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Abstract

Private Evolution (PE) is a promising training-free method for differentially private
(DP) synthetic data generation. While it achieves strong performance in some
domains (e.g., images and text), its behavior in others (e.g., tabular data) is less
consistent. To date, the only theoretical analysis of the convergence of PE depends
on unrealistic assumptions about both the algorithm’s behavior and the structure
of the sensitive dataset. In this work, we develop a new theoretical framework to
explain PE’s practical behavior and identify sufficient conditions for its convergence.
For d-dimensional sensitive datasets with n data points from a bounded domain, we
prove that PE produces an (ε, δ)-DP synthetic dataset with expected 1-Wasserstein
distance Õ(d(nε)−1/d) from the original, establishing worst-case convergence of
the algorithm as n→∞. Our analysis extends to general Banach spaces as well.
We also connect PE to the Private Signed Measure Mechanism, a method for DP
synthetic data generation that has thus far not seen much practical adoption. We
demonstrate the practical relevance of our theoretical findings in simulations.

1 Introduction

Many modern machine learning applications rely on user data, making data privacy protection a
central concern. In this regard, differential privacy (DP) [16, 18] has become the primary standard
to safeguard sensitive information of individuals. A wide range of problems including regression
[37, 11], deep learning [1], and stochastic optimization [6, 2] can be performed in a DP manner.
While it is possible to design a different DP algorithm for each specific task, a reasonable alternative
is to generate a differentially private synthetic dataset that preserves many of the statistical properties
of the sensitive dataset. By the post-processing property of DP, the DP synthetic data can then be fed
into any existing non-DP algorithms, avoiding the need to modify existing ML pipelines, and can be
safely shared with third parties (e.g. for reproducibility purposes).

Recently, [31] introduced Private Evolution (PE), a promising new framework for DP synthetic data
generation that relies on public, pretrained data generators [44, 30, 26, 38, 46, 27]. PE is currently
competitive with — and sometimes improves on — state-of-the-art models in terms of Fréchet
inception distance (FID) and downstream task performance in settings such as images and text
[31, 44, 30, 26]. In addition, PE is training-free, whereas current state-of-the-art approaches typically
train (or finetune) a generative model on the sensitive dataset using DP-SGD [45, 33, 13, 10]. However,
in some settings, including tabular data [38], and image data with mismatched distributions [20],
PE has achieved limited success. To better understand when PE works, it is crucial to improve our
theoretical understanding of the algorithm.

At a high level, PE works as follows (Figure 1). First, it creates a synthetic data set S0 with an
API that is independent of the sensitive dataset S (e.g a foundation model trained on public data).
Then, iteratively it refines the synthetic data, creating S1, S2, ..., where St is obtained from St−1 by
generating variations Vt of the dataset St−1 and then privately selecting the samples that are closest
to S. Doing so, the synthetic datasets gets ‘closer’ to S over time.
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Figure 1: High-level illustration of private evolu-
tion (PE). S represents the sensitive data, shown
in red. St are the synthetic datasets, shown in
blue, and are created with the variations from Vt

(in green) that are closest to S.

In [31], the authors study a theoretically
tractable variant of PE, analyzing its conver-
gence in terms of the Wasserstein distance, with
the aim of understanding its behavior and justi-
fying its empirical success. However, this theo-
retically tractable version of PE differs in many
significant ways from the algorithm that is used
in experiments; further, the convergence analy-
sis in [31] makes the unrealistic assumption that
every point in S is repeated many times. We
start by showing that the proof technique in [31]
is inherently limited by this multiplicity assump-
tion; if we remove the assumption, then PE can
only be ε-DP with a parameter ε that scales as
d log(1/η), where d is the ambient dimension of the data and η is the final accuracy of the algorithm
in terms of the Wasserstein distance. This is impractical in even moderate dimensions, so new ideas
are required to theoretically analyze utility.

In this paper, we address the limitations in prior analysis of PE by providing a convergence analysis
that does not require strong assumptions about the nature of the dataset and more closely matches the
PE algorithm used in practice. We formally prove worst-case convergence guarantees in terms of the
1-Wasserstein distance. We provide an informal version of our Theorem 4.1 below.

Theorem 1.1 (Convergence of PE (Informal)). Consider a data domain Ω ⊂ Rd with ℓ2 diameter D.
For any dataset S ∈ Ωn, there exists a parameter setting such that PE (Algorithm 2) is (ε, δ)-DP and
it outputs a synthetic dataset S′ satisfying

E[W1(µS , µS′)] ≤ Õ

dD

(√
log(1/δ)

nε

)1/d
 ,

where µS is the empirical distribution of the dataset S and similar for S′, and W1 is the 1-Wasserstein
distance between distributions (Definition 2.2).

As a corollary, we find sufficient conditions on the APIs used by PE to understand its convergence
in more general settings, such as Banach spaces. We also identify strong connections between PE
and the Private Signed Measure Mechanism (PSMM), an algorithm for DP synthetic data generation
under pure DP [24] that has theoretical guarantees. Hence, our work bridges the theory and practice
of PE in both directions: we provide theory for a practical version of PE, and show how PE naturally
arises as a practical version of PSMM.

Contributions Our work significantly improves the theory of PE presented in [31], providing a
more realistic theoretically tractable version of PE and eliminating unrealistic assumptions in the
convergence analysis. More concretely, we make the following contributions.

• We prove a lower bound (Lemma 3.1) that establishes that without the multiplicity assump-
tion on the data, the convergence proof of PE provided in [31] only works for undesirable
privacy parameters under pure DP. This indicates that a new analysis for PE is needed.

• We propose a new theoretically tractable variant of PE, Algorithm 2. Under this model, we
formally prove worst-case convergence rates with respect to the 1-Wasserstein distance as
|S| → ∞; see Theorem 4.1. We identify sufficient conditions for convergence of PE in
more general settings such as Banach spaces (Appendix F).

• We draw connections between PE and the Private Signed Measure Mechanism (PSMM), an
algorithm for DP synthetic data generation [24]. We exploit this connection by using tools
from the analysis of PSMM to prove the convergence of PE. Finally, we also show how PE
arises naturally when trying to make PSMM ‘practical’. See Section 5 for details.

• Our theory offers an explanation for phenomena observed in prior practical applications of
PE—such as its sensitivity to initialization—and offers guidance for future use, including
principled parameter selection based on theoretical insights. See Section 6 for details.
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2 Preliminaries

Definition 2.1 (Differential Privacy [16]). A randomized algorithm A is (ε, δ)-differentially private
if for any pair of datasets S and S′ differing in at most one data point and any event E in the output
space, P[A(S) ∈ E ] ≤ eεP[A(S′) ∈ E ] + δ.

Definition 2.2 (1-Wasserstein distance [40]). Let (Ω, ρ) be a metric space and µ, ν two probability
measures over it. The 1-Wasserstein distance between µ, ν is defined as

W1(µ, ν) = inf
γ∈Γ(µ,ν)

∫
Ω×Ω

ρ(x, y)dγ(x, y),

where Γ(µ, ν) is the set of distributions over Ω2 whose marginals are µ and ν, respectively.

Next, we formally introduce the problem of DP Synthetic Data studied in this paper.

Definition 2.3 (DP Synthetic Data). Let us denote by µS the empirical distribution of a dataset
S, given by 1

|S|
∑

z∈S δz . Let (Ω, ρ) be the data metric space. Then, given a dataset S containing
sensitive information, the problem of DP Synthetic Data generation consists of designing an (ε, δ)-DP
algorithm A : Ωn → Ωm that returns a DP synthetic dataset S′ with the property that W1(µS , µS′)
is small either in expectation or with high probability, with respect to the randomness in A.

In the past, there have been different theoretical formulations of the DP Synthetic Data problem (see
Section A). In most of them, a fixed set of queries Q is used to measure the accuracy of the synthetic
data: the answer to a query q ∈ Q should be similar when querying the sensitive dataset S and
the synthetic dataset S′. In other words, maxq∈Q |q(S)− q(S′)| should be small. By Kantorovich
duality [40], we can alternatively define the 1-Wasserstein distance as

W1(µS , µS′) = sup
f∈FBL

|EZ∼µS
[f(Z)]− EZ∼µS′ [f(Z)]|,

where FBL = {f : Ω→ R : ∥f∥∞ ≤ diam(Ω) and f(z1)− f(z2) ≤ ρ(z1, z2)∀z1, z2 ∈ Ω} is the
set of bounded and 1-Lipschitz functions from Ω to R. Hence, in Definition 2.3 W1(µS , µS′) being
small implies that the synthetic dataset approximately preserves the answers of S to all Lipschitz
queries, making the synthetic dataset S′ useful for any downstream task with Lipschitz loss.

Notation. Samples lie in the metric space (Ω, ρ). The diameter of Ω is denoted by diam(Ω) =
supz1,z2∈Ω ρ(z1, z2). P(Ω) is the space of probability measures supported on Ω. A dataset is a set
of elements from Ω. For a dataset S, |S| represents its cardinality, S[i] its i-th element and µS the
empirical distribution 1

|S|
∑

z∈S δz , where δz is the dirac delta mass at z. The bounded Lipschitz
distance between the signed measures µ, ν supported in Ω is DBL(µ, ν) := supf∈FBL

∫
fdu−

∫
fdv.

For probability measures µ, ν, DBL(µ, ν) = W1(µ, ν). ∆d is the standard probability simplex in
Rd. v[i] indicates the i-th coordinate of a vector v ∈ Rd. nint(x) denotes the nearest integer to x.

3 Background: Private Evolution (PE) and Prior Theory

Lin et al. present the only prior convergence analysis of PE [31]. Their analysis applies to a variant
of PE (that we call theoretical PE), which is outlined in Algorithm 1. Below, we first describe
Algorithm 1 and explain how it differs from how PE is used in practice (Algorithm 3, which we call
practical PE). Then, we explain the limitations of prior analysis.

PE (both the practical variant, and the theoretical variant in Algorithm 1) generates a DP synthetic
dataset by iteratively refining an initial random dataset using a DP nearest-neighbor histogram
(Algorithm 4). To do so, it requires access to two APIs that are independent of the sensitive dataset S,
Random_API and Variation_API1.

• Random_API(ns) returns ns data points from the same domain as S. In practice, it
might generate random samples from a pretrained foundation model. In Algorithm 1,
Random_API(ns) returns ns data points sampled according to any distribution in P(Ωns).

1In practice, generative models trained on public data and simulators can be used as APIs.
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Algorithm 1 (Theoretical) Private Evolution; steps in blue differ from practical PE [31]

1: Input: sensitive dataset: S ∈ Ωn, number of iterations: T , noise multiplier: σ, distance function:
ρ(·, ·), multiplicity parameter B ≥ 1, threshold H > 0

2: Output: DP synthetic dataset: ST ∈ ∪m∈NΩ
m

3: S0 ← Random_API(n)
4: for t = 1 . . . T do
5: Vt ← Variation_API(St−1)
6: µ̂t ← NN_histogram(S, Vt, ρ) ∈ ∆|Vt| (see Alg. 4)
7: µ̃t ← µ̂t +N (0, σ2I|Vt|)
8: µ′

t[i]← µ̃t[i]1(µ̃t[i]≥H) for every i ∈ [|Vt|]
9: St ← ∪i∈[|Vt|]Si, where Si is a multiset containing V [i] nint(nµ′

t[i]/B)B times
10: end for
11: return ST

• For a dataset St, Variation_API(St) = ∪z∈St Variation_API(z), where
Variation_API(z) returns a set of variations of a data point z. In practical PE, a
variation of z is another point z′ which is close to z in some logical sense. In the case
of images, z′ could be an image with a similar embedding to that of z. However, in
Algorithm 1, Variation_API(z) returns a set of variations of z calculated as:

{z} ∪
(
∪l∈{1,...,⌈log2(diam(Ω)/α)⌉},k∈[2] {projΩ(z +Nk,l)}

)
, (1)

where α > 0 is a small constant and Nk,l iid∼ N (0, σ2
l Id) with σl =

α2l−1

√
π[(

√
d+log(2))2+log(2)]

.
Recall that for a dataset St, Variation_API(St) = ∪z∈St

Variation_API(z). That is, the
algorithm generates O(|St| log(diam(Ω)/α)) variations by adding independent, spherical
Gaussian noise to each sample z, then projecting the sum back onto Ω. Then, it returns a set
containing the original z and all generated variations.

In Algorithm 1, the initial synthetic dataset S0 is created with Random_API. The algorithm then
iteratively creates synthetic datasets S1, S2, ... as follows. At each iteration, variations Vt are created
from the current synthetic dataset with Variation_API, and a nearest neighbor histogram indicating
how many elements from S have a certain variation from Vt as nearest neighbor. This histogram is
privatized by adding Gaussian noise. After thresholding small entries, a new synthetic dataset St

is constructed deterministically by including variations with multiplicity proportional to the noisy
histogram (Line 9). This process repeats for T steps, gradually aligning the synthetic data with the
private dataset S.

Practical PE and Algorithm 1 differ in significant ways, which are highlighted in blue in Algorithm 1.
Most notably, Algorithm 1 creates the next synthetic dataset St deterministically by adding variations
to the next dataset proportionally to the entries of the DP histogram. In practical PE, the next
synthetic dataset is instead constructed by sampling with replacement from a distribution defined by
the histogram. This seemingly small difference is important for their proof technique, discussed next.
More differences between the two variants of PE are discussed in Appendix B.

Limitations of the utility analysis of Algorithm 1 in [31]. The theoretical analysis in [31] relies
on first showing that noiseless PE (Algorithm 1 with σ = 0) converges, then arguing that when each
data point from the sensitive dataset S is repeated B times, with high probability the noisy version
behaves like noiseless PE for large B.

In the noiseless case the elements of S and S0 are matched: assign S0[i] to S[i]. Then iteratively,
for each i, St[i] is chosen as the element from Variation_API(St−1) that is closest to S[i], which is
likely to be closer to S[i] than St−1[i]. After enough steps, ρ(S[i], ST [i]) ≤ η for all i ∈ [n]; we say
the datasets are η-close, written as S =η ST . To handle noise, [31] assumes every real data point is
repeated B times. This boosts the signal in the noisy step (Line 7), allowing the algorithm to behave
like the noiseless version. In other words, although the proof assume each data point is repeated B
times, the noise scale provides a DP guarantee for neighboring datasets that differ in a single sample.
This setup is unrealistic and sidesteps the core challenge of differentially private learning. More
details in Appendix B.
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We provide a formal lower bound giving evidence that the proof technique in [31] is fundamentally
limited, in the sense that their unrealistic assumption is necessary for their proof technique to work.
More concretely, in Lemma 3.1 we show that if we remove the multiplicity assumption, then any ε-DP
algorithm can only output a DP synthetic dataset ST that is η-close to S when ε = Ω(d log(1/η)), or
equivalently, η = Ω(e−ε/d).
Lemma 3.1 (Lower bound for η-closeness). Consider a metric (data) space (Ω, ρ) and a fixed
dataset S ∈ Ωn. Let η > 0 and A : Ωn → Ωn be such that PA

[
S =η A(S)

]
≥ 1− τ . Suppose A is

ε-DP. Then, denotingM(Ω, ρ; 2η) the 2η packing number of Ω w.r.t ρ, we must have
ε ≥ log((M(Ω, ρ; 2η)− 1)(1− τ)/τ).

Remark 3.1. The packing numberM(Ω, ρ; 2η) is of the order (1/η)d when Ω ⊂ Rd and diam(Ω) ≤
2 (see Lemma 5.5 and Example 5.8 in [41]).

4 Convergence of Private Evolution

We have established several limitations of prior utility analysis of PE: the algorithmic variant of PE
analyzed in [31] differs from what is done in practice, and the analysis itself is unlikely to extend
beyond very weak privacy regimes, as evidenced by Lemma 3.1. In this section, we introduce a new
theoretically tractable version of PE along with its utility convergence guarantees. The algorithm we
analyze more closely reflects how PE works in practice and is amenable to worst-case utility analysis.

4.1 Convergence of PE in Euclidean space

We start by presenting the details of the algorithm that we analyze. Consider a metric (data) space
(Ω, ρ) and a private dataset S ∈ Ωn. Even though we will use the notation (Ω, ρ) throughout this
section, we assume in this subsection that Ω ⊂ Rd is compact with diam(Ω) ≤ D and ρ(·, ·) is the ℓ2
distance. We also assume Algorithm 2 uses the same APIs as Algorithm 1, as described in Section 3.

Algorithm 2 Private Evolution with DBL projection; steps in blue differ from practical PE [31]

1: Input: sensitive dataset: S ∈ Ωn, number of iterations: T , number of generated samples: ns,
noise multiplier: σ, distance function: ρ(·, ·)

2: Output: DP synthetic dataset: ST ∈ Ωns

3: S0 ← Random_API(ns)
4: for t = 1 . . . T do
5: Vt ← Variation_API(St−1)
6: µ̂t ← NN_histogram(S, Vt, ρ) ∈ ∆|Vt| (see Alg. 4)
7: µ̃t ← µ̂t +N (0, σ2I|Vt|)
8: µ′

t ∈ argminµ∈∆|Vt|
DBL(µ̃t, µ)

9: St ← ns samples with replacement from µ′
t

10: end for
11: return ST

Algorithm 2 iteratively refines an initial random dataset S0 using DP nearest-neighbor information.
At each iteration, it generates variations Vt from the current synthetic dataset St−1 and computes a
histogram µ̂t indicating how often each candidate is the nearest neighbor of points in the sensitive
dataset S. Gaussian noise is added to this histogram to ensure differential privacy, resulting in a noisy
vector µ̃t. Rather than using thresholding like Algorithm 1 in Line 8, this algorithm projects µ̃t onto
the probability simplex using the DBL distance in Line 8, yielding a valid distribution µ′

t over Vt

that remains close to the noisy estimate under the BL metric. The next synthetic dataset St is created
randomly by sampling ns points from Vt according to µ′

t in Line 9, as opposed to Algorithm 1 which
creates St deterministically in Line 9. This process is repeated for T iterations, after which the final
synthetic dataset ST is returned. Note that unlike Algorithm 1, our version receives the number of
synthetic data points as input. We provide a comparison between Algorithms 1 and 2 in Appendix B.

Comparison between Algorithm 2 and practical PE. Algorithm 2 is nearly identical to the practi-
cal PE implementation in [31], differing only in how the noisy histogram µ̃t is post-processed (high-
lighted in blue). We project µ̃t—a signed measure from Gaussian noise added to a histogram—onto
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P(Vt) by minimizing the bounded Lipschitz distance, which can be done via linear programming
(e.g., Algorithm 2 from [24]). This is crucial for obtaining worst-case convergence guarantees. In
contrast, [31] applies a simpler heuristic: thresholding µ̃t at some H > 0 and re-normalizing, which
is more efficient but can discard all votes if values fall below the threshold, making it unsuitable for
worst-case analysis. In Section 4.2, we provide data-dependent accuracy bounds for a related noisy
histogram obtained from adding Laplace noise and thresholding. These bounds are vacuous in the
worst case but can be much tighter in favorable regimes, e.g., when the true private data distribution
is highly clustered.

Main Result: Convergence of PE. We are now ready to present our main result: an upper bound
on expected utility of Algorithm 2. We provide a proof sketch, and the full proof is in Appendix D.
Theorem 4.1 (Convergence of PE). Let (Ω, ∥ · ∥2) with Ω ⊂ Rd and diam(Ω) ≤ D be the
sample space. Fix σ > 0. Suppose α = Dσ1/max{d,2} in (1), and let ST be the output of Al-
gorithm 2 run on input S ∈ Ωn, T ≥ ⌈log(γ/[Dσ1/max{d,2}])/γ⌉, ns = σ−1(2⌈log2(D/α)⌉ +
1)1/max{d,2}−1, σ, ρ(·, ·). Then

E [W1(µS , µST
)] ≤ Õ(dDσ1/d).

Furthermore, if ε, δ ∈ (0, 1), and we instead run Algorithm 2 with the same parameter setting as

above except T = ⌈log(γ(nε)1/max{d,2}/(4
√

log(1/δ))1/max{d,2})/γ⌉ and σ =
4
√

T log(1.25/δ)

nε ,
then the algorithm is (ε, δ)-DP and its output ST satisfies

E [W1(µS , µST
)] ≤ Õ

dD


√
log(nε/

√
log(1/δ)) log(1/δ)

nε

1/d .

Proof Sketch of 4.1. Given dataset St and variations Vt, in iteration t, PE constructs: the NN his-
togram µ̂t+1, the noisy signed measure µ̃t and the projected probability measure µ′

t. Finally, St+1 is
sampled from µ′

t. It is possible to prove the following inequality that involves these measures:
W1(µS , µSt+1) ≤W1(µS , µ̂t+1) + 2DBL(µ̂t+1, µ̃t+1) +W1(µ

′
t+1, µSt+1).

At a high level, the convergence of PE follows from two facts regarding the terms on the right-hand
side of the inequality:

• First, by creating variations of St and selecting the closest ones to S, the Wasserstein
distance to S is reduced. That is, W1(µS , µ̂t+1) is noticeably smaller than W1(µS , µSt

).

• Second, the progress made by creating variations is not affected by the noise from DP and
sampling since DBL(µ̂t+1, µ̃t+1) and W1(µ

′
t+1, µSt+1) are both small.

These statements are made rigorous in our proof. Regarding the first statement, Lemmata D.1 and D.2
give, Et[W1(µS , µ̂t+1)] ≤ (1 − γ)W1(µS , µSt

) + α for some γ = Θ(1/d), where Et denotes the
expectation conditioned on the randomness of the algorithm up to iteration t.

To bound DBL(µ̂t+1, µ̃t+1), we use the fact that µ̃t+1 = µ̂t+1 + Z with Z ∼ N (0, σ2I|Vt|),
which by definition implies DBL(µ̂t+1, µ̃t+1) = supf∈FBL

∫
Ω
f(dµ̂t+1 − d(µ̂t+1 + Z)) =

supf∈F
∑

i∈[|Vt+1|] f(Vt+1[i])Zi, which is the supremum of a Gaussian process. The expec-
tation of this term can be bounded using empirical process theory; Lemma D.3 states that
Et[DBL(µ̂t+1, µ̃t+1)] ≤ |Vt|σG|Vt|(FBL), where G|Vt|(FBL) is a Gaussian complexity term [5].
This term can be bounded using Corollary D.1, which is a consequence of Lemma D.4. We use
Dudley’s chaining to prove these results. We remark that our technique prove this bound resembles
[24], with the difference that they deal with a Laplacian complexity arising from the analysis of a
pure-DP algorithm that uses the Laplace mechanism [18].

Finally, to control W1(µ
′
t+1, µSt+1

) we use results from the literature of the convergence of em-
pirical measures in the Wasserstein distance [29, 19] that quantify the Wasserstein distance be-
tween a measure and the empirical measure of iid samples from it; see Lemma D.5. We obtain
Et[W1(µ

′
t+1, µSt+1

)] ≤ Õ
(
n
−1/max{2,d}
s

)
. Putting all the inequalities together, we conclude that

Et[W1(µS , µSt+1
)] ≤ (1− γ)W1(µS , µSt

) + α+ 2|Vt|σG|Vt|(FBL) + Õ
(
n−1/max{2,d}
s

)
.
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Recursing this inequality, we can get a bound on E[W1(µS , µST
)] while carefully balancing the

number of variations with the number of synthetic samples so that the error terms are as small as
possible. This finishes the proof of E [W1(µS , µST

)] ≤ Õ(dσ1/d).

Regarding the second result, for privacy we use the fact that σ =

√
4T log(1.25/δ)

nε is enough to ensure
(ε, δ)-DP of an adaptive composition of T Gaussian mechanisms where each of them adds noise to
a NN histogram with ℓ2 sensitivity

√
2/n ([14], Corollary 3.3). For convergence, we plug in the

expression for T in σ =

√
4T log(1.25/δ)

nε and then σ in E [W1(µS , µST
)] ≤ Õ(dσ1/d).

Remark 4.1. We emphasize that most of our proof techniques work in metric spaces, so under some
conditions on the APIs the analysis of Algorithm 2 can be extended to more general Banach spaces
than the one considered in our result. See Subsection F for more details.

4.2 Beyond worst-case analysis

Recall that our Algorithm 2 differs from practical PE in the BL projection onto the space of probability
distributions (Line 8). To connect our analysis more to the original PE algorithm, we can swap this
BL projection for a different noisy histogram step, which works by thresholding and re-normalizing—
similarly to practical PE. We derive a data-dependent bound on the 1-Wasserstein distance between
this modified noisy histogram and the non-private one. The bound indicates that in favorable cases,
such as when the data is highly clustered, this histogram is closer to the non-private one than the one
we would obtain with Gaussian noise and DBL projection, but is looser in the worst case.

In our updated histogram step, we add Laplace noise with scale 2/[nε] to the entries of the (non-DP)
NN histogram that are positive, and then threshold the noisy entries at H = 2 log(1/δ)/(nε) + 1/n.
More concretely, let µ̂ = NN_histogram(S, V, ρ) be the non-DP histogram between a dataset
S and a set of variations V ∈ Ωm (see Algorithm 4). The noisy histogram µ̃ is then given by
µ̃[i] = (µ̂[i] + Li)1(µ̂[i]>0,µ̂[i]+Li≥H) where {Li}i∈[m]

iid∼ Lap(2/nε). While this algorithm was
proven to be (ε, δ)-DP in Theorem 3.5 of [39], to the best of our knowledge, its utility guarantee in
terms of W1 distance is new. Its proof can be found in Appendix G.
Proposition 4.1. Let (Ω, ρ) be a metric (data) space and suppose diam(Ω) ≤ D. Given S ∈ Ωn

and V ∈ Ωm, let µ̃ be the noisy histogram as described above and µ′ = µ̃/∥µ̃∥1 if ∥µ̃∥1 > 0 and
µ′ = µ̃ otherwise. Then, the procedure generating µ′ is (ε, δ)-DP w.r.t S and for any β ∈ (0, 1)

E[W1(µ̂, µ
′)] ≤ 2|Ĩ|

nε
L|Ĩ|(FBL) + 2DH

(
|Î|+ |Ĩ|β

)
+

2D
√
2|Ĩ|

nε
,

where L|Ĩ|(FBL) is the Laplacian complexity of FBL, Ĩ = {i ∈ [m] : µ̂[i] > 0} is the set of positive

entries in the NN histogram µ̂, Î =
{
i ∈ Ĩ : µ̂[i] = O

(
H + log(|Ĩ|/β)

nε

)}
is the set of entries in the

NN histogram below O
(
H + log(|Ĩ|/β)

nε

)
and H = 2 log(1/δ)/(nε) + 1/n is the threshold.

Examples. To demonstrate when this proposition yields a tighter result, consider the case when |Ĩ|
and |Î| are small. As an extreme example, suppose S consists of one data point repeated n times.
Then, |Ĩ| = 1 and |Î| = 0, leading to an error of O(D log(1/δ)

nε + D
n ). A similar intuition is valid for

highly clustered datasets. On the other extreme, if every positive entry of µ̂ is 1/n, then |Ĩ| = |Î| = n,
leading to a trivial error bound. See Appendix E for simulations.

5 Connections between PE and Private Signed Measure Mechanism

In this section, we show connections between PE and the Private Signed Measure Mechanism
(PSMM), a DP synthetic data method with formal W1 guarantees from [24]. Despite its theoretical
guarantees, PSMM is not currently used for high-dimensional, real datasets.

PSMM as a one-step version of PE. PSMM takes a dataset S and a partition {Ωi}i∈[m] of Ω. It
privately counts how many points fall into each bin Ωi, and then builds a DP distribution over Ω
proportional to these counts (details in Appendix H). Synthetic data is sampled from this distribution.
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We can reinterpret PSMM in the language of our framework. Instead of a partition, we can provide a
discrete support Ω′ ⊂ Ωm such that the Voronoi partition induced by Ω′ coincides with {Ωi}i∈[m].
Counting how many elements fall into each Ωi is then equivalent to counting how many points
in S have Ω′[i] as their nearest neighbor. The resulting private distribution can thus be viewed
as a DP nearest-neighbor histogram over Ω′. We believe that the reason behind this (modified
PSMM) algorithm working is that the NN histogram solves a 1-Wasserstein minimization problem
(Proposition 5.1; proof in Appendix G), a property that also plays a key role in our analysis of PE.

Viewed this way, PSMM resembles a single PE iteration where Ω′ plays the role of the variations.
If Ω′ is roughly a (nε)−1/d-net of Ω, PSMM achieves E[W1(S, S

′)] ≤ O((
√
log(1/δ)/nε)1/d),

improving over PE’s bound in Theorem 4.1 by a factor of d. However, under the PE setup, where Ω′

must be sampled from Random_API, this net condition is hard to ensure, explaining PE’s slower
worst-case convergence.

Proposition 5.1. Consider S ∈ Ωn, V ∈ Ωm. Let µ∗ = NN_histogram(S, V, ρ) (see Alg. 4). Then,

µ∗ ∈ argminµ∈∆m
W1

(
µS ,

∑
i∈[m] µ[i]δV [i]

)
.

PE as a practical, sequential version of PSMM. PSMM’s main practical limitation is constructing
a discrete support Ω′ that adequately covers Ω. For example, if Ω represents the space of images,
one option is to discretize the pixel space to build Ω′, but this yields unrealistic images. To generate
realistic elements, a natural alternative is to sample from a generative model and add images to
Ω′ only if they are sufficiently distinct from those already included, aiming to cover as much of
Ω as possible. However, this process can be slow—especially if the generative model places low
probability mass to some regions of Ω. Moreover, full coverage of Ω is unnecessary; we only need to
cover the region containing S. This motivates a sequential approach: start with an initial estimate V0

of Ω′, and iteratively refine it to better match the support of S. This is precisely what PE does—at
each step t, Vt = Variation_API(St−1) can be seen as a refined support estimate, and St as a
DP synthetic dataset supported on Vt whose empirical distribution approximately minimizes the
1-Wasserstein distance to that of S.

6 Simulations

We now show how our theory has the potential to explain the behavior of PE in practice. We do so
with simulations, where we consider the sample space Ω to be the unit ℓ2 ball in R2 and the sensitive
dataset is random over Ω ∩ R2

+. We use privacy parameters ε = 1, δ = 10−4. Our theory indicates
that O(log(nε)) PE steps ensure convergence; for experiments we set T = 2 log(nε). The noise σ is
then computed with the analytic Gaussian mechanism [4, Theorem 8]. The rest of the parameters are
set as indicated in Theorem 4.1. We post-process noisy histograms by truncating at H = 0 and then
re-normalizing.

Figure 2: The best number of PE steps depends heavily on the initialization from Random_API.
The private dataset S is a random dataset in Ω ∩ R2

+ . Left: When S0 = S (i.e., Γ0 = 0, the private
data is the same as the initial synthetic data), the optimal number of PE steps is 0. Middle: When PE
is initialized poorly (e.g., S0 consists of only (0, 0), so Γ0 is large), more iterations are needed. Right:
Interpolatating between the previous cases parametrized by β: S0 = (1 − 2β)S, PE can improve
or degrade performance depending on Random_API; it never exceeds the worst-case error bound.
Results are averaged over 100 runs. Our analysis explains this phenomenon (see text).
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Our analysis explains dependence on the initialization. Let Γt ≜ E[W1(µS , µSt)], i.e. the
expected Wasserstein-1 distance between the private data and the tth iteration of synthetic data. From
equation (2) in the proof of Theorem 4.1, we obtain ΓT ≤ (1− γ)T (Γ0 − err) + err where err is
an error term vanishing with the number of samples. We note from this equation that if Γ0 ≤ err,
then the optimal number of steps for PE is T = 0. However, when Γ0 is large, our worst-case upper
bound will be more accurate. Figure 2 illustrates this phenomenon.

Our findings align with prior empirical work. [31] found that PE requires more steps to converge
and consistently improves over time when Γ0 is large. In addition, in [38], it was found that in many
instances PE worsens with time, and the optimal number of steps is 1. Our theory shows how both of
these cases are indeed possible. This observation motivates the need for an analysis of PE beyond the
worst case, which we briefly addressed in Section 4.2.

Our theory can guide the practice of PE. Our theory suggests certain parameter setting for
PE. For example, one takeaway from Theorem 4.1 is that setting the number of PE steps T =

O(log(nε/
√

log(1/δ))) (independent of d) suffices to ensure convergence under (ε, δ)-DP. Another
is that the number of synthetic samples must be chosen to balance the error due to adding noise to
the NN histogram in Step 7 (which increases with number of synthetic samples) with the error due
to sampling with replacement in Step 9 (which decreases with the number of synthetic samples) of
Algorithm 2. Figure 3 shows how picking the number of PE steps or the number of synthetic data
points suboptimally can hurt the final accuracy.

Figure 3: Impact of parameters on PE’s performance. Top: performance of the last iterate of
PE when run for different number of steps; ‘Predicted T ’ marks the theoretically suggested value
T = 2 log(nε). Bottom: same setup, but replacing T by the number of synthetic samples ns;
‘Predicted ns’ marks the value of ns given in Theorem 4.1. We repeat this for different sensitive sample
sizes n, averaging over 100 runs. The plots illustrate the accuracy of our theoretical predictions.

7 Conclusion

We identified key algorithmic and analytical issues in prior theory for Private Evolution (PE) and
introduced a new theoretical model with formal convergence guarantees. Our version differs from the
practical PE in only one step, preserving its core logic and explaining behaviors observed by practi-
tioners. The analysis combines empirical process theory, Wasserstein convergence, and properties of
APIs. We also connect PE to the Private Signed Measure Mechanism, offering new insights into its
theoretical foundations. Overall, our work significantly deepens the formal understanding of PE.
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A Related work

Private evolution. There have been multiple follow up works since Lin et al. [31] introduced the
framework of Private Evolution. [31, 44] propose PE for images and text using foundation models
as APIs. Other works have extended the framework in various ways, including adapting it to the
federated setting [26], the tabular data setting [38], allowing access to many APIs [46], and replacing
the API with a simulator [30]. In a similar vein, [32] proposed zeroth-order optimization methods
based on genetic algorithms before [31] in order to handle non-differentiable accuracy measures.
Despite many empirical works on PE, to the best of our knowledge, its theoretical properties are
studied only in [31], under a number of unrealistic assumptions, as discussed in Section 3.

Theory of DP synthetic data. The utility of synthetic data is typically analyzed by quantifying how
well the data can be used to answer queries. More concretely, let Q be a set of queries and q(S)
the answer of q ∈ Q on sensitive dataset S. Most of the theory on synthetic DP data measures the
quality of a synthetic dataset S′ with maxq∈Q |q(S) − q(S′)|[23, 7, 17]. When Q contains all the
bounded Lipschitz queries, then the accuracy measure coincides with W1(µS , µS′) (see 2.2); this
case was studied in [25, 24, 8]. The cases of sparse Lipschitz queries and smooth queries are studied
in [15] and [43], respectively. [21] assumes that S is sampled according to an unknown distribution
D and the accuracy measure is given by maxq∈Q |Ez∼D[q(z)]− q(S′)|. In this work, we focus on
the setting where the accuracy measure corresponds to the Wasserstein-1 distance, i.e., Q contains
all bounded Lipschitz queries. [3] gives a practical algorithm along with accuracy guarantees for
privately answering many queries, but only works for datasets from a finite data space.

Practice of DP synthetic data. We provide a non-exhaustive selection of practical works on DP
synthetic data. For a more comprehensive survey, see [20, 12]. Most practical methods consist of
training (either from scratch or finetuning) a non-DP generative model with DP-SGD (that is, the
gradients are privatized during training). For example, the following methods have been proposed:
DP-GAN [45], G-PATE [33], DP Normalizing Flows [42] and DP Diffusion models [13]. [10]
uses the Sinkhorn divergence as a loss function and also uses DP-SGD for training. Several works
take inspiration from Optimal Transport (in particular, Wasserstein distances). [34] introduces the
Smoothed Sliced Wasserstein Distance, making the loss private (instead of the gradients), and the
gradient flow associated with this loss was recently studied in [36]. [35] studied how to generate DP
synthetic data under Local DP with entropic optimal transport, and is one of the few practical works
which comes with theoretical convergence guarantees.

In general, most practically-competitive synthetic data algorithms do not come with accuracy guaran-
tees, particularly in continuous data space settings, and algorithms with accuracy guarantees tend to
be less practical in high dimensions. The bridge between the theory and the practice of DP Synthetic
Data transcends PE.
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B Comparison between Algorithms 1, 2 and Practical PE

B.1 Practical Private Evolution

Let us start introducing Algorithm 3, the practical implementation of the PE algorithm from [31].

Algorithm 3 (Practical) Private Evolution [31]

1: Input: sensitive dataset: S ∈ Ωn, number of iterations: T , number of generated samples: ns,
noise multiplier: σ, distance function: ρ(·, ·), threshold H > 0

2: Output: DP synthetic dataset: ST ∈ Ωns

3: S0 ← Random_API(ns)
4: for t = 1 . . . T do
5: Vt ← Variation_API(St−1)
6: µ̂t ← NN_histogram(S, Vt, ρ) ∈ ∆|Vt| (see Alg. 4)
7: µ̃t ← µ̂t +N (0, σ2I|Vt|)
8: µ′

t ← µ′
t/∥µ′

t∥1, where µ′
t[i]← µ̃t[i]1(µ̃t[i]≥H) for every i ∈ [|Vt|]

9: St ← ns samples with replacement from µ′
t

10: end for
11: return ST

Algorithm 4 Nearest Neighbor Histogram (NN_histogram)

1: Input: datasets: S, V ∈ ∪m∈NΩ
m, metric on Ω: ρ(·, ·)

2: Output: nearest neighbors histogram on V
3: histogram← (0, . . . , 0) ∈ R|V |

4: for i = 1, . . . , |S| do
5: k ← min

{
k : k ∈ argminj∈[|V |] ρ(S[i], V [j])

}
(ties are broken by picking the smallest

index in the argmin)
6: histogram[k]← histogram[k] + 1/|S|
7: end for
8: return histogram

B.2 Comparison between Algorithm 1 and practical PE

We outline the main differences between the practical Algorithm 3 and the theoretical model in
Algorithm 1. Algorithm 1 initializes S0 with n samples, and with high probability |S0| = |S1| =
... = |ST |. This is required for their utility proof based on η-closeness to work. In practice, PE
maintains synthetic datasets of size ns potentially different from n, and ns is part of the input. In our
simulations (section 6) we show that setting ns correctly is critical for convergence, hence not being
able to set it differently from n is a serious algorithmic limitation.

Once the NN is privatized by adding Gaussian noise and thresholded, Algorithm 1 creates the next
dataset deterministically by adding variations to the next dataset proportionally to the entries of
the DP histogram. There are two issues with this. First, calculating the proportions requires exact
knowledge of the multiplicity parameter B to create a dataset η-close to S. However, in practice B
should be calculated privately from S, which gives access to B up to an error. Second, the practical
version of PE normalizes the DP NN histogram after thresholding and then samples with replacement
variations to create the next dataset. Algorithm 1 does not take into account these steps, and as a
consequence its convergence analysis does not take into account the error incurred by them.

B.3 More details on the limitations of the analysis of Algorithm 1 from [31]

The theoretical analysis of PE in [31] does not reflect how PE operates in practice. Their convergence
proof relies on first showing that noiseless PE (Algorithm 1 with σ = 0) converges, then arguing that
when each data point from the sensitive dataset S repeated B times, with high probability the noisy
version behaves exactly the same for large B.
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The convergence of noiseless PE is proven as follows. Given S ∈ Ωn and the initial random S0 ∈ Ωn,
the elements of S and S0 are matched: assign S0[i] to S[i]. Variations of S0, denoted by V0, are
created and S1[i] is chosen as the element from V0 that is closest to S[i], as indicated by the NN
histogram. V0 contains the variations of S0[i], which are likely to contain a point closer to S[i] than
S0[i]. Repeating this process, they construct S0, S1, ..., ST , where St[i] is closer to S[i] than St−1[i].
They conclude that for any η > 0 and sufficiently large T , it holds that for every i ∈ [n], ST [i] is
within distance η of S[i]. We say that S and ST are η-close when this happens, denoted by S =η ST .

To prevent noise from overwhelming the vote signal in the noisy case, [31] assumes that each data
point in S is repeated B times. This ensures that, with high probability, the NN histogram entries
are at least B/n (dominating the added noise) and that the number of times nint(nµ′

t[i]/B)B that
Vt[i] is included in St+1 is equal to nµ̂t[i]. In other words, with high probability the noisy NN
histogram coincides with the non-DP NN histogram, which clearly violates DP when we remove the
unrealistic multiplicity assumption. In fact, the exact assumption they make to argue that S =η ST is
B ≫

√
d log(1/η) log(1/δ)/ε (Theorem 2 in [31]). If we let B be a constant, then their convergence

proof is valid only for ε = Ω(
√
d log(1/η) log(1/δ)) or, equivalently, η = Ω

(
e−ε2/(d log(1/δ))

)
.

B.4 Comparison between Algorithms 2 and 1

We note that Algorithm 2 overcomes the unrealistic features present in Algorithm 1. For example, it
can generate random datasets of any number of samples ns, since we do not use η-closeness arguments
to prove its convergence. In addition, it does not require exact knowledge of the multiplicity parameter
B, since our convergence proof assumes B = 1, which is usually the case in practice. Finally,
Algorithm 2 post-processes the noisy NN histogram by projecting it to the spaces of probability
measures over the variations and then samples variations according to this probability distribution to
generate the next dataset, resembling what is done in practice.

C More Definitions

Definition C.1 (Covering and packing number [41]). Let (Ω, ρ) be a metric space. For δ > 0, a
δ-cover of Ω w.r.t ρ is a set Ω′ ∈ ΩM such that for all ω ∈ Ω,∃i ∈ [M ] with ρ(ω,Ω′[i]) ≤ δ. The
covering number definition is the following:

N (Ω, ρ; δ) = min{n ∈ N : exists a δ-covering with n elements}.
Similarly, a δ-packing of Ω w.r.t ρ is a set Ω′ ∈ ΩM with the property that ∀(i, j) ∈ [M ]× [M ] with
i ̸= j, ρ(Ω′[j],Ω′[i]) ≥ δ. The packing number is defined as

M(Ω, ρ; δ) = max{n ∈ N : exists a δ-packing with n elements}.
Definition C.2 (Gaussian and Laplace Complexity). Let F be a function class on a metric space
(Ω, ρ). Then, the Gaussian complexity [41] of F is defined as

Gn(F) := sup
z1,...,zn∈Ω

E
x1,...,xn

iid∼N (0,1)

[
sup
f∈F

1

n

∣∣∣∣ ∑
i∈[n]

xif(zi)

∣∣∣∣].
The Laplacian complexity [24] of F is defined as

Ln(F) := sup
z1,...,zn∈Ω

E
x1,...,xn

iid∼Lap(1)

[
sup
f∈F

1

n

∣∣∣∣ ∑
i∈[n]

xif(zi)

∣∣∣∣].
D Proof of main result

In this section we provide the proof of our main result, Theorem 4.1, along with the necessary
auxiliary tools.

Proof of Theorem 4.1. Note that for any t = 0, ..., T − 1

W1(µS , µSt+1) = DBL(µS , µSt+1)

≤ DBL(µS , µ̂t+1) +DBL(µ̂t+1, µ̃t+1) +DBL(µ̃t+1, µ
′
t+1) +DBL(µ

′
t+1, µSt+1

)

= W1(µS , µ̂t+1) +DBL(µ̂t+1, µ̃t+1) +DBL(µ̃t+1, µ
′
t+1) +W1(µ

′
t+1, µSt+1

)

≤W1(µS , µ̂t+1) + 2DBL(µ̂t+1, µ̃t+1) +W1(µ
′
t+1, µSt+1

),
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where the inequality follows from DBL(µ̂t+1, µ̃t+1) ≥ DBL(µ̃t+1, µ
′
t+1) by definition of the

projection in DBL distance. Denote by Et[·] the expectation when conditioning on the randomness
up to iteration t of PE. Lemmata D.1 and D.2 give

Et[W1(µS , µ̂t+1)] ≤ (1− γ)W1(µS , µSt
) + α,

with γ = 1
8π[(

√
d+log(2))2+log(2)]

. Further, using the definition of Variation_API(St), it is easy to
see that Vt has ns(2⌈log2(D/α)⌉+ 1) elements. Letting V = ns(2⌈log2(D/α)⌉+ 1), Lemma D.3
implies

Et[DBL(µ̂t+1, µ̃t+1)] ≤ V σGV (FBL).

Putting everything together, we conclude that

Et[W1(µS , µSt+1)] ≤ (1− γ)W1(µS , µSt) + α+ 2V σGV (FBL) +W1(µ
′
t+1, µSt+1).

Integrating on both sides and denoting Γt = E[W1(µS , µSt)] we obtain

Γt+1 ≤ (1− γ)Γt + α+ 2V σĜV (FBL) + Ŵ1(ns),

where

ĜV (FBL) = 10D


√

log(2
√
V )√

V
d = 1

log(2
√
V )3/2√
V

d = 2√
log(2V 1/d(d/2−1)2/d)

V 1/d(d/2−1)2/d
d ≥ 3

is the upper bound on E[GV (FBL)] from Corollary D.1 and

Ŵ1(ns) = CD


n
−1/2
s d = 1

log(ns)n
−1/2
s d = 2

n
−1/d
s d ≥ 3

is the upper bound on E[W1(µ
′
t+1, µSt+1

)] from Lemma D.5. Hence, after T steps of PE we obtain

ΓT ≤ (1− γ)TΓ0 + (α+ 2V σĜV (FBL) + Ŵ1(ns))

T−1∑
i=0

(1− γ)i

= (1− γ)TΓ0 + (α+ 2V σĜV (FBL) + Ŵ1(ns))
1− (1− γ)T

1− (1− γ)

= (1− γ)T

[
Γ0 −

α+ 2V σĜV (FBL) + Ŵ1(ns)

γ

]
+

α+ 2V σĜV (FBL) + Ŵ1(ns)

γ
(2)

≤ e−γTD +
α+ 2V σĜV (FBL) + Ŵ1(ns)

γ
,

where the last inequality follows from the fact that α+2V σĜV (FBL)+Ŵ1(ns)
γ ≥ 0 and Γ0 ≤ D. Next,

note that

2V σGV (FBL) + Ŵ1(ns) = D


20
√
V σ
√

log(2
√
V ) + Cn

−1/2
s d = 1

20
√
V σ log(2

√
V )3/2 + C log(ns)n

−1/2
s d = 2

20V 1−1/dσ
√

log(2V 1/d(d/2−1)2/d)

(d/2−1)2/d
+ Cn

−1/d
s d ≥ 3

.

Since V = ns(2⌈log2(D/α)⌉+ 1), picking ns =
(
σ(2⌈log2(D/α)⌉+ 1)1−1/max{d,2})−1

gives

2V σGV (FBL) + Ŵ1(ns) ≤ Õ(Dσ1/max{d,2}).

We conclude that

ΓT ≤ e−γTD + Õ

(
α+Dσ1/max{d,2}

γ

)
.
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Finally, setting α = Dσ1/max{d,2} and T ≥ ⌈log(γ/[Dσ1/max{d,2}])/γ⌉ we obtain

ΓT ≤ Õ

(
σ1/max{d,2}

γ

)
= Õ(dDσ1/d).

This proves the first result. For the second, note that if ε, δ < 1, then σ =
4
√

T log(1.25/δ)

nε
is enough noise to privatize T iterations of PE by viewing it as the adaptive composition of
T Gaussian mechanisms where each of them adds noise to a NN histogram with ℓ2 sensitiv-
ity
√
2/n ([14], Corollary 3.3). Since we need T ≥ log(γ/σ1/max{d,2})/γ, it suffices to set

T =
log(nε/[4

√
log(1/δ)])

max{d,2}γ = O(log(nε/
√
log(1/δ))) to obtain

Γt ≤ Õ

dD


√
log(nε/

√
log(1/δ)) log(1/δ)

nε

1/d .

D.1 Lemmata used in proof of Theorem 4.1

Lemma D.1. For any z1, z2 ∈ Ω, E[minz∈Variation_API(z1) ∥z − z2∥2] ≤ (1 − γ)∥z1 − z2∥2 + α

with γ = 1
8π[(

√
d+log(2))2+log(2)]

, where the expectation is taken w.r.t Variation_API(z1).

Proof. • Case 1: ∥z1 − z2∥2 ≤ α. Note that E[minz∈Variation_API(z1) ∥z − z2∥2] ≤ ∥z1 −
z2∥2 = α, since z1 ∈ Variation_API(z1).

• Case 2: ∥z1 − z2∥2 ≥ α. In this case, there exists l∗ ∈ {1, ..., ⌈log2(diam(Ω)/α)⌉} such
that 2l

∗−1α ≤ ∥z1 − z2∥2 ≤ 2l
∗
α. Now, we proceed as follows,

E
[

min
z∈Variation_API(z1)

∥z − z2∥22
]
= E

[
min

k∈[2],l∈[L]
∥ projΩ(z1 +Nk,l

t )− z2∥2
]

≤ E
[

min
k∈[2],l∈[L]

∥z1 +Nk,l
t − z2∥2

]
= E

[
min

k∈[2],l∈[L]
∥z1 − z2∥22 − 2⟨Nk,l

t , z1 − z2⟩+ ∥Nk,l
t ∥2

]
≤ min

l∈[L]
E
[
min
k∈[2]
∥z1 − z2∥22 − 2⟨Nk,l

t , z1 − z2⟩+ ∥Nk,l
t ∥2

]
≤ ∥z1 − z2∥22 + min

l∈[L]

{
− 2E

[
max
k∈[2]
⟨Nk,l

t , z1 − z2⟩
]
+ E

[
max
k∈[2]

∥Nk,l
t ∥2

]}
≤ ∥z1 − z2∥22 + min

l∈[L]

{
− 2

σl∥z1 − z2∥2√
π

+ σ2
l [(
√
d+ log(2))2 + log(2)]

}
≤ ∥z1 − z2∥22 −

2σl∗2
l∗−1α√
π

+ σ2
l∗ [(
√
d+ log(2))2 + log(2)]

= ∥z1 − z2∥22 −
(α2l

∗−1)2

π[(
√
d+ log(2))2 + log(2)]

≤ ∥z1 − z2∥22
(
1− 1

4π[(
√
d+ log(2))2 + log(2)]

)
,

where we used the lower bound for the expected maximum of Gaussians from [28] and the
upper bound for the expected maximum of chi-squared from [9] (Example 2.7), and the facts
that σl =

α2l−1

√
π[(

√
d+log(2))2+log(2)]

and 2l
∗−1α ≤ ∥z1 − z2∥2 ≤ 2l

∗
α. Jensen’s inequality

together with
√
1− t ≤ 1− t/2 for t ≤ 1 allow us to conclude.
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Lemma D.2. Let S, S′ ∈ ∪m≥1Ω
m be two datasets, V = Variation_API(S′) and

µ̂ = NN_histogram(S, V, ρ) (see Algorithm 4). Suppose that for any z1 ∈ Ω, z2 ∈ S,
E[minz∈Variation_API(z1) ρ(z, z2)] ≤ (1− γ)ρ(z1, z2) + α. Then,

E[W1(µS , µ̂)] ≤ (1− γ)W1(µS , µS′) + α.

Proof. Let π̂ ∈ Π(µS , µ̂) be the coupling defined by

π̂(S[i], V [j]) =
1
(
j = min

{
k : k ∈ argminj∈[|V |] ρ(S[i], V [j])

})
|S|

,

for every i ∈ [|S|], j ∈ [|V |]. Let’s verify that π̂ ∈ Π(µS , µ̂). Clearly π̂(S[i], V [j]) ≥ 0. Furthemore,

∑
j∈[|V |]

π̂(S[i], V [j]) =
1

|S|

equals the mass that µS assigns to S[i], and

∑
i∈[|S|]

π̂(S[i], V [j]) =
∑

j∈[|V |]

1
(
j = min

{
k : k ∈ argminj∈[|V |] ρ(S[i], V [j])

})
|S|

equals the mass that µ̂ assigns to V [j], since µ̂ comes from a nearest neighbor histogram according to
Algorithm 4 (µ̂ = NN_histogram(S, V, ρ)). Hence, the marginals of π̂ are µS and µ̂, which proves
that π̂ ∈ Π(µS , µ̂). Next, note that

E[W1(µS , µ̂t+1)] = E
[

inf
π∈Π(µS ,µ̂t+1)

∫
Ω×Ω

ρ(z1, z2)dπ(z1, z2)

]

= E

 inf
π∈Π(µS ,µ̂t+1)

∑
i∈[|S|]

∑
j∈[|V |]

ρ(S[i], V [j])π(S[i], V [j])


≤ inf

π∈Π(µS ,µ̂t+1)
E

 ∑
i∈[|S|]

∑
j∈[|V |]

ρ(S[i], V [j])π(S[i], V [j])


≤ E

 ∑
i∈[|S|]

∑
j∈[|V |]

ρ(S[i], V [j])π̂(S[i], V [j])


= E

 ∑
i∈[|S|]

∑
j∈[|V |]

ρ(S[i], V [j])
1
(
j = min

{
k : k ∈ argminj∈[|V |] ρ(S[i], V [j])

})
|S|


= E

[∑
i

minz∈V ρ(S[i], z)

|S|

]
.
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To continue the chain of inequalities, let us consider any coupling π′ ∈ Π(µS , µS′). By definition it
satisfies

∑
j∈[|S′|] π

′(S[i], S′[j]) = 1
|S| . Hence,

E

[∑
i

minz∈V ρ(S[i], z)

|S|

]
= E

 ∑
i∈[|S|]

 ∑
j∈[|S′|]

π′(S[i], S′[j])

min
z∈V

ρ(S[i], z)


≤ E

 ∑
i∈[|S|]

∑
j∈[|S′|]

π′(S[i], S′[j]) min
z∈Variation_API(S′[j])

ρ(S[i], z)


=
∑

i∈[|S|]

∑
j∈[|S′|]

π′(S[i], S′[j])E
[

min
z∈Variation_API(S′[j])

ρ(S[i], z)

]
≤
∑

i∈[|S|]

∑
j∈[|S′|]

π′(S[i], S′[j])max{(1− γ)ρ(S[i], S′[j]), α}

≤ (1− γ)
∑

i∈[|S|]

∑
j∈[|S′|]

π′(S[i], S′[j])ρ(S[i], S′[j]) + α

= (1− γ)

∫
Ω×Ω

ρ(z1, z2)dπ
′(z1, z2) + α,

where the second inequality comes from the assumption that for any z1 ∈ Ω, z2 ∈ S,
E[minz∈Variation_API(z1) ρ(z, z2)] ≤ (1 − γ)ρ(z1, z2) + α. Putting the inequalities together, we
conclude that for any π′ ∈ Π(µS , µS′) it holds that

E[W1(µS , µ̂t+1)] ≤ (1− γ)

∫
Ω×Ω

ρ(z1, z2)dπ
′(z1, z2) + α.

Taking infimum over the couplings on the right hand side finishes the proof.

Lemma D.3. Let V ∈ Ωn. Let µ ∈ ∆n be a probability measure supported on V . Let Z =
(Z1, ..., Zn) ∼ N (0, σ2In). Then,

EZ [DBL(µ, µ+ Z)] ≤ nσGn(FBL).

Proof. By definition of DBL, we have

DBL(µ, µ+ Z) = sup
f∈FBL

∫
Ω

f(dµ− d(µ+ Z)) = sup
f∈F

∑
i∈[n]

f(V [i])Zi.

Hence,

E[DBL(µ, µ+ Z)] = E

sup
f∈F

∑
i∈[n]

f(V [i])Zi

 = nσE

sup
f∈F

1

n

∑
i∈[n]

f(V [i])Zi

σ

 ≤ nσGn(FBL).

D.2 Upper bounds

We need upper bounds on Gaussian complexity terms and on the convergence of empirical measures
in W1. Let us start showing an upper bound on the Gaussian complexity via Dudley chaining. This
proof follows closely the proof of upper bounds for Laplacian Complexity given in [24].

Lemma D.4 (Gaussian Complexity bound). Let (Ω, ρ) be a metric space and F a set of functions on
Ω. Suppose diam(Ω) ≤ D. Then

Gn(F) ≤ C inf
α≥0

[
α+

∫ D

α

√
log(N (F , ∥ · ∥∞;β))dβ

]
.
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Proof. For each j ∈ Z, define εj = 2−j and let Tj be a εj-covering of F , such that |Tj | =
N(F , ∥ · ∥∞; εj) (i.e, the cardinality of the cover is the covering number w.r.t. ∥ · ∥∞). Fix f ∈ F
and let πj,f be the closest function to f in Tj . Since we are assuming that Ω has a bounded diameter,
there exists j0 ∈ Z such that for all k ≤ j0, |Tk| = 1. Then, for any set {zi}ni=1,

sup
f∈F

1

n

∣∣∣∣ ∑
i∈[n]

xif(zi)

∣∣∣∣ ≤ sup
f∈F

1

n

∣∣∣∣ ∑
i∈[n]

xi[f(zi)−πm,f (zi)]

∣∣∣∣+ m∑
k=j0+1

sup
f∈F

1

n

∣∣∣∣ ∑
i∈[n]

xi[πk,f (zi)−πk−1,f (zi)]

∣∣∣∣,
for all m ∈ Z,m > j0.

We will give in-expectation bounds on the two terms on the right hand side. First, we trivially have

E

sup
f∈F

1

n

∣∣∣∣ ∑
i∈[n]

xi[f(zi)− πm,f (zi)]

∣∣∣∣
 ≤ E

 1

n

∑
i∈[n]

|xi|εm

 ≤ εm = 2−m.

For the second term, note that

sup
f∈F

1

n

∣∣∣∣ ∑
i∈[n]

xi[πk,f (zi)− πk−1,f (zi)]

∣∣∣∣ ≤ sup
fk∈Tk,fk−1∈Tk−1

1

n

∣∣∣∣ ∑
i∈[n]

xi[fk(zi)− fk−1(zi)]

∣∣∣∣.
We will bound the last term above. We have that for any fk ∈ Tk, fk−1 ∈ Tk−1, i ∈ [n]

1

n
|fk(zi)− fk−1(zi)| ≤

1

n
|fk(zi)− f(zi)|+

1

n
|f(zi)− fk−1(zi)| ≤

εk + εk−1

n
≤ 3εk

n
.

Hence, 1
n

∑
i∈[n] xi[fk(zi)− fk−1(zi)] is a (3εk/

√
n)-subGaussian random variable. We conclude

that

E

 max
fk∈Tk,fk−1∈Tk−1

1

n

∣∣∣∣ ∑
i∈[n]

xi[(fk(zi)− fk−1(zi)]

∣∣∣∣
 ≤ C

εk
√

log(N (F , ∥ · ∥∞; εk))√
n

,

since the maximum is over at mostN (F , ∥ · ∥∞; εk)
2 random variables, each of which is (3εk/

√
n)-

subGaussian.

Putting everything together, we conclude that

E

sup
f∈F

1

n

∣∣∣∣ ∑
i∈[n]

xif(zi)

∣∣∣∣
 ≤ C

2−m +

m∑
k=j0+1

εk
√

log(N (F , ∥ · ∥∞; εk))√
n


≤ C ′ inf

α≥0

[
α+

1√
n

∫ ∞

α

√
log(N (F , ∥ · ∥∞;β))dβ

]
.

Finally, since N (F , ∥ · ∥∞;β) = 1 for β > D, the integral above can be computed between α and
D. This finishes the proof.

Corollary D.1. Let Ω ⊂ Rd and ρ(·, ·) = ∥ · − · ∥2. If diam(Ω) ≤ D, then

Gn(FBL) ≤


9
√

log(2
√
n)D√

n
d = 1

10D log(2
√
n)3/2√

n
d = 2

10D
√

log(2n1/d(d/2−1)2/d)

n1/d(d/2−1)2/d
d ≥ 3

.

Proof. From [22] (Lemma 4.2), we know that

N (FL, ∥ · ∥∞;β) ≤
(
8

β

)N (Ω,∥·∥2;β/2L)

,

where FL is the class of L-Lipschitz functions mapping Ω to [−1, 1]. It is easy to see that DF1/D =
FBL, since FBL contains all the 1-Lipschitz functions mapping Ω to [−D,D]. Then, for any
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β ∈ [0, D], log(N (FBL, ∥ · ∥∞;β)) can be bounded as follows

log(N (FBL, ∥ · ∥∞;β)) = log(N (DF1/D, ∥ · ∥∞;β))

= log(N (F1/D, ∥ · ∥∞;β/D))

≤ N (Ω, ∥ · ∥2;β/2) log
(
8D

β

)
≤ N (DB2, ∥ · ∥2;β/2) log

(
8D

β

)
= N (B2, ∥ · ∥2;β/2D) log

(
8D

β

)
≤
(
4D

β
+ 1

)d

log

(
8D

β

)
≤
(
5D

β

)d

log

(
8D

β

)
where the last inequality uses the fact that β ∈ [0, D]. Replacing this expression in the bound given
by Lemma D.4 we get

Gn(FBL) ≤ inf
α≥0

(
α+

1√
n

∫ D

α

(
5

β

)d/2
√
log

(
8D

β

)
dβ

)

≤ inf
α≥0

(
α+

√
log(8D/α)√

n

∫ D

α

(
5D

β

)d/2

dβ

)

= inf
α≥0

(
α+

√
log(8D/α)(5D)d/2√

n

∫ D

α

β−d/2dβ

)
.

We compute the integral for different values of d:

• d = 1. In this case, ∫ D

α

β−d/2dβ = 2(
√
D −

√
α) ≤ 2

√
D.

It follows that

Gn(FBL) ≤ inf
α≥0

(
α+

√
log(8D/α)2

√
5D√

n

)
≤ 2

√
log(2

√
n)2
√
5D√

n
,

where the last inequality comes from picking α = 2
√
5D√
n

in the infimum.

• d = 2. In this case,∫ D

α

β−d/2dβ = log(D)− log(α) = log(D/α) ≤ log(8D/α).

It follows that

Gn(FBL) ≤ inf
α≥0

(
α+

log(8D/α)3/25D√
n

)
≤ 2

log(2
√
n)3/25D√
n

,

where the last inequality comes from picking α = 5D√
n

in the infimum.

• d ≥ 3. In this case, ∫ D

α

β−d/2dβ =
α1−d/2 −D1−d/2

d/2− 1
≤ α1−d/2

d/2− 1
.
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It follows that

Gn(FBL) ≤ inf
α≥0

(
α+

√
log(8D/α)(5D)d/2√

n

α1−d/2

d/2− 1

)

≤ 2

√
log(2n1/d(d/2− 1)2/d)5D

n1/d(d/2− 1)2/d
,

where the last inequality comes from picking α = 5D
n1/d(d/2−1)2/d

in the infimum.

The convergence of empirical measures in 1-Wasserstein is a topic of interest on its own, that has
been studied in the past. We obtain the following corollary from [29]. We note the results in there
hold more generally for Banach Spaces.
Lemma D.5 (Corollary of Theorem 3.1 in [29]). Let µ be a probability measure with a finite discrete
support on Rd contained in {x ∈ Rd : ∥x − y∥2 ≤ R} for some y ∈ Rd, µN the empirical
distribution of N iid samples from µ. Then, there exists an absolute constant C, such that, for all
N ≥ 1,

E[W1(µ, µN )] ≤ CR


N−1/2 d = 1

log(N)N−1/2 d = 2

N−1/d d ≥ 3

.

E Simulations with histogram from Section 4.2

We follow the same simulation setup from Section 6. Namely, we consider the sample space to be the
unit ℓ2 ball in R2. We use privacy parameters ε = 1, δ = 10−4. We set T = 2 log(nε), and the noise
σ is computed with the analytic Gaussian mechanism ([4], Theorem 8). The rest of the parameters are
set as indicated in Theorem 4.1. We run Algorithm 2, with the only difference that we post-process
noisy histograms truncating at H = 0 and then re-normalize. In Figure 4, we refer to this algorithm
as ‘PE’.

In Section 4.2, we introduced an alternative histogram that is built by adding Laplace noise
(only) to the NN entries that are positive and then truncating the noisy entries that fall below
H = 2 log(1/δ)/(nε)+1/n, followed by a re-normalization step so that the noisy histogram induces
a probability measure over the variations. Running Algorithm 2 with this histogram (instead of the
one that adds Gaussian noise to all the entries of the NN histogram, thresholds at 0 and re-normalizes)
is referred to as ‘PE with Laplace noise+thresholding’ in Figure 4.

We argued in Section 4.2 that this alternative DP histogram can work very well when the dataset is
highly clustered, but it can also lead to vacuous utility guarantees in less favorable cases. We illustrate
this in figure 4.

F Extension to Banach Spaces

We note that Algorithm 2 can operate on any Banach space (Ω, ρ) as long as it has access to adequate
APIs. Below we define a property on the variation API that suffices to prove algorithm convergence.
Definition F.1. Let 1 > γ > 0, v ∈ N and α > 0. A (randomized) variation API is a (γ, v, α)-API
for a dataset S if

• For all z ∈ Ω, z ∈ Variation_API(z) and |Variation_API(z)| ≤ v.

• For all z1 ∈ Ω, z2 ∈ S such that ρ(z1, z2) > α,

EVariation_API(·)

[
min

z∈Variation_API(z1)
ρ(z, z2)

]
≤ (1− γ)ρ(z1, z2).

If Variation_API satisfies this definition, then we can prove the following result.
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Figure 4: Comparison of the performance of PE with different histograms. Both algorithms, ‘PE’
and ‘PE with Laplace noise+thresholding’ are described in Section E. Left: the sensitive dataset
is distributed uniformly in an ℓ2 ball of radious 0.02 around the origin (heavily clustered), leading
‘PE with Laplace noise+thresholding’ to preserve the votes signal in the noisy NN histograms,
outperforming ‘PE’. Right: the sensitive dataset is distributed uniformly in an ℓ2 ball of radious 0.5
around the origin (not clustered). The votes signal in the noisy NN histograms is lost by ‘PE with
Laplace noise+thresholding’ during the thresholding step. Hence, it performs poorly. Results are
averaged over 100 runs

Theorem F.1 (Convergence of PE). Let (Ω, ρ) be a (sample) Banach space. Suppose Ω is compact.
Let 1 > γ > 0, v ∈ N and α > 0. ST be the output of Algorithm 2 run on input S ∈ Ωn, T ∈
N, ns ∈ N, σ > 0, ρ(·, ·). If Variation_API(·) is an (γ, v, α)-API for S, then

E [W1(µS , µST
)] ≤ (1− γ)T [W1(µS , µS0

)− err] + err,

where S0 is the dataset created in Line 3, err = (α + 2vnsσĜvns
(FBL) + Ŵ1(ns))/γ, Ŵ1(ns)

is an upper bound on the rate of convergence of empirical measures from ns samples to the true
measure in W1 and Ĝvns(FBL) is an upper bound on the Gaussian complexity Gvns(FBL).

The upper bound on the Gaussian complexity that we provided in Lemma D.4 can be used to find
Ĝvns(FBL), since it works for general metric spaces, and the upper bound Ŵ1(ns)), can be found in
[29].

The proof of Theorem F.1 follows similarly to Theorem 4.1. We provide it below for completeness.

Proof of Theorem F.1. Note that for any t = 0, ..., T − 1

W1(µS , µSt+1) = DBL(µS , µSt+1)

≤ DBL(µS , µ̂t+1) +DBL(µ̂t+1, µ̃t+1) +DBL(µ̃t+1, µ
′
t+1) +DBL(µ

′
t+1, µSt+1)

= W1(µS , µ̂t+1) +DBL(µ̂t+1, µ̃t+1) +DBL(µ̃t+1, µ
′
t+1) +W1(µ

′
t+1, µSt+1

)

≤W1(µS , µ̂t+1) + 2DBL(µ̂t+1, µ̃t+1) +W1(µ
′
t+1, µSt+1

),

where the inequality follows from DBL(µ̂t+1, µ̃t+1) ≥ DBL(µ̃t+1, µ
′
t+1) by definition of µ′

t+1.
Denote by Et[·] the expectation when conditioning on the randomness up to iteration t of PE. Since
Variation_API(·) is an (γ, v, α)-API, then Lemma D.2 gives

Et[W1(µS , µ̂t+1)] ≤ (1− γ)W1(µS , µSt
) + α.

Further, since |Vt| = vns, Lemma D.3 and the definition of Ĝns(FBL) imply

Et[DBL(µ̂t+1, µ̃t+1)] ≤ vnsσGvns
(FBL) ≤ vnsσĜvns

(FBL).

Finally, by definition of Ŵ1(ns),

Et[W1(µ
′
t+1, µSt+1

)] ≤ Ŵ1(ns).

Putting everything together:

Et[W1(µS , µ̂t+1)] ≤ (1− γ)W1(µS , µSt
) + α+ 2nsσĜns

(FBL) + Ŵ1(ns).
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Integrating on both sides and denoting Γt = E[W1(µS , µSt)] we obtain

Γt+1 ≤ (1− γ)Γt + α+ 2vnsσĜvns
(FBL) + Ŵ1(ns).

Hence, after T steps of PE we obtain

ΓT ≤ (1− γ)TΓ0 + (α+ 2vnsσĜvns(FBL) + Ŵ1(ns))

T−1∑
i=0

(1− γ)i

= (1− γ)TΓ0 + (α+ 2vnsσĜvns
(FBL) + Ŵ1(ns))

1− (1− γ)T

1− (1− γ)

= (1− γ)T

[
Γ0 −

α+ 2vnsσĜvns(FBL) + Ŵ1(ns)

γ

]
+

α+ 2vnsσĜvns(FBL) + Ŵ1(ns)

γ
.

G Missing proofs

We start with the proof of Proposition 4.1.

Proof. Recall that µ̃ is given by µ̃[i] = (µ̂[i] + Li)1(µ̂[i]>0,µ̂[i]+Li≥H) where {Li}i∈[m]
iid∼

Lap(2/nε). This can be seen alternatively as constructing µ̃ as follows

• If µ̂[i] = 0, then µ̃[i] = 0.

• If µ̂[i] > 0, then µ̃[i] = µ̂[i]+Li, where Li ∼ Lap(2/nε). If µ̃[i] < 2 log(1/δ)/(nε)+1/n
(i.e the coordinate is small), then it is truncated: µ̃[i] = 0 .

Let ν be the measure after adding noise to µ̂ but before truncating the small coordinates to obtain µ̃.
Furthermore, note that all the entries with µ̂[i] = 0 remain unchanged with our procedure. Hence,
the effective support of all the measures is Î = {i ∈ [m] : µ̂[i] > 0} rather than V . Also, define
L(β) such that the event E = {|Li| ≤ L(β)∀i} has probability of at least 1 − β. Recall that
H = 2 log(1/δ)/(nε) + 1/n.

First, note that

W1(µ̂, µ
′) = DBL(µ̂, µ

′) ≤ DBL(µ̂, ν) +DBL(ν, µ̃) +DBL(µ̃, µ
′).

We will control the terms on the right-hand side one by one.

• Let’s start with DBL(µ̂, ν).

E[DBL(µ̂, ν)] = E

 sup
f∈FBL

∑
i∈Ĩ

f(V [i])(µ̂[i] + Li − µ̂[i])


=

2|Ĩ|
nε

L|Ĩ|(FBL),

where L|Ĩ|(FBL) is the Laplace complexity of FBL.

• We continue by bounding DBL(ν, µ̃).
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E[DBL(ν, µ̃)] = E

 sup
f∈FBL

∑
i∈Ĩ

f(V [i])(µ̂[i] + Li − (µ̂[i] + Li)1(µ̂[i]+Li≥H))


≤ DE

 ∑
i∈Ĩ:µ̂[i]+Li<H

µ̂[i] + Li


≤ DBE[|{i ∈ Ĩ : µ̂[i] + Li < H}|]
≤ DB(E[|{i ∈ Ĩ : µ̂[i] + Li < H}| | E]P[E] + E[|{i ∈ Ĩ : µ̂[i] + Li < H}| | EC ]P[EC ])

≤ DB(|{i ∈ Ĩ : µ̂[i]− L(β) ≤ H}|+ |Ĩ|β)

• Finally, let’s look at DBL(µ̃, µ
′). If ∥µ̃∥1 = 0, then DBL(µ̃, µ

′) = 0. Otherwise,

DBL(µ̃, µ
′) = DBL(µ̃, µ̃/∥µ̃∥1)

= sup
f∈FBL

∑
i∈Ĩ

f(V [i])

(
1− 1

∥µ̃∥1

)
µ̃[i]

≤ D

∣∣∣∣1− 1

∥µ̃∥1

∣∣∣∣ ∥µ̃∥1 = D|∥µ̃∥1 − 1|.

Next,

|1− ∥µ̃∥1| =
∣∣∣∣∑
i∈Ĩ

µ̂[i]−
∑

i∈Ĩ:µ̂[i]+Li≥H

µ̂[i] + Li

∣∣∣∣
=

∣∣∣∣ ∑
i∈Ĩ:µ̂[i]+Li<H

µ̂[i] + Li −
∑
i∈Ĩ

Li

∣∣∣∣
≤
∣∣∣∣ ∑
i∈Ĩ:µ̂[i]+Li<H

µ̂[i] + Li

∣∣∣∣+ ∣∣∣∣∑
i∈Ĩ

Li

∣∣∣∣
≤ B|{i ∈ Ĩ : µ̂[i] + Li < H}|+

∣∣∣∣∑
i∈Ĩ

Li

∣∣∣∣.
We have already argued that

E[|{i ∈ Ĩ : µ̂[i] + Li < H}|] ≤ |{i ∈ Ĩ : µ̂[i]− L(β) ≤ H}|+ |Ĩ|β.
Furthemore, since the random variables Li are iid Laplace we have

E

∣∣∣∣∑
i∈Ĩ

Li

∣∣∣∣
 ≤

√√√√√E

(∑
i∈Ĩ

Li

)2


=

√√√√V ar

(∑
i∈Ĩ

Li

)

=

√
|Ĩ|V ar(L1)

=

√
2|Ĩ|(2/(nε))2 =

2
√
2|Ĩ|
nε

.

Hence, we conclude that

E[DBL(µ̃, µ
′)] ≤ DH(|{i ∈ Ĩ : µ̂[i]− L(β) ≤ H}|+ |Ĩ|β) +

2D
√
2|Ĩ|

nε
.
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Putting everything together, we obtain

E[W1(µ̂, µ
′)] ≤ 2|Ĩ|

nε
L|Ĩ|(FBL) + 2DH(|{i ∈ Ĩ : µ̂[i]− L(β) ≤ H}|+ |Ĩ|β) +

2D
√
2|Ĩ|

nε
.

Finally, observe that by the tail bounds of a Laplace random variable, L(β) = O
(

log(|Ĩ|/β)
nε

)
suffices

for P[E] ≥ 1− β. This concludes the proof.

Next, we provide the proof of Lemma 3.1.

Proof. For simplicity denote the packing number M(Ω, ρ; 2η) by M in this proof. Consider a
2η-packing of Ω, {z1, ..., zM}. Let S = {z1}n. For k ∈ Z+, define

B(k) = Bρ(z1, η)
n−1 ×Bρ(zk, η)

It is easy to see that if S =η A(S) ⇐⇒ A(S) ∈ B(1), and if A(S) ∈ B(k) for some k ≥

2, then S and A(S) can not be η-close. Since PA

[
S =η A(S)

]
≥ 1 − τ , then PA

[
A(S) ∈

∪k∈Z∩[2,M ]B(k)

]
≤ τ . Furthermore, B(i)∩B(j) = ∅ for all i ̸= j ∈ Z∩[2,M ]. Hence, there exists

a set B(k∗) such with PA

[
A(S) ∈ B(k∗)

]
≤ τ/(M −1). Finally, construct S′ = {z1}n−1∪{zk∗}.

Note S and S′ are neighboring datasets. Then, by the inequalities that we have stated and ε-DP, it
follows that

1− τ ≤ PA

[
S′ =η A(S′)

]
= PA

[
A(S′) ∈ B(k∗)

]
≤ eεPA

[
A(S) ∈ B(k∗)

]
≤ eετ

M − 1
.

Solving for ε, we get ε ≥ log((M − 1)(1− τ)/τ).

Finally, we give a proof for Proposition 5.1.

Proof. Let µ ∈ ∆m and denote by Π(µ) is the set of couplings between 1
n

∑
i∈[n] δS[i] and∑

j∈[m] µ[j]δV [j]. Then, the following lower bound holds

W1

 1

n

∑
i∈[n]

δS[i],
∑
j∈[m]

µ[j]δV [j]

 = inf
π∈Π(µ)

∑
i

∑
j

ρ(S[i], V [j])πij


≥ inf

π∈Π(µ)

∑
i

( min
j∈[m]

ρ(S[i], V [j])

)∑
j

πij


=
∑
i

(
minj∈[m] ρ(S[i], V [j])

n

)
. (3)

In addition, note that if

π∗
ij =

1
(
j = min{k : k ∈ argminl∈[m] ρ(S[i], V [l])}

)
n

then (1) π∗ ∈ Π(µ∗): ∑
j

π∗
ij =

1

n
,
∑
i

π∗
ij = µ∗[i],

and (2)∑
i

∑
j

ρ(S[i], V [j])π∗
ij

 =
∑
i

∑
j

ρ(S[i], V [j])π∗
ij

 =
∑
i

(
minj∈[m] ρ(S[i], V [j])

n

)
.

(1) and (2) together with the lower bound from (3) imply that

(µ∗, π∗) ∈ arg min
µ∈∆m,π∈Π(µ)

∑
i,j

ρ(S[i], V [j])πij ,

which is equivalent to the statement we wanted to prove.
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H Details on the Private Signed Measure Mechanism

The Private Signed Measure Mechanism is an algorithm for differentially private synthetic data
generation presented in [24]. It is designed to work under pure differential privacy. For completeness,
we provide an extension of it that works under approximate DP. The algorithm and its proof closely
resemble the one from [24], with the only difference being that we need to deal with Gaussian noises
instead of Laplace in order to achieve approximate DP. As we mentioned in Section 5, PE can be seen
as a sequential version of PSMM, and the gaussian mechanisms has better composition guarantees
than the Laplace mechanism. Hence, even though changing Gaussian noise by Laplace in PSMM
does not make a big difference, it does make a more notorious difference for PE when seen as a
sequential version of PSMM.

Algorithm 5 Private signed measured mechanism with approx DP

Require: Dataset S = {z1, ..., zn}, partition {Ωi}i∈[m], number of synthetic samples ns

1: Compute private counts: ñi = |S ∩ Ωi|+Ni, where Ni
iid∼ N (0, log(1/δ)

ε2 ).
2: Let µ̃ be a signed measure such that for i ∈ [m], µ̃({ωi}) = ñi/n for an arbitrary ωi ∈ Ωi and

µ̃(Ωi\{ωi}) = 0.
3: Let µ̂ be the closest probability measure over {ω1, ..., ωm} to µ̃ in DBL distance.
4: Let µ be an arbitrary probability measure over Ω such that µ(Ωi) = µ̂({ωi}) for all i ∈ [m].
5: return S′ ∼ µns

Theorem H.1 (Guarantees of PSMM under approximate DP). There exists a partition {Ωi}i∈[m]

of Ω such that Algorithm 5 run on S ∈ Ωn, {Ωi}i∈[m] outputs an (ε, δ)-DP synthetic dataset S′

satisfying

E[W1(µS , µS′)] ≤ 2

(
max
i∈[m]

diam(Ωi) +
m
√
log(1/δ)

nε
Gm(F)

)
+ E[W1(µ, µS′)],

where µ is the probability measure from Step 4. Furthermore, if Ω ⊂ Rd with diam(Ω) ≤ D,
ρ = ∥ · ∥2, m = nε/[D

√
log(1/δ)] and diam(Ωi) ≤ O(Dm−1/max{d,2}), then

E[W1(µS , µ)] ≤ Õ

D

(√
log(1/δ)

nε

)1/max{2,d}

+D

(
1

ns

)1/max{2,d}
 .

Remark H.1. When running PSMM, we can select ns arbitrarily large, by the post-processing

property of DP. Hence, we can safely assume that the error term D

(√
log(1/δ)

nε

)1/max{2,d}

dominates

in the utility bound presented in Theorem H.1. Note that, up to logarithmic factors, this bound
improves over the bound that we provide for PE in Theorem 4.1 by a factor of d. However, it requires
{Ωi}i∈[m] to be such that maxi∈[m] diam(Ωi) = O(Dm−1/max{d,2}). Constructing such partition
in practice is equivalent to finding an O(Dm−1/max{d,2})-net of points {ω1, ...., ωm} such that the
Voronoi partition induced by them is {Ωi}i∈[m]. We explained in Section 5 why such net can be
difficult to construct in practice.

Proof. Since the ℓ2-sensitivity of f(S) = (|S ∩ Ωi|)i∈[m]] is
√
2, privacy of the measure µ (from

Step 4) follows from the Gaussian mechanism. The privacy of S′ follows by post-processing.

The convergence proof is similar to the utility analysis of one step of PE. Let µ̄ be a probability
measure over Ω such that µ̄({ωi}) = ni/n, where ni = |S ∩ Ωi|, and µ̄(Ω\{ω1, ..., ωm}) = 0. Let
the measures µ̃, µ̂ and µ be as given by Algorithm 5. Note that

W1(µS , µ) = DBL(µS , µ) ≤ DBL(µS , µ̄) +DBL(µ̄, µ̃) +DBL(µ̃, µ̂) +DBL(µ̂, µ)

= W1(µS , µ̄) +DBL(µ̄, µ̃) +DBL(µ̃, µ̂) +W1(µ̂, µ)

≤W1(µS , µ̄) + 2DBL(µ̄, µ̃) +W1(µ̂, µ)

≤ 2

(
max
i∈[m]

diam(Ωi) +DBL(µ̄, µ̃)

)
,
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where the second inequality follows from the fact that DBL(µ̄, µ̃) ≥ DBL(µ̃, µ̂), which is a conse-
quence of µ̂ being the closest probability measure over {ω1, ..., ωm} to µ̃ in DBL, and in the last
inequality we used max{W1(µS , µ̄),W1(µ̂, µ)} ≤ maxi∈[m] diam(Ωi) (these inequalities are trivial
since the pairs of measures µS , µ̄ and µ̂, µ assign the same amount of probability mass into each
region Ωi). It remains to bound DBL(µ̄, µ̂). The following equality

DBL(µ̄, µ̃) = sup
f∈F

∫
f(dµ̄− dµ̃) = sup

f∈F

∑
i∈[m]

f(ωi)

(
ni

n
− ni +Ni

n

)
= sup

f∈F

∑
i∈[m]

f(ωi)Ni

n

allows to conclude that

E[W1(µS , µ)] ≤ 2

(
max
i∈[m]

diam(Ωi) +
m
√
log(1/δ)

nε
Gm(F)

)
.

The proof of the first claim is concluded by noting that

E[W1(µS , µS′)] ≤ E[W1(µS , µ)] + E[W1(µ, µS′)]

≤ 2

(
max
i∈[m]

diam(Ωi) +
m
√

log(1/δ)

nε
Gm(F)

)
+ E[W1(µ, µS′)].

For the second claim, recall from Corollary D.1 that

Gm(FBL) ≤


9
√

log(2
√
m)D√

m
d = 1

10D log(2
√
m)3/2√

m
d = 2

10D
√

log(2m1/d(d/2−1)2/d)

m1/d(d/2−1)2/d
d ≥ 3

.

Using this in the inequality from the first claim and using that diam(Ωi) = O(Dm−1/max{2,d}) for
all i ∈ [m] we obtain that

E[W1(µS , µS′)] = Õ

(
Dm−1/max{2,d} +

Dm1−1/max{2,d}
√

log(1/δ)

nε

)
+ E[W1(µ, µS′)].

Using the definition m = nε/[D
√
log(1/δ)], it follows that

E[W1(µS , µS′)] = Õ

D

(√
log(1/δ)

nε

)1/max{2,d}
+ E[W1(µ, µS′)].

Finally, since S′ ∼ µns , Lemma D.5 gives the following upper bound on the convergence of the
empirical measure in W1

E[W1(µ, µS′)] = O(Dn−1/max{2,d}
s ).

This finishes the proof.

I Impact Statement

Our work is theoretical in nature, so it does not have direct societal impacts. However, we believe
that our theory can improve the practice of differentially private synthetic data generation, leading to
a positive social impact by enabling safe data sharing within and across organizations.
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