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Abstract— Adversarial attacks on Natural Language 

Processing (NLP) models expose vulnerabilities by 

introducing subtle perturbations to input text, often leading 

to misclassification while maintaining human readability. 

Existing methods typically focus on word-level or local text 

segment alterations, overlooking the broader context, which 

results in detectable or semantically inconsistent 

perturbations. We propose a novel adversarial text attack 

scheme named Dynamic Contextual Perturbation (DCP). 

DCP dynamically generates context-aware perturbations 

across sentences, paragraphs, and documents, ensuring 

semantic fidelity and fluency. Leveraging the capabilities of 

pre-trained language models, DCP iteratively refines 

perturbations through an adversarial objective function that 

balances the dual objectives of inducing model 

misclassification and preserving the naturalness of the text. 

This comprehensive approach allows DCP to produce more 

sophisticated and effective adversarial examples that better 

mimic natural language patterns. Our experimental results, 

conducted on various NLP models and datasets, demonstrate 

the efficacy of DCP in challenging the robustness of state-of-

the-art NLP systems. By integrating dynamic contextual 

analysis, DCP significantly enhances the subtlety and impact 

of adversarial attacks. This study highlights the critical role 

of context in adversarial attacks and lays the groundwork for 

creating more robust NLP systems capable of withstanding 

sophisticated adversarial strategies.     

 

Keywords—Adversarial Attacks, Natural Language 

Processing, Contextual Perturbation, Robustness, Pre-trained 

Language Models, Semantic Fidelity, Misclassification, Text 

Generation.  

I. INTRODUCTION  

The rapid advancement of Natural Language Processing 
(NLP) has enabled the development of sophisticated models 
capable of understanding and generating human language 
with remarkable accuracy. These models, powered by deep 
learning techniques and vast amounts of data, are now 
integral to various applications, including sentiment 
analysis, machine translation, and conversational agents. 
However, the increasing reliance on these models also raises 
significant concerns regarding their robustness and security. 
Adversarial attacks, which involve deliberately crafting 
input data to deceive machine learning models, have 
emerged as a critical area of study in ensuring the reliability 
of NLP systems [1-2].    

Adversarial text attacks target NLP models by 
introducing subtle perturbations to input text, aiming to 
mislead the model while keeping the changes imperceptible 
to human readers [3]. These attacks exploit vulnerabilities 
in the model's understanding and processing of language, 

revealing potential weaknesses that could be exploited in 
malicious scenarios. Traditional adversarial attack 
techniques in NLP often focus on word-level perturbations, 
such as synonym replacement or character-level alterations. 
While these methods can be effective, they frequently fail 
to consider the broader contextual coherence of the text, 
resulting in perturbations that are either easily detectable or 
disrupt the overall meaning. 

In response to these limitations, we propose a novel 
adversarial text attack scheme named Dynamic Contextual 
Perturbation (DCP). The DCP scheme is designed to 
generate perturbations that are dynamically informed by the 
contextual environment of the target text. This approach 
ensures that the adversarial examples not only deceive the 
NLP model but also maintain semantic fidelity and fluency, 
making them challenging to detect through traditional 
defense mechanisms. By leveraging the power of pre-
trained language models, DCP intelligently modifies text at 
various levels, including words, phrases, and sentences, to 
produce coherent and contextually appropriate adversarial 
inputs. 

Contributions: The key contributions of the current 
work are as follows. First, the proposed scheme DCP has 
contextual sensitivity unlike many existing methods for 
adversarial text generation that focus solely on word-level 
perturbation without considering the context of the text. 
This enables DCP to dynamically generate perturbations 
based on the context of the target text allowing more 
nuanced and contextually relevant alterations. Second, DCP 
incorporates techniques like synonym replacement, 
homophone substitution, and paraphrasing to subtly alter 
the text's meaning while preserving its core semantic 
content, unlike traditional text attacks that result in 
perturbed text that lacks semantic coherence. Third, unlike 
adversarial text generated by existing methods that suffer 
from poor readability and fluency, DCP produces perturbed 
text that is indistinguishable from natural language, 
ensuring that it remains readable and fluent. Finally, DCP 
employs an adversarial objective function that balances 
misclassification likelihood with text fluency. By 
optimizing this objective function through iterative 
refinement using optimization algorithms, DCP ensures that 
the generated adversarial samples are effective in fooling 
NLP models while remaining human-like. 

This work aims to contribute to the ongoing efforts in 
enhancing the security and robustness of NLP systems. By 
exploring the intersection of context and adversarial 
perturbations,  the DCP scheme not only offers a novel 
perspective on adversarial text attacks but also sets a 
foundation for developing more resilient models capable of 
withstanding sophisticated adversarial strategies.  



The structure of this paper is as follows: In Section II, 
we review related work in the field of adversarial text 
attacks, highlighting the strengths and limitations of current 
approaches. Section III details the methodology of the DCP 
scheme, including the theoretical underpinnings and the 
algorithmic steps involved in generating adversarial 
examples. In Section IV, we describe the implementation 
details, providing insights into the practical aspects of 
deploying DCP. Section V presents the datasets used in our 
experiments and discusses the performance results, 
demonstrating the effectiveness of DCP in various 
scenarios. Finally, Section VI concludes the paper, 
summarizing the key findings and outlining potential 
directions for future research.  

II. RELATED WORK 

Chiang & Lee scrutinize the effectiveness and 
legitimacy of synonym substitution analyses in NLP, 
providing valuable perspectives on their capabilities and 
limitations [4]. By questioning the conventional view of 
these attacks, the authors contribute to a deeper 
comprehension of NLP security vulnerabilities.    

Asl et al. propose a framework called SSCAE that is 
capable of crafting sophisticated adversarial examples in 
natural language processing [5]. However, the complexity 
of incorporating diverse linguistic features of the scheme 
may pose challenges in scalability and efficiency.  

Vitorino et al. evaluate the efficiency of adversarial 
evasion attacks against large language models [6]. 
However, the proposition may face limitations in replicating 
real-world scenarios and assessing the long-term 
effectiveness of proposed countermeasures.   

Zhao et al. introduce a method for generating adversarial 
alterations at the word level utilizing the differential 
evolution algorithm [7]. However, potential weaknesses 
may arise in the method's ability to generate diverse and 
robust adversarial examples across different datasets and 
model architectures. 

Li et al. explore query-limited adversarial attacks 
targeting graph neural networks (GNNs) [8]. However, 
potential weaknesses may arise in the generalization and 
robustness of the proposed attack method across different 
GNN architectures and datasets.  

Hu et al. propose FastTextDodger, a decision-based 
adversarial attack tailored for black-box NLP models [9]. 
However, potential limitations may arise in scenarios where 
the attack's effectiveness depends heavily on the target 
model’s decision boundary complexity, necessitating 
further investigation into its generalization.  

Parry et al. discuss various intricacies of adversarial 
attacks specifically tailored for sequence-to-sequence 
relevance models [10]. However, addressing these 
vulnerabilities effectively requires a nuanced understanding 
of the underlying model dynamics and the development of 
tailored defense mechanisms. 

Waghela et al. introduce a novel scheme, MWSAA that 
enhances traditional word saliency-based attacks by 

incorporating modifications to optimize adversarial 
perturbations [11]. The authors illustrate how well their 
method works in creating adversarial samples that deceive 
text classification models while maintaining semantic 
coherence.  However, further exploration is needed to 
evaluate the method’s performance across diverse datasets, 
as well as its scalability to real-world applications. The same 
authors also designed another enhanced adversarial attack, 
SASSP, integrating saliency, attention, and semantic 
similarity [12]. Empirical evaluations demonstrate SASSP’s 
efficacy in generating adversarial samples with high 
semantic fidelity and superior attack success rates.  

Despite advancements in adversarial text generation, 
existing methods still face challenges in producing 
examples that are both effective and imperceptible. Many 
approaches focus solely on maximizing the model's 
prediction error without considering contextual relevance or 
semantic consistency, resulting in nonsensical or 
linguistically unnatural outputs that limit practical utility. 
DCP addresses these shortcomings by dynamically adapting 
perturbations based on the context of the text and optimizing 
for both misclassification likelihood and text fluency.   

III. METHODOLOGY 

The DCP scheme aims to generate sophisticated 
adversarial text examples that challenge the robustness of 
state-of-the-art NLP systems. This section outlines the 
methodology of DCP in detail, providing a comprehensive 
explanation of each step involved in the process. Fig 1 
depicts a flow diagram to visualize the workflow of DCP. 

 

Fig. 1. The flow diagram of the steps involved in the design of DCP   

Step 1: Input Text Acquisition - The initial step is 
acquiring the input text. For text classification tasks the 
datasets chosen for this study include IMDB and Yelp for 
sentiment analysis, AG News for topic classification, and 
Fake News for classifying news articles as fake or genuine. 
For natural language inference tasks, MNLI and SNLI 
datasets are used. These datasets are publicly available. 

Step 2: Preprocessing - Once the input text is collected, 
it undergoes preprocessing. Tokenization splits the text into 
individual tokens, making it easier to analyze. Lowercasing 
ensures uniformity, while stop-word removal eliminates 
common words that do not significantly affect the meaning. 
Stemming or lemmatization reduces words to their root 
forms, helping to standardize different variations of the 
same word. Noise removal clears out any non-alphabetic 
elements, ensuring a clean text input for subsequent steps. 



Step 3: Contextual embedding generation - Pre-trained 
language models like BERT are used to generate contextual 
embeddings for the preprocessed text. These embeddings 
capture the semantic and syntactic nuances of words within 
their specific contexts. 

Step 4: Perturbation identification - Identifying 
perturbation candidates involves calculating the gradient of 
the loss function concerning the input text. This helps 
pinpoint words that have the most influence on the model's 
output. Saliency maps are used to identify keywords and 
phrases that contribute to the classification task.  

Step 5: Perturbation generation - Generating context-
aware perturbations is the next step. Synonym substitution 
replaces words with contextually appropriate synonyms 
using resources like WordNet or predictions from masked 
language models.  

Step 6: Dynamic refinement - Dynamic refinement is an 
iterative process that balances the objectives of causing 
misclassification and maintaining readability. The 
misclassification objective maximizes the loss of the model 
𝐿𝑚𝑜𝑑𝑒𝑙(𝑥 + 𝛿, 𝑦; 𝜃, where δ is the perturbation applied to 
the input text 𝑥 . This increases the likelihood of 
misclassification. To maintain readability, the function 
minimizes the difference between the original and perturbed 
text embeddings using 𝐿𝑠𝑖𝑚 =  ‖𝐸(𝑥) − 𝐸(𝑥 +
𝛿)‖2

2ensuring semantic similarity. The combined objective 
function is given by (1) 

        𝐿𝑎𝑑𝑣 =  𝐿𝑚𝑜𝑑𝑒𝑙(𝑥 + 𝛿, 𝑦; 𝜃) +  𝜆 ∗ 𝐿𝑠𝑖𝑚                 (1) 

In (1), λ is the parameter that controls the trade-off 
between misclassification and readability. A higher value of 
λ prioritizes readability, while a lower value favors 
misclassification. This optimization technique is used to 
iteratively refine the perturbations.  

Step 7: Adversarial example generation - After refining 
the perturbations, the final adversarial examples are 
generated. These examples are validated to ensure they meet 
the criteria for misclassification and semantic consistency.  

Step 8: Evaluation - The effectiveness of the generated 
adversarial examples is evaluated using metrics such as 
attack success rate (ASR), perturbation magnitude, and 
readability. The ASR measures the percentage of 
adversarial examples that successfully cause 
misclassification. Perturbation magnitude evaluates the 
extent of changes made to the original text, while 
readability assesses the readability of the adversarial 
examples using the Flesch-Kincaid score. 

Step 9: Comparison with PWWS and BERT-on-BERT - 
To compare the performance of DCP with PWWS [13] and 
BERT-on-BERT [14] attacks, the same datasets and models 
are used. This involves implementing PWWS and BERT-
on-BERT attacks on the preprocessed datasets and 
generating adversarial examples.  

IV. IMPLEMENTATION 

This section provides the details of the implementation 
of the DCP scheme in the Python programming language. 

Fig 2 exhibits the pseudocode for the algorithm of the DCP 
scheme. 

Step 1: Setup and preprocessing - This step involves the 
following tasks: (a) installing libraries, (b) initializing 
NLTK, and (c) designing the setup and preprocessing 
function. The installed libraries include nltk, transformers, 
datasets, and torch. The nltk library provides resources for 
NLP tasks such as tokenization, stemming, tagging, and 
parsing. The transformers library provided by Hugging 
Face offers an easy-to-use interface for working with pre-
trained transformer models like BERT, GPT, and others. 
The datasets library of Hugging Face facilitates easy access 
to various datasets for NLP tasks. The torch library is used 
for building and training neural networks, particularly in 
deep learning applications. 

 

Fig. 2. The pseudocode for the steps involved the DCP  algorithm 

Step 2: Generate Contextual Embeddings – The 
contextual embeddings for the input text are generated using 
a pre-trained BERT model. Before generating embeddings, 
the pre-trained BERT model and tokenizer from the 
Hugging Face’s Transformers library are loaded. The 
tokenizer is used to convert text into a format that the BERT 
model can understand, typically by splitting the text into 
tokens and mapping them to their corresponding token IDs. 
The pre-trained BERT model is loaded using model = 
BertModel.from_pretrained(‘bert-base-uncased’). The 
BERT model will generate embeddings for the input tokens. 
The function get_embeddings takes a text input, tokenizes 
it, and generates contextual embeddings.  

Step 3: Perturbation identification – This involves 
identifying which words in the text should be perturbed 
based on their gradients concerning the model's output. The 
function calculate_gradient performs this task as follows. 
The input text is tokenized and prepared for the model. 
Gradient computation is enabled for the input tokens. A 
forward pass is performed through the model to compute the 



outputs. The loss is computed, and backpropagation is 
performed to calculate the gradients. The absolute values of 
the gradients are summed across the embedding dimensions 
to get a single importance score for each token. Finally, the 
tokens with the highest gradient magnitudes are identified.   

Step 4: Perturbation generation – The first step in 
perturbation generation involves finding synonyms for the 
words that have been identified for perturbation. The 
function get_synonym performs the task by executing 
task.wordnet.synsets(word), and retrieving all synsets (sets 
of synonyms) for the given word. For each synset, the 
function get_synonym iterates through the lemmas 
(individual word forms) and adds them to the synonyms set. 
Once the synonyms are available, the perturbed versions of 
the input text are generated by perturbing the identified 
important words with their synonyms by the function 
generate_perturbations.   

Step 5: Dynamic refinement - It iteratively generates 
perturbed text until the adversarial objective is achieved. 
The adversarial_objective function evaluates whether the 
perturbed text achieves the adversarial objective, i.e., 
misclassification. It uses a pre-trained classifier based on 
BERT to classify the perturbed text and compares the 
predicted label with the original label. The 
dynamic_refinement function iterates over a loop where it 
repeatedly generates perturbed text until the adversarial 
objective is achieved.     

Step 6: Evaluation -  This computes various metrics to 
evaluate the success of the perturbations and their impact on 
the original text. The evaluation metrics include (a) attack 
success, (b) perturbation rate, and (c) semantic similarity.  
Attack success indicates whether the attack successfully 
caused misclassification. The perturbation rate measures the 
percentage of words changed in the original text.        

V. PERFORMANCE RESULTS 

The effectiveness of the DCP attack scheme is evaluated 
and contrasted with the PWWS attack [13] and the BERT-
on-BERT attack [14]. In line with BERT-Attack [14], we 
evaluate PGD-BERT using 1000 test examples randomly 
chosen from the respective task’s test data set, consistent 
with partitions used in [3]. The comparative study with 
PWWS includes the following pre-trained models: (i) 
Word-CNN [15], (ii) Bi-LSTM [16], and (iii) Char-CNN 
[17]. The datasets used in this study include AG News [18], 
IMDB [19], Yelp [20], Fake News [21], MNLI [22], and 
SNLI [23]. For comparing the performance of DCP with 
BERT-on-BERT, Word-LSTM [24], BERT-Large [25], 
and ESIM [26] are also used.  

It is observed from Tables I and II and Fig 3 that CNN 
and LSTM models generally maintain high accuracy in the 
absence of attacks for AG News and IMDB datasets on the 
fine-tuned BERT victim model. However, the accuracy 
significantly drops in the presence of attacks. The adverse 
effect of DCP is even more as it leads to lower accuracy. 
Moreover, DCP results in lower perturbation rates 
compared to PWWS, implying it can generate more 
semantically similar adversarial examples with fewer 
modifications. 

TABLE I.  CLASSIFICATION ACCURACY IN ABSENCE OF ANY ATTACK 

AND PRESENCE OF PWWS AND DCP ATTACKS FOR AG NEWS AND IMDB 

Dataset Model  Acc in abs of 

Attack (%) 

Acc. under 

PWWS (%) 

Acc. under 

DCP (%) 

AG 

News 

Word-CNN 90.56 56.72 48.25 

Char-CNN 89.70 56.20 46.20 

IMDB 
Bi-LSTM 84.86 2.20 1.75 

Word-CNN 86.55 5.50 3.60 

TABLE II.  PERTURBATION RATE  OF PWWS AND DCP ATTACKS FOR 

AG NEWS AND IMDB 

Dataset Model  Perturb Rate 

with PWWS (%) 

Perturb Rate 

with DCP (%) 

AG 

News 

Word-CNN 16.76 15.25 

Char-CNN 18.93 14.80 

IMDB 
Bi-LSTM 3.38 2.80 

Word-CNN 3.81 3.10 

 

 

Fig. 3. The classification accuracies and perturbation rates for PWWS and 
DCP attacks for different models on AG News and IMDB datasets   

TABLE III.  ACCURACY AND PERTURBATION RATE FOR BERT-ON-
BERT AND DCP ATTACKS ON DIFFERENT DATASETS FOR TEXT 

CLASSIFICATION 

Dataset Attack  

Method  

Original 

Accuracy 

Accuracy  

in Presence 

of Attack  

Perturb 

Rate of the  

Attack   

IMDB 
BERT-on-BERT 

90.90 
11.40 4.40 

DCP 7.40 2.70 

Yelp 
BERT-on-BERT 

95.60 
5.10 4.10 

DCP 4.05 3.50 

Fake 
BERT-on-BERT 

97.80 
15.50 1.10 

DCP 11.4 0.90 

AG 

News 

BERT-on-BERT 
94.20 

10.60 15.40 

DCP 6.70 8.60 

 

Fig. 4. Classification accuracy and perturbation rate for BERT-on-BERT 
attack and DCP attack for various datasets for text classification  



Table III and Fig 4 depict the accuracies and 
perturbation rates of BERT-on-BERT and DCP attacks on 
a fine-tuned BERT model for several datasets for text 
classification tasks. While BERT-on-BERT and DCP both 
significantly lower the model’s accuracy across all datasets, 
the effect of DCP is more severe. Moreover, DCP achieves 
this with consistently lower perturbation rates, making the 
attack more subtle and potentially more dangerous.  

TABLE IV.  NUMBER OF QUERIES GENERATED AND SEMANTIC 

SIMILARITY FOR BERT-ON-BERT AND DCP ATTACKS ON TEXT 

CLASSIFICATION DATA 

Dataset Attack  

Method  

No of 

Queries 

Semantic 

Similarity 

IMDB 
BERT-on-BERT 454 0.86 

DCP 347 0.96 

Yelp 
BERT-on-BERT 273 0.77 

DCP 238 0.94 

Fake 
BERT-on-BERT 1558 0.81 

DCP 943 0.93 

AG 

News 

BERT-on-BERT 213 0.63 

DCP 154 0.94 

 
Table IV and Fig 5 show that DCP requires fewer 

queries to generate adversarial examples while consistently 
maintaining higher semantic similarity in the perturbed texts 
compared to BERT-on-BERT for text classification tasks.  

Table V and Fig 6 present the performance results of 
BERT-on-BERT and DCP attacks on several datasets for 
natural language inference tasks. The attack results for 
hypotheses (H) and premises (P) are shown separately. DCP 
is found to consistently outperform BERT-on-BERT. 

Table VI depicts the impact of BERT-on-BERT and 
DCP attacks on different models other than fine-tuned 
BERT models. The results demonstrate the effectiveness of 
these attacks across different datasets and model 
architectures. However, DCP demonstrates a superior 
capability to compromise the models in comparison to 
BERT-on-BERT. 

 
Fig. 5. Number of queries generated and semantic similarity in the texts for 
BERT-on-BERT and DCP attacks on text classification datasets    

TABLE V.  ACCURACY AND PERTURBATION RATE FOR BERT-ON-
BERT AND DCP ATTACKS ON NATURAL LANGUAGE INFERENCE 

DATASETS 

Dataset Attack  

Method  

Original 

Accuracy 

Accuracy 

in Presence 

of Attack  

Perturb 

Rate of the  

Attack   

MNLI 
Matched 

BERT-on-BERT 85.10  

(H/P) 

7.90/11.90 8.80/7.90 

DCP 5.30/10.80 7.40/6.70 

MNLI 
Unmatched 

BERT-on-BERT 82.10 

(H/P) 

7.00/13.70 8.00/7.10 

DCP 5.10/10.60 7.20/7.00 

SNLI 
BERT-on-BERT 89.40  

(H/P) 

7.40/16.10 12.40/9.30 

DCP 3.20/12.60 8.20/6.30 

 
Fig. 6. Accuracy and perturbation rate for BERT-on-BERT and DCP 
attacks on natural language inference-related datasets    

TABLE VI.  ATTACK TRANSFERABILITY PERFORMANCE – ACCURACY OF 

BERT-ON-BERT AND DCP ATTACKS ON DIFFERENT MODELS 

Dataset Model  Acc in 

Absence of 

Attack  

Acc in 

Presence of 

BERT-on-

BERT  

Acc in 

Presence of 

DCP   

IMDB 
Word-LSTM 89.80 10.20 7.40 

BERT-Large 98.20 12.40 8.30 

Yelp 
Word-LSTM 96.00 1.10 0.70 

BERT-Large 97.90 8.20 5.40 

MNLI 
Matched 

ESIM 76.20 9.60 7.20 

BERT-Large 86.40 13.20 10.80 
   

VI. CONCLUSION 

This paper introduced DCP, a novel adversarial attack 
scheme for NLP models. DCP generates context-aware 
perturbations that maintain semantic fidelity and fluency, 
leveraging pre-trained language models. Experimental 
results show DCP's effectiveness across multiple NLP 
models and datasets, achieving higher attack success rates 
with minimal perturbations than other methods. This study 
highlights the importance of context in adversarial text 
generation. Future work will enhance defense mechanisms, 
explore broader NLP applications, and address the ethical 
implications of adversarial attacks. 
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