
ar
X

iv
:2

50
6.

08
21

8v
1 

 [
cs

.C
R

] 
 9

 J
un

 2
02

5

gh0stEdit : Exploiting Layer-Based Access Vulnerability

Within Docker Container Images

Alan Mills, Jonathan White, Phil Legg

aComputer Science Research Centre, University of the West of England, Bristol, UK

Abstract

Containerisation is a popular deployment process for application-level virtualisa-

tion using a layer-based approach. Docker is a leading provider of containerisation,

and through the Docker Hub, users can supply Docker images for sharing and re-

purposing popular software application containers. Using a combination of in-built

inspection commands, publicly displayed image layer content, and static image scan-

ning, Docker images are designed to ensure end users can clearly assess the content

of the image before running them. In this paper we present gh0stEdit , a vulner-

ability that fundamentally undermines the integrity of Docker images and subverts

the assumed trust and transparency they utilise. The use of gh0stEdit allows an

attacker to maliciously edit Docker images, in a way that is not shown within the

image history, hierarchy or commands. This attack can also be carried out against

signed images (Docker Content Trust) without invalidating the image signature. We

present two use case studies for this vulnerability, and showcase how gh0stEdit is

able to poison an image in a way that is not picked up through static or dynamic

scanning tools. Our attack case studies highlight the issues in the current approach

to Docker image security and trust, and expose an attack method which could poten-

tially be exploited in the wild without being detected. To the best of our knowledge

we are the first to provide detailed discussion on the exploit of this vulnerability.

Preprint submitted to Elsevier June 11, 2025

https://arxiv.org/abs/2506.08218v1


Keywords: Container Security, Vulnerability Analysis, CVE

1. Introduction

Docker provides a lightweight solution for software distribution that packages

up all software dependencies in a single container image so that it can be readily

deployed in other computing environments. As a technology paradigm, since its

introduction in 2013, it has attracted widespread adoption in both cloud computing

systems and local deployments, and is regarded as an industry standard.

Docker Hub provides a readily available repository of many common software en-

vironments. Many developers utilise these images as the basis for further application

development. A key component of the Docker environment is the use of image layers,

whereby layers of functionality are built up in a modular fashion. For example, a

container image may have a Linux distribution as the base image, which then has a

Python environment built upon this, followed by software library dependencies, and

then followed by the application source code.

In this paper, we detail the exploitation of a vulnerability within the Docker

framework that we refer to as gh0stEdit . The vulnerability essentially allows the

manipulation of the image layers within a Docker container to embed malicious

content in a manner that would be indistinguishable from a benign image when

using common industry-standard reporting and scanning techniques. We also test

this attack on an image signed using the Docker Content Trust (DCT) and show

how the image signature is not invalidated. We believe that this is the first report

detailing the exploitation of this vulnerability, in which the integrity of an image can

be severely compromised.

We outline the vulnerability and we develop a proof-of-concept to illustrate how

this can be exploited as an attack vector. We conduct further analysis using a

2



variety of tools designed for inspecting Docker containers, and show that existing

toolchains fail to recognise the modification and show little to no change from the

benign container images.

We believe that this poses a critical security risk for developers and Continuous

Integration and Continuous Deployment (CI/CD) pipelines using available container

images. Docker Hub has reported over one billion downloads for some of the most

popular container images that would be used for further development. We have

disclosed our findings to Docker and have logged a Common Vulnerabilities and Ex-

posures (CVE) report with MITRE, to ensure that this vulnerability can be resolved

and mitigated against in the future.

2. Background

Containers are a lightweight form of virtualisation, with a focus on the application

layer. A container will include an application and all the required libraries and

packages to run that application. Additional packages and utilities are often omitted

to reduce “bloat”, and it relies on the host OS for OS-level components, such as the

kernel.

Containers are packaged as images, which are read-only templates that become

containers at runtime. These images are built utilising layers. Multiple containers

or images are able to share common base images and layers, which therefore reduces

duplication of commonly used layers1 (as illustrated in Figure 1).

This, along with the focus on keeping installed packages to the required minimum,

ensures that containerisation provides a lightweight virtualisation method. While

1https://docs.docker.com/get-started/docker-concepts/building-images/understanding-image-

layers/

3



Figure 1: Example of two containers with shared layers

images are commonly ‘pulled’ from online repositories, they can also be saved as

archive files2 which can be distributed and subsequently loaded onto other hosts. In

either format the images themselves are composed of layers, with each image also

containing a manifest.json that lists the layers that make up the image. In Docker

images there is also a linked config JSON file which is listed in the manifest. This

config will contain details for the image runtime, such as commands, environment

variables, and the construction of the root filesystem. This is provided as an array

of layers, with each layer represented by the sha256sum of the associated layer.tar.

This sha256sum represents the checksum of the content of this layer, using SHA256

and is part of the layer verification process to ensure filesystem integrity 3. If there

is a mis-match between the layers SHA256 checksum and the associated layer entry

2https://docs.docker.com/reference/cli/docker/image/save/
3https://github.com/moby/moby/blob/master/pkg/tarsum/tarsum_spec.md

4



Figure 2: Breakdown of a Docker image manifest, config and layer relationship

in the array then the image will fail verification. Figure 2 shows the relationship

between the manifest, config, layers and associated use of sha256sum, which have

been taken from an extracted image archive file.

The layer.tar contains all the files and changes within that layer. In the high-

lighted example we can that the SHA256 checksum for the layer.tar is the associated

entry for the layer in the image config. The JSON also details the parent layer, in

the example shown in Figure 2, the parent for the highlighted layer would be:

c4de813b514787fcf51c1a819257340d2cd55582bda6c1bf4976abd8ce3b182f.

Since the layers are an ordered array, the last (most recent) layer in any image is

5



always layers[-1]. We can therefore see that the last layer within this image would

be: bb08757677326f0612dfedb81d774197163a11f962cde60f12abe8fc38f21c4e.

The ordering of layers is important, as a change in one layer can be overwritten

by subsequent layers. For example, the installation of a package at layer 3 may then

be overwritten by its removal or replacement in layer 4. When taken into context for

the gh0stEdit, this meant that initial Proof of Concept (PoC) code was created to

automatically effect changes at the last layer (layers[-1]) to avoid any overwrites.

However, it is possible to make edits within earlier layers which can ensure that the

changes are less obvious and blend in with similar changes occurring at the target

layer. For example, if we are adding or replacing a binary within the /usr/local/bin

folder, doing so at the latest layer will make this change more apparent during deep

layer inspection using tools like Dive [1], especially if no other changes at this location

occur in this layer. However, by making this change at an earlier layer, but ensuring

that this was the last layer to make changes to this folder, our own edit blends into

the existing changes and will correlate with the associated layer commands. An

example of this is shown in Section 4.

3. Related Works

The effectiveness of container vulnerability scanning has often been discussed

with a focus on the number and severity of identified CVEs. Though there has

been discussion on the accuracy of different scanning tools, this is in the context of

missed CVEs or differing severities within images, rather than the overall use case

and functionality of vulnerability scanning. The combination of trusted images and

regular scanning is often presented as a key security measure for mitigating image

vulnerabilities and poisoned images.

6



In this section we examine existing works within container cyber security, with

a focus on container security and scanning solutions, as well as current research on

supply chain and container attacks. We discuss the currently recommended safe-

guards, which we then test against in our case studies, and highlight how our attack

fits within previously discussed but unexplored attack scenarios.

3.1. Container Security and Scanning software (OS)

Container security has been a prominent issue for many years. Thanh Bui ex-

amined the challenges associated with Docker security in their paper Analysis of

Docker Security in 2015 [2]. This study focused on the internal security mechanisms

of Docker, as well as its interaction with the Linux kernel. Bui analysed Docker’s

isolation capabilities, identifying concerns related to shared network resources, direct

kernel access and the potential impact of running “privileged” containers.

Since that time, there has been a marked shift in focus towards the security im-

plications and vulnerabilities of container images themselves, reflecting the evolving

nature and changing concerns within container based security.

In the paper, Mitigating Docker Security Issues, Robail Yasrab looked to “outline

some significant security vulnerabilities at Docker and counter solutions to neutralise

such attacks” [3]. Yasrab explored defences against various attacks, including poi-

soned images, and proposed strategies for mitigating these risks. These strategies

included the use of trusted and signed images through Docker Content Trust, along-

side regular security audits. Similarly, in the paper, Container security: Issues,

challenges, and the road ahead, Sultan et al. emphasised the necessity of “periodic

vulnerability scanning” for container images and recommended the use of trusted

images only, “verifying the images using signatures” [4]. The authors also stressed

the importance of dynamic and runtime scanning for container applications.

7



Liu et al. studied CVEs within Docker images, in their paper entitled Understand-

ing the Security Risks of Docker Hub, as well as the prevalence of malicious images

and sensitive parameters [5]. Their proposed framework employs a combination of

Anchore and the VirusTotal API to identify CVEs and malicious files, respectively.

The presence of a “malicious executable” is used as criterion to confirm that an im-

age is malicious, with an emphasis on the analysis of “executed programs”, which

are identified through the images entry file. The authors acknowledge the limitation

of their findings, noting that VirusTotal may fail to detect certain malware.

In their survey paper, Threat Modelling and Security Analysis of Containers: A

Survey [6], Wong et al. examine unresolved security issues within container environ-

ments. Using the STRIDE framework, they identified 12 vulnerabilities related to

container security, including issues surrounding image tampering and its subsequent

impact on CI/CD pipelines. The authors also discuss existing mitigation strategies

for these vulnerabilities, such as the use of scanning tools like Docker Scout and An-

chore (now superseded by Grype) to perform code scans at each stage of the build

process. While they acknowledge the limitations of scanning tools, their focus is

primarily on the number of vulnerabilities that remain undetected, rather than the

limitations of current scanning methodologies and the possibility that changes to an

image may be entirely overlooked by scans.

Another approach to ensuring container image security is explored by the authors

of Confine: Automated system call policy generation for container attack surface

reduction. Their research focuses on syscall monitoring within micro-services [7],

particularly addressing kernel vulnerabilities and preventing runtime escapes. How-

ever, their solution requires user input and is designed to capture syscalls during an

initial dynamic analysis and monitoring phase. In cases where an image has been

compromised by poisoning prior to deployment, malicious syscalls will be included

8



within those initially captured. This is particularly concerning where the main exe-

cutable has been compromised, and the attack vector has been carefully crafted to

align with the applications expected functionality.

The security measures and safeguards discussed in the aforementioned papers are

all explored within our attack case studies, where we demonstrate how gh0stEdit is

capable of evading both static and dynamic scans. Furthermore, we have successfully

altered a signed image without invalidating its signature, resulting in a poisoned

image that would pass through these security safeguards without detection.

3.2. Supply Chain and Container Attacks

In their paper, Ladisa et al. created a taxonomy of attacks on Open Source

Software (OSS) [8]. While their primary focus was on OSS packages, they also ex-

amined the impact of supply chain attacks on container images and Docker Hub.

Their study considered both attacks and safeguards, including responses from de-

velopers and maintainers, referred to in the paper as “domain experts”. Among the

safeguards discussed were the use and maintenance of a Software Bill Of Materi-

als (SBOM), generated through automated tools, the careful inspection of changes

during the build process and integration of scanner tools within the CI/CD pipeline.

In a related paper, Exploring the Threat of Software Supply Chain Attacks on

Containerised Applications [9], the authors investigate “container susceptibility to

security issues intentionally introduced by malicious actors”. They focus on the

impact of package vulnerabilities within the container ecosystem and the potential

to serve as a vector for supply chain attacks. They use the SBOM generated by

Docker for each container. However, they note that “certain dependencies installed

through commands in Docker files, as well as application dependencies, may not be

listed in the SBOM”. Although this gap can be mitigated by inspecting Docker files,

9



in our attack scenario, neither the Docker files nor the the generated SBOM reveal

the presence of altered binaries or indications of compromise. Our attack examples

also successfully evaded detection by both static and dynamic vulnerability scanners,

allowing this form of supply chain attack to bypass the suggested safeguards.

Tomaer et al. focus on Docker based attacks in their work, Docker security: A

threat model, attack taxonomy and real-time attack scenario of DoS [10]. They

emphasise that security is a “crucial concern” in the use of containerisation and

outline several attack scenarios. Within their attack taxonomy, they look at the

threat posed by poisoned images, highlighting the vulnerability of signed manifests

due to the lack of authentication from Docker. They note that “an attacker with a

signed manifest can transmit any image which can lead to serious vulnerabilities” [10].

However, their work includes only a limited case study, focusing primarily on a denial-

of-service (DoS) attack within the Docker environment. It should also be noted that

their work is a later, academic publication, that covers issues previously discussed

by Jonathan Rudenberg [11] who highlights weaknesses within the Docker image

verification process in 2015. This includes issues around the use of tarsum, the

ability to unpack data from the container image and the lack of properly validated

image manifest checking and verification.

Our work extends the findings of these previous studies by demonstrating how a

Docker image can be poisoned in a manner that evades currently recommended safe-

guards. We also provide a detailed case study that builds upon previously identified

attack scenarios. To the best of our knowledge, this is the first paper to identify and

exploit this specific attack methodology.

10



4. gh0stEdit Vulnerability

The vulnerability discussed in this paper pertains to the ability to access and

modify the raw layers of the container image. Once an image from Docker Hub has

been pulled, it can be saved and accessed as a tar archive through the terminal:

docker save -o python.tar python:3-12-slim. The extracted archive then pro-

vides access to all individual layers. Figure 3 illustrates the content of an extracted

image archive in a Linux system.

On Linux-based systems, the extracted image archive includes a manifest.json,

which contains hashes specifying the layers and their order for deployment. These

layers may consist of bash commands or binary content, to construct the container.

Figure 4 illustrates the concept of Docker layers4. Specifically, in this example

the Dockerfile instructions copy content into the container image. Consequently, the

corresponding layer for this instruction will contain the new files and folders added

by the COPY instruction.

This layer-based approach offers significant utility, as discussed in Section 2, as

well as transparency. Users can observe modifications made at each layer using built-

in Docker functionality (e.g., docker history), third party tools (e.g., Dive [1]), and

the image hierarchy view as displayed on the Docker Hub webpage [12] (Figure 5).

Any changes to files, whether they are added, removed or modified, results in the

creations of a new layer, which is recorded as part of the image history. Additionally,

Docker offers a squash functionality [13], which can merge all layers into a single

one. While this could be used to obfuscate changes within an image, the use of such

functionality may appear suspicious, prompting further investigation, or causing an

image to be deemed untrustworthy by the community.

4https://docs.docker.com/build/guide/layers/

11



Figure 3: Extracted archive content of Python 3.12-slim container image (EXT4 filesystem)

In contrast, our approach edits the content of the layer directly within the ex-

tracted image archive. This method prevents changes to the container being reflected

in the image hierarchy. Changes can be targeted at specific layers so that alterations

blend with other functionality present at the same level. Consequently, identifying

such modifications using layer-based inspection tools such as Dive become more dif-

12



Figure 4: Example of Docker layers to illustrate copying new file content into a layer

ficult. For example, if specifically targeting the folder (/usr/bin/local) then there

will be multiple modifications present in the original image. In the original image

the python3 is merely a symbolic link, whereas in our edited compromised image, it

appears as a binary executable. This subtle alteration would likely be unnoticed and

is easy to overlook. Especially without a means of direct comparison. The nature of

this attack vector is explored further in Section 5.

Once the content of a layer has been changed, the attacker updates the sha256sum

within the diff ids entry of the image JSON configuration. This value is then used

to verify the layers being loaded into the Docker image (see Section 2). The image

content is then re-archived, complete with the edited layer, and loaded back into

the Docker environment. Docker will then recognise the change in the layer and

overwrite it. Crucially, this change is not visible in the image history or hierarchy.

Currently, Docker image metadata does not record time of edits, meaning the image’s

creation timestamp will remain unchanged. The only indication that a modification

has occurred is the altered hash value and minor difference in the file size at the

target layer (layer 7), as shown in Figure 5.

13



(a) gh0stEdit image (b) original Python 3.12-slim

Figure 5: Docker image hierarchy (a) gh0stEdit image and (b) original Python 3.12-slim (as of

29th August 2024).

A key issue here is how the layers and image history are handled within Docker

images. As part of the image build process the CreatedBy value, which contains the

commands used to create an image layer 5 are populated during image creation and

thereafter read based on existing image metadata. This means that if an image is

edited outside the expected Docker build path the image metadata is not updated.

This can be achieved through a fairly simple process because, as highlighted by

Jonathan Rudenberg [11], the image manifest relies on the use of tarsums and

allows end users to unpack the image content. This reliance on tarsums means that

as long as the check sum for the layers archive file (layer.tar) matches what is in the

image manifest, it will be accepted as a legitimate part of the image. It is therefore

5https://github.com/moby/moby/blob/master/api/swagger.yaml

14



possible to unpack the image, carry out an edit and then update the associated

tarsum, leading to an alteration which passes the image verification process, but

bypasses the use of the build process. As such commands like Docker history or

inspect will be displaying results based on metadata that was true at the point of

image creation.

We demonstrate the impact of this vulnerability through two attack examples. In

the first case, gh0stEdit is employed to introduce a malicious binary into the Python

environment. The second case involves downgrading libraries within an existing

package, thereby introducing known CVEs that can be subsequently exploited. These

attack scenarios are described in detailed, along with our analysis of the attacks in

the following section. We further build on these attack cases by creating a PoC script

which automate the attack, using gh0stEdit to include a reverse shell within images

and have it dynamically executed as part of the intended image Entrypoint. To

conduct our analysis of the attack use cases, we utilise a range of widely-adopted

container scanning tools, which are actively used by the community. These tools are

summarised in Table 1. Tools such as Clair, Trivy, Docker Scout and Grype have

been selected as they, or the successor tool (Grype being the successor to Anchore),

have been used in existing academic research around container security, [5], [14],

[15], [16], [17] and [18] or to provide functionality that is not covered by these tools

to ensure scientific rigour as part of our analysis. For example the use of dynamic

analysis provided by NeuVector, non-local image inspection provided by Skopeo or

Malware specific detection through the industry standard use of YARA rules or

ClamAV scanner. We compare the original base image with the maliciously edited

image using each scanner to evaluate whether there are any observable indicators of

compromise are present.

15



Scanner Description Type

ClamAV Malware Scanner Static

Docker Scout Vulnerability Scanner Static

Grype Vulnerability Scanner Static

Skopeo Image Inspection Static

Trivy Vulnerability Scanner Static

YaraHunter Malware Scanner Static

NeuVector Full Lifecycle Container Security Dynamic

Table 1: Scanning tools utilised

5. Attack Use Case 1: Malicious Python

In our first use case, we demonstrate how a commonly used binary can be com-

promised. Using the python:3.12-slim image from the official Python Docker Hub

repository as our base, we modify the python3 symbolic link to instead use the com-

promised binary. The compromised binary functions as a wrapper for the underlying

Python installation. However, any argument passed to the wrapper is first sent as

the data portion of a web request to a Canarytoken [19] before being forwarded

to the legitimate python3.12 installation. The modified binary was created using

PyInstaller [20]. This approach preserves the intended functionality of the original

container image, while introducing a “poisoned” element in a demonstrable manner.

5.1. ClamAV

ClamAV [21] is an Open Source (OS) malware scanner which has served as the

foundation for previous container specific malware scanners such as Dagda [22]. To

perform the scan, both the original base image and the compromised image were

exported using Docker export, and extracted. ClamAV was run recursively against

these exported filesystems. Crucially, the poisoned binary was not detected, with

both scans reporting 0 infected files. The only indication of a difference between the

16



Figure 6: ClamAV scan results - Python image. Left - Scan results for the edited image. Right -

Scan results for the base image.

two images was an increase in the number of scanned files and the total amount of

data scanned within the edited image, as shown in Figure 6. This discrepancy arises

because in the base image python3 is a symbolic link, while in the edited image it is

a binary file.

5.2. Docker Scout

Docker Scout [23] is a vulnerability scanner provided by Docker (which replaced

Docker Scan [24]) and is designed to scan images for vulnerabilities and provide com-

parisons between different images. It can be run locally as a Command Line Interface

(CLI) plugin, and can also be enabled within repositories to provide vulnerability

information directly within Docker Hub (as shown in Figure 5). Docker Scout was

used as a CLI plugin to compare the edited image with the original base image. As

shown in Figure 7, the scan reported no difference in the packages contained within

the two images, with both images displaying the same number of vulnerabilities re-

ported, all of which were related to CVEs present within the base image. Unlike

ClamAV, Docker Scout did not report any differences in the number of files or pack-

ages between the two images, although as with ClamAV, it did identify a difference

in image size.

17



Figure 7: Docker Scout comparative results for the analysed image (compromised) and the

comparison image (original).

5.3. Grype

Similar to Docker Scout, Grype [25] is a vulnerability scanner provided by An-

chore. Both the edited and original image were scanned, with no differences reported

in terms of vulnerabilities or packages. Grype’s output also includes a base64-encoded

manifest and configuration file values. When comparing the scan outputs for both

images, differences were observed in these encoded values, along with different hash

18



ID values for the image digest and altered layer. These discrepancies are due to the

changed sha256 sum values for the edited layer. A difference in image size was also

reported.

5.4. Skopeo

Skopeo [26] can be used to inspect Docker images, providing similar functionality

to the Docker history or inspect commands. It allows users to inspect both local and

remote container images prior to downloading. While Skopeo identified differences in

size and hash ID for the altered layer when comparing the two images, the commands

and image history shown by the tool were identical between them.

5.5. Trivy

Trivy [27], a vulnerability scanner provided by Aqua Security, functions similarly

to Docker Scout and Grype. It reported no differences in vulnerability or package

between the original and edited images. As with Grype, the difference in hash IDs

for the layers and image digests were reported. However, unlike Grype, Trivy does

not include manifest or image sizes its output reports.

5.6. YaraHunter

YaraHunter [28] by Deepfence, scans container images for indications of malware

using a YARA ruleset and provides details on any matched signatures. In the original

image, YaraHunter identified four matches, all associated with SpyEye malware,

which were linked to various packages such as pip wheel files and dpkg library files.

However, we believe this detection of SpyEye in the base image is highly likely to

be a false positive, as there is no indication that the original image includes any

malicious content. In the modified image, YaraHunter flagged the altered python3

19



binary. However, the severity is marked as low, and the binary was flagged due to

being created by PyInstaller. An example of the output is shown in Code Listing 1.

Listing 1: YaraHunter finding - Edited Python3 binary

"Matched Rule Name": "MachO_File_pyinstaller",

"FileSeverity": "low",

"Full File Name": "/usr/local/bin/python3",

"rule meta": [

"",

"",

"author : KatsuragiCSL (https :// katsuragicsl.github.io) \n",

"description : Detect Mach -O file produced by pyinstaller \n

"

],

We believe it would be highly likely that the association between Python and

PyInstaller would mean that many analysts would interpret this detection as a false

positive, given that the typical use of PyInstaller for packaging Python binaries.

Although it is possible to obfuscate the binary and avoid detection by YaraHunter

through a trial and error, we have included this initial match to demonstrate that,

even without attempts at obfuscation, the detection could easily be misinterpreted

as a false positive. This illustrates that without further context or analysis, detection

tools may misidentify legitimate binaries as malicious due to the packaging methods

used.

5.7. NeuVector

NeuVector is an open-source “Full Lifecycle Container Security Platform” [29].

Unlike the previous static scanning tools, NeuVector is a dynamic container security

tool that provides features such as live traffic analysis, vulnerability analysis and

20



Figure 8: NeuVector Traffic Activity dashboard (top) and an extract from the summary report

(bottom).

scanning of deployed containers, and run time protection for both the containers and

host system. NeuVector was deployed using Helm charts [30] via Minikube [31]. Once

NeuVector was operational both the poisoned and original images were run within

the NeuVector deployment. By default, NeuVector operates in the “Discover” mode,

which learns the baseline behaviours of containers. The output of this mode raised

no alerts for the poisoned image. Network traffic was observed and logged, but no

security alerts or notifications were generated, as shown in Figure 8.

Next, the deployment was restarted and set to “Monitor” mode before the the

original or poisoned images were loaded and run. In this mode, NeuVector detected

network traffic and raised a security alert, as by default the “Monitor” mode will alert

21



on network activity to or from containers. However, the binary itself was not flagged

within the container, with both the original and poisoned image reporting the same

number of vulnerabilities. The only indicator in difference of behaviour of the two

images was the network traffic. While it is not uncommon for containers and pods to

transmit usage statistics, such as those collected by the popular Container Network

Interface tools like Calico 6, we wanted to conduct further testing to determine

whether it would be possible to conceal this network traffic from detection while

running the container in “Monitor” mode from the outset.

To facilitate this additional testing, we created a new poisoned image with addi-

tional modifications to the binary (dh157-pid). In this test case, the binary sent a

DNS request via the underlying host container. To achieve this, the container was

run with privileged access and the host PID set to True (as shown in Code Listing 2).

6https://docs.tigera.io/calico/latest/reference/resources/felixconfig

22



Listing 2: Run time parameters required for network evasion within NeuVector

{

"apiVersion": "v1",

"spec": {

"hostPID": true ,

"containers": [

{

"name": "dh157 -pid",

"image": "dh157/privileged :3.12 - slim",

"stdin": true ,

"tty": true ,

"command": ["/bin/bash"],

"securityContext": {

"privileged": true

}

}

]

}

}’

In this modified image and binary, a background task was launched using the

nsenter 7 command that executed a simple nslookup bash command to generate

traffic that would trigger a Canarytoken from within the host namespace whenever

Python was called. This method successfully evaded detection by NeuVector, as

the network traffic generated by the original poisoned image (dh157-python) was

detected, while the traffic from the newly created image (dh157-pid) was not (Fig-

ure 9). This concealment allowed our potentially malicious traffic to be transmitted

7https://man7.org/linux/man-pages/man1/nsenter.1.html

23



Figure 9: NeuVector Traffic Activity dashboard and Security Alert details (top) and an extract

from the summary report (bottom).

undetected by NeuVector, and the expected alert from the Canarytoken was trig-

gered.

The deployment was then terminated and restarted, this time only executing the

newly created container dh157-pid. The deployment was configured to “Protect”

mode before launching the container. Initially, the payload triggered a “profile vio-

lation” alert (as shown in Figure 10) due to a process decoupling, which allowed the

nslookup command to run independently from the container process. By removing

the decoupling mechanism and threading, and executing thenslookup command as

a subprocess only, it became possible to run the container in a “Protected” mode

deployment without raising any security alerts.

It is notable that all containers reported the same number of vulnerabilities (Fig-

ure 11). This meant that once network traffic had been evaded there was no other

indicators that would suggest any differences between the original image and the

compromised image.

24



Figure 10: Alerts raised within NeuVector by the dh157-pid container

Figure 11: NeuVector Vulnerability reporting for the original and edited images

While this method requires an insecure container configuration, such settings

could easily be hidden in a pre-provided deployment. This configuration is also not

without legitimate use cases, as many applications require access to elements from

the host system to work, such as the use of the Docker socket for tools like Dive.

Therefore, it is feasible that a similar security-based application could be configured

both with a privileged security context and and with access to the hostPID enabled.

For instance, a containerised Intrusion Detection System (IDS) or process monitoring

tool such as cAdvisor (Container Advisor) 8 would have a “legitimate” reason to be

run under such circumstances. If such imagers were altered using gh0stEdit, they

8https://github.com/google/cadvisor/issues/2251

25



would be poisoned in a way that currently evades both static and dynamic analysis

tools.

6. Attack Use Case 2: Downgrading libraries

In our second use case, we demonstrate how gh0stEdit can be used to include

additional packages in a base image, potentially introducing known CVEs. We il-

lustrate this with two base images: Ubuntu 20.04 and Alpine 3.20.2. In the Ubuntu

example, we add the less package, which has documented vulnerabilities associated

with it (CVE-2024-32487 9). For Alpine, we replaced the BusyBox package with an

older version containing documented CVEs, including CVE-2022-48174 10.

The base images used were ubuntu:20.04 and alpine:3.20.2, both sourced from

the official Docker Hub repositories. As of August 28th 2024, the ubuntu:20.04

image contained 1 medium and 10 low severity CVEs, while the alpine:3.20.2 image

had no reported vulnerabilities according to Docker Scout. Edited versions of both

images were created by adding the vulnerable binaries, and comparison scans were

conducted using Docker Scout, Grype, NeuVector and Trivy. Malware scans were

omitted as the packages were being replaced with official binaries and gh0stEdit had

already been shown to evade detection by Skopeo, which would provide no details

specific to the packages within the images, the focus of this case study.

None of these tools identified any difference between the original and edited im-

ages. No CVEs were reported for the original or edited Alpine image and no addi-

tional CVEs reported for the edited Ubuntu image. Docker Scout was also used to

compare the edited and original images, as in the previous binary modification at-

9https://nvd.nist.gov/vuln/detail/CVE-2024-32487
10https://nvd.nist.gov/vuln/detail/CVE-2022-48174

26



Figure 12: Docker Scout compare results - Ubuntu and less. Left - Scan results for the edited

image. Right - Scan results for the base image.

tack, and similarly, no differences were detected. Figures 12 and 13 show the Docker

Scout comparison results. These images additionally show manual commands exe-

cuted within the images to demonstrate the presence of the newly added or altered

binaries, despite the scanners failing to detect these modifications.

27



Figure 13: Docker Scout compare results - Alpine and BusyBox. Left - Scan results for the edited

image. Right - Scan results for the base image.

This use case highlights an additional attack vector that can be exploited us-

ing gh0stEdit. Malicious actors could intentionally replace or introduce vulnerable

packages, which could later be exploited. This case also reveals a significant flaw in

current container image vulnerability analysis methods, which rely on self reported

SBOM and package lists. These methods fail to account for all the packages installed

28



within the images, leaving a substantial gap for attackers to exploit.

6.1. Docker Trust

To test our attack method against all recommended safeguards, we created a

trusted and signed image based on an Alpine base image. This image was stored

in a separate repository from all other poisoned images and was signed following

Docker’s guidelines for Docker Content Trust (DCT) [32]. The purpose of Docker

Content Trust is to ensure the integrity of images, by signing an image manifest.

The intent of DCT is to provide a level of trust for signed images, as stated by [32]

“[DCT] provides the ability to use digital signatures for data sent to and received from

remote Docker registries. These signatures allow client-side or runtime verification

of the integrity and publisher of specific image tags.”.

To determine whether the use of DCT would hinder our attack. We inspected the

signature of the image before and after altering it by adding in a vulnerable version

of BusyBox as described in Section 6. We successfully modified the image without

any obvious impact or invalidation of the local signature. This is because there is

currently no validation of the signed images digest against the local images digest.

Only by conducting a full inspection of the image and comparing the RepoDisgest

value with that shown in the trust output would it be possible to identify that

the image had been tampered with. This process would effectively require users to

“double check” the DCT output manually.

We recorded this attack in its entirety and made the video available via our

GitHub repository https://github.com/amills157/gh0stEdit, along with the full

scan results from the attack examples detailed above.

29



6.2. Automated and Dynamic Attacks

Attack cases 1 and 2 breakdown the vulnerability, attack method and subsequent

scanning methodologies in detail to provide reproducibility and awareness. Building

on these attack cases we created a simple bash script PoC that can automate the

attack chain. This script can be used to pull down the latest version of an image,

save it as a tar and extract it. Once extracted the script will find the latest layer

to make a change to a specified directory (for example /usr/bin/local), this then

becomes the target layer for the attack and modification. Once the malicious edit

has taken place the required manifest file is updated and a new .tar file created.

This .tar is then loaded under the same name as the original image. As part of

our automated experimentation we created a simple Rust reverse shell binary that

was agnostic to the different Linux OS baselines (Alpine, RHEL, Debian, etc). The

binary was also designed to take command line arguments which, after launching

the reverse shell connection, it would then execute. To allow the automation of

this attack, the name of the reverse shell binary (ghostedit rev shell) was pre-

pended to the image Command or Entrypoint as part of the gh0stEdit, so that any

image downloaded would automatically execute the created Rust binary first, before

continuing with the expected image execution. This allowed the gh0stEdit attack to

be tested as part of an automated, dynamic attack chain in a easy and repeatable

manner.

This attack script was tested against the images listed in Table 2,as they had

been identified as common base images across multiple sources ([33] and [34]) which

represented different use cases and Linux OS.

A base image is something that is used to build other applications and services

on top of. For example, using the Python base image to deploy bespoke, Python

based, microservices. Therefore if the attack can successfully be carried out against

30



Base Images

HTTPD

Nginx

Node

Postgres

Red Hat Universal Base Image

Redis

Ubuntu

Table 2: Base images tested

these images, any image built on top of them will be equally vulnerable. Making

such images viable targets, which themselves represent a very wide attack vector, for

example, the Nginx image had been pulled over 9,000,000 times just between March

3rd and March 9th (2025). Alpine and Python were also identified as popular base

images, but has they had been used as part of attack cases 1 and 2, so were omitted

from the automated attack.

The attack was successful for all of the listed images, with the reverse shell con-

necting to the waiting listener, before continuing the normal execution of the image.

This would give the attack access to the container files-system as the default user,

often root. In the case of the Nginx image this allowed the attacker to dynamically

alter the default index page whilst the container was running (see Figure 14).

This helps highlight how the gh0stEdit vulnerability can be exploited as part of

a automated attack chain, for example in a CI/CD pipeline, which is discussed and

expanded on further in 7.

7. Discussion

The results from our attack examples and subsequent analysis demonstrate that

this vulnerability can be exploited to compromise Docker images in ways that bypass

31



Figure 14: Malicious edit of the running Nginx container, via a gh0stEdit deployed RCE

both static and dynamic analysis. The only detectable changes in the edited images

are the altered layer, image digest, and the increased image size. The image creation

time, commands, and history remain unchanged, and newly added binaries or CVEs

are not detected during scans. We have also demonstrated that by exploiting the

gh0stEdit vulnerability, it is possible to create an image capable of sending out

network traffic without raising any security alerts. The full scanner results can be

found on our GitHub page11.

The detectable indications of change rely on having a known ‘original’ comparison

image for reference. In a real-world attack scenario, such as a poisoned image in a

Docker repository or an image maliciously altered within a development environment,

detecting these changes would be extremely difficult. Image update are common, as

seen in the official Python repository, which updated multiple images between 4th-8th

and 13th-15th August 2024. These updates result in different image digests and layer

11https://github.com/amills157/gh0stEdit

32



IDs, particularly for images which are not tagged with a specific patch version, such as

3.12-slim or latest. In this scenario, once an image compromised using the gh0stEdit

vulnerability is present in a repository, direct comparison becomes infeasible. The

most reliable method of detecting such an attack would involve manual, in-depth

layer-based analysis combined with reverse engineering and version checking of all

installed binaries against the known SBOM.

Within a production environment the exploitation of this vulnerability could

occur at multiple stages. Manual exploitation could be carried out by a malicious

insider with access to a repository at almost any stage. If a legitimate change is

required, such as updating the code base for a container image, then gh0stEdit

could be deployed simultaneously, to affect a malicious change that is masked by

the legitimate update, providing ”cover” for pushing a new version of an image to a

repository.

The use of tags and labels 12 within production environments 13 also provides

another perfect ”cover” for the use of gh0stEdit. If image (re)tagging is automated

within a CI/CD pipeline then a malicious edit to this pipeline will impact all images,

potentially lead a supply chain attack on a massive scale.

External attackers may also make use of gh0stEdit in combination with typo

squatting or repository hijacking attacks. Making malicious edits to a legitimate

image and then uploading it under similar but different names, confident in the

knowledge that (currently) it will pass all industry recommended scanning practices,

elevating this attack path to dangerous new heights compared to previous attempts

12https://www.docker.com/blog/docker-best-practices-using-tags-and-labels-to-manage-docker-

image-sprawl/
13https://blog.nashtechglobal.com/docker-tagging-strategies-for-deploying-to-production

33



which have been identified through the use of static scanning tools or image layer

inspection [35].

This type of attack evasion, combined with increased popularity of tools such as

Kubernetes and Docker in DevOps [36], provides a wide attack surface that requires

a low level of technical complexity to achieve. The main mitigating factor for the

successful use of gh0stEdit is access to either a trusted repository or deployment

pipeline. However any developer operating on a process that open source images

which pass static or dynamic scans, such as those covered in this paper, are safe

to use, is at risk of a significant supply chain attack through the exploitation of

gh0stEdit.

As gh0stEdit is itself a way to exploit an existing vulnerability within Docker

images, the attacks that it can be utilised for are varied. As demonstrated as part of

our case study it is possible to include malicious binaries which can connect out from

the container image itself. This can take the form of CryptoMiners, a commonly

deployed malware within container images, or binaries designed to exfiltrate logging

or confidential data as part of a targeted attack (such as an insider threat). It

could also be used to deploy backdoors or downloaders as part of a staged attack,

however attackers would still be confined to the container environment, at least

initially.Attacker motivations and targets may also vary, for example gh0stEdit could

be used in combination with Kubernetes specific ransomware attacks [37] or other

destructive attacks. The main mitigation to such attacks is the potential for network

traffic to be identified stopping a long running attack in its tracks. Something which

can be overcome, but would require either insider knowledge of the targets defensive

posture or a wide spread attack aiming to infect and capitalise on poor cyber security

practice and defences.

The attack examples and analysis presented in this paper highlight significant

34



vulnerabilities within the current container ecosystem and approaches to Docker-

based security. Fundamentally, the recommended safeguards for container-based

security rely on an assumed transparency and inherent trust in the container image.

End users and scanning tools trust that the image hierarchy and self-reported SBOMs

are accurate, a trust that gh0stEdit exploits.

We have also demonstrated that the gh0stEdit exploit is effective on images signed

as part of the Docker Content Trust (DCT) process, underscoring the severity of this

attack and revealing issues within the DCT image signing process. To mitigate this

risk, image signatures should be verified and invalidated locally to ensure signed

images are not subsequently tampered with. Currently a signed image could be

maliciously altered without any obvious indications of modification. In a CI/CD

environment, this could result in the poisoned image being deployed as part of a

production-ready asset, having passed all recommended safeguards.

7.1. Cross Compatibility

The primary environment used during the testing and investigation of gh0stEdit

was an Ubuntu 20.04 LTS, which uses (by default) the EXT4 filesystem. Testing

was however carried out within a CentOS 9 stream Virtual Machine, using the XFS

filesystem. Within the XFS filesystem the structure of the docker images when

saved and extracted differed, with additional nesting layers and JSON files. Whilst

this meant our automated script did not work, having been designed for the EXT4

environment, manual testing of the gh0stEdit vulnerability was successful. Fig-

ure 15 shows the comparison between the Redis image which has been altered, using

gh0stEdit, on an XFS system and the official image. The edited image had the

reverse shell added, as described in 6.2 and we can see that there are no obvious

changes to either the layers or the image Command.

35



Figure 15: Comparison of edited and official Redis images - XFS gh0stEdit

8. Responsible Disclosure and Ethical Considerations

The gh0stEdit exploit was responsibly disclosed to Docker on the 14th of August

2024. Our disclosure included a Proof-of-Concept (PoC) bash script for editing the

final layer within a Docker image, a video demonstration of the exploit, and an edited

Docker image for analysis. All artefacts were shared privately with Docker to avoid

third-party exposure or reverse engineering. Subsequent updates and further attack

examples, such as the attack on signed images, were also communicated privately

with Docker under their vulnerability disclosure policy 14.

We acknowledge that the attack methods discussed in this paper could be mis-

14https://www.docker.com/trust/vulnerability-disclosure-policy/

36



used, but we believe that publicly disclosure is necessary to raise awareness of these

vulnerabilities. At present, no comprehensive measures are in place to prevent such

attacks occurring. Without open discussion and demonstration, developing a solu-

tion will be unlikely. We encourage the academic and cyber security communities

to act on these findings and work towards enhancing the security of the container

ecosystem.

9. Conclusions and Further Work

In this paper we present gh0stEdit, the exploitation of a vulnerability in Docker

images that enables attackers to compromise the integrity of an image. By saving

an image as an archive file, an attacker can directly edit the layers, overwriting ex-

isting layers with malicious edits. Our case studies demonstrate that these edits are

extremely difficult to detect and can bypass recommended industry-standard safe-

guards, including static and dynamic scanning, as well as image signing via Docker

Content Trust (DCT). Using this exploit we successfully introduced a poison binary

and intentionally added CVEs into images, which went undetected by multiple vul-

nerability scanners that are commonly used. We also showed that an image signed

through DCT can be maliciously altered without invalidating its signature. To the

best of our knowledge we are the first to publicly detail and discuss the exploitation

of this vulnerability.

This exploit presents a serious threat, particularly in the context of software

supply chain attacks and invalidates existing trust in image transparency. These

malicious edits do not appear in an image’s history, hierarchy, commands, or SBOM.

It would therefore be challenging to determine if this vulnerability has been exploited

in practice without conducting an in-depth manual inspection of the image.

37



To mitigate against gh0stEdit, container image scanners and safeguards need to

be restructured. Security checks that rely on self-reported data should be replaced

with a “zero trust” approach. Content must be directly examined to ensure in-

stalled packages are free of known vulnerabilities, rather than relying on self-reported

SBOMs.

One possible solution would be the introduction of an “image or layer edit time”

field, which would be reported alongside existing image metadata, such as the image

creation date. This would ensure that any post-creation changes to the container are

evident, and could mitigate against gh0stEdit.

Additionally, the logic behind image signing and Docker Content Trust needs

to include a verification check between the signed RepoDigest and the digest of the

inspected image. This would ensure that any changes made to an image would

invalidate its signed status, providing an additional layer of security.

Acknowledgements

This work was supported by the College of Arts, Technology and Environment

at the University of the West of England.

References

[1] Dive, https://github.com/wagoodman/dive (Last accessed: 28 August 2024).

[2] T. Bui, Analysis of docker security, arXiv preprint arXiv:1501.02967 (2015).

[3] R. Yasrab, Mitigating docker security issues, arXiv preprint arXiv:1804.05039

(2018).

38



[4] S. Sultan, I. Ahmad, T. Dimitriou, Container security: Issues, challenges, and

the road ahead, IEEE Access 7 (2019) 52976–52996.

[5] P. Liu, S. Ji, L. Fu, K. Lu, X. Zhang, W.-H. Lee, T. Lu, W. Chen, R. Beyah,

Understanding the security risks of docker hub, in: European Symposium on

Research in Computer Security, 2020, pp. 257–276.

[6] A. Y. Wong, E. G. Chekole, M. Ochoa, J. Zhou, Threat modeling and security

analysis of containers: A survey, arXiv preprint arXiv:2111.11475 (2021).

[7] S. Ghavamnia, T. Palit, A. Benameur, M. Polychronakis, Confine: Automated

system call policy generation for container attack surface reduction, in: 23rd In-

ternational Symposium on Research in Attacks, Intrusions and Defenses (RAID

2020), 2020, pp. 443–458.

[8] P. Ladisa, H. Plate, M. Martinez, O. Barais, Sok: Taxonomy of attacks on

open-source software supply chains, in: 2023 IEEE Symposium on Security and

Privacy (SP), IEEE, 2023, pp. 1509–1526.

[9] M. Mounesan, H. Siadati, S. Jafarikhah, Exploring the threat of software supply

chain attacks on containerized applications, in: 2023 16th International Confer-

ence on Security of Information and Networks (SIN), IEEE, 2023, pp. 1–8.

[10] A. Tomar, D. Jeena, P. Mishra, R. Bisht, Docker security: A threat model, at-

tack taxonomy and real-time attack scenario of dos, in: 2020 10th International

Conference on Cloud Computing, Data Science & Engineering (Confluence),

IEEE, 2020, pp. 150–155.

[11] Docker image insecurity, https://titanous.com/posts/docker-insecurity

(Last accessed: 17 March 2025).

39



[12] Docker hub, https://www.docker.com/products/docker-hub/ (Last ac-

cessed: 28 August 2024).

[13] Docker build — docker docs, https://docs.docker.com/reference/cli/

docker/build-legacy/#squash (Last accessed: 28 August 2024).

[14] O. Javed, S. Toor, Understanding the quality of container security vulnerability

detection tools, arXiv preprint arXiv:2101.03844 (2021).

[15] R. Shu, X. Gu, W. Enck, A study of security vulnerabilities on docker hub,

in: ACM Conference on Data and Application Security and Privacy, 2017, pp.

269–280.

[16] K. Wist, M. Helsem, D. Gligoroski, Vulnerability analysis of 2500 docker hub im-

ages, in: In: Advances in Security, Networks, and Internet of Things, Springer,

2021, p. 307–327.

[17] L. Chen, Y. Xia, Z. Ma, R. Zhao, Y. Wang, Y. Liu, W. Sun, Z. Xue, Seaf: A

scalable, efficient, and application-independent framework for container security

detection, Journal of Information Security and Applications 71 (2022) 103351.

[18] A. Mills, J. White, P. Legg, Ogma: visualisation for software container security

analysis and automated remediation, in: 2022 IEEE International Conference

on Cyber Security and Resilience (CSR), IEEE, 2022, p. 76–81.

[19] Introduction — canarytokens, https://docs.canarytokens.org/guide/

(Last accessed: 28 August 2024).

[20] Pyinstaller manual, https://pyinstaller.org/en/stable/ (Last accessed:

28 August 2024).

40



[21] Clamavnet, https://www.clamav.net/ (Last accessed: 28 August 2024).

[22] Dagda, https://github.com/eliasgranderubio/dagda (Last accessed: 28

August 2024).

[23] Docker scout, https://github.com/docker/scout-cli (Last accessed: 28 Au-

gust 2024).

[24] Docker scan, https://github.com/docker/scan-cli-plugin (Last accessed: 15 May

2023).

[25] Grype, https://github.com/anchore/grype (Last accessed: 28 August 2024).

[26] Skopeo, https://github.com/containers/skopeo (Last accessed: 28 August

2024).

[27] Trivy, https://github.com/aquasecurity/trivy (Last accessed: 28 August

2024).

[28] Yara hunter, https://github.com/deepfence/YaraHunter (Last accessed: 28

August 2024).

[29] Neuvector, https://github.com/neuvector/neuvector (Last accessed: 28

August 2024).

[30] Helm! — charts, https://helm.sh/docs/topics/charts/ (Last accessed: 28

August 2024).

[31] Welcome! — minikube, https://minikube.sigs.k8s.io/docs/ (Last ac-

cessed: 28 August 2024).

41



[32] Content trust in docker, https://docs.docker.com/engine/security/

trust/ (Last accessed: 28 August 2024).

[33] Top ten most popular docker images each con-

tain at least 30 vulnerabilities, https://snyk.io/blog/

top-ten-most-popular-docker-images-each-contain-at-least-30-vulnerabilities/

(Last accessed: 17 March 2025).

[34] Top 15 docker containers in 2024, https://analyticsindiamag.com/

ai-trends/top-docker-containers/ (Last accessed: 17 March 2025).

[35] Analysis on docker hub malicious images: Attacks

through public container images, https://sysdig.com/blog/

analysis-of-supply-chain-attacks-through-public-docker-images/

(Last accessed: 17 March 2025).

[36] Popular technologies in the devops stack 2024, https://www.statista.com/

statistics/1292382/popular-technologies-in-the-devops-tech-stack/

(Last accessed: 17 March 2025).

[37] Siloscape, software s0623, https://attack.mitre.org/software/S0623/

(Last accessed: 17 March 2025).

42


