
ar
X

iv
:2

50
6.

07
86

8v
1

 [
cs

.C
R

]
 9

 J
un

 2
02

5

Securing Unbounded Differential Privacy Against Timing

Attacks

Zachary Ratliff∗ Salil Vadhan†

June 2025

Abstract

Recent works [BDDNT23, RV24] have started to theoretically investigate how we
can protect differentially private programs against timing attacks, by making the joint
distribution the output and the runtime differentially private (JOT-DP). However, the
existing approaches to JOT-DP have some limitations, particularly in the setting of
unbounded DP (which protects the size of the dataset and applies to arbitrarily large
datasets). First, the known conversion of pure DP programs to pure JOT-DP programs
in the unbounded setting [BDDNT23] (a) incurs a constant additive increase in error
probability (and thus does not provide vanishing error as n → ∞) (b) produces JOT-
DP programs that fail to preserve the computational efficiency of the original pure
DP program and (c) is analyzed in a toy computational model in which the runtime is
defined to be the number of coin flips. For approximate JOT-DP, an efficient conversion
with vanishing error in the RAM model is known [HPN11, RV24], but only applies to
programs that run in O(n) time on datasets of size n, as linear runtime is implied by
“timing stability,” the timing analogue of global sensitivity. In this work, we overcome
these limitations. Specifically:

1. We show that the error required for pure JOT-DP in the unbounded setting
depends on the model of computation.

• In a randomized RAM model where the dataset size n is given (or can be
computed in constant time) and we can generate random numbers (not just
random bits) in constant time, polynomially small error probability is nec-
essary and sufficient.

• If n is not given or we only have a random-bit generator, an (arbitrarily
small) constant error probability is necessary and sufficient.

2. The aforementioned positive results are proven by efficient procedures to convert
any pure JOT-DP program P in the upper-bounded setting to a pure JOT-DP
program P ′ in the unbounded setting, such that the output distribution of P ′ is
γ-close in total variation distance to that of P , where γ is either an arbitrarily
small constant or polynomially small, depending on the model of computation.

∗Harvard University & OpenDP. Email: zacharyratliff@g.harvard.edu. Supported in part by Co-
operative Agreement CB20ADR0160001 with the Census Bureau, and in part by Salil Vadhan’s Simons
Investigator Award

†Harvard University & OpenDP. Email: salil vadhan@harvard.edu

1

https://arxiv.org/abs/2506.07868v1

Contents

1 Introduction 3
1.1 Limitations of Prior Approaches . 4
1.2 Our Results . 5
1.3 Techniques . 7

2 Preliminaries 8

3 Pure Timing-Private Programs 11

4 A Lower Bound for JOT-DP Programs 16
4.1 Pure JOT-DP RAM Programs in the Unbounded Setting 18

A Appendix 28

2

1 Introduction

Timing side-channel attacks, in which an attacker measures the runtime of an algorithm to
infer otherwise private information, have proven to be a highly effective method for breaking
modern cryptographic systems. These attacks have been used to extract signing keys from
cryptographic processors [Koc96], recover private keys from remote TLS servers [BB05,
BT11, AFP13, AP16], and leak sensitive information from hidden hardware states (e.g.,
Spectre [KHF+20] and Meltdown [LSG+18]).

Early research on timing attacks focused on identifying and mitigating timing side-
channels in cryptographic implementations. However, the growing adoption of differential
privacy (DP) [DMNS06]—an influential framework for privacy-preserving data analysis,
used in applications such as analyzing user behavior [MDH+20, G+16] and releasing aggre-
gate statistics [Abo18, ABC+20]—has introduced new avenues for timing attacks. Differ-
ential privacy achieves its protections by adding carefully calibrated noise to computations,
ensuring that the output of a query is not too sensitive to the addition or removal of a single
data point. However, researchers have already identified that the runtime of user-defined
queries [HPN11, AKM+15] and noise samplers [JMRO21] can severely violate the promises
of differential privacy. Thus, recent research has begun to theoretically investigate timing-
private DP programs, which ensure that the joint distribution of the output and runtime
satisfies differential privacy [BDDNT23, RV24].

Definition 1.1 ((ε, δ)-Joint Output/Timing Privacy [BDDNT23, RV24]). Let X be a
dataset space with an adjacency relation, E be a set of execution environments for a
computational model, Y be an output space, T ⊆ R≥0 a set of possible runtimes in the
model, and P : X × E → Y × E a randomized program in the model. Then we say that
P is (ε, δ)-jointly output/timing-private (JOT-DP) if for all adjacent x, x′ ∈ X , all pairs of
input-compatible execution environments env, env′ ∈ E , and all S ⊆ Y × T

Pr[(Y, T) ∈ S] ≤ eε · Pr[(Y ′, T ′) ∈ S] + δ

where Y = out(P (x, env)) and TP (x, env) denote the output and runtime of P re-
spectively (and defined similarly for Y ′ and T ′). When δ = 0, we say that P achieves
pure JOT-DP, and when δ > 0, we say that P achieves approximate JOT-DP. The dataset
space X and its adjacency relation determine whether the program achieves JOT-DP in the
bounded (the number of records n = |x| in a dataset x ∈ X is fixed and publicly known),
unbounded (|x| can be arbitrarily large and is intended to remain private), orupper-bounded
(upper bound on |x| is publicly known, but |x| should remain private subject to the upper
bound) settings.

The above notion of timing privacy requires that the joint distribution of the program
P ’s output and runtime when executed in the environment env satisfies the standard
definition of differential privacy. Informally, the execution environment represents the

3

state of the computer before execution, for example, the contents of memory. We give
further background on execution environments in Section 2.

Beyond its role in data analysis, DP has recently emerged as a valuable tool for de-
signing more practical and efficient cryptographic systems. For instance, metadata-private
messaging systems have leveraged weaker DP guarantees to improve performance over
purely cryptographic approaches [LGZ18, VDHLZZ15]. Similarly, the concept of differ-
ential obliviousness, which extends DP-like guarantees to the memory access patterns of
a process, has been proposed as a lightweight alternative to oblivious RAM [CCMS22].
Apple has even adopted DP in their implementation of enhanced visual search as a more
efficient method of anonymizing user queries [App24, ABG+24]. Thus, there is a pressing
need to understand the extent to which DP implementations can be protected from timing
attacks.

1.1 Limitations of Prior Approaches

One general technique suggested by Haeberlen, Pierce, and Narayan [HPN11] and formal-
ized and generalized by Ratliff and Vadhan [RV24], for constructing JOT-DP programs
involve first establishing a bound on the program’s timing stability, which is the timing
equivalent of global sensitivity. Once this bound is established, the output release is de-
layed by an amount sampled from a distribution, scaled according to the timing stability
and the desired privacy level. However, this technique seems to inherently result in ap-
proximate privacy (δ > 0) because it can only add non-negative “noise” to the program’s
runtime. It is possible to achieve pure (δ = 0) JOT-DP in the bounded-DP (or upper-
bounded DP) setting, where the maximum size of the input is known and public, by padding
execution to the worst case runtime. However, in the unbounded DP setting, where the size
of the program’s input is unknown and must be protected by differential privacy, achieving
JOT-DP for non-trivial programs introduces several interesting challenges.

First, Ben Dov, David, Naor, and Tzalik [BDDNT23] show that pure DP programs in
the unbounded setting can be converted into JOT-DP programs, but the conversion results
in a constant additive increase in error probability (and thus does not provide vanishing
error as the dataset size n → ∞). It remains unknown whether one must tolerate this
constant probability of constant additive error, or if it is possible to construct pure JOT-
DP programs that maintain the same asymptotic accuracy guarantees as their non-timing-
private versions (which typically have error probability that tends to 0 as the dataset size
n grows). Furthermore, the conversion technique of [BDDNT23] can produce in a JOT-
DP program that is inefficient, even if the original pure DP program is efficient. The
reason being that constructing the sampler for the JOT-DP program requires computing
the probabilities of all possible outputs of the original program, which may take exponential
time even if the original program runs in expected polynomial time.

For approximate JOT-DP, the previously mentioned technique of adding random delays
can achieve vanishing error, but it is only applicable to programs that are timing stable,

4

which implies an O(n) runtime on datasets of size n. Consequently, in the unbounded
DP setting, this approach cannot ensure timing privacy for common DP algorithms with
superlinear runtimes. For example, the smooth-sensitivity median algorithm [NRS07] for
differentially private median computation requires sorting the input data, which incurs a
Ω(n log n) runtime for any comparison-based sorting algorithm. Thus, in the unbounded
DP setting, no method is currently known for constructing even approximately JOT-DP
analogues of DP algorithms that require superlinear runtime.

1.2 Our Results

In this work, we address the above limitations and introduce new techniques for construct-
ing differentially private programs in the unbounded setting that are secure against timing
attacks. We adopt the RAM model of computation with a random number generator,
which we view as more natural than the model used by Ben Dov et al. [BDDNT23] (see
Section 2). Their results used a toy computational model equipped solely with a random
bit generator, where the total runtime was measured by the number of random bits gener-
ated before halting. Additionally, since we focus on the unbounded setting of differential
privacy, we do not utilize the Word RAM model, as its finite word size1 imposes con-
straints on addressable memory and, consequently, on input size. However, we note that
our transformations do not rely on the RAM model’s capability to generate integers that
are super-polynomially large in the program’s runtime.

Within the RAM model of computation, we answer an open question by Ben Dov et
al. [BDDNT23] and construct an efficient procedure for converting any pure DP program
P in the upper-bounded setting (see Definition 1.1) to a pure JOT-DP program P ′ for
the unbounded setting whose output distribution differs by at most a constant β in total
variation distance from P .

Theorem 3.4 (Pure JOT-DP RAM programs in the Unbounded Setting). For all β > 0,
ε > 0, ε′ > ε, and ε-JOT-DP RAM programs P : X × E → Y × E in the upper -bounded
setting, there exists a ε′-JOT-DP RAM program P ′ : X × E → N × E for the unbounded
setting such that ∥∥∥out(P (x, env))− out(P ′(x, env))

∥∥∥
TV

< β

Furthermore, the mechanism P ′(x, env) is simply an explicit algorithm that makes one
oracle call to P on a truncation of x along with an additional computation that takes time
O(|x|) with high probability.

Given the above result, we can convert pure JOT-DP programs with superlinear runtime
in the upper-bounded setting into pure JOT-DP programs in the unbounded setting. Note

1The Word RAM model sometimes defines the word size ω as ω = O(logn), where n is the program’s
input length. However, this introduces additional complexities, as the word size itself may reveal information
about the input length.

5

that the requirement that P has a pure JOT-DP implementation in the upper-bounded
setting is not overly restrictive, as many useful programs have such implementations (for
example, by padding all executions to the maximum runtime on datasets of size within the
upper bound). This resolves the open problem of Ben Dov et al. [BDDNT23].

Note that Theorem 3.4 allows for a constant additive error in the output with constant
probability, even as n → ∞. This raises the question of whether such an error is unavoid-
able, a question we address in this work. Specifically, we show that the answer depends on
the computational model starting with the following lower bound:

Theorem 4.1 (Lower Bound for Pure JOT-DP Programs). Let P : X × E → N × E be
a ε-JOT-DP program in the unbounded setting for some computational model, and that
releases an estimate of its true input length. Let t0 = O(1) be the expected runtime of
P on the empty dataset, and pt0(n) ≤ 1 be the smallest non-zero probability such that
Z ∼ Bernoulli(pt0(n)) can be sampled in time 2 · t0 when P is executed on a dataset
consisting of n records equal to a fixed value (e.g., 0). Then ∃c such that ∀x ∈ X , |x| ≥ c:

Pr
[∣∣∣out(P (x, env))− n

∣∣∣ > n− c
]
> pt0(n)

for n = |x| as n → ∞.

The above theorem gives a computational-model-dependent lower bound on the achiev-
able utility for pure JOT-DP programs. In particular, with probability at least pt0(n), the
program will output a useless result (since the error is of the order O(n)). If our compu-
tational model includes only a coin-tossing function as in the BDNNT model (Section 2),
then p(n) ≥ 2−2·t0 , so the error probability is at least a constant. On the other hand, we
show that in a randomized RAM model of computation where the input length is given
as part of the input, we can achieve error that decays inverse polynomially in the input
length (Section 4).

Theorem 4.5 (Pure JOT-DP RAM Programs in the Unbounded Setting). For all ε > 0,
ε′ > ε, and ε-DP RAM programs P : X × E → Y × E in the upper-bounded setting, there
exists a ε′-JOT-DP RAM program P ′ : X ×E → N×E for the unbounded setting satisfying
∀x ∈ X of length n, ∀ input-compatible env ∈ E , ∀c ≥ 2:∥∥∥out(P (x, env))− out(P ′(x, env))

∥∥∥
TV

< O

(
1

nc

)
Furthermore, the mechanism P ′(x, env) is an explicit algorithm that makes one oracle call
to P on a truncation of x along with an additional computation that takes time O(|x|)
with high probability.

In particular, we obtain the following pure JOT-DP implementation of the Laplace
mechanism.

6

Corollary 4.6 (Pure JOT-DP Laplace Mechanism). For all ε > 0, and all c > 0, there
exists an ε-JOT-DP RAM program P : X ×E → Y×E for releasing sums in the unbounded
setting such that for all datasets x ∈ X :

Pr

[∣∣∣out(P (x, env))−
∑

xi

∣∣∣ ≥ C · ln(n)
ε

]
< O

(
1

nc

)
where n = |x| is the size of the dataset, and C > 0 is a universal constant.

Theorem 4.5 shows that we can construct pure JOT-DP sums in the randomized RAM
model that achieve comparable privacy guarantees to the standard ε-DP Laplace mecha-
nism. While the error probability is not exponentially decaying as in the standard (non-
timing-private) Laplace mechanism, the JOT-DP mechanism still ensures that the error
vanishes at a polynomial rate. This is an improvement over the constant error bound given
by Ben Dov et al. [BDDNT23] and Theorem 3.4, and is the best possible by Theorem 4.1
since pt0(n) ≥ n−22·t0 (Section 4).

1.3 Techniques

We introduce a new technique for constructing pure JOT-DP programs in the unbounded
setting (Section 3). Specifically, both Theorem 3.4 and Theorem 4.5 are obtained by
(a) constructing a pure JOT-DP program that coarsely estimates its input length, (b)
truncating the dataset based on this estimate, and (c) running an upper-bounded pure
JOT-DP program using the estimate as the upper bound on dataset size.

Informally, the coarse estimation procedure repeatedly queries whether the input length
exceeds some threshold, where the threshold doubles in each round, continuing until the
answer is “no.” Because the query responses must satisfy differential privacy, each has an
associated error probability. However, this error can be made arbitrarily small.

To achieve the bound for RAM programs in Theorem 4.5, we leverage the fact that the
input length n is known in advance, allowing the error parameter to explicitly depend on
n. Specifically, the algorithm uses an adaptive sampling procedure that repeatedly flips
a biased coin, starting with an initial success probability of 1/(n + k)c for constants c
and k. After each unsuccessful flip, the success probability is updated to 1/(n − i + k)c

until it reaches a fixed probability of 1/kc. Flipping continues until the first success, at
which point the algorithm outputs the total number of flips. Importantly, this ensures
(a) the runtime is exactly determined by the output, and (b) the output itself is an ε-DP
estimate of the input length, making the algorithm ε-JOT-DP. Using this adaptive sampler
as a building block, we construct pure JOT-DP RAM programs that achieve the bound
from Theorem 4.5. Our construction is optimal in terms of its failure probability (i.e., it
achieves error probability that vanishes at a polynomial rate). In particular, Theorem 4.1
establishes that this decay rate is the best achievable within the RAM model, and in fact,
weaker computational models can only achieve a constant error probability.

7

To establish the lower bound in Theorem 4.1, we analyze the output support of a pure
DP program in the unbounded setting conditioned on halting within time t ≤ 2t0, where
t0 is the expected runtime of the program on the empty input. Our argument relies on
the observation that even when the database is very long, the mechanism must with some
probability behave exactly as it does on the empty database. On the empty database the
mechanism halts within time 2 · t0 with high probability, and thus the same behavior must
occur with positive probability on the long database. By the definition of JOT-DP, the
output support conditioned on halting within this time bound must be finite and identical
across all inputs. We further show that every output in this finite support provides poor
utility for most inputs. Nonetheless, the mechanism must output an element from this
finite set with probability at least pt0(n), where pt0(n) is the smallest non-zero probability
computable by a program running in time 2t0. Together, our results demonstrate that in
many reasonable computational models, pure JOT-DP programs in the unbounded setting
necessarily incur an added utility cost to maintain their timing privacy guarantees.

2 Preliminaries

RAM Model. Throughout this work, we will use the idealized RAM model of compu-
tation. The RAM model consists of an infinite sequence of memory cells, each capable
of storing arbitrarily large natural numbers. Variables are stored in registers and RAM
programs can perform a set of basic operations for arithmetic (addition, subtraction, mul-
tiplication, and integer division), Boolean logic (AND, OR, NOT), and reading/writing
memory. They also allow conditional jumps (e.g., if CONDITIONAL goto LINE), which
implement standard control flow constructs such as if and if/else statements. Addition-
ally, we allow our RAM programs to use randomness by executing a RAND(n) instruction
to uniformly sample an integer from {0, . . . , n}. The runtime of a RAM program is defined
as the number of basic instructions2 executed before the program halts, meaning that the
set of possible runtime values T corresponds to the natural numbers N. We also include
a built-in variable input len and input ptr (respectively output len and output ptr),
which stores the length of the program’s input and its location in memory respectively
(and similarly for the program’s output).

We also consider a variant of the randomized RAM model where the program lacks
direct access to the input length (i.e., input len is not initialized). This model is strictly
weaker than the one described above, as the program must compute the input length dur-
ing execution if needed. In this model, the end of the input is marked in memory by a
special delimiter symbol reserved for indicating the end of the input.

RAMBDDNT. Earlier work by Ben Dov et al.[BDDNT23] used a computational model

2We count conditional branching instructions and randomness sampling as basic instructions taking one
time step.

8

where randomness is provided by a simple coin-tossing function (i.e., a draw from Bernoulli(1/2)),
and runtime is measured solely by the number of coin tosses performed. This is in contrast
to our RAM model, where a call to RAND(n) samples a random integer from {0, . . . , n} and
runtime is measured by the total number of instructions executed before halting. Con-
sequently, when discussing the main results of Ben Dov et al. in Section 3, we denote
by RAMBDDNT the RAM model in which randomness is restricted to calls to a simple
Bernoulli(1/2) sampler and runtime is measured by the total number of such calls.

Execution Environments. The runtime of a program on a given input is often highly
dependent on the program’s execution environment. For example, a program executing on
x86 hardware will have runtime that can be influenced by concurrent processes executing
on the system, the state of the branch predictor (if the hardware supports speculative
execution), the cache state, and various other forms of resource contention that might
occur on the system. Thus, we always consider a program’s runtime to be a function of
both the input and some execution environment env ∈ E representing the machines initial
state before executing the program. For example, the set of execution environments E for
RAM programs includes all possible memory configurations and initial values of built-in
variables.

Definition 2.1 (RAM Execution Environment). The execution environment env of a
RAM program is the infinite sequence (v0, v1, . . . ,) such that M [i] = vi for all i along with
the values stored by the built-in variables such as input ptr and input len, output ptr,
and output len.

We note that while the execution environment significantly influences program runtimes
in practice, throughout this paper, we will work with RAM programs whose runtime and
output distributions are jointly independent of the execution environment. Additionally,
we emphasize that not every execution environment is compatible with a given input. For
example, a RAM program that processes a length-n string consisting entirely of 1’s may
be incompatible with a RAM environment where memory has been zeroed out. We say
that P (x, env) is undefined for such environments env that are incompatible with an input
x. Consequently, our definitions are often quantified over all pairs of inputs x ∈ X and
input-compatible execution environments env ∈ E .

The Bounded, Upper-Bounded, and Unbounded Settings. Differential privacy is
defined with respect to an input space X , where inputs typically consist of n ≥ 0 records
drawn from some domain D. Formally, we define the input space as X =

⋃∞
n=0Dn. Two

inputs x, x′ ∈ X are said to be adjacent with respect to a dataset distance metric dX if
dX (x, x

′) ≤ 1.
We can distinguish between different settings of differential privacy according to whether

the program’s input size is considered public information. In the bounded setting, the input
length is assumed to be publicly known. Consequently, privacy guarantees do not extend

9

to hiding the dataset size. This assumption simplifies the defense against timing attacks,
as execution can often be padded to match the worst-case runtime for inputs of a given
length. A stronger flavor of DP is the upper-bounded setting, where only an upper bound
nmax on the program’s input length is assumed to be public. This setting is commonly
encountered in practice, as one can typically establish a conservative upper limit on the
dataset size. Similarly to the bounded setting, one can often pad execution up to a worst
case runtime3 in the upper-bounded setting to protect against timing attacks. However,
the strongest privacy guarantee is provided by the unbounded setting, in which the input
length is intended to be kept private and can be arbitrarily large.

In both the upper-bounded and unbounded settings, adjacency is often defined using
an insert-delete distance.

Definition 2.2 (Insert-Delete Distance). For x ∈ D∗, an insertion to x is an addition of
an element z to a location in x resulting in a new input x′ = [x1, . . . , xi, z, xi+1, . . . , xn].
Likewise, a deletion from x is the removal of an element from a location i, giving a new
input x′ = [x1, . . . , xi−1, xi+1, . . . , xn]. We define the insert-delete distance, denoted dID, of
inputs x, x′ ∈ D∗ to be the minimum number of insertion and deletion operations needed
to transform x into x′.

Throughout this paper, we operate within the unbounded setting of differential privacy
and will therefore implicitly use dID as the adjacency relation in all definitions and theorems.

Properties of JOT-DP Programs. We will frequently use the fact that DP programs
with constant-time execution on all inputs are also JOT-DP.

Lemma 2.3 (Constant-Time JOT-DP Programs [RV24]). If a program P : X ×E → Y×E
is ε-DP in its output and there exists a constant c such that TP (x, env) = c for all x ∈ X
and env ∈ E , then P is ε-JOT-DP.

We will also make use of programs P that are the composition of JOT-DP programs
P1 and P2. Such programs P are constructed by chaining together P1 such that its output
along with its unaltered input are fed as the input to program P2.

Lemma 2.4 (Sequential Composition of JOT-DP RAM Programs [RV24]). Let P1 : X ×
E → Y × E be an ε1-JOT-DP RAM program. Let P2 : X × E → Z × E be an ε2-JOT-DP
RAM program. Then the sequentially composed program P2 ⊗ P1 : X × E → (Y ×Z)× E
that executes P1 on the input x followed by P2 on input x is (ε1 + ε2)-JOT-DP.

Finally, we review the Discrete Laplace distribution.

3However, in practice, this approach may be inefficient, as the program’s worst-case runtime for inputs
of length nmax could be prohibitively long.

10

Definition 2.5 (Discrete Laplace Distribution). The Discrete Laplace distribution with
shift µ ∈ N and scale s > 0, is supplied a x ∈ Z, has the probability mass function:

p(x | µ, s) = e1/s − 1

e1/s + 1
· e−|x−µ|/s

The cumulative distribution function (CDF) is given by:

F (x | µ, s) =

{
e1/s

e1/s+1
· e−(µ−x)/s, if x ≤ µ,

1− 1
e1/s+1

· e−(x−µ)/s, if x > µ.

Throughout this paper, we will often use a censored4 version of the Discrete Laplace
distribution, which we denote by CensoredDiscreteLaplace(µ, s, ℓ, u). This distribu-
tion is additionally parameterized by lower and upper bounds ℓ and u so that X ∼
DiscreteLaplace(µ, s) is clamped to the range [ℓ, u].

Lemma 2.6 (Censored Discrete Laplace is DP [GRS12]). Let x, x′ be adjacent datasets,
ℓ, u ∈ N for ℓ ≤ u, f : X → Z a function with global sensitivity ∆, and ε > 0. Then
M(x) = CensoredDiscreteLaplace(µ = f(x), s = ∆/ε, ℓ, u) is ε-DP.

We remark that constant-time instantiations of the censored Discrete Laplace distribu-
tion are known [BV19, RV24]. Using Lemma 2.6 and the fact that we can implement the
censored Discrete Laplace mechanism to run in fixed time that depends only on s, ℓ, and
u, we obtain a JOT-DP version of CensoredDiscreteLaplace (by Lemma 2.3).

Lemma 2.7 (Censored Discrete Laplace is JOT-DP). Let x, x′ be adjacent datasets,
ℓ, u ∈ N for ℓ ≤ u, f : X → Z a function with global sensitivity ∆, and ε > 0. Then
there exists a RAM program P : X × E → Y × E such that P (x, env) samples from
CensoredDiscreteLaplace(µ = f(x), s = ∆/ε, ℓ, u) in time O(u) and achieves ε-JOT-DP.

3 Pure Timing-Private Programs

In this section, we characterize pure JOT-DP programs in the unbounded setting. To
begin, we reintroduce a result from Ben Dov et al. [BDDNT23] for the RAMBDDNT model
of computation (described in Section 2).

Theorem 3.1 (Ben Dov et al. [BDDNT23]). Let P : X × E → Y × E be any ε-DP
RAMBDDNT program. For any β > 0, ε′ > ε there exists a ε′-JOT-DP RAMBDDNT

program P ′ : X × E → Y × E such that for all x ∈ X , env ∈ E :∥∥∥out(P (x, env))− out(P ′(x, env))
∥∥∥
TV

< β

4The literature also refers to this as the Truncated Geometric Mechanism [GRS12].

11

Program 1 General Construction for Pure JOT-DP Programs in the Unbounded Setting

Input: A dataset x, privacy parameter ε′ > 0, failure parameter β > 0, and ε-JOT-DP
program P for the upper-bounded setting.

Output: The output of P when executed on the input x truncated to n̂ records where n̂
is a ε′-DP count on the size of x.

1: ε′ = ε′/2;
2: β′ = β/2;
3: m = 2

ε′ · ⌈ln(
1
β′)⌉;

4: while True do
5: Scan first m rows of input and set µ = min{n,m}; {note that n = |x|}
6: s = 1/ε′;
7: ℓ = 0; {lower bound for censored Discrete Laplace mechanism}
8: u = m; {upper bound for censored Discrete Laplace mechanism}
9: n̂ = CensoredDiscreteLaplace(µ, s, ℓ, u);

10: if n̂ < m
2 then

11: s = 1/ε;
12: x̂ = Truncate(x,m); {Truncates the dataset to m records if |x| > m }
13: run Pm(x̂); {P in the m-upperbounded setting}
14: return output of P (x̂);
15: else
16: ε′ = ε′/2;
17: β′ = β′/2;
18: m = 2

ε′ · ⌈ln(
1
β′)⌉;

Theorem 3.1 is promising in that it suggests one can achieve pure JOT-DP as long as
one is willing to tolerate a constant error probability. However, the authors left as an open
question whether the pure JOT-DP program P ′ can maintain the computational efficiency
of P . We give a positive answer to this question for a wide class of programs (namely,
programs that have pure JOT-DP implementations in the upper-bounded setting).

We start with the construction described by Program 1, which first computes a pure
JOT-DP over -estimate of a program’s input length that holds with arbitrarily small proba-
bility β. Intuitively, Program 1 scans its input mi entries at a time, where mi depends only
on the parameters ε′, β, and i, and mi+1 is roughly 2mi. In each iteration, the program
releases a DP count on the first mi entries of the input (i.e., a DP count on mi if mi < |x|,
and a DP count on |x| otherwise) and stops scanning the input once it releases a count less
than mi/2. This step consumes ε′ of the privacy budget to generate the coarse estimate
mk, which serves as an upper bound on the input size with high probability. Once this
estimate is determined, the input is truncated (if necessary) in time that depends only on

12

the differentially private overestimate mk. Finally, the program Pm is executed on the
transformed dataset x̂, where Pm is the program P restricted to inputs of length at most
mk.

Lemma 3.2. Let P ′ : X ×E → N×E be the RAM program implementing Program 1 for a
RAM program P : X × E → Y × E that is ε-JOT-DP in the upper-bounded setting. Then
P ′ achieves (ε+ ε′)-JOT-DP in the unbounded setting.

Proof. We can interpret the program P ′ as the composition of two subprograms: P(line 13),
which encompasses the execution of P ′ up to line 13, and Pm, which represents the
execution of P on x̂ within the upper-bounded setting, where inputs are guaranteed to
have length at most m. By assumption, Pm satisfies ε-JOT-DP. Furthermore, Truncate
is 1-stable5, and therefore for all x, x′ ∈ X satisfying dID(x, x

′) ≤ 1, it follows that
dID(Truncate(x,mk), Truncate(x

′,mk)) ≤ 1. Thus, to establish the overall privacy guar-
antee, it remains to show that m is computed in a differentially private manner and
that P(line 13) satisfies ε′-JOT-DP. Given these conditions, we can view the execution
of P ′(x, env) as the sequential composition of two JOT-DP programs P(line 13)(x, env)
and Pm(x̂, ˆenv).

Observe that P(line 13) scans the input m entries at a time, where m depends only on
ε′ and β′ (lines 3 and 18). At each iteration i of the loop (for i = 1 . . . k), let εi = ε′,
βi = β′, and mi = m. During each loop iteration, the program invokes a censored Discrete
Laplace mechanism to compute a εi-DP count over the first mi = 2 · ⌈ln(1/βi)⌉/εi entries
of the input where εi = ε′/2i and βi = β/2i. Recall that each invocation of the censored
Discrete Laplace mechanism is εi-JOT-DP (Lemma 2.7). Thus, up to line 11, the runtime
of Program 1 depends only on the number of iterations k, which is a post-processing
function of the k JOT-DP counts. Furthermore, once the condition on line 10 is met,
the program performs a truncation operation, Truncate(x,m). This operation executes in
time dependent only on mk (e.g., by returning a copy of the first mk records of x). Since
P ′
(line 13) computes k εi-DP counts (for i = 1, . . . , k) and runs in time determined solely

by k, it follows that P ′
(line 13) satisfies ε′-JOT-DP since

5A function f : X → X that maps datasets to datasets is 1-stable if for all x, x′ ∈ X , dID(f(x), f(x
′)) ≤

c · dID(x, x′).

13

k∑
i=1

εi ≤
∞∑
i=1

εi

=
∞∑
i=1

ε′

2i

= ε′ ·
∞∑
i=1

1

2i

= ε′

Consequently, P ′ is the composition of two JOT-DP programs, P ′
(line 13) and P . By

the basic composition theorem (Lemma 2.4), it follows that the overall program satisfies
(ε+ ε′)-JOT-DP.

Lemma 3.3. Let P ′ : X × E → N × E be the program implementing Program 1 for a
program P : X × E → Y × E that is ε-JOT-DP in the upper-bounded setting. Then P ′

returns the output of P on dataset x with probability at least 1− β.

Proof. We first consider the case where Program 1 terminates on loop iteration k with
mk < |x|. In this scenario, x̂ = Truncate(x,mk) and |x̂| < |x| so the program returns the
output of P on the first mk entries of x. The probability of this occurring is given by

Pr
[
n̂i <

mi

2

]
≤ e−mi·εi/2 ≤ βi

for n̂i ∼ CensoredDiscreteLaplace(µ = mi, s = 1/εi, ℓ = 0, u = mi) by the CDF of the
Discrete Laplace distribution and the fact that mi ≥ 2

εi
· ln(1/βi). We union bound over

the k invocations of the mechanism:

k∑
i=1

Pr
[
n̂i <

mi

2

]
≤

∞∑
i=1

βi

=
∞∑
i=1

β

2i

= β

∞∑
i=1

1

2i

= β

We now condition on Program 1 halting on loop iteration k where mk ≥ |x|. In this
case, x̂ = x since Truncate(x,mk) does not alter x when mk > |x|. Thus P ′ returns the
output of P executed on x and the claim follows.

14

We now prove that for every pure JOT-DP program in the upper-bounded setting, we
can obtain a pure JOT-DP program in the unbounded setting.

Theorem 3.4 (Pure JOT-DP in the Unbounded Setting). For all 0 < β < 1, ε > 0, ε′ > ε,
and ε-JOT-DP RAM programs P : X × E → Y × E in the upper -bounded setting, there
exists a ε′-JOT-DP RAM program P ′ : X × E → N × E for the unbounded setting such
that ∥∥∥out(P (x, env))− out(P ′(x, env))

∥∥∥
TV

< β

Furthermore, the mechanism P ′(x, env) is simply an explicit algorithm that makes one
oracle call to P on a truncation of x along with an additional computation that takes time
O(|x|) with probability at least 1− β − e−Ω(|x|).

Proof. The proof follows from Lemma 3.2 and Lemma 3.3. In particular, given P , we
construct the program P ′ as described in Program 1 so that P ′ is ε′-JOT-DP for ε′ > ε.
What remains to be shown is that, with high probability, P ′ runs in time O(|x|) before
making the oracle call to P .

There are two cases. We first consider the case wheremk < |x|. As shown in Lemma 3.3,
this happens with probability:

∞∑
i=1

Pr
[
n̂i <

mi

2

]
≤

∞∑
i=1

e−mi·εi/2

≤
∞∑
i=1

βi

= β

where n̂i ∼ CensoredDiscreteLaplace(µ = mi, s = 1/εi, ℓ = 0, u = mi). Thus, we
consider the case where mk > |x| and show that P ′ stops looping when mk = O(|x|) with
high probability. First, observe that

mk

mk−1
=

2k

ε′ ·
⌈
log 2k

β

⌉
2k−1

ε′ ·
⌈
log 2k−1

β

⌉
= 2 · r + 1

r

for r = k − 1 +
⌈
log(1/β)

⌉
≥ 1. Thus,

15

2 ≤ mk

mk−1
≤ 4

Therefore, during each iteration of the loop, we increase the number of input entries
scanned by at least a factor of 2 and at most a factor of 4. Now, consider the index k
such that mk > |x| but mk−1 ≤ |x|. Then |x| < mk ≤ 4 · |x|. Furthermore, there exists
a j ≥ k such that 4 · |x| ≤ mj ≤ 16 · |x|. Note that during this loop iteration we have
n̂j ∼ CensoredDiscreteLaplace(µ = |x|, s = 1/εj , ℓ = 0, u = mj) and

Pr
[
n̂j >

mj

2

]
= 1− F

(mj

2
|µ = |x|, s = 1/εj

)
≤ e−Ω(|x|)

where F is the CDF of the Discrete Laplace distribution. Thus, with probability at
least 1 − β − e−O(|x|), P ′ stops looping on iteration j = O(log |x|) where mj = O(|x|).
The runtime of each loop iteration is dominated by the time it takes to sample from
CensoredDiscreteLaplace(µ, s, ℓ, u = mi), which can be bounded by O(mi) (Lemma 2.7),
where u starts atm1 and at least doubles during each iteration up tomj = O(|x|). It follows
that, with high probability, P ′ runs in time O(|x|) before making the oracle call to P and
terminating.

Theorem 3.4 shows that for any DP RAM program P , it is possible to efficiently
construct a JOT-DP variant P ′ with comparable privacy guarantees, incurring at most a
β increase in error probability. In other words, the modified program P ′(x) may return
inaccurate results with probability at most β higher than P (x). However, the construction
used in Theorem 3.4 does not extend to the RAMBDDNT model, as it relies on sampling
from a Censored Discrete Laplace distribution using a constant number of coin flips. This
sampling is possible only if all output probabilities are dyadic, but Lemma A.2 shows that
no nontrivial Censored Discrete Laplace distribution has this property. Consequently, even
in the bounded DP setting, one cannot implement the standard Laplace mechanism with
perfect timing privacy guarantees, as can be done in the RAM model. Fortunately, we
demonstrate that replacing the sampling from the Censored Discrete Laplace distribution
in line 9 of Program 1 with sampling from a closely related distribution whose probability
masses are entirely dyadic ensures that Theorem 3.4 also holds in the RAMBDDNT model
(see Appendix).

Whether the constant additive increase in error probability β is unavoidable even in
the RAM model remains an open question. In the next section, we establish a lower bound
on the achievable utility of pure JOT-DP programs in the unbounded setting.

4 A Lower Bound for JOT-DP Programs

A key question that arises from Theorem 3.4 (Section 3) is whether the constant additive
error in the output, which occurs with constant probability even as the input size n grows,

16

is unavoidable. In this section, we address this question, exploring the inherent limitations
of JOT-DP programs. We begin by establishing a lower bound, demonstrating that the
achievable utility for pure JOT-DP programs depends on the computational model.

Theorem 4.1 (Lower Bound for JOT-DP Counting Programs). Let P : X ×E → N×E be
a ε-JOT-DP program in the unbounded setting for some computational model, and that
releases an estimate of its true input length. Let t0 = O(1) be the expected runtime of
P on the empty dataset, and pt0(n) ≤ 1 be the smallest non-zero probability such that
Z ∼ Bernoulli(pt0(n)) can be sampled in time 2 · t0 when P is executed on a dataset
consisting of n records equal to a fixed value (e.g., 0). Then ∃c such that ∀x ∈ X , |x| ≥ c:

Pr
[∣∣∣out(P (x, env))− n

∣∣∣ > n− c
]
> pt0(n)

for n = |x| as n → ∞.

Proof. Let P : X × E → Y × E be a ε-JOT-DP program for releasing an estimate on the
length of its input. Let E[TP (λ, envλ)] = t0 where t0 = O(1) and λ is the empty dataset
and envλ is an input-compatible execution environment. Let pt0(n) ≤ 1 be the smallest
probability such that Z ∼ Bernoulli(pt0(n)) is sampleable in time 2 · t0 when P is executed
on a dataset consisting of n copies of a fixed record.

Observe that Pr[TP (λ, envλ) < 2 · t0] ≥ 1/2 by Markov’s inequality. Furthermore, let

S = supp(out(P (λ, envλ))|TP (λ, envλ) ≤ 2 · t0)

Note that S is finite since P (λ, envλ) can only generate a finite number of outputs within
2 · t0 time steps. We can set c = maxy∈S y. Then ∀n ≥ c, y ∈ S it follows that

|y − n| ≥ n− c

By pure JOT-DP, we have that for all x

supp(out(P (x, env))|TP (x, env) ≤ 2 · t0) = S

Thus, we have Pr [|out(P (x, env))− n| > n− c] > pt0(n) where n = |x|.

Theorem 4.1 establishes that the achievable utility of pure JOT-DP programs in the
unbounded setting depends on the computational model. For example, in the randomized
RAM model, as we have defined it, where the program receives its input length n as part
of the input, then pt0(n) ≥ n−22·t0 implying that pt0(n) vanishes as n → ∞. This can
be realized, for instance, by a RAM program that applies repeated squaring to the input
length and then invokes a random number generator on the result. Conversely, if the
RAM program does not receive its input length n as part of its input (e.g., as described
in Section 2), the best achievable bound6 is pt0(n) ≥ 2−O(22t0), which only guarantees a
constant failure probability. In the next section, we present explicit constructions of pure
JOT-DP RAM programs in the unbounded setting where p(n) vanishes as n → ∞.

6Obtainable by starting with a constant and performing repeated squaring.

17

4.1 Pure JOT-DP RAM Programs in the Unbounded Setting

We now present a general construction for converting a JOT-DP RAM program P in
the upper-bounded setting into a JOT-DP RAM program P ′ in the unbounded setting.
Notably, P ′ achieves an error probability that matches the best achievable bound (up to
constant factors) within the RAMmodel, as established by the lower bound in Theorem 4.1.
Intuitively, our construction follows a similar approach to Program 1, but leverages the fact
that the program has access to the input length n. The program begins by computing a
coarse estimate of the dataset size, ensuring with high probability that this estimate serves
as a valid upper bound on the input length |x|. Given this upper bound, we then apply
the same technique as in Program 1, truncating the dataset if necessary before executing
the upper-bounded JOT-DP program P .

Program 2 takes as input a dataset x ∈ D∗ and outputs an estimate of the dataset
size using an adaptive coin-flipping process. The program initializes a biased coin with a
success probability of 1/(n + k)c for constants c and k. It then repeatedly flips the coin
until the first success, recording the total number of flips as the output. On the (i+ 1)th
flip, the success probability is adjusted to 1/(n − i + k)c, and this adjustment continues
until the success probability reaches a fixed value of 1/kc, at which point the bias is no
longer updated. Thus, the PMF of the output of Program 2 is given below.

f(n,c)(i) =

{
1

(n−i+k)c ·
∏x−1

j=0

(
1− 1

(n−j+k)c

)
if 0 ≤ i ≤ n,

Geom 1
kc
(i− n) ·

∏n−1
j=0

(
1− 1

(n−j+k)c

)
if i > n

where Geomp(i) is the PMF of the Geometric distribution defined as:

Geomp(i) =

{
(1− p)i−1 · p if i ∈ {1, 2, 3, . . . },
0 otherwise.

Importantly, the runtime of Program 2 is fully determined by its output. Thus, if the
program’s output satisfies ε-DP, it is also true that the program will satisfy ε-JOT-DP.

Lemma 4.2. For all c ≥ 2, k ≥ 2, the RAM program P : X × E → N × E described in
Program 2 is ε-JOT-DP in the unbounded setting where ε = 2c · ln

(
k+1
k−1

)
.

Proof. Let pn(j) = 1/(n− j + k)c and observe that

pn+1(j + 1) =
1

(n+ 1− j − 1 + k)c
=

1

(n− j + k)c
= pn(j)

and therefore for all y < n

y∏
j=0

(1− pn(j)

1− pn+1(j)

)
=

1− pn(y)

1− pn+1(0)
≤ (n+ 1 + k)c

(n+ 1 + k)c − 1
≤ kc

kc − 1

18

Program 2 A RAM Program for Approximate Timing-Private Counts

Input: A dataset x occupying memory locations M [0], . . . ,M [input len− 1]. The
values c, k ≥ 2 are hardcoded constants.

Output: A noisy estimate of the input length |x|.

1: n = input len;
2: count = 0;
3: flag = 0;
4: while flag == 0 do
5: v = n− count; {Note the RAM model rounds negative numbers to 0}
6: b = v+ k;
7: B = 1;
8: for j = 0, . . . , (c− 1) do
9: B = B · b; {Computing bc}

10: r = RAND(B);
11: if r == 0 then
12: flag = 1;
13: else
14: count = count+ 1;
15:

16: return count;

and similarly

y∏
j=0

(
1− pn+1(j)

1− pn(j)

)
=

1− pn+1(0)

1− pn(y)
≤ (n− y + k)c

(n− y + k)c − 1
≤ kc

kc − 1

We now consider the ratio of PMFs.

19

Case 1 (y ≤ n):

fn(y)

fn+1(y)
=

pn(y)

pn+1(y)
·
y−1∏
j=0

(
1− pn(j)

1− pn+1(j)

)
=

pn(y)

pn+1(y)
· 1− pn(y − 1)

1− pn+1(0)

≤
(
(n+ 1− y + k)c

(n− y + k)c

)
· kc

kc − 1

≤ (k + 1)c

kc
· kc

kc − 1

≤ (k + 1)c

kc − 1

≤
(
k + 1

k − 1

)2c

Similarly,

fn+1(y)

fn(y)
=

pn+1(y)

pn(y)
·
y−1∏
j=0

(
1− pn+1(j)

1− pn(j)

)

=
pn+1(y)

pn(y)
·
(

1− pn+1(0)

1− pn(y − 1)

)
=

(n− y + k)c

(n+ 1− y + k)c
·
(

kc

kc − 1

)
≤ (n− y + 1 + k)c

(n− y + 1 + k)c − 1

≤ (k + 1)c

(k + 1)c − 1

≤ (k + 1)c

kc − 1

≤
(
k + 1

k − 1

)2c

20

Case 2 (y > n):

fn(y)

fn+1(y)
=

Geom(p = 1
kc , y − n)

Geom(p = 1
kc , y − n− 1)

·
(

1

1− pn+1(n)

)
·
n−1∏
j=0

(
1− pn(j)

1− pn+1(j)

)

=

(
kc

kc

)
·
(1− 1

kc)
y−n−1

(1− 1
kc)

y−n−2
·
(

(k + 1)c

(k + 1)c − 1

)
·
(
1− pn(n− 1)

1− pn+1(0)

)
≤ (k + 1)c

(k + 1)c − 1
·
(

kc

kc − 1

)
≤
(
k + 1

k − 1

)2c

and similarly,

fn+1(y)

fn(y)
=

Geom(p = 1
kc , y − n− 1)

Geom(p = 1
kc , y − n)

· (1− pn+1(n)) ·
n−1∏
j=0

(
1− pn+1(j)

1− pn(j)

)

≤ kc

kc − 1
·
(

1− pn+1(0)

1− pn(n− 1)

)
≤ kc

kc − 1
·
(

kc

kc − 1

)
≤
(
k + 1

k − 1

)2c

It follows that the program is ε-DP for ε = 2c · ln
(
k+1
k−1

)
. Furthermore, observe that the

runtime of this program is a deterministic function of its output. Specifically,

TP (x, env) = 5 + (out(P (x, env)) + 1) · (7 + 2(c− 1))

Since there exists a deterministic function f such that TP (x, env) = f(out(P (x, env))),
if out(P (x, env)) is ε-DP, then by post-processing, (out(P (x, env)), TP (x, env)) must also
satisfy ε-DP. Thus, the claim follows.

We now describe how to set k appropriately. By Lemma 4.2, we have

ε ≥ 2c · ln
(
k + 1

k − 1

)
= 2c · ln

(
1 +

2

k − 1

)
When k is large, we can use the approximation that ln(1 + x) ≈ x for small x, and

21

therefore

ε = 2c · ln
(
1 +

2

k − 1

)
≈ 2c · 2

k − 1

=
4c

k − 1

Rearranging the inequality, it suffices to choose k = O(c/ε) and then run Program 2 to
obtain a JOT-DP estimate of the input length of a RAM program. We now demonstrate
that this estimate is sufficiently accurate to derive an upper bound on the input length,
where the probability that the upper bound is less than the true length of the input decays
inverse polynomially in n.

Lemma 4.3. For all c ≥ 2, k ≥ 2, the RAM program P : X × E → N × E described in
Program 2 outputs an estimate ŷ = out(P (x, env)) of |x| = n that satisfies

Pr
[
ŷ <

n

2

]
≤ O

(1

nc−1

)
Proof. Let n = |x| and ŷ = out(P (x, env)) be the output of Program 2. We have that

Pr[ŷ <
n

2
] =

n
2∑

i=1

pn(i)

i−1∏
j=0

(1− pn(j))


≤

n
2∑

i=1

pn(i) (union bound)

≤ n

2
· pn
(n
2

)
=

n
2

(n2 + k)c

≤ O
(1

nc−1

)

and the claim follows.

By Lemma 4.3, we can set m = 2 · ŷ, ensuring that with probability O(1/nc−1), we have
m ≥ |x|. We can then apply the same technique as in Section 3 and compose Program 2
with an arbitrary RAM program P that is JOT-DP in the upper-bounded setting. We
describe the general construction in Program 3.

22

Program 3 JOT-DP RAM Program for the Unbounded Setting

Input: A dataset x, and a privacy parameter ε1 > 0. The program P is hardcoded into
line 4

Output: A noisy estimate of the input length |x|.

1: Set n̂ to the output of Program 2 with constants k and c such that k = O(c/ε′);
2: n̂ = 2 · n̂;
3: x̂ = Truncate(x, n̂); {returns the first n̂ entries of x if |x| > n̂}
4: run ε2-JOT-DP program P n̂(x̂) and return the result {P n̂ bounds inputs to length n̂}

Lemma 4.4. For all c ≥ 2, k ≥ 2, the RAM program P : X × E → N × E described in
Program 2 runs in time O(n) with probability at least 1− (1− 1

kc)
n, where n = |x|.

Proof. The runtime of Program 2 is a deterministic function of its output. Specifically,

TP (x, env) = 5 + (out(P (x, env)) + 1) · (6 + 2(c− 1))

= O(out(P (x, env)))

Thus, it suffices to show that Pr[out(P (x, env)) ≤ 2n] holds with high probability.
Observe that:

Pr[out(P (x, env)) > 2n] ≤ Geom
(
p =

1

kc
, n
)

≤
(
1− 1

kc

)n

Theorem 4.5 (Pure JOT-DP RAM Programs). For all ε > 0, ε′ > ε, and ε-DP RAM
programs P : X ×E → Y×E in the upper-bounded setting, there exists a ε′-JOT-DP RAM
program P ′ : X × E → N × E for the unbounded setting satisfying ∀x ∈ X of length n, ∀
input-compatible env ∈ E , ∀c ≥ 2:∥∥∥out(P (x, env))− out(P ′(x, env))

∥∥∥
TV

< O

(
1

nc

)
Furthermore, the mechanism P ′(x, env) is an explicit algorithm that makes one oracle call
to P on a truncation of x along with an additional computation that takes time O(|x|)
with high probability.

23

Proof. The proof follows a similar structure to that of Theorem 3.4. In line 1 of Program 3,
a noisy estimate n̂ of n = |x| is obtained by executing Program 2. By Lemma 4.2, Program 2
satisfies ε1-JOT-DP in the unbounded setting. Furthermore, lines 2-3 can be executed in a
fixed number of instructions. Thus, we represent lines 1-3 of Program 2 as the ε1-JOT-DP
program P(line 3).

Next, we consider the composition of P(line 3) with the ε2-JOT-DP program P . By
sequential composition, it follows that Program 2 is ε′-JOT-DP in the unbounded setting,
where ε′ = ε1 + ε2. What remains to be shown are the accuracy and runtime guarantees
of Program 3.

By Lemma 4.4, we have that, with high probability, Program 2 runs in time O(n) before
making a single oracle call to P on a truncated version of x. Observe that, conditioned on
n̂ > n

2 in line 1, we have x̂ = x after executing line 3. Thus, Program 3 returns the output
of the ε-JOT-DP program P on input x. By Lemma 4.3, Program 2 in line 1 returns an
estimate n̂ such that

Pr
[
n̂ <

n

2

]
= O

(
1

nc−1

)
Therefore, after executing line 2 so that n̂ = 2·n̂, it follows that n̂ > |x| with probability

at least 1−O(1
nc−1). Conditioning on this case, x̂ = x after executing line 3, and therefore

Program 2 will return the output of P n̂ on input x, where P n̂ accepts inputs of length at
most n̂ and satisfies n̂ > |x|.

Corollary 4.6 (Pure JOT-DP Laplace Mechanism). For all ε > 0, and all c > 0, there
exists an ε-JOT-DP RAM program P : X ×E → Y×E for releasing sums in the unbounded
setting such that for all datasets x ∈ X :

Pr

[∣∣∣out(P (x, env))−
∑

xi

∣∣∣ ≥ C · ln(n)
ε

]
< O

(
1

nc

)
where n = |x| is the size of the dataset, and C > 0 is a universal constant.

Proof. Fix c ≥ 2. Let M be the Censored Discrete Laplace mechanism that adds noise
drawn from a Discrete Laplace distribution and clips the output to lie within the bounds
ℓ = 0 and u = ∆ ·U , where U is an upper bound on the input length and each xi ∈ [0,∆].
By Lemma 2.7, there exists an ε′-JOT-DP RAM program PLap : X × E → Y × E that
implementsM , and furthermore PLap is a ε

′-JOT-DP RAM program for the upper-bounded
setting since it accepts inputs of length at most U . Let Z denote the output of the censored
Discrete Laplace program PLap. Because Z ∼ CensoredDiscreteLaplace(µ =

∑
xi, s =

∆/ε′, ℓ = 0, u = ∆ · U), we have

Pr[|Z − µ| ≥ t] ≤ exp

(
−ε′ · t

∆

)

24

Applying Theorem 4.5 with ε > ε′ gives an ε-JOT-DP RAM program P : X×E → Y×E
such that, for every x of length n and every input-compatible env∥∥out(PLap(x, env))− out(P (x, env))

∥∥
TV

= O
(
n−c

)
Thus, by a union bound:

Pr
[∣∣out(P (x, env))−

n∑
i=1

xi
∣∣ ≥ t

]
≤ exp

(
−ε′ · t

∆

)
+O

(
n−c

)
We choose t = ∆ · c lnn/ε′ so that

Pr
[∣∣out(P (x, env))−

n∑
i=1

xi
∣∣ ≥ t

]
≤ 1

nc
+O

(
n−c

)
= O

(
n−c

)
Thus, setting C = ∆ · c · ε/ε′ and substituting t = C lnn/ε:

Pr
[∣∣out(P (x, env))−

n∑
i=1

xi
∣∣ ≥ C lnn

ε

]
< O

(
n−c

)

References

[ABC+20] Ahmet Aktay, Shailesh Bavadekar, Gwen Cossoul, John Davis, Damien Des-
fontaines, Alex Fabrikant, Evgeniy Gabrilovich, Krishna Gadepalli, Bryant
Gipson, Miguel Guevara, et al. Google covid-19 community mobility re-
ports: anonymization process description (version 1.1). arXiv preprint
arXiv:2004.04145, 2020.

[ABG+24] Hilal Asi, Fabian Boemer, Nicholas Genise, Muhammad Haris Mughees,
Tabitha Ogilvie, Rehan Rishi, Guy N Rothblum, Kunal Talwar, Karl Tarbe,
Ruiyu Zhu, et al. Scalable private search with wally. arXiv preprint
arXiv:2406.06761, 2024.

[Abo18] John M Abowd. The us census bureau adopts differential privacy. In Pro-
ceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pages 2867–2867, 2018.

[AFP13] Nadhem J Al Fardan and Kenneth G Paterson. Lucky thirteen: Breaking
the tls and dtls record protocols. In 2013 IEEE symposium on security and
privacy, pages 526–540. IEEE, 2013.

25

[AKM+15] Marc Andrysco, David Kohlbrenner, Keaton Mowery, Ranjit Jhala, Sorin
Lerner, and Hovav Shacham. On subnormal floating point and abnormal
timing. In 2015 IEEE Symposium on Security and Privacy, pages 623–639.
IEEE, 2015.

[AP16] Martin R Albrecht and Kenneth G Paterson. Lucky microseconds: A timing
attack on amazon’s s2n implementation of tls. In Advances in Cryptology–
EUROCRYPT 2016: 35th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Vienna, Austria, May 8-12,
2016, Proceedings, Part I 35, pages 622–643. Springer, 2016.

[App24] Apple. Privacy-preserving machine learning with homomorphic
encryption. https://machinelearning.apple.com/research/

homomorphic-encryption, 2024. Accessed: 2025-01-19.

[BB05] David Brumley and Dan Boneh. Remote timing attacks are practical. Com-
puter Networks, 48(5):701–716, 2005.

[BDDNT23] Yoav Ben Dov, Liron David, Moni Naor, and Elad Tzalik. Resistance to tim-
ing attacks for sampling and privacy preserving schemes. In 4th Symposium
on Foundations of Responsible Computing (FORC 2023). Schloss Dagstuhl-
Leibniz-Zentrum für Informatik, 2023.

[BT11] Billy Bob Brumley and Nicola Tuveri. Remote timing attacks are still prac-
tical. In European Symposium on Research in Computer Security, pages
355–371. Springer, 2011.

[BV19] Victor Balcer and Salil Vadhan. Differential privacy on finite computers.
Journal of Privacy and Confidentiality, 9:2, 2019.

[CCMS22] T-H Hubert Chan, Kai-Min Chung, Bruce Maggs, and Elaine Shi. Foun-
dations of differentially oblivious algorithms. ACM Journal of the ACM
(JACM), 69(4):1–49, 2022.

[CEG95] Ran Canetti, Guy Even, and Oded Goldreich. Lower bounds for sam-
pling algorithms for estimating the average. Information Processing Letters,
53(1):17–25, 1995.

[DMNS06] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrat-
ing noise to sensitivity in private data analysis. In Theory of Cryptography:
Third Theory of Cryptography Conference, TCC 2006, New York, NY, USA,
March 4-7, 2006. Proceedings 3, pages 265–284. Springer, 2006.

[G+16] Andy Greenberg et al. Apple’s “differential privacy” is about collecting your
data–but not your data. Wired, June, 13(1), 2016.

26

https://machinelearning.apple.com/research/homomorphic-encryption
https://machinelearning.apple.com/research/homomorphic-encryption

[GRS12] Arpita Ghosh, Tim Roughgarden, and Mukund Sundararajan. Univer-
sally utility-maximizing privacy mechanisms. SIAM Journal on Computing,
41(6):1673–1693, 2012.

[HPN11] Andreas Haeberlen, Benjamin C Pierce, and Arjun Narayan. Differential
privacy under fire. In 20th USENIX Security Symposium (USENIX Security
11), 2011.

[JMRO21] Jiankai Jin, Eleanor McMurtry, Benjamin IP Rubinstein, and Olga Ohri-
menko. Are we there yet? timing and floating-point attacks on differential
privacy systems. arXiv preprint arXiv:2112.05307, 2021.

[KHF+20] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner
Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, et al.
Spectre attacks: Exploiting speculative execution. Communications of the
ACM, 63(7):93–101, 2020.

[Koc96] Paul C Kocher. Timing attacks on implementations of diffie-hellman, rsa,
dss, and other systems. In Advances in Cryptology—CRYPTO’96: 16th An-
nual International Cryptology Conference Santa Barbara, California, USA
August 18–22, 1996 Proceedings 16, pages 104–113. Springer, 1996.

[LGZ18] David Lazar, Yossi Gilad, and Nickolai Zeldovich. Karaoke: Distributed
private messaging immune to passive traffic analysis. In 13th {USENIX}
Symposium on Operating Systems Design and Implementation ({OSDI} 18),
pages 711–725, 2018.

[LSG+18] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner
Haas, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike
Hamburg. Meltdown. arXiv preprint arXiv:1801.01207, 2018.

[MDH+20] Solomon Messing, Christina DeGregorio, Bennett Hillenbrand, Gary King,
Saurav Mahanti, Zagreb Mukerjee, Chaya Nayak, Nate Persily, Bogdan
State, and Arjun Wilkins. Facebook Privacy-Protected Full URLs Data Set,
2020.

[NRS07] Kobbi Nissim, Sofya Raskhodnikova, and Adam Smith. Smooth sensitivity
and sampling in private data analysis. In Proceedings of the thirty-ninth
annual ACM symposium on Theory of computing, pages 75–84, 2007.

[RV24] Zachary Ratliff and Salil Vadhan. A framework for differential privacy
against timing attacks. In Proceedings of the 2024 on ACM SIGSAC Con-
ference on Computer and Communications Security, pages 3615–3629, 2024.

27

[VDHLZZ15] Jelle Van Den Hooff, David Lazar, Matei Zaharia, and Nickolai Zeldovich.
Vuvuzela: Scalable private messaging resistant to traffic analysis. In Proceed-
ings of the 25th Symposium on Operating Systems Principles, pages 137–152,
2015.

A Appendix

We show that programs that attempt to avoid all information leakage through their runtime
(i.e., TP (x, env) ≡ TP (x

′, env′) for all x, x′ ∈ D∗ and env, env′ ∈ E) will experience some
loss in utility. In particular, we show that programs for computing means will exhibit
a constant additive error in their output even as the length of the input n → ∞. This
result suggests that some portion of the program’s privacy budget must be allocated to
privatizing the program’s runtime.

Lemma A.1. Let P : X × E → Y × E be a ε-DP RAM program for computing the mean
1
|x|
∑

i=1 xi such that TP (x, env) ≡ TP (x
′, env′) for all x, x′ ∈ {0, 1}∗ and input-compatible

env, env′ ∈ E . Then for every 0 < β < 1, there exists a dataset x and a constant α such
that

Pr

[∣∣∣∣out(P (x, env))− 1

|x|
∑

xi

∣∣∣∣ > α

]
> β

Proof. Let F be the cumulative distribution function of the runtime random variable
TP (x, env). We pick p > 0 and let t = F−1(1 − p). Then Pr[TP (x, env) > t] = p. When
TP (x, env) ≤ t, the program can read at most t entries of the input. By lower bounds for
samplers [CEG95], for every 0 < β < 1, there exists an input x such that, conditioned on
reading at most t locations of x, the algorithm fails to output an α-accurate estimate µ̂ of
µ = 1

|x|
∑

xi with probability at least β for

α = Ω

(√
log(1/β)

t

)

Thus, without conditioning, the program fails to output an α-accurate estimate of µ
with probability at least β − p. We take β = 2p so that t is a fixed constant and hence so
is α.

Lemma A.2 (No Fully-Dyadic Censored Discrete Laplace). Fix integers ℓ < µ < u and a
scale s > 0. Let Z be the Discrete Laplace random variable with shift µ ∈ Z, censored to

28

the support {ℓ, ℓ+ 1, . . . , µ, µ+ 1, . . . , u}:

Pr[Z = k] =



F (ℓ | µ, s) if k = ℓ

p(k | µ, s) if ℓ < k < u

1− F (u− 1 | µ, s) if k = u

0 otherwise

where

p(k | µ, s) = e1/s − 1

e1/s + 1
· e−|k−µ|/s

F (x | µ, s) =


e1/s

e1/s+1
· e−(µ−x)/s if x ≤ µ

1− 1
e1/s+1

· e−(x−µ)/s if x > µ

If the support contains at least four points, then there exists a k ∈ {ℓ, ℓ + 1, . . . , µ, µ +
1, . . . , u} such that:

Pr[Z = k] /∈
{

t
2N

: t,N ∈ N
}

That is, there is at least one output mass that is non-dyadic.

Proof. Let q = e−1/s ∈ (0, 1) and c =
1− q

1 + q
. For every interior index ℓ < k < u we have

Pr[Z = k] = c · q|k−µ|

Case 1: q is dyadic. Write q = m/2N with 1 ≤ m < 2N odd. Then

c =
1− q

1 + q
=

2N −m

2N +m

whose denominator 2N +m is not a power of two, so c is non-dyadic. Because ℓ < µ < u,
it follows that Pr[Z = µ] = c is a non-dyadic mass.

Case 2: q is not dyadic. Write q = r/d in lowest terms. Since q is not dyadic, the
denominator d is not a power of two, so it contains at least one odd prime factor. Because
the support has ≥ 4 points, either ℓ < µ+ 1 < u or ℓ < µ− 1 < u. Assume ℓ < µ+ 1 < u
(the other side is symmetric). Then

Pr[Z = µ+ 1] = c · q =
d− r

d+ r
· r
d

29

Let j be the odd prime dividing d. Because gcd(r, d) = 1, j does not divide r. Con-
sequently j does not divide (d − r) or (d + r). Thus the denominator d · (d + r) contains
at least one factor j, whereas the numerator r · (d− r) contains none. After cancelling the
greatest common divisor, a power of j remains in the denominator, so the reduced fraction
is not of the form t/2N . Hence Pr[Z = µ+ 1] is non-dyadic.

Lemma A.3 (Finite-Coin Sampler for Censored Dyadic Symmetric Geometric). Let inte-
gers ℓ < µ < u and p ∈ (0, 1) (dyadic rational) be given. Draw one unbiased coin for a sign
S ∈ {−1,+1} and draw G ∼ Geom(p). Define a Dyadic Symmetric Geometric random
variable as:

Z =

µ−G if S = −1

µ+ 1 +G if S = +1

Then a Censored Dyadic Symmetric Geometric random variable

Y = max{ℓ,min{Z, u}}

is exactly sampleable with a finite (constant) number of unbiased coin flips under the
RAMBDDNT model.

Proof. Flip one unbiased coin to choose a sign S ∈ {−1,+1} and draw G ∼ Geom(p)
∣∣m
0
,

the geometric distribution with parameter p = 2−k clamped to {0, 1, . . . ,m} where m =
max{µ − ℓ, u − µ}. Each Bernoulli(p) trial in the geometric sampler can be implemented
using exactly k unbiased coins, so the clamped geometric draw uses at most k · (m + 1)
coin flips. Together with the one coin for S, the entire sampling procedure uses at most
1 + k · (m+ 1) unbiased coins. Once S and G are drawn, define Y = µ−G if S = −1 and
Y = µ + 1 +G if S = +1. The value Y is a sample from the clamped Dyadic Symmetric
Geometric distribution centered at µ and clamped to [ℓ, u] as desired. Therefore, Y is
sampleable with a finite (constant) number of unbiased coin flips under the RAMBDDNT

model.

Lemma A.4 (Censored Dyadic Symmetric Geometric Mechanism is DP). Fix integers
ℓ < µ < u and let µ′ = µ + 1. Let p ∈ (0, 1) be any dyadic rational. Let Z ∼
DTGµ,p and Z ′ ∼ DSGµ′,p be samples from the (unclamped) Dyadic Symmetric Geo-
metric distribution centered at µ and µ′, respectively. Let Y = max{ℓ,min{Z, u}} and
Y ′ = max{ℓ,min{Z ′, u}}. Then for every y ∈ Z ∩ [ℓ, u] we have

Pr[Y = y]

Pr[Y ′ = y]
≤ 1

1− p
and

Pr[Y ′ = y]

Pr[Y = y]
≤ 1

1− p

so the mechanism is ε-differentially private with

ε = ln
(

1
1−p

)
30

Proof. We analyze the unclamped Dyadic Symmetric Geometric random variables Z and
Z ′. Generate Z by flipping one unbiased coin for a sign S ∈ {−1,+1} and drawing
G ∼ Geom(p), setting Z = µ−G if S = −1 and Z = µ+ 1+G if S = +1. Generate Z ′ in
the same way but with center µ′ = µ+ 1. For every z ∈ Z the shift of the center changes
the probability mass by at most a single factor of q = 1− p, so

Pr[Z = z]

Pr[Z ′ = z]
≤ q−1 and

Pr[Z ′ = z]

Pr[Z = z]
≤ q−1

Since the ratio for Z and Z ′ is bounded by 1/(1− p), the random variables Z and Z ′ are
ε–differentially private with

ε = ln
(

1
1−p

)
The outputs Y = max{ℓ,min{Z, u}} and Y ′ = max{ℓ,min{Z ′, u}} are obtained from Z
and Z ′ by deterministic clamping, which is a post-processing operation. Consequently the
same bound holds for every y ∈ Z ∩ [ℓ, u] and the clamped mechanism is also ε–DP.

Theorem A.5 (Pure JOT-DP RAMBDDNT Programs in the Unbounded Setting). For all
0 < β < 1, ε > 0, ε′ > ε, and ε-JOT-DP RAMBDDNT programs P : X × E → Y × E in the
upper -bounded setting, there exists a ε′-JOT-DP RAMBDDNT program P ′ : X ×E → N×E
for the unbounded setting such that∥∥∥out(P (x, env))− out(P ′(x, env))

∥∥∥
TV

< β

Furthermore, the mechanism P ′(x, env) is simply an explicit algorithm that makes one
oracle call to P on a truncation of x along with an additional computation that takes time
O(|x|) with probability at least 1− β − e−Ω(|x|).

Proof. By replacing the call to CensoredDiscreteLaplace in Program 1 with the Censored
Dyadic Symmetric Geometric Mechanism CDSG, we obtain an equivalent result for Theo-
rem 3.4 in the RAMBDDNT model. This follows directly from Lemma A.3 and Lemma A.4
which give the needed εi-DP mechanism that executes in constant-time during each it-
eration of the program’s loop. The rest of the proof follows identically to the proof of
Theorem 3.4. In particular, during each iteration of the loop, when mi ≥ (2/εi) · ln(1/βi)
we can round p = 1 − e−εi down to the nearest dyadic rational. Then when mi < |x|, we
have that for n̂i = CDSG(µ = mi, p = 1− e−εi , ℓ = 0, u = mi):

Pr
[
n̂i <

mi
2

]
=

(1− p)
mi
2

2
≤ e−mi·εi/2 ≤ βi

31

as desired. Furthermore, if we let iteration j be the first iteration when mj > 4 · |x|,
then for n̂j = CDSG(µ = |x|, p = 1− e−εj , ℓ = 0, u = mj):

Pr
[
n̂j >

mj

2

]
=

(1− p)
mj

2 −|x|

2
≤ e−εj ·|x| ≤ e−Ω(|x|)

Thus, with high probability the program halts on iteration j, and therefore the runtime
analysis follows exactly to that of Theorem 3.4.

32

	Introduction
	Limitations of Prior Approaches
	Our Results
	Techniques

	Preliminaries
	Pure Timing-Private Programs
	A Lower Bound for JOT-DP Programs
	Pure JOT-DP RAM Programs in the Unbounded Setting

	Appendix

