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Abstract—Modern Security Operations Centres (SOCs) in-
tegrate diverse tools, such as SIEM, IDS, and XDR systems,
offering rich contextual data, including alert enrichments, flow
features, and similar case histories. Yet, analysts must still man-
ually determine which of these contextual cues are most relevant
when validating specific alerts. We introduce ContextBuddy, an
AI assistant that learns from analysts’ prior investigations to
help them identify the most relevant context for new alerts.
Rather than providing enrichments, ContextBuddy models how
analysts have previously selected context and suggests tailored
cues based on the characteristics of each alert. We formulate
context selection as a sequential decision-making problem and
apply imitation learning (IL) to capture analysts’ strategies,
evaluating multiple IL approaches. Through staged evaluation,
we validate ContextBuddy using two intrusion detection datasets
(HIKARI-2021, UNSW-NB15). In simulation-based experiments,
ContextBuddy helped simulated reinforcement learning analysts
improve classification accuracy (p < 0.001) (increasing F1 by
2.5% for HIKARI and 9% for UNSW), reducing false negatives
(1.5% for HIKARI and 10% for UNSW), and keeping false posi-
tives below 1%. Decision confidence among agents also improved
by 2-3% (p < 0.001). In a within-subject user study (N=13; power
= 0.8), non-experts using ContextBuddy improved classification
accuracy by 21.1% (p = 0.008) and reduced alert validation time
by 24% (p = 0.01). These results demonstrate that by learning
context-selection patterns from analysts, ContextBuddy can yield
notable improvements in investigation effectiveness and efficiency.

Index Terms—security operations centre, human-machine col-
laboration, alert context, imitation learning, intrusion detection,
explainable AI

I. INTRODUCTION

Modern Security Operations Centres (SOCs) utilise a wide
range of technologies, such as Endpoint or Extended Detection
and Response (EDR/XDR), Network Detection and Response
(NDR), Network Intrusion Detection and Prevention Systems
(IDS/IPS), and Security Information and Event Management
(SIEM), to protect modern digital enterprises. However, poor
integration across security tools and the difficulty of iden-
tifying appropriate contextual information can hinder SOC
analysts’ ability to prioritise and respond to critical threats [1].

Contextual information is essential for analysts to accu-
rately assess the severity, impact, and root causes of security
alerts [2]–[4]. A growing body of research supports methods
that enhance analysts’ situational awareness, such as expos-
ing network traffic patterns and causal relationships between

alerts [5]–[11]. Additionally, AI co-pilots such as Microsoft
Security Copilot [12] provide similar cases, summarise inci-
dents, answer analyst queries, and suggest remediation steps.

As toolchains and AI-driven contexts expand, the question
is no longer merely how to generate more context, but rather
how to deliver the right context to the analyst at the right time.
While advancing automation is important, it is not sufficient
on its own. In a rapidly evolving cyber landscape [13]–[16],
effective human-AI teaming becomes increasingly critical.
Analysts excel at identifying the most relevant context for
specific alerts, while AI can learn from these patterns to assist
them in doing so more efficiently [4], [17]–[20]. The human
component remains vital for navigating the uncertainty and
complexity inherent in cyber environments, enabling timely
and accurate intrusion detection [21], [22]. Therefore, we
propose reframing the task of identifying relevant context
for alert or intrusion validation as a teaming problem that
leverages the complementary strengths of human analysts and
AI systems. This perspective prompts a key question:

How can AI learn the patterns of analysts’ use of
contextual information from prior investigations to better
guide future investigations in a human-AI team?

To answer this question, we propose ContextBuddy, an
AI assistant that learns from historical investigation data and
collaborates with analysts to identify the most relevant contex-
tual information. ContextBuddy operates in three stages (see
Fig. 1). In Stage 1, analysts investigate alerts using various
contextual information, creating a knowledge repository that
captures how different alert types benefit from particular con-
textual information. In Stage 2, ContextBuddy learns patterns
linking alert characteristics to relevant contextual information.
In our implementation, we primarily use imitation learning
(IL). This allows ContextBuddy to suggest relevant context
based on features of new alerts requiring validation. In Stage
3, ContextBuddy assists analysts during investigations by
suggesting contextual information, either in a one-time fashion
or through an iterative exchange of contextual information.

To generate the data for Stage 1, given the scarcity of
SOC-labelled data and challenges in recruiting expert ana-
lysts [2], [23], [24], we trained various reinforcement learning
(RL) agents (Advantage Actor-Critic (A2C) algorithm [25],
Proximal Policy Optimisation [26], and Deep Q-network
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Fig. 1: ContextBuddy: an imitation learning assistant trained on prior investigation history to help analysts identify the relevant
context.

(DQN) [27]). The RL agents validated intrusion events from
two intrusion detection datasets (HIKARI-2021 [28] and
UNSW-NB15 [29]) by requesting various feature subsets
(context types, like Payload Information or Packet Counts
- see Figure 2) to generate investigation traces consisting
of which contexts the RL agents requested and their final
decision. In Stage 2, we trained ContextBuddy using various
IL methods (Adversarial Inverse Reinforcement Learning [30],
Generative Adversarial Imitation Learning [31], and Behaviour
Cloning [32]), finding that GAIL was most effective at learning
analysts’ context usage patterns.

In Stage 3, we evaluated ContextBuddy in two experi-
ments: simulation-based by teaming ContextBuddy with the
RL agents it was trained on, and a follow-up user study
with non-experts. Our results demonstrate the effectiveness of
ContextBuddy in helping simulated analysts or users improve
decision accuracy, confidence, and reduce false negatives and
positives. Most of these gains were statistically significant.
While the results in iterative mode were mixed, one-time mode
resulted in the highest improvements.

Contributions

This paper makes the following contributions:
1) Introduction of ContextBuddy: We introduce Con-

textBuddy, a framework leveraging IL to learn analysts’
patterns of context use, and suggest relevant contextual
information with explainability to enhance the accuracy and
efficiency of alert investigations.

2) Interaction Modes: We examine two modes for com-
municating context to analysts: One-time (one-off context
suggestion) and Iterative (multiple rounds; tested in user
study only), and analyse their relative effectiveness.

3) Demonstrating Effectiveness: We demonstrate the effec-
tiveness of IL approaches in capturing diverse analyst
strategies through rigorous simulation-based validation.
Additionally, in a user study with non-experts (non-SOC
analysts), the One-time mode boosted their classification
accuracy by 21.1% and reduced task time by 24%, indi-
cating faster investigations.

II. BACKGROUND

SOC analysts face numerous challenges including dealing
with alert overload and lack of contextual information, leading
to analyst fatigue and burnout [2]. While machine learning

has shown promise in automating various tasks [33], including
intrusion detection [6], [34], [35], malware analysis [36], and
threat intelligence [37], relying solely on machine intelligence
can result in missed detections due to inaccuracies inherent
in machine learning models [20]–[22]. Many works correctly
advocate for human involvement in intrusion detection to com-
plement automated systems, reduce false positives, leverage
human judgment, and ultimately improve the accuracy and
timeliness of threat detection [4], [21], [22].

A. Contextual Information for Improving Decision-Making

Context provides analysts with an understanding of an
alert’s potential implications [3], [38]. Several studies have
explored ways to extract contextual information from raw
data. UNICORN [35] use provenance graphs to trace critical
system activities, while ATTACK2VEC [8] models the evo-
lution of cyberattacks through temporal embeddings. DEEP-
CASE [7] identifies preceding events to the alert, and Con-
text2Vector [39] uses representation learning to transform
raw events into event sequences (source, target, and tuple).
RAPID [40] captures the causal connection between different
alerts, and DrSec [41] employs self-supervised learning to
enrich alerts with data, such as system configurations and
MITRE ATT&CK references.

Existing research primarily emphasises automated detection
techniques, with less attention given to human-AI collabora-
tion and the specific needs of analysts. MStream [42] detects
anomalies in multi-aspect data streams by deriving contextual
information from, e.g., IP addresses and packet sizes to group
anomalies. Trident [10] enhances attack detection through
incremental learning to capture network traffic patterns (such
as protocol flags and behaviours) for specific attack types. Net-
track [43] detects web trackers using packet metadata. Others
use transformer-based approach [44], [45].

While tools like AI co-pilots [12] support individual ana-
lysts during investigations, ContextBuddy aims to complement
such systems by learning a generalised context-selection pol-
icy from historical traces across multiple analysts. We can
construct a rich, multi-analyst corpus of sequential context-
selection behaviour by instrumenting co-pilot sessions, e.g.,
logging which context sources are reviewed and when. Trained
on this data, ContextBuddy would distil collective patterns that
support consistent, team-level decision-making and accelerate
context access in future alerts.



While the above works focus on technical improvements
or automating detection, we aim to learn how analysts lever-
age diverse contextual cues to inform their decision-making
in a human-AI teaming setting. The human component is
necessary to manage inherent uncertainty and complexity in
intrusion detection [21], [22]. We provide a pathway to realise
this by employing IL to capture analysts’ tacit knowledge;
ContextBuddy learns to understand and apply contextual
information analysts find relevant, enabling context-sensitive
alert investigations.

B. AI-Assisted Decision-Making

To help SOC analysts understand the relevance of Con-
textBuddy’s feature selections for each alert, it is crucial to
provide explainability information to analysts. The types of
information ContextBuddy should provide is an important
consideration for effective human-AI teaming. When AI offers
recommendations and explanations, and humans review them,
it can expedite decision-making but may lead to over-reliance
on AI [46], [47]. Conversely, cognitive forcing techniques,
like delaying recommendations, can mitigate over-reliance but
may inadvertently cause under-reliance, particularly among
experienced analysts who might distrust AI [46]–[48].

A new approach, evaluative AI, focuses on supporting
human decision-making by providing evidence for and against
the event types rather than recommending a specific classifi-
cation [49]. Integrating evidence-based Explainable AI (XAI)
without recommendations (machine-in-the-loop framework)
can enhance decision-making [50], [51] by empowering users
to take control [52]. Our user study employs evidence-based
XAI, presenting evidence for and against each intrusion class
within a machine-in-the-loop framework that refrains from
recommending a specific class.

C. XAI for IDS

We opted for SHAP (SHapley Additive exPlanations) [53]
as our evidence-based XAI approach. Based on Shapley values
from game theory [54], SHAP is an XAI method that interprets
machine learning models by assigning importance scores to
features. SHAP quantifies how much each feature influences
the model’s output. SHAP remains a leading XAI approach
for intrusion detection due to its high accuracy and inter-
pretability [55]–[59]. An alternative approach is to use AE-
pvalues, a post-hoc explanation technique using Autoencoders
for explaining intrusion events [60]. Despite concerns about
computational complexity, SHAP’s interpretability and trust-
worthiness make it ideal for understanding AI decisions [61],
[62]. Thus, our work uses SHAP-based XAI.

III. PROPOSED CONTEXTBUDDY FOR CONTEXTUAL
INFORMATION

This section introduces ContextBuddy, its components and
the two interaction modes available to end users.

A. ContextBuddy Model
We model analysts’ decision-making using Markov De-

cision Processes (MDPs) [63], a framework for sequential
decision-making. The analyst model is defined by the tuple
(S,A, T,R, π, γ), where S denotes a finite set of states
representing the environment’s possible configurations, A rep-
resents a finite set of actions available to the agent, T : S×A×
S → [0, 1] is the deterministic transition function indicating
the next state for each state-action pair, R : S×A×S → R is
the reward function mapping each transition to a scalar reward,
and γ ∈ (0, 1] is the discount factor prioritising immediate
rewards over distant ones. The analyst aims to maximise
expected return by optimising policy π, learning the optimal
action sequence for the highest cumulative reward over time.

The actions correspond to acquiring different contextual
information sequentially, each request being a distinct ac-
tion. Each state represents the contextual information analysts
hold. Given the sequence of actions (demonstrations showing
the contextual information requested by analysts), we train
ContextBuddy using IL to mimic analyst behaviour from
demonstrations [31], [64], [65]. However, we can switch to
any appropriate method from IL.

B. System Architecture of ContextBuddy
Figure 2 outlines the architecture of ContextBuddy. These

modules enable ContextBuddy to learn from past investiga-
tions and offer scenario-specific, explainable context sugges-
tions that support analysts during alert triage.

• ContextBuddy Repository Stores structured represen-
tations of alert investigations, including alert metadata,
selected contexts, and outcomes. It forms the historical
knowledge base from which the policy learner is trained.

• Normalisation Module performs standard preprocessing
tasks on alert features from analyst investigation histories.
It parses selected context types (e.g., packet counts, pay-
load information) and formats each investigation instance
for IL. This includes generating structured feature subsets
for training context-specific classifiers.

• Context Policy Learner Trains a context-selection policy
using IL (e.g., GAIL) to replicate the context-selection
patterns of past analysts.

• Classifier Store (Classifiers) Maintains a library of pre-
trained classifiers (e.g., XGBoost models), each trained
on a distinct subset of features corresponding to specific
combinations of context types to assist in generating
Shapley-based explainability information.

• Context Identification Given a new alert, Con-
textBuddy uses this module to generate a list of possible
contexts and passes these to the other modules to generate
feature statistics and explainability information.

• ContextBuddy Interface (CB UI) Provides an interface
for interaction (one-time or iterative). It visualises ex-
plainability information and feature statistics that allow
analysts to inspect underlying data. When the user re-
quests different contexts, Context Identification updates
the context list, feature statistics and explanations.



Fig. 2: Main components of ContextBuddy and an example of a user’s interaction with it.

C. Extracting Insights from Analyst behaviour

ContextBuddy collects demonstrations of analyst behaviour
to define an imitation policy π∗ of the analysts’ policy π. A
demonstration τ is a sequence of state-action pairs:

τ = {(s0, a0, r0), (s1, a1, r1), . . .},

where actions at ∈ A are requests for contextual information
(e.g., packet counts, payload data), states st include initial
features and the contextual information obtained up to time
t, and the analyst rewards rt is computed based on (see
Sec V-D) prediction accuracy (positive for correct and negative
for incorrect classification), the confidence in the prediction,
and the number of contextual information used. States include
the initial information provided to the analyst (f0, . . . , fn),
augmented with binary encoding ck, indicating whether each
type of contextual information has been requested. In addi-
tion, a demonstration comprises floating-point rewards and a
terminal variable capturing analysts’ classifications.

Given a set of analysts J , ContextBuddy collects trajec-
tories τej ∈ T from each analyst j ∈ J for each alert
e ∈ Ej , where Ej represents alerts investigated by analyst
j. These demonstrations capture the contextual information
explored by each analyst. Using T , ContextBuddy learns the
policy π∗. We assume that analysts behave rationally, aiming
to maximise expected rewards, the environment transitions are
deterministic, and the set of possible contextual information
types is finite and known.

D. Modes of Interaction

ContextBuddy supports following interaction modes:

1) One-time Assistance: In this mode, Con-
textBuddy proactively identifies potentially relevant contextual
information for an alert and suggests it to an analyst upfront.
This information is chosen based on ContextBuddy’s policy
π∗, which aims to suggest an optimal sequence of actions,
i.e., the contextual information that could lead to a correct
decision with low entropy. It informs the analyst if no
solution is found. This process aims to augment the analyst’s
decision-making capabilities by identifying and providing
relevant contextual information that the analyst might initially
overlook. This mode resembles augmentation [19], where AI
suggests context in a one-off interaction.

ContextBuddy generates a plan, P = {a1, a2, ..., ak} (se-
quence of actions), where P ∈ P is a plan from the set of all
possible plans, P , to maximise the expected reward based on
its policy (π∗):

P = argmax
P∈P

R(P )

where R(P ) represents the expected reward over the plan P .

2) Iterative Assistance: This mode fosters a collaboration
between the analyst and ContextBuddy. It is a multi-step
process with an iterative exchange of contextual information
that continues until the analyst feels confident enough to
classify the intrusion alert [19]. Either party could initiate the
process.

ContextBuddy leverages its policy (π∗) and the history
H of its and the analyst’s previous selections to determine
one or more contextual information to suggest. Examining
the history helps it understand past selections and anticipate
potential outcomes. ContextBuddy selects the action at+1

i that



maximises the expected reward over prior actions:

at+1
i = argmax

a∈A\H
Ri(a|H)

Ri(a|H) is the expected reward for taking the next action a
after the prior action sequence H , and action at+1

i maximises
this reward.

IV. CONTEXTBUDDY EVALUATION

To show whether ContextBuddy could effectively learn from
analyst demonstrations and improve analysts’ performance by
teaming up with them, we conducted a simulation and a user
study to evaluate ContextBuddy. This section discusses the
analyst’s task of categorising intrusion features to form context
categories that analysts request.

A. Investigation Task

We evaluated ContextBuddy using a multi-class intrusion
classification task where analysts (simulated or humans) clas-
sify intrusion events into one of many classes by requesting
and analysing contextual information (feature subsets). We
utilised the HIKARI-2021 [28] and UNSWNB-15 [29] open-
source intrusion detection datasets, excluding source and des-
tination IP addresses to prevent model bias towards specific
IPs. We used all other features: 83 for HIKARI, and 47 for
UNSWNB-15. The datasets provide diverse attack coverage
and encrypted traffic, with HIKARI focusing on web-based
application-layer attacks.

Previous research has identified five complementary types
of context for intrusion detection [66]: Individuality Context,
capturing network entity characteristics (e.g., device type,
known vulnerabilities); Activity Context, recording network
actions such as logs and user operations; Location Context,
encompassing geographical or network-topological data; Time
Context, reflecting temporal patterns and intervals; and Rela-
tion Context, describing interdependencies among events and
entities. Furthermore, building on various works [67]–[69] on
the idea of semantic feature grouping and taking inspiration
from these works, we designed our contextual information
categories for the two intrusion datasets. For example, He
et al. grouped raw IoT traffic fields into protocol-semantic
blocks (e.g., basic, flags, payload), delivering lightweight yet
context-rich features for attack detection [69]. In our paper,
this organisation (grouping features into categories for intru-
sion detection) is aimed at mirroring the real-world evidence
integration process in SOC environments (e.g., SOAR plat-
forms [70]), enabling simulations in which analysts iteratively
request and combine contextual information in a manner that
balances investigative realism when we do not have real-world
SOC analysts’ data.

V. EVALUATION SETUP (SIMULATION-BASED)

This section discusses the design of our first simulation-
based study. In the absence of an analyst-annotated dataset, we
generated synthetic data to train ContextBuddy. We employed
RL to train simulated analysts to classify intrusion events and
then trained ContextBuddy using various IL methods on the

simulated analysts’ decisions. To test ContextBuddy’s effec-
tiveness at helping these analysts improve their performance,
we then tested ContextBuddy by teaming it with the same
simulated analysts on a new set of events.

A. Independent Variables:

We evaluated simulated analyst performance with and with-
out ContextBuddy’s assistance.
• Analyst (Baseline): The analyst works independently.

These are our RL (A2C, PPO, and DQN) baselines.
• Assistant: ContextBuddy works autonomously. This is an-

other baseline when comparing the two teaming conditions.
• One-time Assistance: ContextBuddy provides one-off con-

textual suggestions to the analyst.

B. Dependent Variables:

• Classification Accuracy: A correct classification aligns
with the ground truth recorded in the dataset.

• Confidence: We measure how confident the simulated
analyst is in its prediction.

C. Dataset Preparation

We selected 16,000 alerts (32,000 across both datasets),
ensuring the selection represents the underlying class distri-
butions (see Appendix A (Figs. 10 & 11) for distribution by
attack type). These were split into 15,000 historical alerts and
1,000 new alerts per dataset. We divided the historical and
new alerts into 10 subsets to avoid results being biased by
specific instances. When we split the 16,000 instances into 10
subsets, each contained 1500 randomly selected historical and
100 new alerts. To introduce variability in analyst behaviour,
we trained three analysts for each subset, each receiving 500
historical alerts and tested against the same 100 new alerts.
This number allowed the analysts to achieve a reasonable
level of classification accuracy without extensive training, ef-
fectively representing trained, high-performing analysts. While
providing more alerts per analyst could improve training,
we focused on achieving realistic classification accuracy and
efficiency without requiring extensive training time.

D. Analyst Model

To generate synthetic traces, we trained various RL models
as agents. The analyst’s investigation process is as follows (see
Fig. 25 in appendix more details):
1) Alert Assignment: The analyst is assigned a random alert

and initial features not included in contextual categories.
2) Requesting Context: The analyst requests specific contex-

tual information (e.g., Payload Information) and retrieves
the relevant feature subset (all payload-related features).

3) Training Classifier: The analyst integrates new features
and trains an XGBoost classifier on 120, 000 balanced in-
stances (with the same number of samples of each class/at-
tack type), applying oversampling of less common classes,
a common method for tackling imbalanced datasets [71].

4) Classification: The analyst requests contextual information
(feature subsets) until it is ready to classify an alert. The



analyst may request all available contextual information
or only a subset when classifying each alert. After each
classification, the RL agents get an end-of-episode reward
(explained below).

5) Iteration: The analyst repeats this process to classify each
of the 500 alerts. Since we train an agent for a higher
number of time steps, the agent is exposed to the same
alert multiple times to train it to identify the best possible
set of contextual information for classifying different alerts.

The observation space included: 1) the feature subsets
(feature values) collected by the analysts; 2) a set of variables,
one for each type of contextual information, to track which
contexts it has collected; this is represented by a state variable
that ranges from 0 to 2, with 0: not requested, 1: requested
once, 2: requested 2 or more times); this range assists the agent
in distinguishing between states where it requested a specific
context multiple times; 3) its prediction confidence; and 4) the
ratio of repeated actions and total actions (ideally, should be
zero). This observation space captures the individual features
and the requested contexts and allows the agent to associate
these requests with their confidence level and whether they
requested unique information. The action space included an
integer from 0 to the number of possible contexts +1; this
additional action represents the classify_alert action.

We shape the simulated analyst’s reward to encourage
accurate and confident decisions while promoting efficient
use of context. The base classification reward reflects both
correctness and confidence:

rewardclassify =
(
correct reward + conf

)
× I(predicted = true)

+
(
incorrect penalty − conf

)
× I(predicted ̸= true) (1)
+ ϕ · I(correct ∧ high conf)
+ ψ · I(correct ∧ ¬high conf)
− ω · I(no context used) (2)

To guide learning, we incorporate reward shaping terms that
encourage strategic use of context:

rewardstep = λ1 · num requests − λ2 · num repeats
+ η1 · num novel + η2 ·max(0,∆conf) (3)

where:
• λ1: penalty per context request (-0.02),
• λ2: penalty for repeated requests (-0.5),
• η1: bonus for novel (new) context requests (0.2),
• η2: bonus for increased prediction confidence (difference

in confidence),
• ϕ: reward for correct and confident classifications (+10),
• ψ: reward for correct but less confident classifications (+5),
• ω: penalty for classifying without using any context (-5).
Each classification grants a base accuracy reward plus

shaping bonuses or penalties that push the analyst to request
just enough context, guiding them on what to ask for and when
to stop and decide.

E. Analyst Model Training

Analysts were trained using three RL methods: Advantage
Actor-Critic (A2C) algorithm [25], Proximal Policy Optimisa-
tion [26], and Deep Q-network (DQN) [27]. We used Optuna1

over 2000 trials to automate hyperparameter search for γ and
ent coeff , leaving others to default values in StableBase-
lines3. Our model’s parameters are shown in Table I, and we
cross-checked that these are typical values used across various
environments tested by RL Baselines3 Zoo2. Each model was
trained for a maximum of 300, 000 time steps or if a predefined
positive reward threshold is reached (implemented via Stop-
TrainingOnRewardThreshold callback3), consistent across all
analysts and data subsets. A2C used RMSprop as its optimiser
(default in SB3), whereas PPO and DQN used Adam. All
experiments were conducted on a high-performance computing
(HPC) system equipped with NVIDIA H100 GPUs and CUDA
11 support. Each analyst model was trained sequentially within
its subset using 1 NVIDIA H100 GPU and 32 GB of RAM.
However, training across the 10 subsets was parallelised to
maximise GPU utilisation across the HPC environment.

Algorithm γ ent coef Policy Policy Architecture

PPO 0.99 0.01 MlpPolicy NN with 2 hidden (64 *
64) (ReLU)

A2C 0.99 0.001 MlpPolicy same as above
DQN 0.99 0.12 MlpPolicy same as above

TABLE I: Hyperparameters for RL.

F. ContextBuddy Training

We trained ContextBuddy using AIRL [30], GAIL [31],
and BC [32]; we used implementations from an existing IL
library4. For each data subset, we trained three IL agents
(AIRL, GAIL, and BC) using 1 NVIDIA H100 GPU and 64
GB of RAM. Training across the 10 subsets was parallelised.
• Data Collection: ContextBuddy collected state-action tra-

jectories from three analysts, each investigating 100 alerts,
resulting in 300 trajectories per subset. When training
ContextBuddy with input from all models (A2C, PPO, and
DQN), we used 100 trajectories from each model.

• Model Components: The reward network used by the
discriminator was BasicShapedRewardNet, a poten-
tial function network with two hidden layers of 32 units
each for modelling potential-based reward shaping. We
configured the A2C algorithm learner or policy model
using the default MlpPolicy architecture described above.
The replay buffer was set to 3,000, and the discriminator
was updated 10 times per training round.

• Training Process: Training alternated between the gen-
erator and discriminator until the number of transitions
sampled exceeded 200,000 timesteps. With approximately

1https://optuna.org/
2https://github.com/DLR-RM/rl-baselines3-zoo/tree/master/hyperparams
3https://stable-baselines3.readthedocs.io/en/master/guide/callbacks.html
4https://github.com/HumanCompatibleAI/imitation



2,700 transitions generated by 300 alerts (each resolved
in an average of 9 actions), 200,000 timesteps ensured
sufficient sampling and training. We experimented with
50,000 to 300,000 timestamps and noted no significant
improvement beyond 200,000 timesteps.

VI. EVALUATION RESULTS (SIMULATION-BASED)

In this section, we report the simulation study’s results.
We first discuss the performance of individual analysts, then
ContextBuddy against analysts, and finally the results of the
teamwork between them. We conducted pairwise comparisons
using Wilcoxon signed-rank tests with Bonferroni corrections
as required, using Cohen’s d for effect size. When dealing
with binary measures (accuracy), we used McNemar’s test
with Cohen’s G effect size measure.

To ensure robustness and generalisability, we had con-
structed 10 stratified datasets across HIKARI and UNSW,
each with 1,500 historical and 100 new alerts reflecting
original class distributions, and trained three analyst models
per dataset on 500 alerts each. When reporting results, we
aggregate performance across all 10 subsets. Furthermore,
whenever results are presented for a given RL model (e.g.,
pairwise comparisons), they reflect the collapsed performance
across the three simulated analysts trained per subset. This
aggregation was necessary to capture the average behaviour of
the RL models under diverse but matched training conditions,
thereby enhancing the external validity of our comparisons.
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Fig. 3: Comparing F1 scores across RL and IL models for
HIKARI dataset.

A. Performance of Simulated Analyst (RL) Models

Across both domains, A2C and PPO were best perform-
ers, with only one pairwise comparison, A2C outperforming
DQN in UNSW was statistically significant (p = .0008, g =
4.84, large effect). For the HIKARI domain, the PPO model
achieved marginally higher correct predictions relative than
other two, but these differences did not reach significance after
adjustment. For the UNSW, no significant difference emerged
between other comparisons.
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Fig. 4: Comparing F1 scores across RL and IL models for
UNSW dataset.

B. Performance of ContextBuddy (IL) vs Simulated Analysts

We trained IL methods on traces from A2C only (given the
result from the UNSW dataset above, and on traces from all
3 models (GAIL_ALL and AIRL_ALL). We conducted pair-
wise performance comparisons to assess whether IL models
effectively learned from simulated analysts.

In HIKARI, most comparisons showed no statistically
significant difference. We note that any improvements in
single-source IL methods were driven by the fact that they
were trained on three instances of A2C models, each trained
on a different set of alerts, providing the IL method with
traces from different analysts but trained using A2C. Notably,
GAIL_ALL consistently outperformed all others, implying a
higher capacity to extract and generalise useful strategies from
observing multiple RL models. GAIL_ALL demonstrated a
statistically significant advantage over A2C (padj = 0.0021,
g = 0.5) and DQN (padj < 0.001, g = 0.96), indicating strong
evidence of successful learning, and 1.3% increase over PPO.

In UNSW, the results were more definitive, with numerous
statistically significant differences. Several IL models, partic-
ularly GAIL and GAIL_ALL, outperformed their RL coun-
terparts. For example, GAIL_ALL significantly outperformed
DQN (padj < 0.001, g = 1.0). These findings indicate that
in the UNSW domain, IL models, particularly GAIL_ALL,
effectively internalised and, in some cases, exceeded the
decision-making strategies demonstrated by the RL analysts.

Our results demonstrate that IL can be a viable path
to replicating and even enhancing the decision strategies
of simulated analysts. Later experiments in the paper were
conducted using ContextBuddy trained on GAIL_ALL.

IL models, particularly GAIL_ALL, demonstrated strong
performance in detecting threats by maximising true
positives (TP) and reducing false negatives (FN). In the
UNSW domain, GAIL_ALL reduced FN by over 40% relative
to DQN (p < 0.001), with similar trends observed against PPO
and A2C. However, this improved recall came with increased
false positives (FP), especially in single-source models like
GAIL and AIRL. GAIL_ALL improved FP coverage further,



with GAIL_ALL showing a 10 - 15% drop relative to PPO in
UNSW (p < 0.01, r ≈ 0.35).

Regarding predictive confidence, GAIL_ALL signifi-
cantly outperformed all RL baselines. Against A2C, it
achieved higher median confidence (0.9933 vs. 0.9910, p <
0.001, r = 0.32), DQN (0.9932 vs. 0.9834, p < 0.001,
r = 0.41) and PPO (0.9931 vs. 0.9916, p < 0.001, r = 0.29).

While ContextBuddy tackles human–AI teaming problem
that lacks established baselines, Transformer- and LLM-based
models offer a natural point of reference for comparing Con-
textBuddy’s individual performance due to their growing use
in IDS classification tasks. Recent works have applied these
approaches to the UNSW dataset, with reported F1 scores
ranging widely, 0.74 [72], 0.59 [73], 0.56 [74]. This suggests
that ContextBuddy is performing multi-class classification bet-
ter and is also in a position to offer users context suggestions.

C. ContextBuddy and Analysts Team Performance
To investigate how analysts should collaborate with Con-

textBuddy, we designed a set of suggestion adoption strate-
gies that vary in when and how analysts consider additional
context cues suggested by ContextBuddy. This design enables
a controlled and systematic evaluation of teaming strategies
and their impact on performance.

Each simulated analyst’s policy outputs a sequence of
context features for each alert. These contexts determine
the subset of features provided to a pre-trained XGBoost
classifier, producing a class prediction. Each XGBoost model
is trained offline on a specific context subset; analysts reuse
these pre-trained models without retraining during training and
testing. The classifier’s softmax-normalised probability for the
predicted class is used as a scalar confidence score. The analyst
follows a two-stage process when deciding whether to accept
the suggested context:

1) The analyst executes its derived plan (sequence of context
features) and obtains a prediction and confidence score.

2) It then evaluates any additional, non-overlapping contexts
suggested by ContextBuddy. If the prediction using the
extended context leads to higher confidence, the analyst
accepts the new decision; otherwise, it retains its original
decision. This setup models a realistic constraint: analysts
cannot “unsee” it once the context is collected.

Teaming Strategies. We tested the following analyst-AI
collaboration strategies:

• Alone (no AI support): analyst ignores all suggestions
and relies solely on their own RL policy.

• Always Consider (no threshold): Analyst always eval-
uates additional context suggested by ContextBuddy.

• Random: Analyst accepts suggestions at random with
50% probability. A fixed seed ensures reproducibility.

• Threshold-based: Analyst evaluates ContextBuddy’s
suggestion only if its confidence is below a specified
threshold (0.90, 0.80, 0.70, or 0.60).

These strategies are applied uniformly across all domains
and models. Analysts adopt the AI-suggested context only if

the resulting prediction is more confident. Even if the AI sug-
gestion results in a correct prediction with lower confidence,
the analyst defaults to the original decision.
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Fig. 5: The performance gain when simulated analysts team
up with ContextBuddyin HIKARI dataset.
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Fig. 6: The performance gain when simulated analysts team
up with ContextBuddyin UNSW dataset.

We show the results for the two domains in Figure 5
and Figure 6 for HIKARI and UNSW, respectively. The
Threshold-based strategy demonstrates a significant improve-
ment over the Working Alone baseline (p < 0.001, with
large effects; Cohen’s g >= 0.4) across both datasets. The
Random baseline yielded modest but non-trivial accuracy
gains, with Cohen’s g ranging from 0.20 to 0.50 and several p-
values indicating significance (p < 0.001), albeit with greater
variability and risk of incorrect adoption. Across all models in
the HIKARI domain, McNemar tests yielded highly significant
results (all p < 0.0001) as threshold levels decreased (i.e., as
models increasingly accepted ContextBuddy’s suggestion). A
parallel pattern was observed in the UNSW domain.

Regarding the simulated analysts’ confidence (Figs. 32 &
33 in appendix), the no threshold policy resulted in the mean



confidence gain ranging from 2.6% to 5.7% and large effect
sizes (d > 0.30). In contrast, the Random baseline yielded
minimal or even negative mean gains in the UNSW domain,
suggesting its unreliability despite some observed favourable
p-values. In other conditions, we observed significant improve-
ments over the Working Alone baseline (p < 0.0001).

This analysis quantifies the value of collaboration be-
tween ContextBuddy and simulated analysts. Our findings
demonstrate that collaboration with ContextBuddy im-
proves analyst performance compared to acting alone,
even when adopting suggestions at random. The adoption
of confidence-based ContextBuddy suggestions shows that
ContextBuddy contributes meaningful contextual information
that enhances decision quality, irrespective of the analyst’s
confidence.

Across both domains, we observed a few instances
(around 15 in total; 2 for HIKARI) where analysts initially
made correct decisions but reversed them after accepting
ContextBuddy suggestion. In HIKARI, one changed from TN
to FP and the other from TP to TN. For UNSW, 10 changed
from TN to FP, and three from TP to TN. These findings reveal
that even highly accurate collaborative configurations can yield
detrimental outcomes when analysts adopt suggestions uncrit-
ically (based on confidence). Practically, this suggests that
ContextBuddy must provide explainability information to
help analysts assess when not to follow or trust it.
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Fig. 7: Improvement in FP and FN when simulated analysts
engaged with ContextBuddy (HIKARI).

D. Reducing False Positives and Identifying More Attacks
In the HIKARI domain (Figure 7), analysts had many

false positives and false-negatives (driven primarily by probing
events) when working alone. ContextBuddy helped analysts
consistently cut false-positives, by 35 to 80%, while also
helping them correct occasional attack misclassification
(baseline F1 was already ≥ 0.96), especially for probing
events, resulting in consistent gains of around 1.5%. The
teamwork resulted in all simulated analysts identifying all
bruteforce, bruteforce-xml and almost all crypto miner attacks
that analysts initially misclassified. These results show that
ContextBuddy’s suggested context cues helped analysts cor-
rectly classify real threats.

The UNSW domain (Figure 8) was substantially more com-
plex for the simulated analysts than HIKARI: the trained RL
analysts exhibited poor performance on specific attacks such
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Fig. 8: Improvement in FP and FN when simulated analysts
engaged with ContextBuddy (UNSW).

as Exploits and Backdoors, with baseline F1 ≈ 0.45–0.78.
Across all models, ContextBuddy helped analysts recover
high-impact attacks: for Exploits, Backdoors, Generic, and
Analysis flows, it raised F1 from 0.46–0.81 to 0.78–0.91,
and helped reduce the minimal FPs.

Across domains, ContextBuddy offered a mix of context
types to assist, with none strongly correlating to any particular
attack, underscoring its scenario-specific guidance.
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Fig. 9: The figure shows how ContextBuddy’s suggestions
were conditionally used by different analysts. Negative values
show context more heavily used by analysts, while positive
ones are additional ones suggested by ContextBuddy.

E. Context Usage Patterns
Finally, we examined how different simulated analysts

and ContextBuddy utilised context features during decision-
making. The goal was to investigate whether ContextBuddy
merely replicated analyst behaviour or learned distinct usage
patterns that influenced its recommendations. Figure 9, shows
an example from the HIKARI dataset for three A2C analysts
working with ContextBuddy and how it complements analyst
decision-making by suggesting additional contextual features.
Although ContextBuddy’s suggestions are not personalised
to individual analysts, they often align with useful context,
particularly in categories like Flow Activity, which are more
frequently adopted across all three analysts. Categories where
ContextBuddy consistently adds new, previously uncollected
context, such as Header Information, reveal how it can



extend analyst reasoning and fill contextual gaps. While
ContextBuddy’s suggestions are generic, their value is
realised through conditional interpretation and integration
by different analysts, highlighting the synergistic potential
of human-AI teaming in investigative workflows. Note that
different analysts may accept suggestions for different alerts,
so Figure 9 shows a generalised trend.

VII. EVALUATION (USER STUDY)

Having established promising results in the simulation
experiments, this section discusses a follow-up user study
designed for non-experts (experiments with real SOC analysts
will be future work). We used the same version of Con-
textBuddy as in the simulation study (GAIL_ALL). We crafted
two new research questions specific to the user study.

A. Research Questions

1) How does ContextBuddy impact the users’ decision ac-
curacy, efficiency, confidence, trust, and cognitive load?

2) How does allowing users to request additional context be-
yond ContextBuddy’s suggestions affect these measures?

B. Independent Variables

The user study assessed ContextBuddy’s ability to guide
users towards relevant context information. Participants were
given access to all features in the baseline setting. To assess
ContextBuddy’s effectiveness, we restricted participants to
only the most relevant features suggested by it. This was
our primary objective. We expected improved accuracy and
efficiency if ContextBuddy was effective. We also allowed
participants to toggle between all features and ContextBuddy-
selected ones. However, this was a secondary goal, as this
feature would benefit experts in intrusion detection.

1) Analyst-only (C1): In this baseline, participants see all
features with additional information (see Sec VII-D).

2) One-time Assistance (C2): The participants use only
feature subsets ContextBuddy provides them.

3) Iterative Assistance (C3): ContextBuddy suggests fea-
tures, but participants can modify these suggestions.

C. Dependent Variables

1) Classification Accuracy (objective): percentage of cor-
rect classifications (against the ground truth).

2) Time Taken (objective): The system automatically tracks
participants’ time to classify each alert.

3) Self-Confidence (subjective): Participants’ confidence in
their classifications; measured on a 0% to 100% scale.

4) Trust (subjective): Participants’ trust in the AI generated
explanations; measured using the scale by [75]5.

5) Cognitive Load (subjective): Participants’ perceived
cognitive load; assessed using Klepsch’s instrument [76]6.

5See Appendix E for list of trust related questions
6See Appendix E for list of cognitive load related questions

D. Tasks

Approved by the relevant Human Ethics Committee, the
user studies included two pilot studies to ensure participants
understood the tasks and the dashboard interface (see Figs
12 - 19 in the appendix). Participants classified alerts into
attack types using a dashboard that presented them with
alerts. Participants reviewed them sequentially. Clicking on an
alert revealed all features (baseline) or a subset selected by
ContextBuddy depending on the condition.

ContextBuddy provided explanations for selected features,
computed using SHAP-based XAI7. We computed expla-
nations for all context combinations and visualised Con-
textBuddy’s selected feature importance, showing each fea-
ture’s positive/negative contributions and per-class summaries.

Given their non-expert status, participants needed support
to build a mental model for each alert’s most likely class.
We provided each feature’s historical feature statistics (mean,
median, mode), computed solely from historical data (without
AI input). These statistics helped participants compare the
current alert’s features with historical patterns. This source of
information allowed participants to evaluate ContextBuddy’s
explanations critically. The dual-source approach (feature
statistics alongside SHAP-based explanations) encouraged ac-
tive engagement with the data and prevented users from
passively accepting the ContextBuddy’s evidence.

E. Procedure

We had two phases: familiarisation and testing.
Familiarisation Phase: Participants began with a 30-minute
familiarisation phase, during which we introduced them to the
task through a practice instance to help them understand the
system interface, including how to analyse feature visualisa-
tions and interpret AI-generated explanations.
Testing Phase: Participants then proceeded to the testing
phase, which consisted of three conditions. Participants clas-
sified 4 alerts in each condition, selected to represent different
classification challenges: 1) 1 True Positive (TP) with high
confidence (easy classification); 2) 1 True Negative (TN)
with high confidence; 3) 1 False Positive (FP) with low
confidence (challenging classification due to AI confusion
between classes); and 4) 1 False Negative (FN) with low
confidence. We randomly selected 12 alerts that matched the
above classification outcomes from the instances not used in
the simulation study.

We selected the alerts for each condition to minimise the
pairwise distance between corresponding instances (e.g., the
TP alerts across all conditions are very similar) because we
could not use the same instances across the conditions. This
approach ensures that differences in participant performance
across conditions are due to condition-specific factors rather
than variations in the alerts themselves. We divided the 12
alerts into 3 datasets, each with 4 alerts8. We randomised
the order of the 4-question datasets (for C1 and C2; see

7https://shap.readthedocs.io/en/latest/generated/shap.TreeExplainer.html
8See Table VII in the appendix for predicted probabilities



TABLE II: Summary of Hypotheses

Category Hypothesis Description

Classification Accuracy H1a C2 ≥ C1 as ContextBuddy helps focus on relevant features, reducing irrelevant information.
H1b C3 > C2 if participants effectively use extra features without becoming overwhelmed.

Time Taken H2a C2 < C1 due to fewer, more relevant features speeding decisions.
H2b C2 < C3; analysing extra info in C3 may increase decision time.

Self-Confidence H3a C1 > C2 if participants view additional info as helpful.
H3b C3 > C2 due to control over feature selection.

Trust H4a C1 > C2 if explanations are perceived as relevant and useful.
H4b C3 > C2, C1 as participants can validate and adjust ContextBuddy’s suggestions, increasing trust in it.

Cognitive Load H5a C1 > C2 as analysing more features increases mental effort.
H5b C3 > C2 due to effort managing interactivity and integrating extra features.

Sec VII-E1) and the order of the 4 alerts within each condition
to reduce the ordering effect. Participants spent approximately
20 minutes per condition. They completed the trust and
cognitive load questionnaires at the end of each condition and
took short breaks between conditions to help maintain focus.

1) Design Considerations: Conditions 1 and 2 were coun-
terbalanced to reduce order effects, while C3 was always
placed last. This arrangement prevented participants from
knowing about the feature selection option in advance, ensur-
ing unbiased evaluations in the earlier conditions. However,
placing C3 last could impact performance due to fatigue,
changes in strategy because of the new option to select
additional features, or lack of domain expertise (we had non-
experts, i.e. non-SOC analysts).

VIII. RESULTS (USER STUDY)

In this section, we discuss the results of our user study.

Condition CB Participant One-time Iterative
Accuracy 75.0% 65.4% 86.5% 65.4%
Time (sec
per alert)

- 187 ± 120 142 ± 108 183 ± 116

Confidence 82.9 ± 16.1 79.9 ± 18.0 84.6 ± 12.7 79.6 ± 17.3
Trust - 5.23 ± 0.86 4.95 ± 0.76 4.94 ± 1.02
Cog Load - 3.53 ± 0.74 3.36 ± 0.64 3.88 ± 0.75

Accuracy by Classification Outcome (%)
TP 100 84.6 100 100
TN 66.7 92.3 100 100
FP 33.3 0 53.8 0
FN 100 84.6 92.3 61.5

Overall Information Usage (Max 5)
Features - 4.31 ± 0.85 4.38 ± 0.79 3.81 ± 1.10
Explanations - 4.06 ± 0.96 4.19 ± 0.97 4.12 ± 1.06
Knowledge - 1.94 ± 0.89 1.96 ± 1.05 2.06 ± 1.06

TABLE III: User study results. One-time and Iterative con-
ditions are where participants teamed with ContextBuddyto
classify intrusion events. CB = ContextBuddy only.

Table III shows the main results9. Each participant session
involved 12 different alerts and lasted for 90 - 120
minutes. As before, we used a Wilcoxon signed-rank test with
Bonferroni correction and reported only noteworthy cases.
We performed a post-hoc power analysis, achieving 0.77
- 0.81 for α = 0.05 and moderate effects (we achieved

97 participants did C1 → C2; others C2 → C1; 7 classified 4 alerts from
dataset 1 then 4 from dataset 2; others did the reverse. C3 order and alerts
were same.

large effects). Demographics: Of 13 participants, most (10)
had technical knowledge of computer networks, while 3 did
not. Only one participant had prior experience with intrusion
detection systems, reporting 4 years of use; the remaining
12 had not used IDS. Regarding proficiency in network and
packet analysis tools, 2 participants considered themselves
very knowledgeable, 2 moderately knowledgeable, 3 slightly
knowledgeable, and 6 not knowledgeable at all.

1) Classification Accuracy: Participants in the One-time
condition achieved the highest accuracy at 86.5%, compared
to 65.4% in the Analyst and 65.4% in the Iterative conditions.
Analyst and One-time comparison showed a significant dif-
ference: p = 0.008 (Z = 2.994, r = 0.831) pwr = 0.81.
Similarly, the Iterative and One-time comparisons showed
a significant difference: p = 0.018 (Z = 2.747, r =
0.762) pwr = 0.77 (unadjusted p = 0.006). The significant
increase from Analyst to One-time conditions supports
H1a, indicating that ContextBuddy’s guidance enhances
accuracy by helping users focus on relevant features. Con-
trary to H1b, participants’ accuracy in the Iterative condition
decreased. As users saw C3 last, this placement impacted
performance.

Regarding TN and TP, participants in the two assisted
conditions achieved 100% accuracy, outperforming the ana-
lyst condition (TN: 92.3%, TP: 84.6%). For FN, accuracy was
best in One-time condition (92.3%). In FP, participants in the
One-time condition improved to 53.8% accuracy, while other
conditions remained at 0%.

2) Completion Time: Participants in the One-time con-
dition completed tasks faster (142 ± 108 seconds per
alert), compared to 187 ± 120s in the Analyst and 183 ± 116s
in the Iterative conditions. Analyst and One-time comparison
resulted in marginal significance: p = 0.014 (Z = 2.831, r =
0.785) (unadjusted p = 0.005). This supports H2a, indicating
that focusing on relevant features reduces decision-making
time. Since toggling between all and relevant features notably
increases completion times (142 → 183) in the Iterative
condition, results partially support H2b (p = 0.09).

3) Qualitative Feedback from Participants: Post-study dis-
cussions revealed that participants perceived the Iterative con-
dition as offering two versions of ContextBuddy, one showing
all features and another showing only the most relevant ones.
In TN and TP cases, both versions aligned in confidence and
evidence, making decisions straightforward; all participants



were 100% accurate in these scenarios. In contrast, FP and
FN cases involved different or uncertain evidence between the
two versions. This uncertainty prompted participants to revisit
feature visualisations and explanations, and final decisions
varied; some followed ContextBuddy, and others relied on
their own interpretation of all features. Although this was
partially due to lack of expertise, to reduce inappropriate
adoption based on marginal differences in confidence or AI
evidence strength, future versions of ContextBuddy could
explore frequency-based confidence visualisations [77], which
have been shown to help users better trust calibration.

IX. DISCUSSION

Our study investigated the potential of ContextBuddy, an AI
designed to function in a human-AI team and support SOC
analysts by suggesting relevant contextual information during
alert investigations and, in this paper, specifically for validating
intrusion events. There were a few core requirements to
demonstrate the success of ContextBuddy: investigation data,
learning method to be used by ContextBuddy to learn analysts
contextual information use, and reasoning and interaction
mechanisms to facilitate the transfer of contextual information
identified by ContextBuddy for specific events to analysts.

We first trained various RL agents (A2C, PPO, DQN) to
generate investigation traces, forming the basis of training
ContextBuddy. While ContextBuddy could be trained on any
appropriate method, we tried various IL methods (BC, AIRL,
GAIL). The results demonstrate the effectiveness of IL,
particularly GAIL, in modelling diverse analyst context-
seeking behaviours. Importantly, we observed significant
performance gains when utilising multi-source GAIL (when
GAIL provided traces from analysts trained on all three mod-
els), suggesting diversity of analyst behaviours is essential
for better generalisation. This aligns with previous literature
highlighting the advantages of adversarial imitation in captur-
ing nuanced behavioural patterns in dynamic decision-making
environments [30], [31].

Our simulation study, where simulated analysts had ac-
cess to ContextBuddy, demonstrates that ContextBuddy can
meaningfully improve analyst performance across several
collaboration strategies we tested. For example, when an-
alysts adopted ContextBuddy’s contextual suggestions when
uncertain, they performed better than working alone. Notably,
ContextBuddy helped analysts reduce both false positives
(by 35–80% in HIKARI dataset) and false negatives
(raising F1 scores from as low as 0.46 to as high as 0.91 in
UNSW dataset). However, collaboration is not without risk.
Analysts accepted ContextBuddy’s suggestion in a few cases
and made a worse decision. This highlights the importance of
calibrated adoption and suggests that AI assistants like Con-
textBuddy should be paired with actionable explanations,
as we did in the user study, to help analysts decide when to
trust or override suggestions. Well-calibrated, human-in-the-
loop AI support can deliver measurable improvements without
sacrificing control.

Moreover, ContextBuddy demonstrated substantial prac-
tical utility in our user study even for non-expert analysts,
where participants achieved a 21.1% increase in classifi-
cation accuracy and a 24% reduction in alert validation
time, especially under the one-time assistance mode. The
observed performance degradation under the iterative mode
suggests that iterative interactions may require higher ana-
lyst expertise, and for ContextBuddy to cater for distinct
decision-maker styles [78] and support better integration
of confidence in decision-making, e.g via frequency-based
presentations [77].

Overall, the paper provides a very promising demonstration
of how an AI assistant like ContextBuddy can augment
analyst decision-making through context-aware support,
highlighting the value of IL for modelling human investiga-
tion behaviours and the importance of adaptive collaboration
strategies in operationalising human-AI teaming in SOCs.

X. LIMITATIONS AND FUTURE WORK

While these results highlight the clear value of Con-
textBuddy, limitations must be acknowledged. We used simu-
lated analysts; naturally, we need real-world SOC data. Sim-
ilarly, the user study involved non-experts, limiting generalis-
ability to experienced SOC analysts. Future work will address
these gaps through studies with professional analysts. Notably,
ContextBuddy’s modular design supports extensibility beyond
IL. Given the growing deployment of LLMs [12] future work
will explore it as option for replacing IL. However, as noted
earlier, the performance reported earlier (F1 less than 0.74 on
UNSW) and issues with potential of LLMs to mislead users
with convincing explanations [79] demands caution. Currently,
we would need to retrain ContextBuddy models periodically;
combining imitation with real-time human feedback or active
learning, as seen in systems like AlertPro [20], may enhance
performance in dynamic SOC environments.

XI. CONCLUSION

Our work contributes a methodological foundation for
systematically enhancing SOC operations through intelligent
human-AI teaming. By offering tailored contextual informa-
tion guidance, ContextBuddy promises to address the critical
issue of lack of context in SOC, improve accuracy, reduce
false positives and false negatives, and reduce validation time.
These can help reduce alert fatigue as well. We anticipate that
ContextBuddy-like assistants will be a foundational platform
for future advancements in AI-assisted investigations, paving
the way for collaborative and efficient cybersecurity opera-
tions.
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APPENDIX

APPENDIX: FIGURES AND TABLES SUMMARY

• Figure 10: Class Distribution of Selected Alerts
(HIKARI Dataset)
– Purpose: Shows percentage of each class in historical

vs. new HIKARI alerts.
• Figure 11: Class Distribution of Selected Alerts

(UNSW-NB15 Dataset)
– Purpose: Displays class percentages for historical and

new alerts in UNSW-NB15.
• Figure 12: High-level Overview of Participant Task



– Purpose: Summarises user study procedure for classi-
fying alerts.

• Figure 13: Table Display of Alerts
– Purpose: Shows how participants view raw alerts.

• Figure 14: Example Feature Visualisation (mean,
median, mode)
– Purpose: Depicts summary stats for alert feature in-

spection.
• Figure 15: Explanation of feature visualisation

– Purpose: Provides instructions to participants on how
to interpret feature statistics (mean, median, mode)
displayed for each alert feature. Supports consistent
understanding of visualised data during classification.

• Figure 16: Iterative Panel
– Purpose: Displays the interface component used in the

Iterative (C3) condition, allowing participants to filter
and explore both ContextBuddy-suggested and self-
selected features for investigation.

• Figure 17: AI-generated explanations displaying fea-
ture importance values for different classes
– Purpose: Visualises SHAP-based explanations that

quantify each feature’s contribution (positive or neg-
ative) toward a class prediction, aiding participant
interpretation of AI guidance.

• Figure 18: Discussion of how to interpret explainabil-
ity information
– Purpose: Offers explanatory guidance on how users

should understand and critically assess AI explanations
when making classification decisions.

• Figure 19: Final classification decision panel
– Purpose: Shows the submission screen where par-

ticipants choose their final alert classification, rate
confidence, and indicate reliance on explanations or
visualisations.

• Figure 20: User accuracies
– Purpose: Reports the classification accuracy achieved

by participants across different study conditions, re-
flecting the effectiveness of ContextBuddy support.

• Figure 21: Completion Times
– Purpose: Compares average task completion times

across three experimental conditions (Analyst-only,
One-time ContextBuddy, Iterative ContextBuddy),
showing how different forms of AI support affect
efficiency.

• Figure 22: User Confidence
– Purpose: Visualises self-reported confidence levels for

participant decisions in each condition, indicating the
perceived decisional certainty with or without AI as-
sistance.

• Figure 23: Aggregated Trust
– Purpose: Summarises trust ratings from participants

regarding the AI explanations and its behaviour, high-

lighting differences in trust across assistance modes.
• Figure 24: Aggregated Cognitive Load

– Purpose: Plots perceived cognitive load experienced
by users in each condition, providing insights into
mental effort required when working with or without
ContextBuddy.

• Figure 25: Simulated Analyst Training Process
– Purpose: Outlines the sequential steps in training sim-

ulated analysts to classify alerts, including context
requests and classification using XGBoost, forming the
foundation for training ContextBuddy.

• Figure 26: ContextBuddy (AIRL Assistant) Training
Process
– Purpose: Visualises how ContextBuddy learns to imi-

tate analyst decision-making using Adversarial Inverse
Reinforcement Learning (AIRL), including data col-
lection, training, and generalisation to suggest context
features for new alerts.

• Figure 27: Testing the Simulated Analyst-
ContextBuddy Dyad
– Purpose: Depicts the workflow of collaborative alert

classification, where ContextBuddy assists a simulated
analyst by suggesting context during SOC-like alert
investigations.

• Figure 28: Breakdown of Performance by Individual
Analysts (HIKARI, Threshold 0.6)
– Purpose: Shows weighted F1 scores of three RL ana-

lysts working with ContextBuddy, adopting AI sugges-
tions only when their confidence is below 0.6 on the
HIKARI dataset.

• Figure 29: Breakdown of Performance by Individual
Analysts (HIKARI, Threshold 0.9)
– Purpose: Presents F1 performance across three RL

analysts with a higher confidence threshold (0.9) for
accepting ContextBuddy suggestions, showing greater
performance shifts.

• Figure 30: Breakdown of Performance by Individual
Analysts (UNSW, Threshold 0.6)
– Purpose: Illustrates how simulated analysts performed

under low-confidence threshold-based adoption of AI
context advice in the UNSW dataset setting.

• Figure 31: Breakdown of Performance by Individual
Analysts (UNSW, Threshold 0.9)
– Purpose: Compares the weighted F1 scores of three

RL analysts under the 0.9 confidence threshold for
adopting ContextBuddy suggestions, in the UNSW
dataset.

• Figure 32: Simulated Analysts’ Confidence Gain
(HIKARI)
– Purpose: Plots average prediction confidence across

suggestion acceptance strategies (e.g., random, always
accept, threshold-based) in the HIKARI domain.



• Figure 33: Simulated Analysts’ Confidence Gain
(UNSW)
– Purpose: Shows confidence changes for different

analyst-AI collaboration strategies in the UNSW do-
main, highlighting effectiveness of ContextBuddy sup-
port.

• Table IV: HIKARI-2021 Feature Groupings
– Purpose: Lists context categories for the HIKARI-2021

dataset, detailing which features belong to each and
their diagnostic relevance for alert classification (e.g.,
Initial Features, Packet Counts, TCP Flags, etc.).

• Table V: UNSW-NB15 Feature Groupings
– Purpose: Presents feature categories and corresponding

attributes from the UNSW-NB15 dataset, explaining
what each category captures and its importance for
intrusion detection (e.g., Timing Information, State
Information).

• Table VI: Example Alert Investigation Trajectory
– Purpose: Describes a step-by-step example of how a

simulated analyst sequentially requests context features
to refine classification, showing time steps, feature sets,
and model confidence progression.

• Table VII: Alerts Used in the User Study with Pre-
dicted Probabilities
– Purpose: Summarises the alerts shown to participants

during the user study, including alert IDs, predicted
probabilities from the classifier, predicted and true
classes, and final classification outcome (TP, TN, FP,
FN).

• Appendix E: Trust and Cognitive Load Questionnaire
Items
– Purpose: Lists items used to measure participants’ sub-

jective trust in AI explanations and perceived cognitive
effort. Based on validated scales (e.g., Jian et al. and
Klepsch et al.).
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Fig. 10: Class Distribution of selected alerts matching the
distribution in the original file.

A. HIKARI-2021 Dataset Information

The following lists the context categories generated for the
Hikari dataset. We show the features provided to the simulated
analysts to start the investigation and the features that fall
under each context category in Tab IV. We show the class
distribution of the selected alerts in Fig 10.
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Fig. 11: Class distribution of selected alerts for the UNSW
dataset matching the distribution in the original file.

B. UNSWNB-15 Dataset

The following lists the context categories generated for the
UNSWNB-15 dataset. We show the initial features provided to
the simulated analysts to start the investigation and the features
that fall under each context category in Tab V. We also show
the class distribution of the selected alerts in Fig 11.

C. Example Investigation Steps

An example of an alert investigation performed by an
analyst is shown in Tab VI.

In this study, participants classified network intrusion alerts into
one of six potential classes using feature statistic visualisations and
AI-generated explanations (Figure 12).

We provide an overview of participants’ tasks and describe the
dashboard elements they interact with during decision-making. The
task flow involves the following key steps:

1) Alert Generation: The dashboard presents four alerts per
condition.

2) Feature Visualisation: The dashboard visualises features, in-
cluding statistical summaries (mean, median, and mode).

3) AI Explanations: ContextBuddy uses the existing library to
compute feature importance. The dashboard provides partici-
pants with explanations of feature importance values for each
class, indicating whether certain features positively or negatively
support the alert being classified into each class.

4) Classification: Using the information provided (both feature
visualisations and AI explanations), participants classify the
alert into one of six classes: Background, Benign, BruteForce,
BruteForce-XML, Probing, and XMRIGCC CryptoMiner.



Category Features (HIKARI-2021 field names) What the category represents / why it matters

Initial Features originp, responp, flow_duration,
fwd_pkts_tot, bwd_pkts_tot,
down_up_ratio, flow_SYN_flag_count,
flow_RST_flag_count,
flow_ACK_flag_count, active.avg,
idle.avg

Core flow metadata supplied to RL agents as their starting
observation: ports, duration, packet counts, traffic asymmetry,
key TCP flag totals, and mean active/idle periods.

Packet Counts fwd_data_pkts_tot,
bwd_data_pkts_tot,
fwd_pkts_per_sec, bwd_pkts_per_sec,
flow_pkts_per_sec

Directional packet volumes and per-second rates.

Header Information fwd/bwd_header_size_[tot|min|max] Sizes of protocol headers exchanged.

TCP Flag Counts flow_FIN_flag_count,
fwd/bwd_PSH_flag_count,
fwd/bwd_URG_flag_count,
flow_CWR_flag_count,
flow_ECE_flag_count

Control-plane flag statistics.

Payload Information fwd/bwd/flow_pkts_payload.[min|max|tot|avg|std]Distribution of user-data sizes per direction and overall.

Timing Information fwd/bwd/flow_iat.[min|max|tot|avg|std]Inter-arrival-time statistics.

Flow Throughput payload_bytes_per_second,
fwd/bwd_subflow_pkts,
fwd/bwd_subflow_bytes

Instantaneous byte rate and logical sub-flow segmentation.

Bulk Transfer Properties fwd/bwd_bulk_bytes,
fwd/bwd_bulk_packets,
fwd/bwd_bulk_rate

Counters derived from consecutive large segments.

Flow Activity active.[min|max|tot|std],
idle.[min|max|tot|std]

Durations of active transmission versus idle pauses.

Window Size Information fwd_init_window_size,
bwd_init_window_size,
fwd_last_window_size

Advertised TCP window sizes at key points.

TABLE IV: HIKARI-2021 feature groupings, their constituent attributes, and their diagnostic relevance.



Category Features (UNSW-NB15 field names) What the category represents

Initial Features sbytes, dbytes, Spkts, Dpkts, Sload,
Dload

These are the initial features provided to the agent to start
the investigation. Then the RL agents request the following
additional contexts to classify each intrusion event

Connection Dynamics dur, Stime, Ltime, ct_state_ttl,
sport, dsport

PacketCounts smeansz, dmeansz, sloss, dloss Average packet sizes sent/received and packet-loss counters.
NetworkServiceUsage service_dhcp, service_dns,

service_ftp, service_ftp-data,
service_http, service_irc,
service_pop3, service_radius,
service_smtp, service_snmp,
service_ssh, service_ssl

One-hot flags for well-known application services.

WindowSize swin, dwin TCP window sizes are negotiated by each endpoint.
ProtocolSpecificFeatures1 71 fine-grained protocol indicators beginning with

proto_3pc–proto_leaf-2
Rare or legacy L3/L4 protocols. Splitting into two columns
keeps the sparse vectors manageable for learners.

ProtocolSpecificFeatures2 73 indicators from
proto_merit-inp–proto_zero (incl.
proto_tcp, proto_udp, proto_icmp)

Common plus remaining protocols.

TimingInformation sttl, dttl, Sjit, Djit, Sintpkt,
Dintpkt, tcprtt, synack, ackdat

Time-to-live, jitters, inter-packet gaps, TCP RTT and handshake
latencies.

Relation ct_srv_src, ct_srv_dst, ct_dst_ltm,
ct_src_ltm, ct_src_dport_ltm,
ct_dst_sport_ltm, ct_dst_src_ltm

Temporal counts of connections between hosts/ports within a
sliding “last-time-minute” window.

FlowBehaviour ct_ftp_cmd, trans_depth,
res_bdy_len, is_ftp_login,
is_sm_ips_ports, ct_flw_http_mthd,
stcpb, dtcpb

Application-layer semantics (FTP commands, HTTP method
diversity), transaction depth, and TCP sequence numbers.

StateInformation state_ACC, state_CLO, state_CON,
state_ECO, state_ECR, state_FIN,
state_INT, state_MAS, state_PAR,
state_REQ, state_RST, state_TST,
state_TXD, state_URH, state_URN,
state_no

Connection states assigned by the Bro/Zeek parser.

TABLE V: UNSW-NB15 feature groupings, their constituent attributes, and their diagnostic relevance for intrusion detection.

TABLE VI: An example of alert investigation. The analysts start with an initial feature set provided by the SOC agent at the
time, t = 0. Then it requests packet counts (t = 1) followed by payload information (t = 2). Based on this additional contextual
information, the analyst correctly classifies this alert to be benign with 90% confidence at t = 2, ending the investigation. The
probabilities are computed using an XGBoost classifier.

time t = 0 t = 1 t = 2

action get packet counts (pc) get payload info (pl) classify event

state s0 s1 s2

initial
features

originp = 50967, responp =
53.0, f low duration =
0.02591, fwd pkts tot = 2.0, . . .

originp = 50967, responp =
53.0, f low duration =
0.02591, fwd pkts tot = 2.0, . . .

originp = 50967, responp =
53.0, f low duration =
0.02591, fwd pkts tot = 2.0, . . .

context fea-
tures

none PacketCounts :
{fwd data pkts tot =
2.0, bwd data pkts tot =
2.0, fwd pkts per sec =
77.19, . . .}

PacketCounts :
{fwd data pkts tot =
2.0, bwd data pkts tot =
2.0, fwd pkts per sec =
77.19, . . .} AND
PayloadInformation :
{fwd pkts payload.min =
36.0, fwd pkts payload.max =
36.0, . . .}

context en-
coding

pc = 0; pl = 0; . . . pc = 1; pl = 0; . . . pc = 1; pl = 1; . . .

ground
truth prob

n/a probdt(benign|s1) = 0.89 probdt(benign|s2) = 1.0



Fig. 12: High-level overview of participant task.



D. User Study Dashboard Design

The dashboard provides participants with multiple tools to assist
in their decision-making process.

1) Alerts: Participants begin by reviewing the raw alert data,
which presents key features such as flow duration, packet counts,
and flag counts (Figure 13).

2) Feature Visualisation: The visualisation compares the alert’s
feature values with statistical summaries computed from past alerts
(Figure 14). See Figure 15 to see how participants were told they
could use it.

3) Interaction Panel: This panel provides iterative assistance
(only in Iterative condition) by allowing participants to selectively
filter and focus on all, ContextBuddy selected, or participant-selected
features, which are then visualised and explained in a more tailored
manner. (Figure 16).

4) AI-Generated Explanations: Alongside the feature visual-
isations, the AI provides explanations in the form of feature im-
portance values, computed using Shapley values. These explanations
show each feature’s positive or negative contribution towards the alert
being classified into each class (Figure 17).

5) Final Classification Decision: After reviewing the feature
visualisations and AI explanations, participants are asked to classify
the alert into one of six potential classes. They will also report their
confidence level in the decision and indicate to what extent they relied
on the visualisations, explanations, and prior knowledge (Figure 19).

E. Results

Participants in the study completed two questionnaires: Trust in
AI Explanations and Perceived Cognitive Load.

1) Trust in AI Explanations: Participants were asked to express
their trust in the AI and its provided explanations. We explicitly
instructed them that they were rating the AI and the explanations that
it generates relative to the task and not their trust in AI in general.
They rated their trust on a 7-point Likert scale, where 1 corresponds
to ”Not at all” and 7 corresponds to ”Extremely.” The items included
in the Trust in AI questionnaire are as follows:

• The AI is deceptive (could mislead, e.g., by providing false or
misleading information).

• The AI behaves in an underhanded manner (operates in a way
that may be dishonest).

• I am suspicious of the AI’s intent, actions, or outputs.
• I am wary of the AI (I am cautious or hesitant when using the

AI).
• The AI’s actions will have a harmful or injurious outcome.
• I am confident in the AI.
• The AI is dependable.
• The AI is reliable.
• I can trust the AI.
• I am familiar with the AI.
2) Perceived Cognitive Load: Participants were also asked to

express their perceived cognitive load while performing the task of
classifying intrusion alerts. The cognitive load was rated on a 7-
point scale, with 1 being ”Very low” and 7 being ”Very high.” The
items included in the Perceived Cognitive Load questionnaire are as
follows:

• For this task, many things needed to be kept in mind simulta-
neously.

• This task was very complex.
• I made an effort, not only to understand several details, but to

understand the overall context.
• My point while dealing with the task was to understand every-

thing correctly.
• The learning task consisted of elements supporting my compre-

hension of the task.
• During this task, it was exhausting to find the important infor-

mation.
• The design of this task was very inconvenient for learning.
• During this task, it was difficult to recognise and link the crucial

information.

F. Alerts used in the User Study
G. Training Simulated Analysts, ContextBuddy, and Testing
the Dyad

In this section, we describe the process of training simulated
analysts, training ContextBuddy, and testing the collaboration
between the human analyst and ContextBuddy in a SOC en-
vironment. The process is divided into three phases: simulated
analyst training, ContextBuddy training, and testing.

H. Simulated Analyst Training

The first phase involves training simulated analysts in a
simulated SOC environment. Analysts interact with alerts by
requesting features and additional contextual information to
classify the nature of the alert. Each alert is investigated
multiple times to ensure that the simulated analysts learn to
classify the historical data correctly.

Figure 25 shows the key steps in this training process:
1) The analyst is allocated an alert and provided with an

initial subset of features.
2) Based on this initial information, the analyst requests

additional context (e.g., packet count) as needed.



Fig. 13: The alerts are displayed in a table.

Fig. 14: Example of feature visualisation showing key statistics (mean, median, and mode) for an alert.

Fig. 15: Explanation of feature visualisation.



Fig. 16: Iterative Panel: Allows participants to filter features. This panel is present in C3: Iterative assistance condition only.

Fig. 17: AI-generated explanations displaying feature importance values for different classes.

3) The requested subset of features is returned to the analyst.
4) The analyst appends the additional features to the initial

subset and uses a machine learning model (e.g., XGBoost
classifier) to predict the alert type.

This iterative process allows the simulated analysts to
learn how to classify alerts efficiently by requesting the most
relevant context features. The ground truth for the alerts (the
actual attack type recorded in the dataset) is used to verify the
accuracy of the analysts’ predictions.

I. Training ContextBuddy (example with AIRL)
The next phase involves training ContextBuddy, which uses

Adversarial Inverse Reinforcement Learning (AIRL) to mimic
the decision-making process of the human analysts. Con-
textBuddy learns from the actions of the simulated analysts
and the context features they request during their investiga-
tions.

Figure 26 illustrates the training process:
1) The system collects the alerts and context features that

the analysts explored during the training phase.
2) These data are used to train ContextBuddy, which em-

ploys AIRL to learn a policy that mimics the analysts’



Fig. 18: Discussion of how to interpret explainability information.

Fig. 19: Final classification decision panel where participants submit their classification and report confidence.



dataset alert id Bruteforce-XML Bruteforce Background Benign Probing CryptoMiner predicted class ground truth classification

1 476 0 0 0 0.04 0.96 0 Probing Probing TP
1 625 0.07 0.02 0.29 0.42 0.2 0 Benign Probing FN
1 279 0 0 0 1 0 0 Benign Benign TN
1 640 0 0.39 0.38 0.22 0.01 0 Bruteforce Background FP
2 284 0 0 0.01 0.99 0 0 Benign Benign TN
2 91 0 0 0 0.02 0.98 0 Probing Probing TP
2 674 0.01 0.4 0.33 0.24 0.02 0 Bruteforce Background FP
2 664 0.01 0.05 0.16 0.41 0.37 0 Benign Probing FN
3 79 0 1 0 0 0 0 Bruteforce Bruteforce TP
3 616 0.02 0.03 0.26 0.13 0.56 0 Probing Benign FP
3 312 0 0 0 1 0 0 Benign Benign TN
3 671 0.02 0.04 0.47 0.17 0.3 0 Background Probing FN

TABLE VII: Datasets used for user studies. It shows the distribution of alerts across the three datasets, each containing 4 alerts.
For each alert, we show the dataset and alert ID, predicted probabilities of the random forest classifier (also used by the simulated
analysts), predicted class and the ground truth from the dataset, and the classification outcomes. Note that we counterbalanced
the order of datasets 1 and 2 across conditions C1 and C2 so that the noted improvements by ContextBuddy were not due to
specific instances in dataset 1 or 2. Dataset 3 was always used with C3.
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Fig. 20: User accuracies.

0

200

400

600

Analyst One−time Iterative

Condition

C
o
m

p
le

ti
o
n
 T

im
e
 ±

 S
D

 (
s
) Completion Time by Condition

Fig. 21: Completion times.
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Fig. 22: User confidence.
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Fig. 23: Aggregated trust.
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Fig. 24: Aggregated cognitive load.

decision-making processes.
3) ContextBuddy generalises from this training data and

develops the ability to identify the most relevant context
features for future alerts.

After training, ContextBuddy can assist analysts by sug-
gesting relevant context features for new alerts, effectively



Fig. 25: Simulated Analyst Training Process

streamlining the classification process.

J. Testing the Simulated Analysts and ContextBuddy Dyad

Once the simulated analysts and ContextBuddy are trained,
the next step is testing their collaboration. In this phase, the
simulated analyst and ContextBuddy classify new alerts in
a SOC environment. The SOC provides an initial subset of
features to the analyst, who can request additional context
based on their investigation.

Figure 27 shows the testing workflow:
1) The SOC agent allocates an alert and provides the simu-

lated analyst with an initial subset of features.
2) The analyst can request further contextual information as

needed, while ContextBuddy assists by suggesting the
most relevant context based on its learned policy.

3) The analyst makes a final decision about the alert classi-
fication using a machine learning classifier.

This collaboration ensures that the analyst and Con-
textBuddy contribute to the alert classification process,
leveraging each party’s strengths. ContextBuddy assists by
reducing the analyst’s cognitive load and offering contextual
suggestions that will likely improve classification accuracy.

K. Additional Results on Teamwork Between Simulated Ana-
lysts and ContextBuddy

The following section provides additional results for the
simulation-based study that we could not include in the main
paper due to space limitations.

1) Breakdown of Simulated Analysts’ Performance by Indi-
vidual Analysts: The following section provides a breakdown
of analysts’ performance by individual analyst instances. Re-
call that the results reported in the main paper are aggregated
results.

2) Analysts’ Confidence When Working Alone vs With Con-
textBuddy: The following plots show the effect on prediction
confidence when simulated analysts were assisted by Con-
textBuddy



Fig. 26: ContextBuddy (AIRL Assistant) Training Process

Fig. 27: Testing the Simulated Analyst-ContextBuddy Dyad in simulation-based experiments.
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Fig. 28: Breakdown of performance by individual analysts
when threshold was 0.6 (Hikari)
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Fig. 29: Breakdown of performance by individual analysts
when threshold was 0.9 (Hikari)
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Fig. 30: Breakdown of performance by individual analysts
when threshold was 0.6 (UNSW)
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Fig. 31: Breakdown of performance by individual analysts
when threshold was 0.9 (UNSW)
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Fig. 32: The analysts’ prediction confidence (Hikari)
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Fig. 33: The analysts’ prediction confidence (UNSW)


