an aggregate signature σ̂, a message with a
transaction identity ID and its content txID and r, the auxiliary
information aux, a ciphertext C, and the TIK kt. And if any
of these verification fail, outputs bot. If not, the aggregated
signature skh is output.

Epass.Adapt (mpk, skp, (ID, txID) , h, r, (ID, tx′ID))
→ (r′, σ′) : Each provider executes the adapt algorithm. It
accepts the following inputs: the master public key mpk, the
secret key skp, the message’s transaction identity ID and
its content txID, the hash value h, the randomness r, and

the message’s transaction identity ID and its content tx′ID. It
generates two values: randomness r′ and a signature σ′.

Epass.Verify (mpk, pku, (ID, txID) , h, r, σID) → (b) : Min-
ers operate the verification algorithm. A master public key
mpk, a public key pku, a message including a transaction
identity ID and its content txID, a hash value h, a randomness
r, and a signature σID are all inputs required. It generates
a judgment bit b ∈ {0, 1} indicating the validity of the
transaction (ID, txID).

B. Proposed Scheme

The four phases of Epass are system initialization, transac-
tion making, transaction rewriting, and transaction verification.

1) System Initialization: The initialization of Epass is dis-
played in Figure 2. This process can be more specifically
divided into system setup, user key generation, provider
key generation, and server key generation.

Fig. 2. System Initialization

Epass.Setup
(
1λ

)
→ (pp,msk,mpk) : Given a security

parameter λ ∈ N and the upper bound on number of ag-
gregations B, set ppDS = (p,G,GT , g, ê) as the bilinear
group used in our construction, where ê : G×G→ GT ,
and G is a prime p order group. The public parameters
of a chameleon hash is ppCH ← CH.Setup

(
1λ

)
. Selects

a random number α ← Z∗
p, and samples the public

parameters for message hashing as hk ← HGen
(
1λ

)
.

It sets the key pair as pkα = (ppDS, {gα
i}i∈[B]), and

skα = (ppDS, α). Then, a collision-resistant hash func-
tion H : {0, 1}∗ → Zp is chosen, and the following
cryptographic hash functions H1 : {0, 1}∗ → G∗,
H2 : G∗

T → {0, 1}n are constructed. The algorithm
outputs a public parameter pp = (ppDS, ppCH, hk), a
master secret key msk = skα, and a master public key
mpk = (pkα, H), where pp and mpk are made available
to the public.
Epass.UserKeyGen (pp) → (sku, pku) : The
user key generation algorithm initializes a
signature key-pair skβ =

(
ppDS, hk, β ← Z∗

p

)
, and

pkβ = (ppDS, hk, {gβi}i∈[B]), where B represents
the upper bound for deferred payment transactions.
It then initializes a chameleon hash key-pair
(skh, pkh) ← CH.KeyGen (ppCH), a timed-release
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key pair sktre = s← Z∗
p, pktre = (sg, sα′g) and generate

a local verification key pklocal = (Π,hk, gα). The
algorithm returns a secret key sku = (skβ , sktre) and a
public key pku =

(
pkβ , pkh, pktre, pklocal

)
.

Epass.ProviderKeyGen (pp) →
(
skp, pkp

)
: The

provider key generation algorithm initializes a signature
key-pair skp′ = (ppDS, hk, µ ← Z∗

p), and pkp′ =

(ppDS, hk, {gµi}i∈[B]). The algorithm outputs two keys:
a secret one skp = skp′ and a public one pkp = pkp′ .
Epass.ServerKeyGen (pp) → (skS , pkS) : The server
key generation algorithm initializes a key-pair as skα′ =(
ppDS, α

′ ← Z∗
p

)
, and pkα′ = (ppDS, g ← G, Z = α′g),

g and α′g are made public. The algorithm returns a secret
key skS = skα′ and a public key pkS = Z.

2) Transaction Making: Figure 3 shows the Epass trans-
action making. Each user creates two kinds of transac-
tions during this phase: redactable and immutable. The
redactable transactions can be modified by the provider
at a specific time. After that, the server generates TIK kt
and auxiliary information aux.

Fig. 3. Transaction Making

– Ordinary and deferred transaction making:
The user can generate ordinary transactions as
in a traditional immutable blockchain, or run
Epass.TrCreat(mpk, sku, (ID, txID), skh, T ) to gen-
erate deferred transactions, as shown in Algorithm 1.
In a normal transaction, the user generates a transac-
tion tx and the corresponding signature σtx by means
of the key sku and the traditional hash function. For
deferred transactions, the user generates the transac-
tion (ID, txID) and the signature (h, r, σID) by means
of the key sku and the chameleon hash function.
Finally, the aggregated signature σ̂ is generated by
running Epass.Aggregate(pku, {((IDi, ri), σi)}i), as
shown in Algorithm 2. The user propagates to the
blockchain ecosystem the public key pkp, the trans-
action set {txi}i∈[ℓ], and the aggregated signature σ̂.

– Extraction: At a time instant T ∈ {0, 1}∗, the
server publishes kt = α′H1(T ), every user can
verify its authenticity by checking ê (α′g,H1(T )) =
ê (g, α′H1(T )) . Then, the server generates TIK
kt and auxiliary information aux by running
Epass.Ext(pkS , skS , pku, {txi}i∈[ℓ], j ∈ [ℓ]), as

Algorithm 1: Epass.TrCreat(mpk, sku, (ID, txID), skh, T )
Input: Master public key mpk, secret keys sku and

skh, a decryption time T , and a message
containing the transaction identity ID and the
transaction’s content txID.

Output: The randomness r, a hash value h, a
randomness r, a signature σ and ciphertext C.

1 Choose a random number r;
2 Compute a hash value:

h← CH.Hash (pkh, (ID, txID), r) ;

3 Generate a signature: σID = g(1/sku+h);

4 Check if ê(sg, α′g)
?
= ê(g, sα′g);

5 If so, random choose r0, and compute r0g and r0sα
′g;

6 Compute

K = ê (r0sα
′g,H1(T )) = ê (g,H1(T ))

r0sα
′
;

7 Compute the ciphertext:

C =< r0g, skh ⊕H2(K) > .

8 return The hash value h, the random number r, the
signature σID and the ciphertext C.

Algorithm 2: Epass.Aggregate(pku, {((IDi, ri), σi)}i)
Input: Public key pku, signatures σi.
Output: The aggregated signature σ̂.

1 if e(σ, gαgh) = e(g, g). then
2 Compute: γi = 1∏

i̸=j(xi−xj)
,

3 and compute the aggregated signature:

σ̂ =
∏
i

σγi
i .

4 else
5 return ⊥.

shown in Algorithm 3. These information will be
published at a specific time for the provider to verify
the signature and perform decryption operations.

3) Transaction Rewriting: Figure 4 shows the Epass trans-
action rewriting. In this phase, the provider decompresses
the subset of transaction signatures that need to be paid
asynchronously and performs the decryption operation
based on the TIK kt and auxiliary information aux
provided by the server. The designated provider can
rewrite the redactable transaction.

– Timed-release decryption: The provider holds the
TIK kt and auxiliary information aux provided by
the server, and gets the secret key skh and the subset
of transactions that need to be rewritten by running
the Epass.ReleasedDec (σ̂, pku, pkS ,m, aux, C, kt),
as shown in Algorithm 4. After that, the provider
can use this secret key to rewrite the transaction.

– Transaction rewriting: The provider runs the



7

Algorithm 3: Epass.Ext(pkS , skS , pku, {txi}i∈[ℓ])

Input: Public keys pkS and pku, a secret key skS , a
set of transactions {txi}i∈[ℓ].

Output: The TIK kt and the auxiliary information aux.
1 if ê(α′g,H1(T )) = ê(g, α′H1(T )). then
2 Generate the auxiliary informations:

auxj,1 = g
∏

i̸=j(α+hi),

auxj,2 = gα
∏

i̸=j(α+hi);

3 Compute the following polynomial P to obtain the
coefficients {δ̃i ∈ Zp}i∈[ℓ−1] :

P{xi}i∈[ℓ]\{j}
(y) =

∏
i∈[ℓ]\{j}

(y + xi)

=

ℓ−1∑
i=0

δ̃iy
i(modp);

4 Compute

auxj,1 =

ℓ−1∏
i=0

(gα
i

)δ̃i ,

auxj,2 =

ℓ−1∏
i=0

(gα
i+1

)δ̃i ;

5 Outputs the auxiliary informations

auxj = (auxj,1, auxj,2).

6 else
7 return Null

Fig. 4. Transaction Rewriting

Epass.Adapt (mpk, skp, (ID, txID) , h, r, (ID, tx′ID))
algorithm to generate random numbers r′ and
signatures σ′, as shown in Algorithm 5. Then,
the provider broadcasts the public key pkp, the
transaction (ID, tx′ID) and the signature (h, r′, σ′).

4) Transaction Verification: Figure 5 shows the Epass
transaction verification. Users can create two different
types of blockchain transactions, as was previously stated.
Therefore, we consider two types of verification at this
stage: immutable and redactable transaction verification.

Algorithm 4: Epass.ReleasedDec(σ̂, pku, pkS ,m, aux, C, kt)
Input: Public keys pku and pkS , an aggregate

signature σ̂, a message containing the
transaction’s identity ID and content txID and r,
the auxiliary information aux, a ciphertext C
and the TIK kt.

Output: The aggregated signature skh or ⊥.
1 Compute the message hash set as:

{hm}i ← CH.Hash(pkh, {m}i);

2 if e(σ̂, aux{hm}i

1 aux2)
?
= e(g, g) and

e(gα, aux1)
?
= e(g, aux2) then

3 return 1 to signal that the signature is valid;
4 Parse C as

< r0g, ρ = skh ⊕H2(K) >;

5 Compute

K ′ = ê(r0g, α
′H1(T ))

s = ê(g,H1(T ))
r0sα

′
= K;

6 Recover skh by computing ρ⊕H2(K).
7 return skh
8 else
9 return ⊥

Algorithm 5: Epass.Adapt(mpk, skp, (ID, txID), h, r,
(ID, tx′ID))
Input: The master public key mpk, a secret key skp, a

message including a transaction identity ID and
its content txID, a hash value h, a randomness r
and a message including a transaction identity
ID and its content tx’ID.

Output: A randomness r′ and a signature σ′.
1 Generate a randomness r′:

r′ ← CH.Adapt (s kh, (ID, txID) , h, r, (ID, tx′ID)) ;

2 Generate a signature: σ′ = g(1/sk′p+h).
3 return r′ and signature σ′.

Fig. 5. Transaction Verification
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– Immutable transaction verification: The miner re-
ceives a set of immutable transactions containing the
user’s public key pku, the transaction set {txi}i∈[l],
and the aggregated signature σ̂. The immutable
blockchain verification procedure is used by the
miner to validate the transaction. If the validation
proceeds correctly, the miner accepts the related
transaction and adds it to the block; if not, the
transaction is rejected.

– Redactable transaction verification: After receiv-
ing a redactable transaction containing the user’s
public key pku, transaction ID, txID, and signa-
ture h, r, σID, the miner verifies the transaction by
running Epass.Verify(mpk, pku, (ID, txID), h, r, σID)
algorithm to verify the transaction, as shown in
Algorithm 6. The miner will update the local copy
of the transaction if the validation is successful;
otherwise, the miner will reject the transaction.

Algorithm 6: Epass.Verify(mpk, pku, pkp, (ID, txID),
h, r′, σ′, σ̂)

Input: The transaction identity ID and its content txID,
the master public key mpk, a public key ku, a
hash value h, a randomness r, and a signature
σID.

Output: A a decision bit b ∈ {0, 1}.
1 if the following conditions are true then
2 CH.Verify (pkh, (ID, txID) , h, r

′) = 1

3 e(σ̂,
∏ℓ

i=0(g
αi

)δi)
?
= e(g, g)

4 e(σ′, gigh
′
)

?
= e(g, g)

5 return b = 1
6 else
7 return b = 0

V. SECURITY ANALYSIS

In this section, we demonstrate the security of the en-
cryption algorithm and the unforgeability of the signature
algorithm in Epass. Specifically, we analyze that Epass is
IND-CPA and EU-CMA secure respectively.

Theorem 1. Epass is IND-CPA secure, if the BDH assump-
tion holds.

Proof. We will prove that Epass is safe under the IND-CPA
model by playing a game between the PPT adversary A and
the simulator S.
Setup: S replaces the master secret key with (ppDS, α0), where
α0 is chosen randomly from Z∗

p and is unknown to S. Here,
both α and α0 are random for A, so A cannot distinguish
between the real-world master secret key and the simulated
one.
Phase 1: At any time t ∈ T , A can adaptively issue TIK
extraction queries, and oracle will use kt as the response to
each query.
Challenge: A sends m0,m1 ∈ M and [t0, t1] ⊆ T to S. S
chooses a random bit b and encrypts the message to get the
challenge ciphertext c′. The simulation proceeds as follows:

1. S random choose r∗0 , and compute r∗0g and r∗0sα
′g.

2. S compute

K = ê (r∗0sα
′g,H1(T )) = ê (g,H1(T ))

r∗0sα
′
.

3. S compute the ciphertext:

c′ =< r∗0g, skh ⊕H2(K) > .

Finally, S sends the challenged ciphertext c′ to A.
Phase 2: A continues to query the TIK extract oracle using
the same restrictions as the Challenge phase.
Guess: A outputs its guess b′ for b. When b′ = b, A
successfully wins the game.

Since b′ is a random guess of A, there is no advantage to
S from A’s guesses, so we can obtain the advantage that A
undermines the security of our proposed scheme,

AdvA ≤
q − 1

2q
ϵBDH.

Theorem 2. Epass is EU-CMA secure, which has the fol-
lowing advantage: AdvEU-CMA

A,Epass(1
λ) = AdvEU-CMA

A,DS (1λ) , if the
underlying digital signature DS applied is EU-CMA secure.

Proof. The standard security concept of our signature scheme
is existential unforgeability under the choice message attack
(EU-CMA) [23], which means that even if access to the
signature oracle is gained, it is difficult to output a valid
signature for a message m that has never been requested
to the signature oracle. Epass is EU-CMA secure if no
probabilistic polynomial-time adversary A can win with non-
negligible probability. We construct simulator B, which has
a non-negligible probability to break the underlying signature
scheme C. The security game is defined as follows.
Setup:
B sends λ to C after receiving the security parameter λ ∈

N, and C returns a public parameter ppDS. B sends λ to C
after receiving the security parameter λ ∈ N, and C returns
a public parameter ppDS. B initializes the public parameter
ppCH ← CH.Setup

(
1λ

)
, samples the public parameter of the

message hash hk ← HGen
(
1λ

)
, and C gives B the public key

pkα. Next, B sets the public parameters pp = (ppDS, ppCH, hk)
and the master public key mpk = (pkα, H). Finally, B returns
(pp,mpk) to A and gets lists:

LKGp
,Lcorrp ,LKGu

,Lcorru ,LKGS
,LcorrS ,Lh,Lagg,Lapt ← ∅.

Queries:
In this phase, A adaptively queries the following oracle.
OKeyGenp(skp, pkp): A is allowed to query the provider key
generation oracle. C provides {gµi}i∈[B] for B. The algorithm
returns a secret key skp = (ppDS, hk, ·) and a public key pkp =

(ppDS, hk, {gµi}i∈[B]). B updates the list

LKGp
← LKGp

∪ {(skp, pkp)}

and returns pkp to A.
OCorruptp(pkp): A can query the provider corrupt oracle using
the message on pkp. B sends the public key pkp to C and gets
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the corresponding private key skp. After that, B updates the
list

Lcorrp ← Lcorrp ∪ {pkp}

and returns skp to A.
OKeyGenu(pku): A is allowed to query the user key generation
oracle. B receives pkβ , pkh and pktre from C and immediately
generates a local verification key pklocal = (Π, hk, gα). The
algorithm returns a private key sku = (·, ·) and a public key
pku =

(
pkβ , pkh, pktre, pklocal

)
. Finally, B updates the list

LKGu ← LKGu ∪ {pku}

and returns pku to A.
OCorruptu(pku): A can query the user corrupt oracle using
the message on pku. B sends pku to C and receives the
corresponding sku. B updates list

Lcorru ← Lcorru ∪ {pku}

and returns sku to A.
OKeyGenS (pkS):A is allowed to query the server key generation
oracle. B receives pkS from C. The algorithm returns a private
key skS = (·) and a public key pkS . Finally, B updates the
list

LKGS ← LKGS ∪ {pkS}

and returns pkS to A.
OCorruptS (pkS): A can query the server corrupt oracle using
the message on pkS . B sends pkS to C and receives the
corresponding skS . B updates list

LcorrS ← LcorrS ∪ {pkS}

and returns skS to A.
OTrCreat((pku, (ID, txID) , h, r, σID)): A can query the hash
oracle using the message on pku, transaction txID and its
corresponding identity ID, hash value h, random number r and
signature σID. B selects a random number r and computes the
hash h← CH.Hash (pkh, (ID, txID), r). Next, if pku ∈ Lcorru ,
a signature σID = g(1/sku+h) is generated; otherwise, B sends
the public key pku and the message (ID, r) to C, and then gets
σID returned by C. Finally, B updates the list

Lh ← Lh ∪ {(pku, (ID, txID) , h, r, σID)}

and returns (h, r, σID) to A.
OAggregate(pku, {((IDi, ri), σi)}i): A can query the aggregate
oracle using the message on pku, and a transaction set
{((IDi, ri), σi)}i. B compute γi = 1∏

i̸=j(xi−xj)
, and σ̂ =∏

i σ
γi
i if pku ∈ Lcorru , otherwise, B sends the public key

pku and {((IDi, ri), σi)}i to C, and then gets σ̂ returned by
C. Finally, B updates the list

Lagg ← Lagg ∪ {pku, {((IDi, ri), σi)}i}

and returns σ̂ to A.
OAdapt(pkp, (ID, txID) , h, r, σID, (ID, tx′ID) , r

′, σ′
ID): A can

query the hash oracle using the message on pku,
transaction txID and its corresponding identity ID, hash
value h, random number r, signature σID, transaction
tx′ID and its corresponding identity ID, new random

number r′, new signature σ′
ID. B generate a randomness

r′ ← CH.Adapt(skh, (ID, txID), h, r, (ID, tx′ID)) and pick an
index i that is never used before to generate a signature
σ′ = g(1/sk

′
p+h) if skp has been corrupted, such that

pkp ∈ Lcorrp ; otherwise, B receives a signature σ′ form C
after sending pk′p and (ID, r′) to C. Finally, B updates the list

Lapt ← Lapt ∪
{(

pkp, (ID, txID) , h, r, σID, (ID, tx′ID) , r
′, σ′

ID

)}
and returns r′, σ′

ID to A.
Output:
A can be passed a tuple

(pk∗, (ID∗, txID∗), h∗, r∗, σID∗ , σ̂∗)

as input to Epass.Verify(pk∗, (ID, txID), h
∗, r∗, σID∗ , σ̂∗).

• A outputs a transaction that satisfies pk∗ = pk∗u ∧ pk∗u /∈
Lcorru ∧ (pk∗u, (ID

∗, txID∗) , h∗, r∗, σID∗) /∈ Lh and is
defined as a valid transaction, i.e., the transaction is
uncorrupted and unqueried. Meanwhile, A can forge
a signature σ∗

ID using skp to sign (ID∗, r∗). And B
breaks the signature scheme by sending the key pku, the
signature σ∗

ID and the message (ID∗, r∗) to C.
• A outputs a message unrelated to the adaption oracle and

a redacted transaction, i.e.

pk∗ =
(
pk∗u, pk∗p

)
∧
(
pk∗p, ·, h∗, ·, ·, (ID∗, txID∗) , r∗, σID

)
,

and thus

pk∗ /∈ Lapt.

Meanwhile, A can forge a signature σ′ using sk′m to sign
(ID∗, r∗). And B breaks the signature scheme by sending
the key pk′m, the signature σ′ and the message (ID∗, r∗)
to C.

Therefore, through the above simulation process we can get
the advantage

AdvEU-CMA
A, Epass

(
1λ

)
= AdvEU-CMA

A,DS
(
1λ

)
.

VI. PERFORMANCE

In this section, we evaluate and analyze the performance of
Epass.

A. Settings

Setup. The operating environment we conducted our ex-
periments was Windows 11, the system type was a 64-
bit operating system, and the device was configured with
an Intel(R) Core(TM) i5-10210U CPU @ 1.60 GHz 2.11
GHz and 8 GB of RAM on board. We used Java to imple-
ment the simulation, using the Java PairingBased Cryptog-
raphy Library (JPBC) and Type A pairings to perform the
Epass scheme. In the measurement, we use Java’s function
Java.lang.System.currentTimeMillis() to measure the run-
ning time from the start of the operation to the end of the
operation. The experimental results are shown in Table II,
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TABLE II
EXPERIMENTAL PERFORMANCES.

Algorithms Time Cost in each algorithm(ms)12(k = 8 / 16 / 24)
u = 8 u = 16 u = 24 u = 32

Syetem Setup 149 / 156 / 161 151 / 163 / 164 162 / 171 / 174 164 / 174 / 176
User Key Generation 440 / 463 / 494 438 / 460 / 495 439 / 461 / 496 440 / 464 / 495

Provider Key Generation 15 / 14 / 14 14 / 13 / 15 15 / 16 / 18 15 / 17 / 16
Server Key Generation 32 / 30 / 32 29 / 30 / 31 29 / 29 / 28 31 / 30 / 31

1 k represents the number of deferred transactions for users.
2 u represents the number of user.

(a) (b) (c)

(d) (e) (f)

Fig. 6. Experimental performances. (a) time for transaction creation; (b) time for signature aggregation; (c) time for extraction; (d) time for timed-release
decryption; (e) time for adaption; (f) time for verification. k represents the number of deferred transactions for users.

where k represents the number of deferred transactions for
users.

Baselines for Comparison. We use the locally verifiable
signature algorithm proposed in [24] (LVS) as a baseline.
LVS can protect users’ deferred payment information from
being exploited by malicious third parties and reduce the
time overhead of the system. However, LVS requires separate
validation for each deferred payment transaction, which does
not satisfy the efficiency of our design goals. Therefore, Epass
extends the single verification in LVS to a subset of validations
to reduce the time overhead.

Next, the most advanced implementation of BNPL schemes
[5]–[7] handles deferred payment transactions via Ethernet
smart contracts, so we use Geth to represent Ethernet smart
contracts. Note that Geth implements deferred payments by
generating new transactions, which somewhat undermines the
scalability of the BNPL service. For this reason, Epass
rewrites deferred payment transactions through the trapdoor of
the chameleon hash [16], which does not generate additional
new transactions during deferred payment and reduces the

burden that Geth imposes on the blockchain.
Indicators. In the experiment, we evaluated the following

indicators: i) time costs: the time cost of system initialization,
transaction making, transaction rewriting, and transaction ver-
ification in Epass, and ii) communication costs: the size of
the ciphertext generated by the user in the transaction-making
phase.

B. Evaluation Results

Time costs. As shown in Table II, the time consumption
in the system initialization phase (system setup, user key
generation, provider key generation, and server key generation)
is stable as the number of users and the number of deferred
transactions increases. Among them, the primary time cost
of the system initialization phase is concentrated on user key
generation and system setup. With the number of users being
32 and the number of deferred transactions being 24, the time
consumption of user key generation is less than 500ms, while
the time consumption of system setup is less than 180ms.
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(a) (b) (c)

Fig. 7. Experimental performances. (a) time for process deferred transactions; (b) communication costs; (c) time for locally verification.

The time consumption of provider key generation and server
key generation is negligible compared to the previous two
phases. As the number of users and the number of deferred
transactions increases, the time consumption of server key
generation remains between 25 and 35 ms, while the time
consumption of provider key generation is consistently below
20 ms. The results show that the time cost of Epass is
acceptable during the system initialization phase.

The time consumption of transaction making (transaction
creation, signature aggregation, and extraction), transaction
rewriting (timed-release decryption and adaption), and transac-
tion verification (verification) phases tend to increase linearly
with the increase of input dimension. As shown in Figure 6, the
input dimension appears as a set of users and a set of deferred
payment transactions, and the size of the set depends on the
number of users and deferred payment transactions, where
k denotes the number of deferred payment transactions. The
experimental results show that the primary time consumption
comes from the transaction making phase. With the number
of users at 32 and the number of deferred transactions at
24, the time consumption of the transaction making phase
reaches 4000ms, of which transaction creation consumes
about 1050ms, signature aggregation consumes about 1240ms,
and extraction consumes about 1800ms. In the same input
dimension, the time consumption of the transaction rewrit-
ing phase and transaction verification phase is 2860ms and
1500ms, respectively. In contrast, the time consumption of
timed-release decryption, adoption, and verification is 2500ms,
380ms, and 1500ms, respectively. Moreover, the number of
deferred transactions has less impact on the time consumption
compared to the number of users. This is due to the fact that
the operations involved in delayed transactions are usually
exponential in nature and do not impose a significant burden
on the computational overhead. In summary, the time cost of
Epass is acceptable.

Communication costs. As shown in Figure 7(a), we use
the size of the ciphertext generated by users in the transaction
making phase to evaluate the communication cost for the dif-
ferent numbers of users and the different numbers of deferred
transactions. Figure 7(a) shows that the communication costs
increase linearly with the number of users and the number
of deferred transactions. When the number of users reaches

32, and the number of deferred transactions reaches 24, the
communication cost is still less than 50KB. The experimental
results show that the number of users and the number of
deferred transactions impact the communication cost. The
communication cost of Epass is acceptable when appropriate
parameters are chosen.

Comparison with baseline. Next, we extend LVS even
further with the locally verifiable signature that supports subset
verification. As shown in Figure 7(c), the time consumption
of LVS grows linearly with the number of signatures to be
verified. As the number of signatures to be verified increases
from 4 to 32, the time consumption grows from 200ms to
1400ms. In comparison, when the number of signatures to be
verified is 4 and 32, the time consumption of Epass to verify
these signatures is less than 50ms and 70ms, respectively. The
results show that the time cost of Epass is acceptable when
dealing with local verification of signatures.

Finally, we created a private test network using Go-
Ethereum and compared the time required to process deferred
transactions between the baseline and Epass. We performed
block creation experiments in which the block difficulty target
was set to 0x0400. This allowed us to accurately measure the
operation time without increasing the work permit overhead
while avoiding causing extreme blockchain forks. As shown
in Figure 7(b), the time overheads of Epass and Geth both
grow linearly. When transactions per block reach 2000, the
time overhead of Epass is less than 1s, while Geth reaches 6s,
which is six times higher than our scheme. The experimental
results show that as the number of transactions in each block
increases, Epass leads to better efficiency and is more suitable
for real-world applications.

VII. RELATED WORK

This section briefly reviews the background and related
work on BNPL.

A. Background

Over the past few years, BNPL has gradually increased
in popularity among financial institutions, merchants, and
consumers as online shopping has proliferated in pandemic
proportions [25], [26]. BNPL companies have created one of
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the fastest-growing segments of consumer finance, according
to GlobalData [27]. BNPL allows consumers to purchase a
product immediately and pay for it over a period of time,
usually in fixed installments [28]. It is a reverse-assist system
where the purchaser can immediately get the product or service
and then pay for it. Like how digital assets and blockchain
technology have infiltrated most businesses, BNPL platforms
enable their customers to use cryptocurrencies. Affirm [4], Zip
[29], Klarna [3], and XRPayNet [30] are experimenting with
their blockchains to create an application that offers BNPL
functionality. Affirm’s app brings all its products together in
one place. At the same time, it’s google chrome extension
allows customers to use Affirm at various retailers, even if the
service is not integrated into their checkout options [4]. Zip
offers the same type of service as Affirm, allowing customers
to buy now and then pay weekly or monthly, which is great
flexibility for customers. In addition, Zip offers a digital wallet
that can carry up to $1,000 and is interest-free [31]. Klarna
works with more than 5,000 banks in 18 European countries by
partnering with Swedish cryptocurrency broker Safello [32] to
provide it with open banking infrastructure. Safello’s 180,000
customers will now use Klarna’s available banking payment
system to buy cryptocurrencies without leaving Safello’s plat-
form [33]. XRPayNet allows businesses to continue using
their existing processing systems, making the crypto-to-fiat
payment process seamless [34]. As more and more people
discover cryptocurrency, businesses are beginning to accept it
as a payment method. It was only a matter of time before
platforms combined it with BNPL options.

B. Blockchain-based Buy Now Pay Pater

The explosive growth of the e-commerce industry has
provided consumers worldwide with multiple ways to purchase
their favorite products while saving time and money. With
the integration of options such as cryptocurrency and BNPL,
customers and merchants alike are reaping additional benefits.
However, only some e-commerce platforms offer these benefits
to customers. But so far, there has been little discussion
about blockchain-based BNPL. Until recently, only a few
popular companies were offering this service through smart
contracts, including PLP [5], Atpay [6], and Apenow [7].
There are two types of participants in these solutions, the
user (consumer) and the merchant. Users on the blockchain-
based BNPL platform can make purchases and earn rewards.
Verified users can shop online and in-store from any platform-
approved merchant. At checkout, users can select the BNPL
feature to pay. When they complete their repayment, they
receive rewards in the form of tokens that can also be used for
future purchases or to earn higher purchase limits. Merchants
on the blockchain-based BNPL platform can grow and expand
their business and incentivize their customers with marketing
campaigns. Using the blockchain-based BNPL service, users
and merchants can benefit from it.

PLP [5] is a DEFI protocol and is the first BNPL plat-
form built to integrate blockchain technology with its own
cryptocurrency. While providing significant cost savings to
all participants in the ecosystem by leveraging smart contract

technology and blockchain, PLP will also allow users to pay
for their purchases with any recognized cryptocurrency they
hold in their PLP wallet.

Atpay [6] is merging blockchain and cryptocurrency tech-
nology with the BNPL concept, enabling consumers to shop
online and offline and use specific cryptocurrencies when
paying from the platform’s native wallets. Customers get
access to a wide range of payment options, significant cost
savings, and rewards when they shop. The platform is also
supported by its native cryptocurrency @Pay tokens, allowing
holders to participate in the management of the agreement.

Apenow [7] is an NFT installment purchase agreement
built on Teller that supports the ability of buyers to finance
their next purchase. Users can make a down payment on
an NFT purchase, and the remaining amount can be paid in
installments. The platform holds the NFT in escrow until the
full payment is completed, and the user can withdraw the NFT
to their wallet only after the payment is completed. If the user
does not complete the installments by the agreed deadline, the
NFT will be liquidated and reimbursed to the loan provider.

However, these solutions do not consider the privacy issues
arising from on-chain data transparency and the additional
time overhead caused by deferred payments. Specifically, the
transactions generated by users are visible to all nodes in the
blockchain so that a malicious third party may analyze users’
wealth status based on their deferred payment transaction
information. Besides, deferred payment transactions generated
by users incur additional time overhead, which undermines the
scalability of the blockchain-based BNPL service. Therefore,
in this work, we construct an efficient and privacy-preserving
blockchain deferred payment solution to address the problems
that exist in the current work.

VIII. CONCLUSION

This work investigates the privacy and efficiency issues
associated with the BNPL model in the blockchain. To address
these issues, we propose Epass, an efficient and privacy-
preserving blockchain-based asynchronous payment scheme.
By extending single verification of locally verifiable signatures
to a subset of verification, Epass has lower time consumption
while protecting consumer privacy. Asynchronous payments
are implemented by leveraging timed-release encryption and
redactable blockchain, saving time and arithmetic power com-
pared to existing schemes. Extensive experiments and security
analysis show that Epass has practical security features and
acceptable communication cost (KB-level). The time overhead
was reduced by more than four times compared to the baseline.
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