
A Systematic Literature Review on Continuous Integration and
Deployment (CI/CD) for Secure Cloud Computing

Sabbir M. Saleh1 a, Nazim Madhavji1 b and John Steinbacher2 c
1Department of Computer Science, University of Western Ontario, London, Ontario, Canada

2IBM Canada Lab, Markham, Ontario, Canada

ssaleh47@uwo.ca, madhavji@gmail.com, jstein@ca.ibm.com

Keywords: Continuous Integration, Continuous Deployment, CI/CD, Cloud, Security, Systematic Literature Review.

Abstract: As cloud environments become widespread, cybersecurity has emerged as a top priority across areas such as

networks, communication, data privacy, response times, and availability. Various sectors, including industries,

healthcare, and government, have recently faced cyberattacks targeting their computing systems. Ensuring

secure app deployment in cloud environments requires substantial effort. With the growing interest in cloud

security, conducting a systematic literature review (SLR) is critical to identifying research gaps. Continuous

Software Engineering, which includes continuous integration (CI), delivery (CDE), and deployment (CD), is

essential for software development and deployment. In our SLR, we reviewed 66 papers, summarising tools,

approaches, and challenges related to the security of CI/CD in the cloud. We addressed key aspects of cloud

security and CI/CD and reported on tools such as Harbor, SonarQube, and GitHub Actions. Challenges such

as image manipulation, unauthorised access, and weak authentication were highlighted. The review also

uncovered research gaps in how tools and practices address these security issues in CI/CD pipelines, revealing

a need for further study to improve cloud-based security solutions.

1 INTRODUCTION

Cloud computing has become the go-to method for

software deployment because it offers clear

advantages over traditional setups. These include

flexible infrastructure, accessible data storage and

sharing, less administrative hassle, and access from

anywhere. Continuous Integration (CI), originating

from Extreme Programming (XP) (Newkirk, 2002),

is an Agile method where team members regularly

integrate code changes, which results in faster

production, better product quality, and a more

effective team overall (Fitzgerald and Stol, 2017).
Automation plays a crucial role in CI, especially

in testing and development. It boosts efficiency,
improves teamwork among developers, and leads to

more predictable releases (Leppänen et al., 2015;

Ståhl and Bosch, 2014; Fitzgerald and Stol, 2014). CI,

along with Continuous Delivery (CDE) and

Continuous Deployment (CD), are core parts of

DevOps (Lacoste, 2009). CD is about deploying

a https://orcid.org/0000-0001-9944-2615
b https://orcid.org/0009-0006-5207-3203
c https://orcid.org/0009-0001-6572-6326

software to an environment cloud, while CDE takes it

further by managing updates (Humble and Farley,

2010). Automating these processes makes the process

more efficient and improves software quality (Weber

et al., 2016) while reducing risks (Bar et al., 2013).
While automation helps in many ways, it also

brings certain security risks. Vulnerabilities such as

Regular Expression Denial of Service (ReDoS)

(Saboor et al., 2022) can open cloud services to

attacks such as Log4j, SolarWinds, and CodeCov.

Of the 573 articles we reviewed, 66 met our

selection criteria (see Section 3.3). These articles

helped us explore the following research questions:

RQ1. What tools and methods are available for

securely implementing CI/CD in the cloud?

RQ2. What solutions have been suggested for
maintaining secure CI/CD pipelines in cloud

environments?

RQ3. What are the main challenges when securing

cloud-based CI/CD pipelines?

This study reviewed the current tools (Section

4.1), proposed solutions (Section 4.2), and challenges

(Section 4.3) regarding secure CI/CD pipelines over
the cloud platform.

To identify the challenges (Section 4.3) that

prevent practitioners from adopting solutions, leading

to security vulnerabilities.

The rest of the paper is structured as follows:

Section 2 looks at related work, including review

method and the possible research gaps (Sections 2.1

and 2.2) identified from our RQ findings. Section 3

explains the SLR method, covering RQs (Section

3.1), search strategy (Section 3.2), data sources

(Section 3.3), inclusion/exclusion criteria (Section
3.4), and the SLR steps (Figure 2), along with how we

extracted and synthesised the data (Section 3.5).

Section 4 presents the results, demographic data

(Figure 3), and findings for each RQ (Sections 4.1,

4.2, 4.3). We follow this with analysis and

discussions in Section 5. Threats to validity are

covered in Section 6, and Section 7 wraps things up

with conclusions and future work.

2 RELATED WORKS

During our SLR, we identified literature reviews,

survey papers, and systematic literature reviews.

These addressed various aspects of CI/CD.

Shahin et al. (2017b) surveyed CI/CD and

DevOps practitioners, highlighting deficiencies in

automated testing, rigid deployment methods, and

security awareness. They aimed to categorise

elements influencing CD practice adoption, such as

better tools and management support.
Zhang et al. (2018) detailed practitioners'

struggles with containerising CD and identifying

prerequisites and challenges before establishing CI-

based Workflow (CIW) and Docker Hub auto-builds

Workflow (DHW). They noted trade-offs in stability

and simplicity and the need for better security and

access controls. An IDE model for cloud-based Static

Application Security Testing (SAST) tools was

implemented but did not significantly enhance fixing

insecure code.

Waseem et al. (2021, 2023) discussed the security

vulnerabilities in microservices developed with
Docker that are open to cyberattacks and highlighted

the need to focus on pipeline security over the cloud.

Zampetti et al. (2023) emphasised that combining

hardware and software expertise can overcome CI

and CDE implementation challenges in Cyber-

Physical Systems (CPS), focusing on SW and HW

component interactions.

Shahin et al. (2021) analysed DevOps forums to

identify architecture design issues, noting that

deployment, security, and testing were the most
challenging during DevOps transitions.

Faustino et al. (2022) reviewed DevOps

scenarios, noting faster delivery and increased

automation. However, security issues have yet to be

discussed.

Rajapakse et al. (2022) identified challenges and

solutions for adopting DevSecOps, focusing on

collaboration, insider threats, and limitations of

SAST and Dynamic Application Security Testing

(DAST) tools. They aimed to understand the

difficulties in adopting DevSecOps.
Shahin et al. (2019) proposed a framework to re-

architect CD with goals for Operational Aspects (e.g.,

development settings, stakeholders’ requirements)

and Quality Attributes (e.g., resilience, modifiability,

deployability, etc.).

Shahin et al. (2017a) discussed issues in adopting

CI/CD/CDE, such as coordination, skills, and tools.

They also noted a need for more research on pipeline

security and stability.

Table 1 presents the area between our SLR and the

existing work.

Table 1: Summarising the Focused Area.

Publications Focused Areas

Shahin et al. 2017b Automation of CD

Zhang et al. 2018 IDE for SAST

Waseem et al. 2021, 2023 Microservice

Zampetti et al. 2023 Collaboration of SW and HW

Shahin et al. 2021 Architectural issues in DevOps

Faustino et al. 2022 Benefits of DevOps

Rajapakse et al. 2022 Adoption of DevSecOps

Shahin et al. 2019 Architectural issues in CD

Shahin et al. 2017a Adoption of CI/CD/CDE

This SLR Security of CI/CD over the Cloud

2.1 Review Methodology

In software engineering (SE), conducting multiple

reviews on a single topic is common (Shahin et al.,

2017a). Since the introduction of Evidence-Based

Software Engineering (Kitchenham et al., 2004,

2006, 2022a), systematic literature reviews (SLRs)
have become a key research method (Zhang et al.,

2011). However, reviewing secure CI/CD in the cloud

requires a more focused approach (Düllmann et al.,

2018).

2.2 Research Gaps

There is a growing need for research to improve

security in containerised applications. This includes

refining tools such as seccomp profiles for Docker,

AppArmor, SELinux, and content trust (Garg and

Stavik, 2019; Le et al., 2023; Lopes et al., 2020).

Low-code platforms present security challenges,
mainly due to weak authentication and cybercrime

(Rafi et al., 2022).

GitHub Actions has security concerns that require

further study (Decan et al., 2022; Koishybayev et al.,

2022; Hilton et al., 2017; Benedetti et al., 2022a).

Research into architectural challenges, such as

deployment, security, and testing, is also important.

Principles like shift-left security, compliance with

standards (OWASP, NIST), and zero-trust

architecture can make systems more resilient (Shahin

et al., 2017; Zhang et al., 2018; Shahin et al., 2021).
Finally, there is potential for new automated

Software Supply Chain (SSC) solutions to detect

vulnerabilities and enhance the security of CI/CD

pipelines (Enck and Williams, 2022; Byrne et al.,

2020; Karl et al., 2022).

3 RESEARCH METHOD

We conducted an SLR, which combines available
research relevant to a focused area of interest and

specific RQs. By following the guidelines of

Kitchenham, B. et al., 2022a, our research method

consists of planning, conducting, and reporting with

the specification of the RQs, identifying research by

generating a search strategy, selecting primary studies

through inclusion and exclusion criteria, and data

extraction and synthesis.

3.1 Goal, Question, Metric (GQM)

The Goal of this SLR is to analyse and synthesise

tools and approaches for securing CI/CD pipelines on
cloud services, highlight the challenges of existing

solutions, and answer the RQs.

We prepared our RQs according to the criteria of

the PICOC by Mark, and Helen (2008) – Population

(a deployment area, e.g., the cloud), Intervention

(technologies to perform specific tasks, e.g., tools),

Comparison (with which the intervention is being

compared, e.g., the practitioners), Outcomes

(findings, e.g., existing approaches, the challenges,

and the practices to the goal {secure the CI/CD

pipeline over the cloud}), and Context (in which the
analogy will take place, e.g., the industry).

The identified Metrics for this SLR are:

Identifying existing and proposed methods,

technologies, and practices for secure CI/CD

maintenance. Classifying and enumerating security

challenges (e.g., gaps, integration, performance, etc.)

in maintaining CI/CD pipelines in the cloud.

3.2 Search Strategy

Specific search phrases were created to find relevant

studies based on the guidelines from Zhang et al.

(2011) and Kitchenham et al. (2022a). This task faced

challenges because many papers used synonyms like

"cloud security" and "cybersecurity." To enhance our

search, we employed snowballing (Wohlin, 2014) by

examining citations in the studies and conducted a

manual search as recommended by Zhang et al.

(2011). This established a Quasi-Gold Standard

(QGS), identifying 91 relevant papers. The initial
search string was:

Figure 1: Search String of the initial search for SLR.

3.3 Data Collection Sources

The automatic search was carried out across six

digital libraries: Scopus, ACM, IEEE Xplore, Wiley,

Springer Link (SL), and ScienceDirect (SD) (Chen et

al., 2010).

CiteSeerX and AIS eLibrary have complex search

functions and lack post-query refinements (Li &
Rainer, 2022; Brereton et al., 2007). Kluwer has

merged with and is indexed by Springer Link

(Gusenbauer and Haddaway, 2020; Maplesden et al.,

2015). Additionally, Inspec overlaps with Scopus

(Maplesden et al., 2015). In contrast, Google Scholar

yields results with less than 1% accuracy for

systematic searches (Gusenbauer and Haddaway,

2020; Chen et al., 2010; Boeker et al., 2013).

3.4 Study Selection Criteria

We established inclusion and exclusion criteria to

identify studies relevant to our research questions,
considering these criteria might be adjusted as we

moved through the search process (Staples and Niazi,

2007).

Inclusion Criteria:

- Full-text (Brereton et al., 2007) peer-reviewed

papers published in English.

- Address CI/CD security in the cloud.

- Empirical research (Kitchenham et al., 2022b).

Exclusion Criteria:

- Abstracts, conference info, news, and videos.

- Earlier versions of papers by the same authors

when more recent versions are available (e.g.,

conference vs. journal publications).
- Duplicate studies from digital libraries.

3.5 Data Extraction and Synthesis

We read the full text of the selected papers for review

and reporting, applying the inclusion and exclusion

criteria.

Figure 2: Steps of the Study Selection for SLR.

We passed the subsequent steps for this SLR:

Step 1: We started with 4,889 articles based on the

search criteria.

Step 2: We screened the titles, keywords, and

abstracts to narrow it down to 573 papers. Of these,

482 directly met our criteria, and an additional 91

were found using the Snowballing method.

Step 3: We reviewed the introductions and

conclusions of the 573 papers, selecting those

relevant to our study. After thoroughly reviewing the
full articles, 66 were included in our final selection.

4 RESULTS

This section summarises the research questions'

findings (sections 4.1, 4.2, 4.3) by synthesising and

analysing the extracted data. Figure 3 displays the

publication demographics, showing that from 2021 to
2023, 40 of the 66 relevant papers (over 60%) were

published, emphasising the recent focus on CI/CD

security in the cloud. Most of these publications

appeared in conferences, with 41 papers (62.12%),

followed by 15 journal articles (22.73%) and 10

workshop papers (15.15%).

Figure 3: Demographic Data of Relevant Studies.

4.1 Findings of RQ1

We present the tools, approaches, and frameworks

identified in our review with short descriptions (Table

2). We compiled information on 62 tools and eight

distinct approaches and frameworks.

4.2 Findings of RQ2

Here, we list the proposed tools and approaches with

short descriptions (Table 3) retrieved from the papers.

We compiled information on five tools and twelve

approaches/frameworks.
Some recommended practices (findings of RQ2)

for organisations to address CI/CD pipeline security

issues:

Trust developers: If they can make deployment

decisions, it may facilitate the continuous deployment

process (Shahin et al., 2017b).

Increase collaboration between operations and

development teams: This may help complete complex

tasks effectively (Shahin et al., 2021).

Invest in automated testing and quality assurance

for continuous delivery (Shahin et al., 2017b).
Securing a software supply chain requires

transparency, validity, and separation between

activities and components (Okafor et al., 2022).

Providing access to developers from tool builders

of Jenkins, CircleCI, TravisCI, etc., helps to provide

better feedback (Hilton et al., 2017).

Limiting the CI/CD access may protect the

pipeline from tampering (Pecka et al., 2022).

A solid engineering culture can emphasise quality

where employees can become experts (Dursun,

2023).

Table 2: Existing Methods (approaches and frameworks) and Tools.

Name Description Reference

Docker Bench for Security Tool for enforcing security best practices for Docker images/containers.
Garg and Stavik, 2019

Docker Trusted Registry Secure storage and deployment of Docker images/containers.

CodeShip SaaS for logging CD workflow failures. Zhang et al., 2018

CoreOSs Clair, OpenSCAP, Anchore

Engine, Trivy
Vulnerability scanners using NVD and CVEs data.

Garg and Stavik, 2019; Brandy et al., 2020; Mahboob

and Coffman, 2021; Throner et al., 2021; Nadgowda

and Luan, 2021

SonarQube, SonarCloud Tools for detecting security issues and maintaining code quality in CI/CD.

Abhishek and Rao, 2021; Athamnah M. et al., 2021;

Luo L. et al., 2021; Romero E. at al., 2022; Leite et

al., 2019

Snyk
Scans dependencies to ensure trust in the Software Supply Chain (SSC) within

CI/CD.

Throner et al., 2021; Bass et al., 2015; Alfadel et al.,

2023

CodeQL (Code Analysis Platform) An automation tool for identifying security vulnerabilities
Alfadel et al., 2023, Okafor, C et al., 2022, Pan, Z. et

al., 2023

Super-Linter A repository with multiple linter tools Cankar et al., 2023, Chhillar and Sharma, 2019

Mega-Linter Tool to analyse CI/CD consistency Cankar et al., 2023

Prisma Compute (Twistlock), Prisma

Cloud, Aqua

Container security tools for vulnerability scanning, runtime protection, and

blocking unsafe builds.
Athamnah M. et al., 2021, Le et al., 2023

Analizo, Code Climate Source code analysers are used to identify vulnerabilities and bug risks.

Leite et al., 2019 Prometheus, Zabbix, Nagios Incident management and monitoring tools.

Graylog, Logstash Log management tools for security and reliability.

Splunk, DynaTrace, Dapper,

AppDynamics
Monitoring tools for detecting and blocking security threats. Bennett and Barrett, 2018

Veracode, LGTM, Checkmarx,

CodeGuru Reviewer, FindBugs,

CheckStyle, ESLint, Coverlay,

IntelliJ, Coverity Scan

SAST tools to detect vulnerabilities early in SDLC. Luo et al., 2021

IBM UrbanCode Deploy, Microsoft

Visual Studio Release Management

ARA (Application Release Automation) tools for identifying bugs, memory

leaks, and code smells.
Révész and Pataki (2017, 2019)

Debricked, NSP, Sonatype,

vuln-regex-detector
CI tools for scanning commits/PRs and automating vulnerability detection. Alfadel et al., 2023

Cijitter, CijScan CI tools for defending against cryptojacking. Alfadel et al., 2023, Li Z et al., 2022

AppArmor, SELinux Docker security tools for defence layers.
Garg and Stavik, 2019, Le et al., 2023, Lopes et al.,

2020

Seccomp Restricts app access to ensure security. Le et al., 2023, Lopes et al., 2020

Spire, Dependabot, tekton-chain,

Code Risk Analyzer, Mend
DevSecOps solutions play a critical role in CI/CD security. Nadgowda and Luan, 2021

Chef OSS is used to configure and secure DevOps in the cloud. Alonso et al., 2022

ART Autonomous real-time testing for CI/CD (DevTstOps). Fehlmann and Kranich (2021)

Asylo Development framework ensuring privacy through TEEs. Mahboob and Coffman, 2021

STRIDE Microsoft’s threat modelling framework (Spoofing, Tampering, etc.). Davis et al., 2022

Signature-based, Anomaly-based Approaches for monitoring containers and securing CI/CD pipelines. Jyothsna et al., 2011; Kumar and Sangwan, 2012

Harbor Blocks deployment of unscanned Docker images. Mahboob and Coffman, 2021, Throner et al., 2021

VirusTotal Scans Docker images for malicious content. Abhishek and Rao (2021)

GitHub Actions (GHA) Automates CI/CD and mitigates security risks. Okafor, C et al., 2022, Tu et al., 2021

Table 3: Proposed Methods and Tools.

Name Description Reference

ACT Testbot

Automated Continuous Testing

Automated bot for continuous testing, defect analysis, reporting, and management in CI/CD

builds.
Chhillar and Sharma, 2019

UBCIS Benchmarks vulnerabilities in container scanning tools (e.g., Debian, Ubuntu, Alpine). Berkovich et al., 2020

GHAST, GWChecker
Scans GitHub Actions workflows for security weaknesses, auto-notifies for protection

against SSC attacks.

Koishybayev et al. 2022, Benedetti et al.,

2022a

CIAnalyser Removes malicious code from OSS CI/CD scripts/pipelines. Pan, Z. et al., 2023

Multi-layered security
Framework for preventing Docker image vulnerabilities, with scanners at each pipeline

layer.
Brandy et al., 2020

DIVA

Docker Image Vulnerability Analysis
Detects and evaluates security issues in Docker images. Shu et al., 2017

CloudInspector Provides real-time, auditable security information in a CI/CD pipeline. Flittner et al., 2016

Cluster-Scoped-CICD Kubernetes CI/CD pipeline with privacy guarantees using Asylo. Mahboob and Coffman, 2021

ADOC
Automated DevSecOps framework for addressing security risks with a defense-in-depth

strategy.
Kumar and Goyal, 2020

DVE (Deliberated Vulnerable

Environment)

Stores and auto-processes exploited scripts and vulnerability data for cloud-native

applications.
Huang et al., 2020

Buildwatch Monitors pipeline dependencies to detect security risks. Ohm et al., 2020

SUNSET Identifies and evaluates software supply chain security risks. Benedetti et al., 2022b

SySched
A call-aware container scheduler secures CI/CD by blocking unsafe builds and scanning for

known CVEs.
Le et al., 2023

Tapiserí Visionary DevSecOps design for certification and introspection of a pipeline. Nadgowda and Luan, 2021

Blockchain Technology
Enhances pipeline security, transparency, traceability, and tamper-proofing through

blockchain.
Akbar et al., 2022, Bankar and Shah 2020

Supervised Learning Machine learning is used to automate tests in CI/CD to mitigate attacks. Drees et al., 2021

4.3 Findings of RQ 3

Below, we report the challenges in existing tools and

approaches, including practices that raise security

issues within cloud-based CI/CD pipelines.
Authorisation. Trusted Execution Environments

(TEE) can enhance security, but Dev resources may

be at risk if hackers can access Harbor (Mahboob and

Coffman, 2021). Inadequate authorisation can result

in pipeline security issues (Throner et al., 2021).

Vulnerabilities Assessment. This happens pre-

deployment, leaving post-deployment updates

unchecked and insecure (Huang et al., 2020). Due to

the complexities of Infrastructure IaC, inspecting

workflows for security flaws is challenging (Cankar

et al., 2023; Alonso et al., 2022).
Tools Integration. Tools such as Clair,

SonarQube, GoKart, etc. should be rapidly integrated

into cloud platforms, though they require long-term

commitments (Garg and Stavik, 2019; Abhishek &

Rao, 2021; Christakis et al., 2022). The disconnection

of tools such as Coverity Scan, LGTM, and

Checkmarx from IDEs can render scanning results

obsolete if the code is updated during the scan (Luo et

al., 2021).

Third-Party and OSS Tools. Choosing consistent

tools is crucial due to vulnerabilities in third-party

software and OSS (Kumar and Goyal, 2020; Berkovich
et al., 2020). Integrating these tools faces challenges

with security boundaries, upgrade complexities, and

practitioner reluctance to update, leading to outdated

dependencies and security issues such as lack of

authentication (Zampetti et al., 2023, Pan et al., 2023;

Zhu et al., 2023; Benedetti et al., 2022b).

Layer of Defence. Regular updates are essential

(e.g., for Seccomp) to prevent DoS attacks, but

determining necessary updates is complex and time-

consuming, hindering practitioner approval (Lopes et

al., 2020).
Architectural Design Issues. Deployment,

security, and testing are challenging (Shahin et al.,

2017). Developers and customers have concerns

about existing tools and need help with cloud

deployment (Shahin et al., 2021). To address

developers' pain points, better testing support and

automatic security upgrades in CD workflows are

required (Zhang et al., 2018).

GitHub Actions (GHA). While GHA can

potentially reduce CI/CD pipeline security issues by

recommending specific commits, it faces low

adoption and has security concerns such as PR
manipulation and bypassing code reviews (Decan et

al., 2022; Saroar & Nayebi, 2023; Benedetti et al.,

2022). GitHub CI combines CI workflows with the

GitHub environment, generating issues related to

privileges, permissions, and secrets (Koishybayev et

al., 2022; Hilton et al., 2017; Benedetti et al., 2022).
Existing DevSecOps Practices. Security issues

related to encryption, image signing, and

vulnerability scanning remain in open-source

DevSecOps environments (Kumar and Goyal, 2020).

The SolarWinds incident showed that practices need

more standard recommendations (Nadgowda and

Luan, 2021; Williams, 2022). This can lead to

incomplete toolsets and compromised software

designs.

Low-code Platforms. Integrating low-code

platforms such as PowerApps, AppSheet, and
KiSSFLOW in DevOps may introduce security issues

(Rafi et al., 2022).

Software Supply Chain (SSC). The unified

design of the CI server in a CD pipeline poses security

challenges, as attackers can compromise the entire

system by altering one part (Throner et al., 2021; Bass

et al., 2015; Ullah et al., 2017; Hilton et al., 2017).

Automated SSCs can propagate human errors, such

as not updating vulnerable dependencies, leading to

pipeline breaks, for example, the Log4j attack (Enck

and Williams, 2022; Byrne et al., 2020; Williams,

2022). Securing the build process is crucial since
tools such as Tekton, Jenkins, GHA, Travis CI, and

AWS Code Deploy are widely used (Enck and

Williams, 2022; Karl et al., 2022). Failure to

promptly update and address risks can result in

intrusions, such as the SolarWinds attacks

(Nadgowda and Luan, 2021; Williams, 2022).

5 ANALYSIS AND DISCUSSIONS

The provided list (RQ1) encompasses a diverse range

of tools and technologies to enhance the security

posture of CI/CD pipelines, primarily focusing on

Docker-based cloud environments. This includes

security scanning tools, automated testing

frameworks, monitoring solutions, and vulnerability

assessment and remediation tools, contributing to a

robust and secure software development lifecycle.

Integrating these tools and technologies within

CI/CD pipelines significantly enhances security by

addressing vulnerabilities, ensuring code quality, and
proactively monitoring and responding to security

threats. For instance, tools such as Docker Bench for

Security and SonarQube help identify and rectify

security issues early in development. Meanwhile,

monitoring tools such as Prometheus and Nagios

provide real-time insights into the deployed

applications' operational status and security posture.

The proposed (RQ2) tools and practices aim to

bolster CI/CD pipeline security. Tools cover code

analysis, dependency scanning, and runtime
protection, while practices emphasise collaboration,

automated testing, and secure software supply chains.

Implementing these measures may enhance security,

streamline processes, and mitigate risks in CI/CD

pipelines; however, accurate tests are needed on

cloud platforms.

The excerpt (RQ3) provides a comprehensive

overview of the security challenges inherent in cloud-

based CI/CD pipelines, summarised below: -

 Installation and updating issues,

 Practitioners and developers’ issues,
 Organisational issues,

 Difficulties with third-party and OSS tools.

6 THREATS TO VALIDITY

In our systematic literature review (SLR), we

identified potential threats to validity across several

areas, including search strategy, data collection, study

selection, and synthesis. We conducted automated
searches using diverse terminology to accommodate

various taxonomies, though some digital libraries

were excluded due to complex search strings and

irrelevant results. Our study selection process adhered

to established guidelines from Zhang et al. (2011),

Kitchenham et al. (2022), Brereton et al. (2007), and

Wohlin (2014).

Based on Runeson and Höst’s (2009) framework,

we identified the following threats:

Internal Validity: Potential data extraction errors

were mitigated by thorough double-checking.
External Validity: Strict criteria may have led to a

higher exclusion rate, potentially introducing

selection bias, but they were essential for relevance.

Comprehensive search techniques helped minimise

the risk of missing significant studies.

Construct Validity: Standardization efforts

addressed inconsistencies in study definitions.

Reliability: Variability in study design and quality

was a concern, though we aimed to include a diverse

range of studies to reduce the impact of publication

bias.

7 CONCLUSIONS AND FUTURE

WORK

Our systematic literature review provided valuable
insights into the existing methods, tools, and

technologies (RQ1) for maintaining security in the

CI/CD pipeline over the cloud platforms.

To keep up with the continually updating
environment, practitioners and researchers should

stay updated on the latest advancements where future

research is needed.

We have uncovered various tools, frameworks,

and practices (RQ2) proposed by researchers to

fortify security in the CI/CD pipeline. With cloud

platforms ubiquitous, these findings suggest

significant insights for practitioners and future

researchers aiming to stay at the cutting edge of

secure DevOps practices.

Finally, we have reported the challenges and
issues that arise when dealing with security

considerations in cloud-based CI/CD pipelines

(RQ3). These issues involved container vulnerability,

lack of integration between security tools and IDEs,

and dependency on third-party software and OSS

tools. Close cooperation between practitioners,

security specialists, and researchers is needed to

mitigate the research gaps.

We aim to apply Topic Modeling (an

unsupervised ML technique (Sefara and Rangata,

2023) that uses Natural Language Processing)

methods such as Latent Semantic Analysis (LSA),
Probabilistic Latent Semantic Analysis (pLSA), and

Latent Dirichlet Allocation (LDA) effectively applied

to analyse scattered and fragmented security-related

text data (for example, plain text, lack of integration,

disorganised contents, lack of contexts such as partial

incident reports, truncated logs, or isolated pieces of

information, etc. which can be derived from grey

literature, and the industries).

We also aim to propose a blockchain-based

solution (Akbar et al., 2022; Bankar and Shah, 2020)

(an advanced database mechanism for maintaining
data privacy) for addressing the insufficient container

security (for example, beyond 80% of Docker hub

images contain one high level of vulnerability

discovered by researchers after scanning 300,000

images in 85,000 repositories) (Zhang et al., 2018;

Shu et al., 2017), insecure deployment environments

(such as updating vulnerable dependencies, a human

error which leads to cyberattacks such as Log4j,

SolarWinds, CodeCov etc.) (Benedetti et al., 2022b;

Enck and Williams, 2022; Byrne et al., 2020; Karl et

al., 2022), etc. Before this, we also aim to conduct a

literature review on blockchain-based solutions for
securing the CI/CD pipeline.

In conclusion, this SLR gave us an understanding

of CI/CD security and plans for future works,

combining methodologies and technologies to fortify

the foundations of secure software integration and

deployment in cloud platforms.

REFERENCES

Á. Révész, and N. Pataki, “Containerized A/B Testing,”
Proc. of the Sixth Workshop on Software Quality
Analysis, Monitoring, Improvement, and Applications
(Belgrade, Serbia, September 11-13, 2017)

SQAMIA’17, 2017, pp. 14(1)-14(8).
Abhishek, M. K., & Rao, D. R. (2021, July). Framework to

secure docker containers. In 2021 Fifth World
Conference on Smart Trends in Systems Security and
Sustainability (WorldS4) (pp. 152-156). IEEE.

Akbar, M. A., Mahmood, S., & Siemon, D. (2022, June).
Toward effective and efficient DevOps using
blockchain. In Proceedings of the 26th International

Conference on Evaluation and Assessment in Software
Engineering (pp. 421-427).

Alfadel, M., Nagy, N. A., Costa, D. E., Abdalkareem, R., &
Shihab, E. (2023). Empirical analysis of security-
related code reviews in npm packages. Journal of
Systems and Software, 203, 111752.

Alonso, J., Piliszek, R., & Cankar, M. (2022). Embracing
IaC through the DevSecOps philosophy: Concepts,

challenges, and a reference framework. IEEE Software,
40(1), 56-62.

Athamnah, M., Hussain, M. F., & Hasan, S. S. (2021,
November). Impact of Running Dynamic/Static Scans
on the Performance of an App Running in a GKE
Clusters. In 2021 Second International Conference on
Intelligent Data Science Technologies and Applications
(IDSTA) (pp. 46-53). IEEE.

Bankar, S., & Shah, D. (2020, November). DevOps project
artifacts management using blockchain technology. In
ECAI&ML international conference (pp. 115-120).

Bar, P., Benfredj, R., Marks, J., Ulevinov, D., Wozniak, B.,
Casale, G., & Knottenbelt, W. J. (2013, April). Towards
a monitoring feedback loop for cloud applications. In
Proceedings of the 2013 international workshop on
Multi-cloud applications and federated clouds (pp. 43-
44).

Bass, L., Holz, R., Rimba, P., Tran, A. B., & Zhu, L. (2015,
May). Securing a deployment pipeline. In 2015
IEEE/ACM 3rd International Workshop on Release
Engineering (pp. 4-7). IEEE.

Benedetti, G., Verderame, L., & Merlo, A. (2022,
November). Automatic security assessment of github
actions workflows. In Proceedings of the 2022 ACM
Workshop on Software Supply Chain Offensive

Research and Ecosystem Defenses (pp. 37-45).
Benedetti, G., Verderame, L., & Merlo, A. (2022,

September). Alice in (software supply) chains: risk
identification and evaluation. In International
Conference on the Quality of Information and
Communications Technology (pp. 281-295). Cham:
Springer International Publishing.

Bennett, B. T., & Barrett, M. L. (2018). Incorporating
devops into undergraduate software engineering
courses: A suggested framework. Journal of Computing
Sciences in Colleges, 34(2), 180-187.

Berkovich, S., Kam, J., & Wurster, G. (2020). {UBCIS}:
Ultimate benchmark for container image scanning. In

13th USENIX Workshop on Cyber Security
Experimentation and Test (CSET 20).

Billawa, P., Bambhore Tukaram, A., Díaz Ferreyra, N. E.,
Steghöfer, J. P., Scandariato, R., & Simhandl, G. (2022,
August). Sok: Security of microservice applications: A
practitioners’ perspective on challenges and best
practices. In Proceedings of the 17th International
Conference on Availability, Reliability and Security
(pp. 1-10).

Boeker, M., Vach, W., & Motschall, E. (2013). Google
Scholar as replacement for systematic literature
searches: good relative recall and precision are not
enough. BMC Medical Research Methodology, 13, 1-
12.

Brady, K., Moon, S., Nguyen, T., & Coffman, J. (2020,
January). Docker container security in cloud
computing. In 2020 10th Annual Computing and

Communication Workshop and Conference (CCWC)
(pp. 0975-0980). IEEE.

Brereton, P., Kitchenham, B. A., Budgen, D., Turner, M.,
& Khalil, M. (2007). Lessons from applying the
systematic literature review process within the software
engineering domain. Journal of systems and software,
80(4), 571-583.

Byrne, A., Nadgowda, S., & Coskun, A. K. (2020,

December). Ace: Just-in-time serverless software
component discovery through approximate concrete
execution. In Proceedings of the 2020 Sixth
International Workshop on Serverless Computing (pp.
37-42).

Cankar, M., Petrovic, N., Pita Costa, J., Cernivec, A., Antic,
J., Martincic, T., & Stepec, D. (2023, April). Security
in DevSecOps: Applying Tools and Machine Learning

to Verification and Monitoring Steps. In Companion of
the 2023 ACM/SPEC International Conference on
Performance Engineering (pp. 201-205).

Chen, L., Babar, M. A., & Zhang, H. (2010, April).
Towards an evidence-based understanding of electronic
data sources. At the 14th International Conference on
Evaluation and Assessment in Software Engineering
(EASE), BCS Learning & Development.

Chhillar, D., & Sharma, K. (2019, February). ACT Testbot

and 4S Quality Metrics in XAAS Framework. In 2019
International Conference on Machine Learning, Big
Data, Cloud and Parallel Computing (COMITCon) (pp.
503-509). IEEE.

Christakis, M., Cottenier, T., Filieri, A., Luo, L., Mansur,
M. N., Pike, L., ... & Visser, W. (2022, November).
Input splitting for cloud-based static application
security testing platforms. In Proceedings of the 30th

ACM Joint European Software Engineering
Conference and Symposium on the Foundations of
Software Engineering (pp. 1367-1378).

Davis, J. C., Amusuo, P., & Bushagour, J. R. (2022, May).
A first offering of software engineering. In Proceedings
of the First International Workshop on Designing and
Running Project-Based Courses in Software
Engineering Education (pp. 5-9).

Decan, A., Mens, T., Mazrae, P. R., & Golzadeh, M. (2022,

October). On the use of github actions in software
development repositories. In 2022 IEEE International
Conference on Software Maintenance and Evolution
(ICSME) (pp. 235-245). IEEE.

Drees, J. P., Gupta, P., Hüllermeier, E., Jager, T., Konze,
A., Priesterjahn, C., ... & Somorovsky, J. (2021,
November). Automated detection of side channels in
cryptographic protocols: DROWN the ROBOTs!. In
Proceedings of the 14th ACM Workshop on Artificial

Intelligence and Security (pp. 169-180).
Düllmann, T. F., Paule, C., & van Hoorn, A. (2018, May).

Exploiting devops practices for dependable and secure
continuous delivery pipelines. In Proceedings of the 4th
International Workshop on Rapid Continuous Software
Engineering (pp. 27-30).

Dursun, H. (2023, June). Full Spec Software via Platform
Engineering: Transition from Bolting-on to Building-

in. In Proceedings of the 27th International Conference
on Evaluation and Assessment in Software Engineering
(pp. 172-175).

El Khairi, A., Caselli, M., Knierim, C., Peter, A., &
Continella, A. (2022, November). Contextualizing
system calls in containers for anomaly-based intrusion
detection. In Proceedings of the 2022 on Cloud
Computing Security Workshop (pp. 9-21).

Enck, W., & Williams, L. (2022). Top five challenges in
software supply chain security: Observations from 30
industry and government organizations. IEEE Security
& Privacy, 20(2), 96-100.

Faustino, J., Adriano, D., Amaro, R., Pereira, R., & da
Silva, M. M. (2022). DevOps benefits: A systematic
literature review. Software: Practice and Experience,
52(9), 1905-1926.

Fehlmann, T., & Kranich, E. (2021). ART for Agile:
Autonomous Real-Time Testing in the Product
Development Cycle. In Systems, Software and Services
Process Improvement: 28th European Conference,
EuroSPI 2021, Krems, Austria, September 1–3, 2021,
Proceedings 28 (pp. 377-390). Springer International
Publishing.

Fitzgerald, B., & Stol, K. J. (2014, June). Continuous
software engineering and beyond: trends and

challenges. In Proceedings of the 1st International
Workshop on rapid continuous software engineering
(pp. 1-9).

Fitzgerald, B., & Stol, K. J. (2017). Continuous software
engineering: A roadmap and agenda. Journal of
Systems and Software, 123, 176-189.

Flittner, M., Balaban, S., & Bless, R. (2016, April).
Cloudinspector: A transparency-as-a-service solution

for legal issues in cloud computing. In 2016 IEEE
International Conference on Cloud Engineering
Workshop (IC2EW) (pp. 94-99). IEEE.

Garg, S., & Garg, S. (2019, March). Automated cloud
infrastructure, continuous integration and continuous
delivery using docker with robust container security. In
2019 IEEE Conference on Multimedia Information
Processing and Retrieval (MIPR) (pp. 467-470). IEEE.

Gruhn, V., Hannebauer, C., & John, C. (2013, August).

Security of public continuous integration services. In
Proceedings of the 9th International Symposium on
open collaboration (pp. 1-10).

Gusenbauer, M., & Haddaway, N. R. (2020). Which
academic search systems are suitable for systematic

reviews or meta ‐ analyses? Evaluating retrieval

qualities of Google Scholar, PubMed, and 26 other
resources. Research synthesis methods, 11(2), 181-217.

Hilton, M., Nelson, N., Tunnell, T., Marinov, D., & Dig, D.
(2017, August). Trade-offs in continuous integration:
assurance, security, and flexibility. In Proceedings of

the 2017 11th Joint Meeting on Foundations of
Software Engineering (pp. 197-207).

Huang, M., Fan, W., Huang, W., Cheng, Y., & Xiao, H.
(2020, June). Research on building exploitable
vulnerability database for cloud-native app. In 2020
IEEE 4th Information Technology, Networking,
Electronic and Automation Control Conference
(ITNEC) (Vol. 1, pp. 758-762). IEEE.

Hudic, A., Flittner, M., Lorünser, T., Radl, P. M., & Bless,
R. (2016, August). Towards a unified secure cloud
service development and deployment life-cycle. In
2016 11th International Conference on Availability,
Reliability and Security (ARES) (pp. 428-436). IEEE.

Humble, J., & Farley, D. (2010). Continuous delivery:
reliable software releases through build, test, and
deployment automation. Pearson Education..

Jamshidi, P., Pahl, C., Mendonça, N. C., Lewis, J., &
Tilkov, S. (2018). Microservices: The journey so far
and challenges ahead. IEEE Software, 35(3), 24-35.

Kang, H., Le, M., & Tao, S. (2016, April). Container and
microservice driven design for cloud infrastructure
devops. In 2016 IEEE International Conference on
Cloud Engineering (IC2E) (pp. 202-211). IEEE.

Karl, M., Musch, M., Ma, G., Johns, M., & Lekies, S.

(2022, October). No keys to the kingdom required: a
comprehensive investigation of missing authentication
vulnerabilities in the wild. In Proceedings of the 22nd
ACM Internet Measurement Conference (pp. 619-632).

Kitchenham, B. (2004). Procedures for performing
systematic reviews. Keele, UK, Keele University,
33(2004), 1-26.

Kitchenham, B. (2006). Evidence-based software
engineering and systematic literature reviews. In

Product-Focused Software Process Improvement: 7th
International Conference, PROFES 2006, Amsterdam,
The Netherlands, June 12-14, 2006. Proceedings 7 (pp.
3-3). Springer Berlin Heidelberg.

Kitchenham, B. A., Dyba, T., & Jorgensen, M. (2004,
May). Evidence-based software engineering. In
Proceedings. 26th International Conference on
Software Engineering (pp. 273-281). IEEE.

Kitchenham, B., Madeyski, L., & Budgen, D. (2022). How
should software engineering secondary studies include

grey material?. IEEE Transactions on Software
Engineering, 49(2), 872-882.

Kitchenham, B., Madeyski, L., & Budgen, D. (2022).
SEGRESS: Software engineering guidelines for
reporting secondary studies. IEEE Transactions on
Software Engineering, 49(3), 1273-1298.

Koishybayev, I., Nahapetyan, A., Zachariah, R., Muralee,
S., Reaves, B., Kapravelos, A., & Machiry, A. (2022).
Characterizing the security of github {CI} workflows.
In 31st USENIX Security Symposium (USENIX
Security 22) (pp. 2747-2763).

Kumar, R., & Goyal, R. (2020). Modeling continuous
security: A conceptual model for automated
DevSecOps using open-source software over cloud
(ADOC). Computers & Security, 97, 101967.

Lacoste, F. J. (2009, August). Killing the gatekeeper:
Introducing a continuous integration system. In 2009
agile conference (pp. 387-392). IEEE.

Le, M. V., Ahmed, S., Williams, D., & Jamjoom, H. (2023,
July). Securing container-based clouds with syscall-
aware scheduling. In Proceedings of the 2023 ACM
Asia Conference on Computer and Communications
Security (pp. 812-826).

Leite, L., Rocha, C., Kon, F., Milojicic, D., & Meirelles, P.
(2019). A survey of DevOps concepts and challenges.
ACM Computing Surveys (CSUR), 52(6), 1-35.

Leppänen, M., Mäkinen, S., Pagels, M., Eloranta, V. P.,
Itkonen, J., Mäntylä, M. V., & Männistö, T. (2015). The
highways and country roads to continuous deployment.
Ieee software, 32(2), 64-72.

Li, Z., & Rainer, A. (2022, November). Academic search

engines: constraints, bugs, and recommendations. In
Proceedings of the 13th International Workshop on
Automating Test Case Design, Selection and
Evaluation (pp. 25-32).

Lopes, N., Martins, R., Correia, M. E., Serrano, S., &
Nunes, F. (2020, December). Container hardening
through automated seccomp profiling. In Proceedings
of the 2020 6th International Workshop on Container

Technologies and Container Clouds (pp. 31-36).
Luo, L., Schäf, M., Sanchez, D., & Bodden, E. (2021,

August). Ide support for cloud-based static analyses. In
Proceedings of the 29th ACM Joint meeting on
european software engineering conference and
symposium on the foundations of software engineering
(pp. 1178-1189).

Mahboob, J., & Coffman, J. (2021, January). A kubernetes
ci/cd pipeline with asylo as a trusted execution

environment abstraction framework. In 2021 IEEE 11th
Annual Computing and Communication Workshop and
Conference (CCWC) (pp. 0529-0535). IEEE.

Maplesden, D., Tempero, E., Hosking, J., & Grundy, J. C.
(2015). Performance analysis for object-oriented
software: A systematic mapping. IEEE Transactions on
Software Engineering, 41(7), 691-710.

Nadgowda, S., & Luan, L. (2021, December). tapiserí:

Blueprint to modernize DevSecOps for real world. In
Proceedings of the Seventh International Workshop on
Container Technologies and Container Clouds (pp. 13-
18).

Newkirk, J. (2002, May). Introduction to agile processes
and extreme programming. In Proceedings of the 24th
international conference on Software engineering (pp.
695-696).

Ohm, M., Sykosch, A., & Meier, M. (2020, August).
Towards detection of software supply chain attacks by

forensic artifacts. In Proceedings of the 15th
international conference on availability, reliability and
security (pp. 1-6).

Okafor, C., Schorlemmer, T. R., Torres-Arias, S., & Davis,
J. C. (2022, November). Sok: Analysis of software
supply chain security by establishing secure design
properties. In Proceedings of the 2022 ACM Workshop
on Software Supply Chain Offensive Research and
Ecosystem Defenses (pp. 15-24).

Pan, Z., Shen, W., Wang, X., Yang, Y., Chang, R., Liu, Y.,
... & Ren, K. (2023). Ambush From All Sides:
Understanding Security Threats in Open-Source
Software CI/CD Pipelines. IEEE Transactions on
Dependable and Secure Computing, 21(1), 403-418.

Pashchenko, I., Scandariato, R., Sabetta, A., & Massacci, F.
(2021, May). Secure software development in the era of
fluid multi-party open software and services. In 2021

IEEE/ACM 43rd International Conference on Software
Engineering: New Ideas and Emerging Results (ICSE-
NIER) (pp. 91-95). IEEE.

Pecka, N., Ben Othmane, L., & Valani, A. (2022, May).
Privilege escalation attack scenarios on the devops
pipeline within a kubernetes environment. In
Proceedings of the International Conference on
Software and System Processes and International

Conference on Global Software Engineering (pp. 45-
49).

Petticrew, M., & Roberts, H. (2008). Systematic reviews in
the social sciences: A practical guide. John Wiley &
Sons.

Rafi, S., Akbar, M. A., Sánchez-Gordón, M., & Colomo-
Palacios, R. (2022, September). Devops practitioners’
perceptions of the low-code trend. In Proceedings of the

16th ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement (pp.
301-306).

Rajapakse, R. N., Zahedi, M., Babar, M. A., & Shen, H.
(2022). Challenges and solutions when adopting
DevSecOps: A systematic review. Information and
software technology, 141, 106700.

Révész, Á., & Pataki, N. (2019, March). Continuous A/B
testing in containers. In Proceedings of the 2019 2nd

International Conference on Geoinformatics and Data
Analysis (pp. 11-14).

Romero, E. E., Camacho, C. D., Montenegro, C. E., Acosta,
Ó. E., Crespo, R. G., Gaona, E. E., & Martínez, M. H.
(2022). Integration of DevOps practices on a noise
monitor system with CircleCI and Terraform. ACM
Transactions on Management Information Systems
(TMIS), 13(4), 1-24.

Runeson, P., & Höst, M. (2009). Guidelines for conducting
and reporting case study research in software
engineering. Empirical software engineering, 14, 131-
164.

Saboor, A., Hassan, M. F., Akbar, R., Susanto, E., Shah, S.
N. M., Siddiqui, M. A., & Magsi, S. A. (2022). Root-
Of-Trust for Continuous Integration and Continuous
Deployment Pipeline in Cloud Computing. Computers,
Materials and Continua, 73(2), 2223-2239.

Saroar, S. G., & Nayebi, M. (2023, June). Developers’

perception of GitHub Actions: A survey analysis. In
Proceedings of the 27th International Conference on
Evaluation and Assessment in Software Engineering
(pp. 121-130).

Sefara, T. J., & Rangata, M. R. (2023, August). Topic
classification of tweets in the broadcasting domain
using machine learning methods. In 2023 International
Conference on Artificial Intelligence, Big Data,
Computing and Data Communication Systems

(icABCD) (pp. 1-6). IEEE.
Shahin, M., Babar, M. A., & Zhu, L. (2017). Continuous

integration, delivery and deployment: a systematic
review on approaches, tools, challenges and practices.
IEEE access, 5, 3909-3943.

Shahin, M., Babar, M. A., Zahedi, M., & Zhu, L. (2017,
November). Beyond continuous delivery: an empirical
investigation of continuous deployment challenges. In

2017 ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement
(ESEM) (pp. 111-120). IEEE.

Shahin, M., Rezaei Nasab, A., & Ali Babar, M. (2023). A
qualitative study of architectural design issues in
DevOps. Journal of Software: Evolution and Process,
35(5), e2379.

Shahin, M., Rezaei Nasab, A., & Ali Babar, M. (2023). A

qualitative study of architectural design issues in
DevOps. Journal of Software: Evolution and Process,
35(5), e2379.

Shahin, M., Zahedi, M., Babar, M. A., & Zhu, L. (2019).
An empirical study of architecting for continuous
delivery and deployment. Empirical Software
Engineering, 24, 1061-1108.

Shu, R., Gu, X., & Enck, W. (2017, March). A study of

security vulnerabilities on docker hub. In Proceedings
of the Seventh ACM on Conference on Data and
Application Security and Privacy (pp. 269-280).

Sokolowski, D., Weisenburger, P., & Salvaneschi, G.
(2021, August). Automating serverless deployments for
DevOps organizations. In Proceedings of the 29th
ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of
Software Engineering (pp. 57-69).

Ståhl, D., & Bosch, J. (2014). Modeling continuous
integration practice differences in industry software
development. Journal of Systems and Software, 87, 48-
59..

Staples, M., & Niazi, M. (2007). Experiences using
systematic review guidelines. Journal of Systems and
Software, 80(9), 1425-1437.

Throner, S., Hütter, H., Sänger, N., Schneider, M.,

Hanselmann, S., Petrovic, P., & Abeck, S. (2021,
August). An advanced devops environment for
microservice-based applications. In 2021 IEEE

International Conference on Service-Oriented System
Engineering (SOSE) (pp. 134-143). IEEE.

Torkura, K. A., Sukmana, M. I., & Meinel, C. (2017,
December). Integrating continuous security
assessments in microservices and cloud native
applications. In Proceedings of the10th International

Conference on Utility and Cloud Computing (pp. 171-
180).

Tu, W., Wei, Y. H., Antichi, G., & Pfaff, B. (2021, August).
Revisiting the open vswitch dataplane ten years later. In
Proceedings of the 2021 ACM SIGCOMM 2021
Conference (pp. 245-257).

Ullah, F., Raft, A. J., Shahin, M., Zahedi, M., & Babar, M.
A. (2017). Security support in continuous deployment
pipeline. arXiv preprint arXiv:1703.04277.

Waseem, M., Liang, P., Ahmad, A., Khan, A. A., Shahin,
M., Abrahamsson, P., ... & Mikkonen, T. (2023).
Understanding the Issues, Their Causes and Solutions
in Microservices Systems: An Empirical Study. arXiv
preprint arXiv:2302.01894.

Waseem, M., Liang, P., Shahin, M., Ahmad, A., & Nassab,
A. R. (2021, June). On the nature of issues in five open
source microservices systems: An empirical study. In

Proceedings of the 25th International Conference on
Evaluation and Assessment in Software Engineering
(pp. 201-210).

Weber, I., Nepal, S., & Zhu, L. (2016). Developing
dependable and secure cloud applications. IEEE
Internet Computing, 20(3), 74-79.

Wohlin, C. (2014, May). Guidelines for snowballing in
systematic literature studies and a replication in

software engineering. In Proceedings of the 18th
International Conference on Evaluation and
Assessment in Software Engineering (pp. 1-10).

Zampetti, F., Nardone, V., & Di Penta, M. (2022, May).
Problems and solutions in applying continuous
integration and delivery to 20 open-source cyber-
physical systems. In Proceedings of the 19th
International Conference on Mining Software

Repositories (pp. 646-657).
Zampetti, F., Tamburri, D., Panichella, S., Panichella, A.,

Canfora, G., & Di Penta, M. (2023). Continuous
integration and delivery practices for cyber-physical
systems: An interview-based study. ACM Transactions
on Software Engineering and Methodology, 32(3), 1-
44.

Zhang, H., Babar, M. A., & Tell, P. (2011). Identifying
relevant studies in software engineering. Information

and Software Technology, 53(6), 625-637.
Zhang, Y., Vasilescu, B., Wang, H., & Filkov, V. (2018,

October). One size does not fit all: an empirical study
of containerized continuous deployment workflows. In
Proceedings of the 2018 26th ACM Joint Meeting on
European Software Engineering Conference and
Symposium on the Foundations of Software
Engineering (pp. 295-306).

Zhu, C., Zhang, M., Wu, X., Xu, X., & Li, Y. (2023).
Client-specific upgrade compatibility checking via
knowledge-guided discovery. ACM Transactions on
Software Engineering and Methodology, 32(4), 1-31.

	1 Introduction
	2 RELATED WORKS
	3 RESEARCH METHOD
	5 ANALYSIS AND DISCUSSIONS
	6 THREATS TO VALIDITY
	7 Conclusions AND FUTURE WORK
	References

