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Abstract. Modern mix networks improve over Tor and provide stronger
privacy guarantees by robustly obfuscating metadata. As long as a message is
routed through at least one honest mixnode, the privacy of the users involved
is safeguarded. However, the complexity of the mixing mechanisms makes
it difficult to estimate the cumulative privacy erosion occurring over time.
This work uses a generative model trained on mixnet traffic to estimate the
loss of privacy when users communicate persistently over a period of time.
We train our large-language model from scratch on our specialized network
traffic “language” and then use it to measure the sender-message unlinkability
in various settings (e.g. mixing strategies, security parameters, observation
window). Our findings reveal notable differences in privacy levels among mix
strategies, even when they have similar mean latencies. In comparison, we
demonstrate the limitations of traditional privacy metrics, such as entropy
and log-likelihood, in fully capturing an adversary’s potential to synthesize
information from multiple observations. Finally, we show that larger models
exhibit greater sample efficiency and superior capabilities implying that
further advancements in transformers will consequently enhance the accuracy
of model-based privacy estimates.

1 Introduction

With the resurgence in popularity of Mix networks, due in part to the Snowden
revelations, and upcoming real-world deployments like Nym [15], HOPR [23], and
Elixxir it is increasingly critical and timely to have assurances that mix design
privacy expectations stand up to reality. Mixnets protect against powerful adversaries
that have complete surveillance of all traffic links, thereby enhancing the security
assurances beyond those provided by Tor. Indeed, many traffic analysis attacks that
work on Tor, e.g. website fingerprinting, are not readily applicable in mixnets as the
timing and communication patterns are robustly obfuscated by the mizing strategies.
Furthermore, analytic solutions for larger mixnets are not tractable. Thus most
designers and operators carry out empirical privacy measurements, including specific
attacks that are critical to defend against, to determine the optimal mixing strategy
and parameters for their use case [39,15,16,21]. The two most common metrics
used are: entropy and likelihood difference e. They are both used to statistically
summarize the leakage of the network or a single node. However, by definition they
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do not combine observations from multiple mixing rounds and thus do not estimate
the cumulative leakage over time (only the average), which is more realistic since
a mixnet is expected to by used by a population over multiple rounds and a time
horizon. Our work addresses this gap in the capabilities of existing tools, enabling
operators to measure the resilience of their mixing strategies over several mixing
rounds.

In particular, we introduce an automated design-agnostic approach for discovering
information leakage in mixing strategies without the need for concrete attack realiza-
tions. This approach complements existing tools, and shifts the focus from the “prior”
knowledge of the adversary and the specifics of the system details towards the privacy
goals of the system and the objectives of the adversary. Central to this approach are:
1) our methodology for generating machine learning-compatible privacy-measuring
tasks that model the goals of the adversary, and 2) the use of a transformer model as
empirical privacy estimators (with regards to the aforementioned tasks).

We first introduce an encoding that represents and captures all relevant mix node
transmission metadata as a stream of messages and represents them in a format
that is compatible with modern large language models. Using [24] we translate the
high-level privacy goal, specifically sender-message unlinkability, into a privacy game
and model it as two machine learning (ML) tasks (i.e. distinguishing between two
senders, and one sender amongst many). We then generate network traces for a range
of mixnet configurations and train the transformer model on them. During training
the model learns the underlying rules of mixing by trying to generate valid mixnet
traffic traces (i.e., guess the next message transmission). This traffic-aware model is
then used to solve our privacy-estimating tasks given a new mixnet traffic trace.

Our model LLMix? is a transformer (two variants) trained from scratch to
process and classify mixnet traffic. We evaluate various mixnet strategies and find
that configurations that impose the same average latency are not always equally
robust with regards to the unlinkability property (Section 7.2). We focus on the
leakage of individual nodes as our goal is to provide a best case (for the defender)
privacy comparison of the different mixing strategies and parameters, without the
added complexity of network topology choices. This setup is in keeping with the
standard anytrust assumption where even one mix node must be capable of ensuring
the privacy of the users [50,26]. We also train a larger variant of our model to study
if it benefits from an increased observation window. We confirm our hypothesis and
show there is a clear relationship between the number of messages captured and
privacy loss (Section 7.4). Comparing these results with classic statistical tools [39, 15,
21] we show that our proposed technique provides a better privacy estimation (i.e. the
privacy information leakage). Finally, provide initial evidence that that the number of
learnable parameters directly influences the model’s sample efficiency (Section 7.3).

Overall, this work realises a task-to-model framework enabling ML advances to
be applied to harden mixing networks and guide parameterization. In particular, we:

— Introduce a new traffic analysis task format that is solvable by language models
and train from scratch a mixnet traffic analysis tranformer model.

3 We will open-source our trained generative models, tools and scripts upon publication.
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— Provide, to the best of our knowledge, the first design-agnostic generative model
(LLMix) that accounts for cross-round leakage in mixing privacy estimations.

— Evaluate a range of configurations and find that some combinations achieve
better privacy with the same latency.

— Study sample-efficiency, and show that larger models are likely to have better
privacy-estimating capabilities.

2 Background

2.1 Mix Networks

First proposed as a mechanism for untraceable electronic mail [7], Mix networks (or
mixnets) have since been widely adopted for several applications including secure
e-voting [20], anonymous routing [9] and anonymous messaging [39, 1]. HOPR [23]
and Nym [15] are two recent examples of real-world deployments using the latest
advances in mixnet techniques as stronger alternatives to more established solutions
like Tor and VPNs.

To transmit a message over a Mixnet, the sender selects a route over a number of
nodes (or hops) before the message arrives at the recipient. A single honest mix node
in the route ensures the unlinkability of the message. Each message is padded to a
constant length before it is sent and then cyrptographically processed at each hop
(either decrypted or re-encrypted depending on the scheme used) to prevent traceable
bit patterns, with an additional delay at each hop. The particular mixing strategy
dictates this delay and is what differentiates mixnets from Tor (uses FIFO routing).
At the expense of additional latency, the delay ensures that multiple messages from
(ideally) different users are co-resident in each node thus creating confusion for the
adversary to trace the path of messages through the network, thus preventing the
linking of sender and recipient. Dummy messages can further obfuscate the link
between sender and recipient at the expense of bandwidth.

Mixing nodes are the building blocks of mixing networks as each of them individu-
ally ensures the realisation of the mixing strategy. In fact, a mix net with a single node
would provide the best possible mixing of the traffic available. However, for scalability
and to avoid single points of failure, most modern mixnet designs use a stratified
topology where nodes are arranged in ordered layers with messages traversing the
network across the layers in sequence. This fragments the traffic thus reducing the
homogeneity of the mixing. Most of the mixnets using such a topology operate under
the anytrust assumption[50] where at least one server in the user’s path must be
honest. Thus security comes from distributing trust across many relay operators.

2.2 Transformer Models

Many different approaches to language modelling have been proposed [45, 28, 35,
36], however massive scaling (i.e., large) in language model parameters has recently
yielded unprecedented performance improvements across several tasks [14, 6,41, 51,
52]. Large language models (LLMSs) typically use a transformer neural network
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architecture [47] designed to process sequential data such as natural language based
on self-attention. Self-attention is an attention mechanism [3] that allows dependencies
in sequential data to be modelled independently of their distance in the input and
output. Importantly transformer models are highly parallelisable, enabling the scale
necessary for LLMs. In what is termed “autoregressive training”, LLMs for natural
language tasks are usually trained to predict the next word in a given sentence.
This process is performed iteratively, generating one word prediction in each step.
Despite the relative simplicity of this process, autoregressive training is sufficient to
capture much of the syntax and semantics of language. LLMs can generate coherent
and contextually relevant natural language, allowing them to perform well in many
previously unsolved tasks [13,30]. They are given a vocabulary set that defines all
of the unique tokens the model can recognise and generate. Depending on how the
vocabulary is defined, each token may correspond to a whole word, a subword, a
character, or a byte. Tokenization splits raw text (e.g., a phrase, sentence, paragraph,
or a document) into individual tokens from the vocabulary, used as input to the
LLM. While transformers are generative models, they can nonetheless be used for
classification tasks while also taking advantage of their ability to resolve long-range
dependencies in sequential data. Section 4 outlines how we train them from scratch
to process non-human language i.e., mixnet network traces.

3 Threat Model

We assume the standard global passive adversary (GPA) that is able to observe
all network traffic between users and mixnode under examination [39, 7, 2, 21]. The
adversary observes a fixed number of network events i.e. messages entering and leaving
the network. The messages are all indistinguishable from each other (Sphinx [12]).
The adversary does not actively inject, drop, replay or delay messages, and does
not operate any compromised end-users, i.e. sender or recipient of a message. The
adversary has the ability to corrupt nodes, however, at least one of the mixnodes each
message is traversing through is assumed to be honest. This is the anytrust assumption
and is commonly used by many known designs (e.g. Vuvuzela [46], Karaoke [25],
Loopix [39], Nym [15]). Corrupt nodes are assumed to operate on a FIFO manner as
the adversary can fully observe their operation and hence they do not contribute to
the mixing [39].

3.1 Adversarial Goals & Tasks

The overall goal of an adversary is to breach the privacy of the users, specifically to
break the unlinkability privacy property of the mixnode and link the communication
between the sender and recipient of the message. We focus on this goal since it
is fundamental to mix networks and the basis of other privacy goals. Kuhn et al.
formalize this sender-message unlinkability privacy property as the SM L notion,
a fundamental desired property shared by many mixnet designs and thus of main
concern when evaluating mixnet designs and configurations (e.g., Loopix [39]). We
choose to focus on this property due to its importance in most mixnet use cases.
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However, our methodology can be easily adapted to support any notions defined
in [24].

Our work extends the foundational work of Kuhn et al. by translating their
established privacy goal and concept framework into corresponding tasks within the
realm of machine learning. We then use the success of the adversary at the ML
task to gauge the privacy level of a given mixnet with respect to that goal. Mixnet
designers and operators can use this information to then make design and deployment
decisions such as rule out mixing strategies and configurations that provide subpar
privacy. Note that in the literature the privacy “game” commonly involves guessing the
sender of a single message rather than identifying a persistent contact. We consider
the latter to be more pragmatic. In the former case, when the privacy leakage is
minor, the measurement noise will not indicate that the adversary has gained any
substantial advantage by observing a single message. However, leakage is accumulative
and observing several messages may result in an advantage eventually, as our results
show. We now introduce the task that instantiates SM L:

Task: One of Two

Given a recipient B, the adversary aims to identify the user A who sends messages to
B. The network has several actively communicating users but the adversary has to
choose between two potential senders (e.g., due to prior knowledge through external
information). A coin-flipping adversary has a % chance of guessing correctly in this
task and the privacy loss is given by any adversarial performance that exceeds this
mark.

4 Converting Privacy Goals into ML Tasks

As discussed in Section 2, transformers were designed to solve natural language
processing and computer vision tasks. We argue that network traffic exhibits properties
and structure that is analogous to those applications, thus making network traffic a
suitable application area. We now delve into the details of leveraging the capabilities
of an LLM to estimate the privacy of a given mixnet with regards to a specific
adversary (i.e., desired privacy property and corresponding ML task).

4.1 Network Traffic Encoding

Modern mixing strategies and the use of cryptographic message formats (e.g.,
Sphinx [12]) leave only a few types of metadata exposed. Specifically, for each message
transmission event, an observer knows either the sending or receiving systems/parties,
the direction of the transmission, and the relative order of this transmission to the rest
of the transmissions taking place in the network. Figure 1 shows how an adversary
can represent a snapshot of the network’s activity as a sequence that encodes the
aforementioned metadata.

In each case, the sequence produced retains all the information that a passive
adversary can collect by eavesdropping the network links and is in a format compatible
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Fig. 1: Intercepted mixnet traffic can be efficiently represented as a sequence. Messages
are replaced by the numerical id of the network link they traversed. The leftmost figure
shows the traffic as it is routed through a single node, while the rightmost one shows
a mixnet with several compromised nodes (anytrust assumption). The underlined
link ids correspond to traffic that they adversary does not have full visibility on due
to No being honest.

with LLM input sequences. This is because we have translated network traffic into a
language with the following characteristics: Each network event is represented by its
corresponding link id. Each “word” (i.e., link id) is unique and has a single meaning.
Two or more words can be combined to form a sentence (i.e., a traffic sequence)
where the relative order of the events matters.

Given these characteristics and the ability of transformers to process natural
language, we argue that the network activity “language” outlined above is considerably
easier for an LLM to learn (compared to a natural language). Our encoding ensures
there is no lexical ambiguity (i.e., one word with two meanings) and the vocabulary
is relatively small for networks of moderate size. Transformers are mathematical
functions and thus the input sequences must be converted into numbers. For natural
languages, tokenizers are used to convert character-based words to integers. In our case,
the mapping is even more straightforward as our link ids are already monotonically
increasing integers (a word-level tokenizer). A “0” represents the absence of network
activity.

Note that in NLP the encoding used to represent the information is always the
same (e.g., voice or written text of a human language) regardless of the task at
hand (e.g., classification, sentiment analysis, classification). This is an important
characteristic of the way tasks are modelled to be solved by LLMs and part of why
LLMs generalize so well. In the same vein, our network activity “language” is also
generic as it represents the activity taking place in the mixing network in a lossless
manner regardless of the end-goal of the adversary. This approach is unlike classic
ML methodologies that derive features specific to the objectives of the analysis that
the model then operates on (e.g., website fingerprinting [48]).

4.2 Privacy Properties & Games

In general, we fix the set of security or privacy properties a mix node will be
evaluated against. As mentioned before, Kuhn et al. [24] provide a comprehensive
framework that formalizes an anonymous network’s privacy goals as notions and
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defines a hierarchy between them. Given a particular use-case, the framework allows
practitioners to define the communication setting and express their intuitive privacy
goals as formal privacy notions and games. Using this methodology, the steps of the
game that corresponds our task above (Section 3.1) are: 1) the adversary picks two
potential senders and a recipient from the mixnet’s population; 2) the challenger
checks if the senders and the recipients are distinct; 3) based on a random bit b the
challenger inputs a scenario into the mixnet testbed; 4) the adversary observes the
traffic sequence and outputs a ‘guess’ b’ as to which scenario was executed.

Challenger Adv.

Fig. 2: A sender indistinguishability game: 1) the adversary picks two potential senders
and a recipient; 2) the challenger checks the selections; 3) the challenger randomly
chooses and runs the scenario; 4) the adversary observes the traffic sequence and
outputs a ‘guess’ b’.

Once the game(s) has been defined, we use a simulator, or an emulator, of the
network to generate data from the scenario. From each run, we get the traffic sequence
and ground-truth label (i.e., bit b above). The label is 0/1 depending on if user A or
user B was the persistent contact. We can then compile a dataset (each row has a
traffic sequence and its label) and train models.

5 Data Collection

Before we present our experimental results, we discuss our setup and the rationale for
our design decisions for our testbed. The testbed realises mixing nodes and implements
the threshold, pool, and Poisson mixing strategies. Our testbed is implemented in
Python 3.12 and is comparable with those used in the mixnet literature (e.g. [21,37,
39)).

5.1 Parameters

The number of active users (N) is at least 3 (i.e., two senders, one recipient) but
in practice, we study significantly greater user numbers. The rate of sending r; per
user is a ratio i.e., if ; = 0.5 then the user sends 0.5 messages in every unit of time.
The global sending rate R < 1 (up to 1 message every time unit). This means that
time moves forward only when there is a message transmitted somewhere in the
network. In other words, the adversary will simply discard periods of inactivity from
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their dataset. In cases where the users all behave uniformly, R = r; * N. The average
end-to-end latency is denoted ! and is not capped as it depends entirely on the mixing
parameters A, n and p depending on the mixing strategy used. Note that p is a ratio
between the messages held in the pool and n. p is always smaller than 1 as the pool
cannot be of equal (or larger) size to the threshold buffer. Finally, the users need to
have at least one contact otherwise the are not considered active and should not be
accounted for in N.

5.2 User Traffic

Mixing networks rely on user traffic to provide anonymity. Consequently, a large
number of users and hence more traffic makes it easier for defenders to be assured of
a high level of privacy [18].

Threshold mixes have been typically studied on the assumption that all the users
participate equally in each batch of messages shuffled together. As stated in the
original paper introducing threshold mixes [8]: “...each participant supplies the same
number of messages to each batch”. Having perfectly balanced batches where all the
users are equally represented, significantly strengthens the privacy of the network
but the usability impact of such a rule would make threshold mixes completely
impractical to use. Instead, and more realistically, we assume that all active users
send messages at approximately the same rate. This is favourable to the defender
as it maximizes the sender diversity for the messages traversing the network and
prevents users from trivially standing out. It also allows us to evaluate the quality of
the mixing while minimizing the noise that a skewed user traffic distribution would
introduce. In practice, real-life sending patterns are not perfectly uniform and thus the
adversarial performance reported in Section 7 should be treated as an upper-bound
for the privacy a given configuration can guarantee. Moreover, sophisticated (active)
adversarial strategies can exacerbate uneven sending distributions further so as to
erode privacy even more.

We consider only two-party communication (cf. multicasting) via messages at the
application-layer. We believe that this is representative of two-party exchanges that
take place in short bouts of messaging activity. The contact of each user is chosen by
sampling uniformly from the user list and does not assume any reciprocity (i.e., if
A elects B as its contact, then B does not necessarily elect A too). This is to avoid
introducing priors into the communication graph.

Focusing on high-level messages, rather than network-layer packets, abstracts
away from heavy hitters who send larger texts, pictures, videos (that require multiple
TCP/UDP packets) from standing out. In practice, cryptographic formats such as
Sphinx [12] and techniques such as dummy packets prevent trivial deanonymization
of heavy hitters, however some risk remains.

Consistent with our threat model we do not consider active attacks such as
the n — 1 message attack [43]. Such attacks provide a significant advantage to the
adversary but are more detectable and thus riskier, compared to our passive adversary.
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5.3 Burn-in Phase

Before each testbed run, we perform a burn-in that aims to prefill the buffers and
the pools of the mixing nodes. This ensures that the adversary gets to observe traces
from a mixnet that is properly initialized. Poisson mixes are particularly sensitive
to poorly initialized networks. To find the minimum time it takes for the buffers to
stabilise, we tracked the number of messages in the mixnode buffers over time and for
different A\ values. We found that after 300 timesteps all buffers are stably populated
for A < 50. We further corroborated the stability of the buffer and the mixing quality
by measuring the buffer’s entropy for over 1,000 timesteps. Single-node threshold
mixes without a pool do not require burn-in but we followed the same approach for
threshold mixes with a pool. Based on our findings, we set each burn-in to last 4096
timesteps followed by another period of random duration (between [1,4096]). This
random component ensures that there is no alignment (e.g., traces always start after
96 messages have been transmitted from the network’s exit node) between the traces
generated. During this period, the “suspect” senders do not send any messages.

6 Experimental Methodology

For our experiments we use the Longformer [4] and train from scratch two variants
(with moderate and large parameter number respectively). This is an important
distinction as all pretrained large language models (LLMs) found online are trained
on natural language tasks and do not transfer to network traffic.

Moreover, some of these model architectures (e.g., LLaMa) are very capable but
also require an extremely high cost investment in compute to train them. We opted for
the Longformer as it introduces a variation of self-attention (i.e., local attention) that
scales linearly to the sequence length. It has approximately 149 million parameters
and its primary advantage is that it supports considerably longer input sequences
at a relatively low computational cost. In contrast, other self-attention mechanisms
grow quadratically with the sequence length, making it infeasible to process long
sequences. With local attention every token attends only to tokens in its vicinity
defined by a window w. In particular, each token attends to the %u} preceding and the
%w succeeding tokens. Longformer combines this with dilation allowing for increases
in the window size without incurring additional memory costs.

Despite its sophistication, the Longformer is a generative model and simply
predicts the subsequent token based on the past. To use an LLM for classification,
we follow the standard practice and replace the first token of every sequence with
a special classification token “|CLS]”. The final hidden state corresponding to this
token is used as the aggregate sequence representation. This representation is is then
passed through a simple classifier (usually a Linear layer) to get the predicted class
label. This approach was first introduced in BERT [14] and is an established way of
training an LLM for a classification task.
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7 Experiments

In this Section, we use our model LLMix to evaluate the mixing strategies and
parameters under various circumstances and configurations. In all our experiments,
we use our testbed to generate data from a network with a specified number of users,
topology and mixing parameters. We conduct our experiments under the anytrust
assumption which requires that as long as a message crosses one honest node its
privacy should be preseved (see also Section 3). We split the produced labelled
data into three datasets: training, validation and testing. All our reported results
correspond to the models’ performance on the testing dataset. Testing dataset samples
were not encountered during training or when tuning our models’ hyperparameters
(validation dataset).

7.1 Configuration & Hyperparameters

LLMix is a variant of the Longformer model with its parameters optimized for traffic
analysis tasks and lower computational costs. We now describe the most important
parameter choices and our rationale. Note that many of the considerations and the
practical rules of thumb are specific to LLMs.

Hardware. We use 1) 4 DGX-MAX-Q Nodes each with 8x Nvidia V100 GPUs with
32GB of VRAM, and 2) an HGX100 GPU planar with 4x Nvidia A100 80GB GPUs.
Software. We use Python 3.10.4 with the technically relevant packages being:
PyTorch 2.0 backend, Transformers 4.30.2 [49], Accelerate 0.23.0* and NumPy 1.26.0.
Batch size. The batch size governs the training speed of the model. Very small
values (e.g., 1,2) can result in extremely slow training that will not converge within a
reasonable timeframe. Thus larger values (e.g., 256, 512, 1024 or larger) are preferable
as they increase the rate of training and prevent instabilities during training [27].
Note that the relationship between the batch size and the training speed is not linear.
The maximum batch size supported by the V100 GPUs (i.e., GPU memory) was 32.
This value, although moderate, is consistent with other works training Longformer
models [4].

Gradient Accumulation. Gradient accumulation splits the batch of samples into
mini-batches that are processed sequentially. While the mini-batches are processed,
the gradients of those steps are collected and accumulated without updating the model.
The model is updated once all the mini-batches have returned. We use 8 gradient
accumulation steps that bring the effective batch size to 256 (32x8). Understandably,
this process introduces significant latency in the training process as it requires moving
data in and out of the GPUs VRAM. However, it significantly improved the training
stability of our models and minimized the instances of non-learning models when
increasing the complexity of the task in curriculum learning.

Epochs. We did not define a set number of epochs but instead let the models train
at each level of the curriculum until there was no significant evaluation accuracy
improvement (1% or more) for at least 20 epochs. This is standard practice and is

4 https://huggingface.co/docs/accelerate /index
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implemented using an FarlyStoppingCallback that takes as parameters the number
of epochs (20) and the minimum improvement difference (0.01).

FP16 Training. We used half-precision floating-point numbers (i.e., FP16) as it
allows for faster computations. The main speedup comes from storing the layer
activations in 16-bit precision and thus making numerical operations easier. This also
results in 16-bit gradients. However, this does not provide any memory usage benefits.
This is because the model is saved in the GPU memory in both 16-bit and 32-bit
precision and can thus even use more memory that a non-mixed precision version.
Moreover, the gradients are converted back to full precision for the optimization step
thus preventing any potential memory savings. We experimented with various batch
sizes and precision settings and in our setup FP16 allowed for faster computations
without impacting the maximum batch size we could fit in the GPU’s VRAM.
Attention Window. We set the attention window (w) to 128. The motivation for
this was that we wanted each attention head to be able to observe a full message
shuffling round if possible. In this case, the window allows for up to 64 tokens observed
before and 64 after the mixing. Thus a mixing round on a mix with threshold 50 will
be fully observable. Of course, LLMs employ multiple attention heads and combine
observations from two or more heads if needed. We validated this in our use case
by setting the window to 64. The model was still able to analyse the traffic even
when the threshold was larger then %w = 32. Moreover, preliminary experiments
with threshold values that exceed the 128 token window also confirmed this.
Vocabulary Size. This defines the maximum number of different tokens that can be
represented as tokens in the LLMs’ input. We used a vocabulary size of 10,000 tokens
as this was enough for the configurations we evaluated. In particular, the vocabulary
size needed is about twice the number of network links.

Model Architecture. Due to hardware constraints we also had to reduce the
dimensionality of the encoding and the pooler layers to 128 (i.e., hidden size). A
common value is 512 when processing longer natural language sequences. As well
as, the number of hidden layers to 8. Values between 8-12 are common for smaller
models while values of up to 30 are used for larger ones. Finally, we set the number of
attention heads to 12 which is a commonly used value. We arrived at this combination
of values through a grid search of the parameter space, trying to balance learning
performance and speed within the capabilities of our hardware.

7.2 Latency vs. Privacy

We now focus on the three most common mixing strategies from the literature:
Poisson mixing, Threshold mixing and Threshold mixing with a pool. These methods
all try to achieve the same goal (privacy) but their usability impact (latency) is not
identical. In this experiment, we study the level of privacy achieved by a single node
implementing one of the above mixing strategies with regards to the average latency
imposed to the messages traversing the network. Using a single node, allows us to
isolate any impact network’s topology might have to the results. The single node
serves could also be considered as a high level abstraction of a whole mixnet where
the adversary does not have access to intra-node communication links.
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Fig. 3: Privacy-loss estimation for different types of mixing strategies. The estimation
task is guessing the sender of a message arriving to a given recipient. The total
users are 100 and the possible senders are 2. The x axes are aligned by the latency
each threshold/lambda value imposes. Lower values are better as values closer to 0.5
indicate better privacy. A node with a pool=0 is equivalent to a threshold-only node.
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We evaluate mixnodes with thresholds in the range of 10-100 and the corresponding
(with regards to the latency imposed) A for the Poisson nodes in the range 5-50 (with
a step of 10 and 5 respectively). Our network has 100 users who each generate 1
message per 100 seconds. The privacy-estimation task assumes an adversary who given
a recipient r guesses r’s persistent contact between two possible senders (Section 3.1).

We started by training one LLMix model on labelled data collected (2048 messages)
from a mixnode with threshold 10 and no pool. This initial training occupied a V100
GPU and took approximately 2 days before the LLM performed measurably better
than a random guesser. We kept training the network for another 2 days until it
converged to its final performance as reported in Figure 3. Then we took advantage
of the homogeneity of the datasets and used this trained model as a pre-trained basis
for follow up training (curriculum learning). We trained another 43 models for for all
the remaining mixing strategies and configurations (Figure 3).

We observe that Poisson mixing performs worse than every other strategy and
configuration. This can be explained by the way continuous mixing works. In par-
ticular, batch based mixing strategies (e.g., threshold) do not flush messages out
unless there are enough messages in the pool. In contrast, continuous mixes favour
usability (e.g., to prevent messages from staying impractically long in the node) and
treat every message independently. On average these two approaches ensure that
each messages is shuffled with at n — 1 other messages when in the node. However,
there are edge cases where the mixing quality deviates from the average. As explained
in Section 3, we assume a uniform sending behaviour for all the users which is a
favourable assumptions for the defender.

The number of messages in the buffer exhibits substantial variance which is the
primary cause of the model’s lower privacy estimate. Moreover, we also observe that
a pool provides a significant advantage to a threshold mix. To better evaluate the
cost of a pool in the usability of the network, we measured the latency of all the
configurations in evaluation. Figure 4 shows that a mix node with a threshold n = 70
and a pool holding 10 messages p = 14% (setup A) provides about the same privacy
with a threshold n = 100 and no pool (setup B). Interestingly, setup A also imposes
higher average latency to the messages traversing the network while the increased
latency variance introduced by setup A is less than that of B. Furthermore, a node
with n = 80 and a pool holding 10 messages p = 13% offers more privacy than setup
A, lower average latency and comparable latency variance. Note that the latency in
Poisson nodes equals the A value, whereas the latency of threshold mixes is equal to
approximately n/2. This is because messages that arrive in the buffer later have to
wait less time before the threshold is flushed. In fact the first message will wait n
seconds (assuming an arrival rate of 1 second/message) while the n’th message will
not experience any delay.

Overall, the trade-off curves (privacy vs. latency) for each mixing configuration
differ and thus a privacy evaluation is useful to identify the setups that strike the best
balance. Moreover, none of these configurations provides perfect privacy under the
anytrust assumption (see Section 3). Note that, if we assume a weaker adversary that
does not have access to intra-node network links, a mixing network can be abstracted
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Fig. 4: Mean latency and standard deviation (in seconds) for various configurations
in Threshold, Pool and Poisson Mixes. We observe that different configurations
might have the same mean latency (variance might differ). A node with a pool=0 is
equivalent to a threshold-only node.

as a single mixing node as long as the correspondence between the single node and
the multi-node setup mixing is accurate.

7.3 Num of Observations & Model Size

One of our hypotheses is that advancements in the capabilities of transformer models
will translate directly into better privacy estimations. To test this hypothesis we
now train and evaluate a larger model. We use the same setup with Experiment 1
(Section 7.2). To train the larger model we used Nvidia A100 80GB GPUs as the
increased number of parameters did not fit in the original V100 with 32GBs of VRAM.
However, as the models grow small batch sizes do not suffice for the model to learn.
We thus increased the batch size to 200 but disabled the gradient accumulation as
we found that it slowed training substantially. The increased attention window allows
one head to observe more network events which together with the larger number of
observations (4096 vs 2048) could give to the model greater inference capacity. Note
that by increasing the observation length of each sample, we double also the space it
occupies in the GPU’s memory.

Table 1 shows the accuracy of this model for sequences with various observation
lengths. However, trained models require a fixed input length and will not work if
samples of a different size are provided. As our larger model was trained on samples
of 4096 events, we have to provide compatible samples. To achieve this, we used the
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same testing dataset (never seen during training). For each sample in this dataset,
we randomly selected a region with the size we wanted to test against, and masked
the rest of the events with zeros (‘0” represents no network activity).

From Table 1, we observe that indeed the larger model is more capable than the
moderate sized-one. In particular, for a sequence of length 2048 the larger model
achieves an accuracy of 0.88 while the smaller model reaches an accuracy of about
0.81 3. This shows that not all the performance gain is due to the increased observation
length. However, longer sequences indeed allow the model to do even better (0.95).
In fact, the accuracy of the model depends heavily on the number of messages sent
by the targeted sender (or observation length), and the performance declines as the
sequences half in size. Interestingly, even 1 message sent allows the model to guess
correctly with odds considerably better than random (accuracy 0.58).

Sequences Metrics
# Obs  # Messages [ Adv. Advantage (ours) Likelihood Diff. Entropy

4096 20.7 0.958" 0.269 5.824"
2048 10.9 0.884" 0.270 5.833"
1024 5.1 0.776" 0.270 5.849"
512 2.0 0.661" 0.260 5.865"
256 1.0 0.583" 0.262 5.859

Table 1: The relationship between the observations of the adversary, the messages
sent by the real sender to the target recipient, the estimates of our metric, as well as
the entropy and the likelihood difference ¢ measured. The network has 100 active
users and a threshold of 100. Adversarial advantage values closer to 0.5 indicates
better privacy. We use * to mark the mean values that are statistically significantly
(p-value 0.05) different from their adjacent means (rows above and below).

7.4 Comparison with other metrics

Entropy and likelihood difference € have emerged as standard metrics to quantify
the adversary’s advantage [42, 17,21, 39, 38]. We now show that these measures have
limitations and discuss how our proposed model provides more accurate estimations.

The entropy metric quantifies the information contained in the anonymity prob-
ability distribution of possible senders and receivers, of a given message, as viewed
by an adversary. The effective anonymity set size is defined as the entropy of the
anonymity probability distribution, which can be interpreted as the number of ad-
ditional bits needed to uniquely identify the specific sender or receiver of a chosen
message. Compared with the anonymity set size, entropy provides a probabilistic
measure of the information that an adversary can determine from a sequence. More
formally, let X be a discrete random variable over the finite set X with probability
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mass function p(x)=Pr(X=x). The Shannon entropy H(X) of a discrete random
variable X is defined as:

H(X) == p(x)logp(x) 1)

zeX

The likelihood difference e [39] provides the expected difference in likelihood that a
message leaving a specific terminal mix node is sent from one sender in comparison to
another. In comparison to entropy, likelihood difference e focuses on the ratio between
the probabilities that a selected message was sent by one of two chosen senders. It
thus allows anonymity to be quantified more pessimistically for a strong adversary
who is assumed to know a priori that one of two specific senders are communicating
with a certain recipient. Given a message, its likelihood difference is calculated as:
e = |log(po/p1)| , where py = Pr[Up] and p; = Pr[U;] denote the probabilities of
users Uy and U; being the senders of that message respectively.

Continuing with Table 1, we examine the likelihood difference between sequences
with a varying number of messages from the real sender to the target recipient. The
mean values shown in the table correspond to 5 rounds (with 256, 512, 1024, 2048,
4096 observations) of 1,000 sequences each. Each metric should capture the additional
privacy loss as the number of messages increases. However as seen in the table, the
difference between the 256-512, 512-1024, 1024-2048, 2048-4096 is not statistically
significant and thus the likelihood difference € fails to capture the extend of the leakage.
Moreover, the difference between 256-2048 was not statistically significant either,
while the reported values are very close to what [39] considers safe. In comparison,
our model shows that there is a clear leakage in each of these cases and all mean
differences were statistically significant.

The entropy metric captures some of the leakage but does not reveal its full extend.
To understand why, we use an example from [21]. An entropy of 10 bits for a mixed
message arriving at a recipient, indicates that the message is “as anonymous as if it
was perfectly indistinguishable among about a thousand (2!° = 1024) other messages”.
If the same user sends a follow up message that mixes in the exact same way with
messages from the same recipients, there is no additional privacy loss. However, in
practice the subsequent message will be shuffled with a different mixture of messages
from different senders. Even if the entropy of the subsequent message is also 10 bits,
the probability distributions of the two messages will differ e.g., allowing the adversary
rule out combinations of senders and recipients (something our model is capable
of). Subsequent messages will provide additional information that will allow further
inferences. In our case all the entropy measurements were between 5.824 (for 4096)
5.859 (for 256) which corresponds to the messages being indistinguishable between
56.64 and 58.04 other messages respectively (at most 1/56.64 changes of guessing
correctly the sender of a message). Entropy thus captures some of the leakage but as
our model shows it under-reports its full extent. Interestingly, all the mean differences
(except for 256-512) were statistically significant. The reason for this that the are
only 1 and 2 leaky messages respectively and consequently only 1-2 low entropy
measurements that did not provide enough signal.

Overall, we conclude that while statistical tools are easy to use for debugging and
quickly iterating when parameterizing a node, they fail to capture the full extent of
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the leakage. This gap in capabilities can be addressed by our proposed methodology
and model.

8 Related Work

The problem of traffic analysis for privacy purposes remains open and is a relatively
popular theme in anonymous communication networks research. However, there are
only a few sub-areas where ML has been actively used so far.

Website fingerprinting attacks against the Tor have employed standard machine
learning techniques for classification such as k-NN [48], Support Vector Machines [34],
random forests [22], and more recently convolutional deep neural networks [44, 5]. In
webpage fingerprinting, Danezis et al. [11] used a Hidden Markov Model to fingerprint
pageloads from a static dataset. Miller et al. [29] fit a Gaussian distribution on their
dataset while Dubin et al. [19] used deep learning to fingerprint traces from video
streaming services.

Attack-agnostic traffic analysis for mixnets using modern ML models remains an
underexplored area as tools and techniques from other types of anonymity networks
are not applicable. Past works have focused on studying specific attacks against
specific mixing strategies [32, 40, 33|, covering the range of different mix types from
threshold [40], to pool [40], to continuous [10], and consider enhancements such as
dummy traffic as well [31]. Other works aim to provide optimal parameters to secure
continuous mixnets [21, 37] like Loopix. This work can be viewed as an extension
to these tools and can be used in conjunction with them. This has the potential
to more fully cover relevant sources of information leakage that the more limited
measurements in the related work might miss.

9 Conclusion

We introduced a framework that allows system designers and operators to estimate the
privacy of their mixing strategies against practical adversaries. Our approach defines a
“language” and a task format that are compatible with modern large language models
and thus makes it straightforward for all advances in language models to be directly
incorporated in privacy estimation. We believe that such estimations are close to the
actual advantage of a sophisticated adversary, and as models advance, we expect the
gap to become even narrower. While the list of adversarial tasks can not be exhaustive,
privacy goal systematization efforts (e.g. [24]) can guide operators towards identifying
and “taskifying” their primary privacy objectives. With this framework in place, it
is now straightforward for designers and operators to evaluate their configurations
against the latest language models, under conditions and assumptions that fit their
use cases.
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