

Adversarial Text Generation with Dynamic

Contextual Perturbation

Hetvi Waghela

Dep of Data Science

Praxis Business School

Kolkata, INDIA

waghelahetvi7@gmail.com

Jaydip Sen

Dept of Data Science

Praxis Buiness School

Kolkata, INDIA

jaydip.sen@acm.org

Sneha Rakshit

Dept of Data Science

Praxis Business School

Kolkata, INDIA

srakshit149@gmail.com

Subhasis Dasgupta

Dept of Data Science

Praxis Busines School

 Kolkata, INDIA

subhasis@praxis.ac.in

Abstract— Adversarial attacks on Natural Language

Processing (NLP) models expose vulnerabilities by

introducing subtle perturbations to input text, often leading

to misclassification while maintaining human readability.

Existing methods typically focus on word-level or local text

segment alterations, overlooking the broader context, which

results in detectable or semantically inconsistent

perturbations. We propose a novel adversarial text attack

scheme named Dynamic Contextual Perturbation (DCP).

DCP dynamically generates context-aware perturbations

across sentences, paragraphs, and documents, ensuring

semantic fidelity and fluency. Leveraging the capabilities of

pre-trained language models, DCP iteratively refines

perturbations through an adversarial objective function that

balances the dual objectives of inducing model

misclassification and preserving the naturalness of the text.

This comprehensive approach allows DCP to produce more

sophisticated and effective adversarial examples that better

mimic natural language patterns. Our experimental results,

conducted on various NLP models and datasets, demonstrate

the efficacy of DCP in challenging the robustness of state-of-

the-art NLP systems. By integrating dynamic contextual

analysis, DCP significantly enhances the subtlety and impact

of adversarial attacks. This study highlights the critical role

of context in adversarial attacks and lays the groundwork for

creating more robust NLP systems capable of withstanding

sophisticated adversarial strategies.

Keywords—Adversarial Attacks, Natural Language

Processing, Contextual Perturbation, Robustness, Pre-trained

Language Models, Semantic Fidelity, Misclassification, Text

Generation.

I. INTRODUCTION

The rapid advancement of Natural Language Processing
(NLP) has enabled the development of sophisticated models
capable of understanding and generating human language
with remarkable accuracy. These models, powered by deep
learning techniques and vast amounts of data, are now
integral to various applications, including sentiment
analysis, machine translation, and conversational agents.
However, the increasing reliance on these models also raises
significant concerns regarding their robustness and security.
Adversarial attacks, which involve deliberately crafting
input data to deceive machine learning models, have
emerged as a critical area of study in ensuring the reliability
of NLP systems [1-2].

Adversarial text attacks target NLP models by
introducing subtle perturbations to input text, aiming to
mislead the model while keeping the changes imperceptible
to human readers [3]. These attacks exploit vulnerabilities
in the model's understanding and processing of language,

revealing potential weaknesses that could be exploited in
malicious scenarios. Traditional adversarial attack
techniques in NLP often focus on word-level perturbations,
such as synonym replacement or character-level alterations.
While these methods can be effective, they frequently fail
to consider the broader contextual coherence of the text,
resulting in perturbations that are either easily detectable or
disrupt the overall meaning.

In response to these limitations, we propose a novel
adversarial text attack scheme named Dynamic Contextual
Perturbation (DCP). The DCP scheme is designed to
generate perturbations that are dynamically informed by the
contextual environment of the target text. This approach
ensures that the adversarial examples not only deceive the
NLP model but also maintain semantic fidelity and fluency,
making them challenging to detect through traditional
defense mechanisms. By leveraging the power of pre-
trained language models, DCP intelligently modifies text at
various levels, including words, phrases, and sentences, to
produce coherent and contextually appropriate adversarial
inputs.

Contributions: The key contributions of the current
work are as follows. First, the proposed scheme DCP has
contextual sensitivity unlike many existing methods for
adversarial text generation that focus solely on word-level
perturbation without considering the context of the text.
This enables DCP to dynamically generate perturbations
based on the context of the target text allowing more
nuanced and contextually relevant alterations. Second, DCP
incorporates techniques like synonym replacement,
homophone substitution, and paraphrasing to subtly alter
the text's meaning while preserving its core semantic
content, unlike traditional text attacks that result in
perturbed text that lacks semantic coherence. Third, unlike
adversarial text generated by existing methods that suffer
from poor readability and fluency, DCP produces perturbed
text that is indistinguishable from natural language,
ensuring that it remains readable and fluent. Finally, DCP
employs an adversarial objective function that balances
misclassification likelihood with text fluency. By
optimizing this objective function through iterative
refinement using optimization algorithms, DCP ensures that
the generated adversarial samples are effective in fooling
NLP models while remaining human-like.

This work aims to contribute to the ongoing efforts in
enhancing the security and robustness of NLP systems. By
exploring the intersection of context and adversarial
perturbations, the DCP scheme not only offers a novel
perspective on adversarial text attacks but also sets a
foundation for developing more resilient models capable of
withstanding sophisticated adversarial strategies.

The structure of this paper is as follows: In Section II,
we review related work in the field of adversarial text
attacks, highlighting the strengths and limitations of current
approaches. Section III details the methodology of the DCP
scheme, including the theoretical underpinnings and the
algorithmic steps involved in generating adversarial
examples. In Section IV, we describe the implementation
details, providing insights into the practical aspects of
deploying DCP. Section V presents the datasets used in our
experiments and discusses the performance results,
demonstrating the effectiveness of DCP in various
scenarios. Finally, Section VI concludes the paper,
summarizing the key findings and outlining potential
directions for future research.

II. RELATED WORK

Chiang & Lee scrutinize the effectiveness and
legitimacy of synonym substitution analyses in NLP,
providing valuable perspectives on their capabilities and
limitations [4]. By questioning the conventional view of
these attacks, the authors contribute to a deeper
comprehension of NLP security vulnerabilities.

Asl et al. propose a framework called SSCAE that is
capable of crafting sophisticated adversarial examples in
natural language processing [5]. However, the complexity
of incorporating diverse linguistic features of the scheme
may pose challenges in scalability and efficiency.

Vitorino et al. evaluate the efficiency of adversarial
evasion attacks against large language models [6].
However, the proposition may face limitations in replicating
real-world scenarios and assessing the long-term
effectiveness of proposed countermeasures.

Zhao et al. introduce a method for generating adversarial
alterations at the word level utilizing the differential
evolution algorithm [7]. However, potential weaknesses
may arise in the method's ability to generate diverse and
robust adversarial examples across different datasets and
model architectures.

Li et al. explore query-limited adversarial attacks
targeting graph neural networks (GNNs) [8]. However,
potential weaknesses may arise in the generalization and
robustness of the proposed attack method across different
GNN architectures and datasets.

Hu et al. propose FastTextDodger, a decision-based
adversarial attack tailored for black-box NLP models [9].
However, potential limitations may arise in scenarios where
the attack's effectiveness depends heavily on the target
model’s decision boundary complexity, necessitating
further investigation into its generalization.

Parry et al. discuss various intricacies of adversarial
attacks specifically tailored for sequence-to-sequence
relevance models [10]. However, addressing these
vulnerabilities effectively requires a nuanced understanding
of the underlying model dynamics and the development of
tailored defense mechanisms.

Waghela et al. introduce a novel scheme, MWSAA that
enhances traditional word saliency-based attacks by

incorporating modifications to optimize adversarial
perturbations [11]. The authors illustrate how well their
method works in creating adversarial samples that deceive
text classification models while maintaining semantic
coherence. However, further exploration is needed to
evaluate the method’s performance across diverse datasets,
as well as its scalability to real-world applications. The same
authors also designed another enhanced adversarial attack,
SASSP, integrating saliency, attention, and semantic
similarity [12]. Empirical evaluations demonstrate SASSP’s
efficacy in generating adversarial samples with high
semantic fidelity and superior attack success rates.

Despite advancements in adversarial text generation,
existing methods still face challenges in producing
examples that are both effective and imperceptible. Many
approaches focus solely on maximizing the model's
prediction error without considering contextual relevance or
semantic consistency, resulting in nonsensical or
linguistically unnatural outputs that limit practical utility.
DCP addresses these shortcomings by dynamically adapting
perturbations based on the context of the text and optimizing
for both misclassification likelihood and text fluency.

III. METHODOLOGY

The DCP scheme aims to generate sophisticated
adversarial text examples that challenge the robustness of
state-of-the-art NLP systems. This section outlines the
methodology of DCP in detail, providing a comprehensive
explanation of each step involved in the process. Fig 1
depicts a flow diagram to visualize the workflow of DCP.

Fig. 1. The flow diagram of the steps involved in the design of DCP

Step 1: Input Text Acquisition - The initial step is
acquiring the input text. For text classification tasks the
datasets chosen for this study include IMDB and Yelp for
sentiment analysis, AG News for topic classification, and
Fake News for classifying news articles as fake or genuine.
For natural language inference tasks, MNLI and SNLI
datasets are used. These datasets are publicly available.

Step 2: Preprocessing - Once the input text is collected,
it undergoes preprocessing. Tokenization splits the text into
individual tokens, making it easier to analyze. Lowercasing
ensures uniformity, while stop-word removal eliminates
common words that do not significantly affect the meaning.
Stemming or lemmatization reduces words to their root
forms, helping to standardize different variations of the
same word. Noise removal clears out any non-alphabetic
elements, ensuring a clean text input for subsequent steps.

Step 3: Contextual embedding generation - Pre-trained
language models like BERT are used to generate contextual
embeddings for the preprocessed text. These embeddings
capture the semantic and syntactic nuances of words within
their specific contexts.

Step 4: Perturbation identification - Identifying
perturbation candidates involves calculating the gradient of
the loss function concerning the input text. This helps
pinpoint words that have the most influence on the model's
output. Saliency maps are used to identify keywords and
phrases that contribute to the classification task.

Step 5: Perturbation generation - Generating context-
aware perturbations is the next step. Synonym substitution
replaces words with contextually appropriate synonyms
using resources like WordNet or predictions from masked
language models.

Step 6: Dynamic refinement - Dynamic refinement is an
iterative process that balances the objectives of causing
misclassification and maintaining readability. The
misclassification objective maximizes the loss of the model
𝐿𝑚𝑜𝑑𝑒𝑙(𝑥 + 𝛿, 𝑦; 𝜃, where δ is the perturbation applied to
the input text 𝑥 . This increases the likelihood of
misclassification. To maintain readability, the function
minimizes the difference between the original and perturbed
text embeddings using 𝐿𝑠𝑖𝑚 = ‖𝐸(𝑥) − 𝐸(𝑥 +
𝛿)‖2

2ensuring semantic similarity. The combined objective
function is given by (1)

 𝐿𝑎𝑑𝑣 = 𝐿𝑚𝑜𝑑𝑒𝑙(𝑥 + 𝛿, 𝑦; 𝜃) + 𝜆 ∗ 𝐿𝑠𝑖𝑚 (1)

In (1), λ is the parameter that controls the trade-off
between misclassification and readability. A higher value of
λ prioritizes readability, while a lower value favors
misclassification. This optimization technique is used to
iteratively refine the perturbations.

Step 7: Adversarial example generation - After refining
the perturbations, the final adversarial examples are
generated. These examples are validated to ensure they meet
the criteria for misclassification and semantic consistency.

Step 8: Evaluation - The effectiveness of the generated
adversarial examples is evaluated using metrics such as
attack success rate (ASR), perturbation magnitude, and
readability. The ASR measures the percentage of
adversarial examples that successfully cause
misclassification. Perturbation magnitude evaluates the
extent of changes made to the original text, while
readability assesses the readability of the adversarial
examples using the Flesch-Kincaid score.

Step 9: Comparison with PWWS and BERT-on-BERT -
To compare the performance of DCP with PWWS [13] and
BERT-on-BERT [14] attacks, the same datasets and models
are used. This involves implementing PWWS and BERT-
on-BERT attacks on the preprocessed datasets and
generating adversarial examples.

IV. IMPLEMENTATION

This section provides the details of the implementation
of the DCP scheme in the Python programming language.

Fig 2 exhibits the pseudocode for the algorithm of the DCP
scheme.

Step 1: Setup and preprocessing - This step involves the
following tasks: (a) installing libraries, (b) initializing
NLTK, and (c) designing the setup and preprocessing
function. The installed libraries include nltk, transformers,
datasets, and torch. The nltk library provides resources for
NLP tasks such as tokenization, stemming, tagging, and
parsing. The transformers library provided by Hugging
Face offers an easy-to-use interface for working with pre-
trained transformer models like BERT, GPT, and others.
The datasets library of Hugging Face facilitates easy access
to various datasets for NLP tasks. The torch library is used
for building and training neural networks, particularly in
deep learning applications.

Fig. 2. The pseudocode for the steps involved the DCP algorithm

Step 2: Generate Contextual Embeddings – The
contextual embeddings for the input text are generated using
a pre-trained BERT model. Before generating embeddings,
the pre-trained BERT model and tokenizer from the
Hugging Face’s Transformers library are loaded. The
tokenizer is used to convert text into a format that the BERT
model can understand, typically by splitting the text into
tokens and mapping them to their corresponding token IDs.
The pre-trained BERT model is loaded using model =
BertModel.from_pretrained(‘bert-base-uncased’). The
BERT model will generate embeddings for the input tokens.
The function get_embeddings takes a text input, tokenizes
it, and generates contextual embeddings.

Step 3: Perturbation identification – This involves
identifying which words in the text should be perturbed
based on their gradients concerning the model's output. The
function calculate_gradient performs this task as follows.
The input text is tokenized and prepared for the model.
Gradient computation is enabled for the input tokens. A
forward pass is performed through the model to compute the

outputs. The loss is computed, and backpropagation is
performed to calculate the gradients. The absolute values of
the gradients are summed across the embedding dimensions
to get a single importance score for each token. Finally, the
tokens with the highest gradient magnitudes are identified.

Step 4: Perturbation generation – The first step in
perturbation generation involves finding synonyms for the
words that have been identified for perturbation. The
function get_synonym performs the task by executing
task.wordnet.synsets(word), and retrieving all synsets (sets
of synonyms) for the given word. For each synset, the
function get_synonym iterates through the lemmas
(individual word forms) and adds them to the synonyms set.
Once the synonyms are available, the perturbed versions of
the input text are generated by perturbing the identified
important words with their synonyms by the function
generate_perturbations.

Step 5: Dynamic refinement - It iteratively generates
perturbed text until the adversarial objective is achieved.
The adversarial_objective function evaluates whether the
perturbed text achieves the adversarial objective, i.e.,
misclassification. It uses a pre-trained classifier based on
BERT to classify the perturbed text and compares the
predicted label with the original label. The
dynamic_refinement function iterates over a loop where it
repeatedly generates perturbed text until the adversarial
objective is achieved.

Step 6: Evaluation - This computes various metrics to
evaluate the success of the perturbations and their impact on
the original text. The evaluation metrics include (a) attack
success, (b) perturbation rate, and (c) semantic similarity.
Attack success indicates whether the attack successfully
caused misclassification. The perturbation rate measures the
percentage of words changed in the original text.

V. PERFORMANCE RESULTS

The effectiveness of the DCP attack scheme is evaluated
and contrasted with the PWWS attack [13] and the BERT-
on-BERT attack [14]. In line with BERT-Attack [14], we
evaluate PGD-BERT using 1000 test examples randomly
chosen from the respective task’s test data set, consistent
with partitions used in [3]. The comparative study with
PWWS includes the following pre-trained models: (i)
Word-CNN [15], (ii) Bi-LSTM [16], and (iii) Char-CNN
[17]. The datasets used in this study include AG News [18],
IMDB [19], Yelp [20], Fake News [21], MNLI [22], and
SNLI [23]. For comparing the performance of DCP with
BERT-on-BERT, Word-LSTM [24], BERT-Large [25],
and ESIM [26] are also used.

It is observed from Tables I and II and Fig 3 that CNN
and LSTM models generally maintain high accuracy in the
absence of attacks for AG News and IMDB datasets on the
fine-tuned BERT victim model. However, the accuracy
significantly drops in the presence of attacks. The adverse
effect of DCP is even more as it leads to lower accuracy.
Moreover, DCP results in lower perturbation rates
compared to PWWS, implying it can generate more
semantically similar adversarial examples with fewer
modifications.

TABLE I. CLASSIFICATION ACCURACY IN ABSENCE OF ANY ATTACK

AND PRESENCE OF PWWS AND DCP ATTACKS FOR AG NEWS AND IMDB

Dataset Model Acc in abs of

Attack (%)

Acc. under

PWWS (%)

Acc. under

DCP (%)

AG

News

Word-CNN 90.56 56.72 48.25

Char-CNN 89.70 56.20 46.20

IMDB
Bi-LSTM 84.86 2.20 1.75

Word-CNN 86.55 5.50 3.60

TABLE II. PERTURBATION RATE OF PWWS AND DCP ATTACKS FOR

AG NEWS AND IMDB

Dataset Model Perturb Rate

with PWWS (%)

Perturb Rate

with DCP (%)

AG

News

Word-CNN 16.76 15.25

Char-CNN 18.93 14.80

IMDB
Bi-LSTM 3.38 2.80

Word-CNN 3.81 3.10

Fig. 3. The classification accuracies and perturbation rates for PWWS and
DCP attacks for different models on AG News and IMDB datasets

TABLE III. ACCURACY AND PERTURBATION RATE FOR BERT-ON-
BERT AND DCP ATTACKS ON DIFFERENT DATASETS FOR TEXT

CLASSIFICATION

Dataset Attack

Method

Original

Accuracy

Accuracy

in Presence

of Attack

Perturb

Rate of the

Attack

IMDB
BERT-on-BERT

90.90
11.40 4.40

DCP 7.40 2.70

Yelp
BERT-on-BERT

95.60
5.10 4.10

DCP 4.05 3.50

Fake
BERT-on-BERT

97.80
15.50 1.10

DCP 11.4 0.90

AG

News

BERT-on-BERT
94.20

10.60 15.40

DCP 6.70 8.60

Fig. 4. Classification accuracy and perturbation rate for BERT-on-BERT
attack and DCP attack for various datasets for text classification

Table III and Fig 4 depict the accuracies and
perturbation rates of BERT-on-BERT and DCP attacks on
a fine-tuned BERT model for several datasets for text
classification tasks. While BERT-on-BERT and DCP both
significantly lower the model’s accuracy across all datasets,
the effect of DCP is more severe. Moreover, DCP achieves
this with consistently lower perturbation rates, making the
attack more subtle and potentially more dangerous.

TABLE IV. NUMBER OF QUERIES GENERATED AND SEMANTIC

SIMILARITY FOR BERT-ON-BERT AND DCP ATTACKS ON TEXT

CLASSIFICATION DATA

Dataset Attack

Method

No of

Queries

Semantic

Similarity

IMDB
BERT-on-BERT 454 0.86

DCP 347 0.96

Yelp
BERT-on-BERT 273 0.77

DCP 238 0.94

Fake
BERT-on-BERT 1558 0.81

DCP 943 0.93

AG

News

BERT-on-BERT 213 0.63

DCP 154 0.94

Table IV and Fig 5 show that DCP requires fewer

queries to generate adversarial examples while consistently
maintaining higher semantic similarity in the perturbed texts
compared to BERT-on-BERT for text classification tasks.

Table V and Fig 6 present the performance results of
BERT-on-BERT and DCP attacks on several datasets for
natural language inference tasks. The attack results for
hypotheses (H) and premises (P) are shown separately. DCP
is found to consistently outperform BERT-on-BERT.

Table VI depicts the impact of BERT-on-BERT and
DCP attacks on different models other than fine-tuned
BERT models. The results demonstrate the effectiveness of
these attacks across different datasets and model
architectures. However, DCP demonstrates a superior
capability to compromise the models in comparison to
BERT-on-BERT.

Fig. 5. Number of queries generated and semantic similarity in the texts for
BERT-on-BERT and DCP attacks on text classification datasets

TABLE V. ACCURACY AND PERTURBATION RATE FOR BERT-ON-
BERT AND DCP ATTACKS ON NATURAL LANGUAGE INFERENCE

DATASETS

Dataset Attack

Method

Original

Accuracy

Accuracy

in Presence

of Attack

Perturb

Rate of the

Attack

MNLI
Matched

BERT-on-BERT 85.10

(H/P)

7.90/11.90 8.80/7.90

DCP 5.30/10.80 7.40/6.70

MNLI
Unmatched

BERT-on-BERT 82.10

(H/P)

7.00/13.70 8.00/7.10

DCP 5.10/10.60 7.20/7.00

SNLI
BERT-on-BERT 89.40

(H/P)

7.40/16.10 12.40/9.30

DCP 3.20/12.60 8.20/6.30

Fig. 6. Accuracy and perturbation rate for BERT-on-BERT and DCP
attacks on natural language inference-related datasets

TABLE VI. ATTACK TRANSFERABILITY PERFORMANCE – ACCURACY OF

BERT-ON-BERT AND DCP ATTACKS ON DIFFERENT MODELS

Dataset Model Acc in

Absence of

Attack

Acc in

Presence of

BERT-on-

BERT

Acc in

Presence of

DCP

IMDB
Word-LSTM 89.80 10.20 7.40

BERT-Large 98.20 12.40 8.30

Yelp
Word-LSTM 96.00 1.10 0.70

BERT-Large 97.90 8.20 5.40

MNLI
Matched

ESIM 76.20 9.60 7.20

BERT-Large 86.40 13.20 10.80

VI. CONCLUSION

This paper introduced DCP, a novel adversarial attack
scheme for NLP models. DCP generates context-aware
perturbations that maintain semantic fidelity and fluency,
leveraging pre-trained language models. Experimental
results show DCP's effectiveness across multiple NLP
models and datasets, achieving higher attack success rates
with minimal perturbations than other methods. This study
highlights the importance of context in adversarial text
generation. Future work will enhance defense mechanisms,
explore broader NLP applications, and address the ethical
implications of adversarial attacks.

REFERENCES

[1] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruma, D. Erhan, I. J.
Goodfellow, and R. Fergus, “Intriguing properties of neural
networks”, Proc. of ICLR, Poster Track, 2014.

[2] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and
harnessing adversarial examples”, Proc. of ICLR, Poster Track,
2015.

[3] M. Alzantot, Y. Sharma, A. Elgohary, B-J. Ho, M. Srivastava, and
K-W, Chang, “Generating natural language adversarial examples”,
Proc. of EMNLP, pp 2890-2896, 2018

[4] C-H. Chiang and H-y. Lee, “Are synonym substitution attacks really
synonym substitution attacks?”, Findings of the ACL’23, pp. 1853-
1878, 2023.

[5] J.R. Asl, M.H. Rafiei, M. Alohaly, and D. Takabi, "A semantic,
syntactic, and context-aware natural language adversarial example
generator.", IEEE Trans on Dep and Sec Comp, pp. 1-17, 2024.

[6] J. Vitorino, E. Maia, and I. Praca, “Adversarial evasion attack
efficiency against large language models.” arXiv:2406.08050, 2024.

[7] J. Zhao, Y. Chen, and X. Li, “Word-level textual adversarial attack
method based on differential evolution algorithm,” Proc. of Int Conf
on Cloud Comp, Big Data and IoT, Wuhan, China, pp. 29-34, 2022.

[8] H. Li, J. Zhang, S. Gao, L. Wu, W. Zhou, and R. Wang, "Towards
query-limited adversarial attacks on graph neural networks," Proc.
of the 34th Int. Conf on Tools with Art Intel (ICTAI), pp. 516-521,
2022.

[9] X. Hu, G. Liu, B. Zheng, L. Zhao, Q. Wang, Y. Zhang, and M. Du,
“FastTextDodger: Decision-based adversarial attack against black-

box NLP models with extremely high efficiency,” IEEE Trans. on
Information Forensics and Security, vol 19, pp. 2398-2411, 2024.

[10] A. Parry, M. Fröbe, S. MacAvaney, M. Potthast, M. Hagen, “A.
Parry, MR. Jia and P. Liang, “Analyzing adversarial attacks on
sequence-to-sequence relevance models,” arXiv:2403.07654, 2024.

[11] H. Waghela, S. Rakshit, and J. Sen, “A modified word saliency-
based adversarial attack on text classification models,” Proc. of
ICCIDA, Hyderabad, India, June 28-29, 2024.

[12] H. Waghela, J. Sen, and S, Rakshit, “Saliency attention and semantic
similarity-driven adversarial perturbation,” Proc. of the 5th ICDSA,
Jaipur, India, July 17-19, 2024.

[13] S. Ren, Y. Deng, K. He, and W. Che, “Generating natural language
adversarial examples through probability weighted word saliency,”
Proc. of the 57th Annual Meeting of the ACL, pp 1085-1097, 2019.

[14] L. Li, R. Ma, Q. Guo, X. Xue, and X. Qiu, “BERT-Attack:
Adversarial attack against BERT using BERT,” Proc. of the Conf on
EMNLP, pp 6193-6202, 2020.

[15] Y. Kim, “Convolutional neural networks for sentence
classification,” Proc. of EMNLP’14, pp 1746-1751, 2014.

[16] A. Graves, S. Fernandez, and J. Schmidhuber, “Bidirectional LSTM
networks for improved phoneme classification and recognition,"
Proc of Int Conf on Artificial Neural Networks (ICANN’05), pp. 799-
804, Warsaw, Poland, September 11-15, 2005.

[17] X. Zhang, J. Zhao, and Y. LeCun, “Character-level Convolutional
Networks for Text Classification,” Proc. of Advances in Neural
Information Processing Systems, 2015.

[18] X. Zhang and Y. LeCun, "Text understanding from scratch."
arXiv:1502.01710, 2015.

[19] IMDB dataset: http://datasets.imdbws.com/

[20] Yelp Open Dataset: https://yelp.com/dataset.

[21] W. Lifferth, “Fake news,”, https://kaggle.com/competitions/fake-
news, 2019.

[22] A. Williams, N. Nangia, and S.R. Bowman, “A broad-coverage
challenge corpus for sentence understanding through inference,"
arXiv:1704.05426v4, 2018.

[23] SNLI dataset: https://huggingface.co/datasets/stanfordnlp/snli.

[24] S. Hochreiter and J. Schmidhuber, “Long short-term memory”,
Neural Computing, Vol 9, No 8, pp 1735-1780, 1997.

[25] BERT-Large: ttps://huggingface.co/google-bert/bert-large-uncased

[26] Q. Chen, X. Zhu, Z. Ling, S. Wie, H. Jiang, and D. Inkpen,
“Enhanced LSTM for natural language inference,” arXiv:
1609.06038, 2016.

	I. Introduction
	II. Related Work
	III. Methodology
	IV. Implementation
	V. Performance Results
	VI. Conclusion
	References

