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Abstract—Steganography is an information hiding technique
for covert communication. The core issue in steganography design
is the rate-distortion coding problem. Polar codes, which have
been proven to achieve the rate-distortion bound for any binary
symmetric source, are utilized to design a steganographic scheme
that can reach the embedding capacity for the Distortion-Limited
Sender problem in certain cases. In adaptive steganography, for
attack scenarios where each noise element can have different
intensities, existing steganographic coding methods fail to re-
sist such attacks. In this paper, we propose a pixel-sensitive
and robust steganographic scheme based on polar codes. Our
steganographic scheme not only matches the adaptive distortion
well but is also robust against sophisticated noise attacks. Futher,
it is proven that our scheme achieves the embedding capacity in
certain cases. Experimentally, a steganographic scheme can be
designed and implemented with a secret message error rate at
the 10−5 level when the attack noise is known to both the sender
and the receiver. This demonstrates its significant robustness.

I. INTRODUCTION

In recent years, the rapid development of computer net-
works, including wireless networks, has increased the security
risks of information dissemination, drawing more attention
to information security [1]. As an information hiding tech-
nique for covert communication, steganography secures data
transmission in digital networks. Steganography hides secret
messages in ordinary covers (e.g. image, audio and text.),
making it difficult for eavesdroppers to notice the presence
of secret messages [2]–[4].

Steganalysis is a technique antagonistic to steganography,
aiming to detect the presence of secret messages in a carrier.
To counter steganalysis, steganography needs to minimize the
distortion to the cover caused by embedding messages at a
given payload rate, which is known as the Payload-Limited
Sender (PLS) problem. The Distortion-Limited Sender (DLS)
problem is the dual of the PLS problem, where the goal
is to maximize the payload rate given a certain level of
distortion caused by embedding messages. The core issue in
steganography design is the rate-distortion coding problem,
which can be solved using steganographic codes [5]–[7]. In
adaptive steganography, a distortion function that represents
the modification distortion weight of each cover element is
defined. When the modification of each cover element is
independent, the distortion function is additive. Currently, dis-
tortion functions can be derived using advanced deep learning
techniques [8]–[10]. For adaptive steganography, Syndrome-
Trellis Codes (STC) [11] are most widely used, as they

can asymptotically approach the bounds for a large range of
distortion functions.

Polar coding, introduced by Arıkan [12], is a channel coding
method that can be proven to achieve the symmetric capacity
of Binary Discrete Memoryless Channels (B-DMCs). It has
also been extended to the field of source coding [13], [14]. In
lossy source coding, Korada and Urbanke proved that polar
codes can achieve the rate-distortion bound for any binary
symmetric source (BSS) [15]. Therefore, using polar codes as
steganographic codes is highly suitable. Diouf et al. were the
first to use a SC decoder as a steganographic encoder [16], and
experimentally demonstrated better embedding performance
compared to STC. Subsequent works [17]–[19] further opti-
mized and expanded the steganography based on polar codes.

However, in practical applications, the stego sequence may
suffer from noise attacks due to various factors, such as
adversary-originated noise or transmission through a noisy
communication channel, leading to secret information loss.
Therefore, robust steganography is required. The stegano-
graphic methods in [16]–[19] cannot withstand noise attacks.
For attack scenarios where each noise element has the same
intensity, Li and Liu proposed robust schemes based on polar
codes for the constant distortion (where the modification
distortion weight of each cover element is the same) [20].
Yao et al. proposed reliable robust adaptive steganographic
coding based on nested polar codes for the adaptive distortion
[21]. In this paper, for generalized attack scenarios where
each noise element can have different intensities, we propose
a pixel-sensitive and robust steganographic scheme based on
polar codes. Our steganographic scheme not only matches
the adaptive distortion well but is also effective against more
sophisticated noise attacks. More suitable construction algo-
rithms and better-performing decoders of polar codes are
employed in our scheme. We theoretically prove that our
scheme achieves the embedding capacity in certain cases.

All random variables (RVs) are denoted by capital letters,
and their realizations are denoted by the corresponding low-
ercase letters. [N ] denotes the set {1, 2, . . . , N}. We use the
notation xj

i (i ≤ j) as a shorthand for the vector (xi, ..., xj),
which is a realization of the RVs Xj

i = (Xi, ..., Xj). The
vector(xi : i ∈ A) is denoted by xA. The Shannon entropy
of X is denoted by H(X), and the binary entropy function is
denoted by h2(·). For a set I, Ic denotes its complement, and
|I| represents its cardinality. If X follows a Bernoulli distri-
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bution with P (X = 1) = p, we denote it by X ∼ Ber(p).
The capacity of channel W is denoted by C(W ). We denote
the binary logarithm and natural logarithm by log and ln,
respectively, and information is measured in bits.

II. PRELIMINARIES

A. Adaptive Steganographic Model

We use X to denote the cover random variable and use Y to
denote the stego random variable after embedding. The stego
sequence yN1 is obtained by embedding the secret message
sequence mq

1 into the cover sequence xN
1 . Typically, images

are used as data carriers for both the cover and stego. In
this paper, we consider binary embedding, hence xN

1 ,yN1 , and
mq

1 are binary sequences, with xi and yi being the Least
Significant Bit (LSB) of the i-th pixel of the cover and
stego, respectively. Note that the q-ary embedding can be
implemented using multi-layered binary embedding [11], [22].

We define the embedding modification probability for xi as
pi ≜ P (yi ̸= xi |xi). The distortion caused by embedding is
measured by Hamming distortion, with a positive weight ρi.
In additive distortion model, the total distortion is the sum of
the distortion of each pixel given by

D
(
xN
1 , yN1

)
=

N∑
i=1

ρi · (xi ⊕ yi), (1)

where ⊕ denotes the XOR operation. The formulations of the
PLS and DLS problems are introduced in the following.

1) PLS: given a fixed number of embedded message bits q,
minimize the total average distortion:

minimize
pN
1

E(D) =

N∑
i=1

piρi, (2)

subject to H(pN1 ) =

N∑
i=1

h2(pi) = q. (3)

2) DLS: given a fixed total average distortion Dϵ, maximize
the number of embedded message bits:

maximize
pN
1

H(pN1 ) =

N∑
i=1

h2(pi), (4)

subject to E(D) =

N∑
i=1

piρi = Dϵ. (5)

For the PLS problem, the optimal embedding has the form
of a Gibbs distribution [23]:

Pλ (yi|xi) =
exp (−λρi · (xi ⊕ yi))∑

ti∈{0,1} exp (−λρiti)
, 1 ≤ i ≤ N, (6)

where λ ∈ [0,∞) can be determined by (3). In practice,
H(pN1 ) is a monotonically decreasing function of λ, which
can be found using a simple binary search. The PLS and
DLS problems are dual problems of each other. The optimal
embedding distribution for the DLS problem is also given by
(6). In this case, λ can be determined in the same way by (5).

B. Polar Codes
For channel polarization, N independent copies of a given

B-DMC W are combined into a vector channel WN , which
is split into N subchannels W

(i)
N , 1 ≤ i ≤ N [12]. As N

increases to infinity, almost all subchannels have capacity close
to 0 or 1, and the proportion of the subchannels with capacity
close to 1 approaches C(W ).

1) Polar Encoding: Polar codes can be identified by a
parameter tuple (N,K,A, uAc), where N = 2n for a positive
integer. A is the set of indices for the K information bits, and
uAc represents the N −K frozen bits.

The construction of (N,K) polar codes refers to selecting
the K most reliable subchannels to transmit the information
bits uA. One usually uses the Bhattacharyya parameter [12] to
evaluate the reliability of the subchannels. The Bhattacharyya
parameter of i-th subchannel W (i)

N is defined as

Z(W
(i)
N ) ≜

∑
(yN

1 ,ui−1
1 )∈

YN×{0,1}i−1

√
W

(i)
N

(
yN1 ,ui−1

1

∣∣0)W (i)
N

(
yN1 ,ui−1

1

∣∣1).
For binary symmetric channel (BSC), Z(W

(i)
N ) can be recur-

sively approximated by Equivalent Bhattacharyya Parameter
Construction [24]. The degrading merging algorithm [25]
is more commonly used, as it can estimate Z(W

(i)
N ) with

arbitrary precision.
After acquiring the information indices A, the generator

matrix is calculated by GN = BN [ 1 0
1 1 ]

⊗n, where BN is
known as the bit-reversal permutation matrix and ⊗ denotes
the Kronecker product. For encoding, uAc and uA are com-
bined into the vector uN

1 = [uAc , uA], where uA represents
the information bits and uAc represents the frozen bits known
to both the encoder and decoder. Then, the codeword is given
by xN

1 = uN
1 GN .

2) Polar Decoding: Consider the polar code represented by
(N,K,A, uAc). The decoder’s task is to generate an estimate
ûA of uA from the received yN1 . The Successive Cancellation
(SC) decoder, introduced by Arıkan [12], uses Log-Likelihood
Ratio (LLR) to decide the value of ûi(i ∈ A) sequentially.
The LLR can be calculated recursively from equations (75)
and (76) presented in [12].

The Successive Cancellation List (SCL) [26], [27] decoder
is an enhancement based on the SC decoder. The SCL decoder
extends the single decoding path of the SC decoder to L paths.
In the decoding process, the SCL decoder retains at most L
decoding paths with the best path metrics at each step. Upon
completion of decoding, the SCL decoder selects the most
reliable path as the output of the decoder. The complexities of
the SC and SCL decoders are O(N logN) and O(L·N logN),
respectively. The notation SCL(yN1 ,WN , uAc ,Ac, L) repre-
sents the decoding estimate of an SCL decoder with list size
L, given the output yN1 , channel WN , frozen bits uAc and
frozen indices Ac.

III. POLAR CODES FOR ADAPTIVE STEGANOGRAPHY

Let M represent the secret message. Embedding
Mq into XN can be viewed as passing XN through



(W1,W2, · · · ,WN ), where Wi is a BSC with the crossover
probability of pi, denoted by BSC(pi), representing the
i-th embedding channel. The embedding capacity of Wi is
complementary to the channel capacity, given by h2(pi).
The adaptive steganography process is shown in Fig. 1. Let
E = (E1, E2, . . . , EN ), where Ei is the RV corresponding to
Wi and Ei ∼ Ber(pi). Notice that the cover X is a BSS and
the stego Y is also a BSS since the embedding channel is
symmetric, demonstrating the distribution-preserving property
of the steganography. Based on the aforementioned symmetry,
Xi can also be considered as obtained from Yi through Wi.
The channel polarization of (W1,W2, · · · ,WN ) is represented
as (W1,W2, · · · ,WN ) 7→ (W

(1)
N ,W

(2)
N , · · · ,W (N)

N ).

Fig. 1. Illustration of the adaptive steganography.

For 0 < β < 1
2 , partition [N ] into

F ≜
{
i ∈ [N ] : Z(W

(i)
N ) ≥ 1− 2−Nβ

}
and I = Fc, where F is the indices corresponding to
Mq . Equivalent Bhattacharyya Parameter Construction can be
generalized to the case of parallel channels [28]. Therefore,
Z(W

(i)
N ) can still be recursively approximated.

For message embedding, we obtain uF by uF = mq
1. For

each i ∈ I,

ûi = argmax
u∈{0,1}

PÛi|Ûi−1
1 ,XN

1

(
u | ûi−1

1 , xN
1

)
. (7)

Finally, we derive the stego sequence as yN1 = uN
1 GN . Using

the SCL decoder, we have

(uF , uI)= uN
1 = SCL

(
xN
1 , (W1,W2, · · ·,WN ),mq

1,F , L
)
.

The decoder calculates the LLR with the initial value
L
(1)
1 (xi) = (1− 2xi) ln

1−pi

pi
.

For message extraction, after receiving the stego sequence
yN1 , the receiver uses the same construction method as the
sender to obtain F and I. Given G−1

N = GN for the 2-by-2
binary kernel [12], we have uN

1 = yN1 GN , then mq
1 = uF .

Given a set of N parallel channels {W1,W2, · · · ,WN},
each component channel is used J times. Let wr,t denote the
t-th use of component channel Wr, that is, wr,t ⇔Wr, where
the equivalence relation ⇔ indicates the two channels have
the same transition probability for r = 1, 2, · · · , N and t =
1, 2, · · · , J . We use notation wNJ

1 to denote a vector of NJ
independent channels, where wi is related to the channel uses
wr,t with a one-to-one mapping

π : {1, 2, · · · , NJ} → {1, 2, · · ·N} × {1, 2, · · · J}, (8)

that is, π(i) = (r, t), and

wi ⇔ wπ(i) ⇔ wr,t ⇔Wr, (9)

where i ∈{1, · · ·, NJ}, r ∈{1, · · ·, N} and t ∈{1, · · ·, J}.
By modifying the decision rule to the randomized rounding

where ûi is obtained from Ber( 1

1+exp(L(i)
N )

), we can derive
Theorem 1, with its proof given in the Appendix. Likewise,
Lemma 1 can be adapted from [14] Lemma 3.14, owing to the
symmetry of the embedding channel and distortion function.

Theorem 1. Let the cover X be a BSS. Consider any indepen-
dent parallel embedding channel BSCs {W1,W2, · · · ,WN},
where N = 2n, for a fixed positive integer n. For each em-
bedding channel Wi, the crossover probability is pi ∈ [0, 1

2 ].
Using each of the N channels J times, where J = 2j and j
is a non-negative integer, we obtain NJ channels wNJ

1 . Fix
the design distortion D = 1

N

∑N
i=1 piρi and 0 < β < 1

2 . For
any embedding rate R < 1

NH(Y N
1 |XN

1 ) = 1
N

∑N
r=1 h2(pr),

there exists a sequence of polar codes of length NJ with
rates RNJ ≥ R so that under SC encoding using randomized
rounding they achieve expected distortion DNJ satisfying

DNJ ≤ D +O(2−(NJ)β ).

The encoding as well as decoding complexity of this scheme
is O(NJ log (NJ)).

Lemma 1. The average distortion DNJ(F, uF ) is independent
of the choice of uF ∈ {0, 1}|F |.

IV. POLAR CODES FOR PIXEL-SENSITIVE AND
ROBUST STEGANOGRAPHY

In practical applications, the receiver may acquire noisy
stego due to various reasons, such as noise attacks from an
adversary or communication through a specific channel. For
convenience, these are collectively called the attack channels
in this paper. The aforementioned adaptive steganography
cannot resist noise, making it difficult to extract accurate secret
messages. To protect secret messages from noise attacks, we
propose pixel-sensitive and robust steganography. In this paper,
we consider only noise that independently follows a Bernoulli
distribution. Note that many other types of attack channels can
be approximated as a BSC.

Equations (2)-(5) provide the forms of adaptive steganogra-
phy. Here, we redefine the formulations in robust scenarios of
adaptive steganography. The i-th attack channel Qi is assumed
to BSC(θi), with the corresponding noise RV Zi ∼ Ber(θi).
Restate the PLS and DLS problem as follows.

1) PLS:

minimize
pN
1

E(D) =
N∑
i=1

piρi, (10)

subject to
N∑
i=1

h2(pi)−
N∑
i=1

h2(θi) = q. (11)

2) DLS:

maximize
pN
1

H(pN1 ) =

N∑
i=1

h2(pi)−
N∑
i=1

h2(θi), (12)

subject to E(D) =

N∑
i=1

piρi = Dϵ. (13)



It is evident that our scheme achieves noise robustness by
sacrificing some embedding rate due to the additional attack.

Fig. 2. Illustration of the pixel-sensitive and robust steganography.

Below, we present the pixel-sensitive and robust stegano-
graphic scheme based on polar codes. For 0 < β < 1

2 , the
index sets are obtained as follows:

F1 ≜
{
i ∈ [N ] : Z

(
W

(i)
N

)
≥ 1− 2−Nβ

}
(14)

F2 ≜
{
i ∈ [N ] : Z

(
Q

(i)
N

)
≥ 2−Nβ

}
. (15)

Next, we partition [N ] into F ≜ F1 ∩ F2, I ≜ F1 \ F2,
and P ≜ Fc

1 . For the construction of parallel channels, the
Monte Carlo construction proposed by Arıkan [12], which
statistically estimates the decoding error rate of subchannels
through experimental simulation, is more effective. The Monte
Carlo construction algorithm is detailed in the pseudocode of
Algorithm 1 in the Appendix. As the number of simulation
runs increases, the statistical results become more effective in
reflecting the reliability of the subchannels.

For message embedding, with the random frozen bits F ∼
Ber

(
1
2

)
, we obtain uF and uI by uF = f |F| and uI = mq

1,
where uF is a vector of frozen bits pre-shared between sender
and receiver. For each i ∈ P , we compute

ûi = argmax
u∈{0,1}

PÛi|Ûi−1
1 ,XN

1

(
u | ûi−1

1 , xN
1

)
. (16)

Finally, we derive the stego sequence as yN1 = uN
1 GN . Using

the SCL decoder, we have

(uF , uI , uP)= uN
1 =

SCL
(
xN
1 , (W1,W2, · · ·,WN ), (f |F|,mq

1), (F, I), L
)
.

The decoder calculates the LLR with the initial value
L
(1)
1 (xi) = (1− 2xi) ln

1−pi

pi
.

For message extraction, after receiving the sequence vN1
from attack channels (Q1, Q2, . . . , QN ), the receiver uses the
same construction method as the sender to obtain F1 and F2,
thus deriving F ≜ F1 ∩ F2, I ≜ F1 \ F2, and P ≜ Fc

1 . We
obtain ûF = uF . For each i ∈ I ∪ P ,

ûi = argmax
u∈{0,1}

PÛi|Ûi−1
1 ,V N

1

(
u | ûi−1

1 , vN1
)
. (17)

ûI is the extracted secret message. Using the SCL decoder,
we have

(uF , ûI , ûP)= ûN
1 = SCL

(
vN1 , (Q1, Q2, · · ·, QN ), uF,F, L

)
.

The decoder calculates the LLR with the initial value
L
(1)
1 (vi) = (1− 2vi) ln

1−θi
θi

.
Let W ≼ Q denote that channel W is degraded with respect

to channel Q, as defined in [25]. The following lemma can be

easily adapted from [25]. For brevity, we omit the proof.

Lemma 2. For B-DMCs W1,W2, Q1 andQ2, W− and W+

are obtained from the polarization process (W1,W2) 7→
(W−,W+), while Q− and Q+ are obtained from the polar-
ization (Q1, Q2) 7→ (Q−, Q+). If W1 ≼ Q1 and W2 ≼ Q2,
then

W− ≼ Q− and W+ ≼ Q+. (18)

Corollary 1. For B-DMCs Wi and Qi for i ∈ [N ],
W

(i)
N and Q

(i)
N are obtained from the polarization pro-

cess (W1,W2, . . . ,WN ) 7→ (W
(1)
N ,W

(2)
N , . . . ,W

(N)
N ) and

(Q1, Q2, . . . , QN ) 7→ (Q
(1)
N , Q

(2)
N , . . . , Q

(N)
N ), respectively. If

Wi ≼ Qi for i ∈ [N ], then

W
(i)
N ≼ Q

(i)
N , for i ∈ [N ] . (19)

Theorem 2. Let the cover X be a BSS. Consider
sets of independent parallel BSCs {W1,W2, · · · ,WN} and
{Q1, Q2, · · · , QN} for embedding and attack channels, re-
spectively, where N = 2n, for a fixed positive integer n, and
the crossover probability pair (pi, θi) of each pair (Wi, Qi)
satisfy 0 ≤ θi ≤ pi ≤ 1

2 . Using each pair of N channels
(Wi, Qi) J times, where J = 2j and j is a non-negative
integer, we obtain NJ pairs of channels (wNJ

1 , qNJ
1 ). Fix the

design distortion D = 1
N

∑N
i=1 piρi and 0 < β < 1

2 . For
any embedding rate R < 1

NH(Y N
1 |XN

1 ) − 1
NH(Y N

1 |V N
1 ) =

1
N

∑N
r=1 h2(pr)− 1

N

∑N
r=1 h2(θr), there exists a sequence of

polar codes of length NJ with rates RNJ ≥ R so that under
SC encoding with randomized rounding, they achieve expected
distortion DNJ satisfying

DNJ ≤ D +O(2−(NJ)β ).

Futher, the block error probability satisfies

PNJ ≤ O(2−(NJ)β ).

The encoding as well as decoding complexity of this scheme
is O(NJ log (NJ)).

Remark 1. Based on the assumptions of Theorem 2, the
proposed pixel-sensitive and robust steganography, in which
the polar codes are constructed by the degrading merging algo-
rithm [25], can achieve the per-bit average embedding capacity
in Equation (12) when J and the limit of the output alphabet
size are both sufficiently large. The expected distortion under
SC encoding using randomized rounding and the block error
probability under SC decoding are respectively upper bounded
by D +O(2−(NJ)β ) and O(2−(NJ)β ), for 0 < β < 1

2 .

Remark 2. Similarly to Lemma 1, the average distortion
DNJ(F, uF ) and average block error probability PNJ(F, uF )

are independent of the choice of uF ∈ {0, 1}|F |, respectively.

For cases not satisfying the conditions of Theorem 2, F1

and F2 lack a clear nested relationship. This issue could
potentially be addressed by universal polar codes [29], [30],
which represents a promising direction for future research.
However, in practice, |F2\F1|

N is typically small. Moreover,



a larger |F2\F1|
N is associated with reduced robustness.

We analyze two attack models below. The first model
involves scenarios where the attacker launches attacks with
the same intensity, or where the stego is transmitted over
a channel. The second model describes scenarios where the
attacker launches hidden linear attacks. The more complex
the image texture surrounding a pixel, the better concealed
higher-intensity attacks on that pixel become.

1) Attack Model 1 (AM1): Assume Zi ∼ Ber(θ), i ∈ [N ],
i.e., the attack model for each i is fixed. The equation (11)
becomes

∑N
i=1 h2(pi) − Nh2(θ) = q. We ensure that θ is

known to both the sender and receiver. Thus, the optimal
embedding distribution of pi remains as in (6). Clearly, we
cannot guarantee that pi ≥ θ for all i ∈ [N ].

2) Attack Model 2 (AM2): Assume Ra = θi
pi
∈ [0, 1] is a

constant. We have pi ≥ θi and Zi ∼ Ber(Rapi). The equation
(11) becomes

∑N
i=1 h2(pi) −

∑N
i=1 h2(Rapi) = q. If Ra is

directly known to both the sender and receiver, solving for
the optimal embedding distribution of pi becomes difficult.
Therefore, to simplify the problem, we propose a two-phase
approach, initially assuming that Ra is unknown, based on
the reasonable assumption that the embedding loss due to
robustness in AM2 is the same as in AM1. The proposed
approach consists of the following phases:

• Phase 1: Based on our assumption, we set∑N
i=1 h2(Rapi) = Nh2(θ), where θ is known to

both the sender and receiver, and Ra is a variable to
be solved. Consequently, the equation (11) simplifies
to

∑N
i=1 h2(pi) − Nh2(θ) = q. At this point, solving

for the optimal embedding distribution of pi reverts to
solving under AM1;

• Phase 2: With the optimal embedding distribution
of pi already known, we determine Ra by solving∑N

i=1 h2(Rapi) = Nh2(θ). Thus, θi = Rapi.
In fact, AM1 and AM2 yield the same optimal distribution

of pi for the same problem, albeit with different noise pa-
rameters. Since AM2 satisfies the conditions in Theorem 2,
our scheme is validated. As for AM1, the effectiveness of our
scheme will be assessed experimentally in the next section.

V. SIMULATION EXPERIMENTS

Next, we will conduct two simulation experiments. The
first is to verify that the proposed pixel-sensitive and robust
steganographic scheme can approach the theoretical bounds,
and the second is to demonstrate that the scheme exhibits good
robustness.

A. Per-Bit Average Embedding Distortion

We choose the PLS form for message embedding under
AM1. The theoretical bound, Eb = 1

N

∑N
i=1 piρi, is given

by (10). We denote the distortion profile by the function c(·).
Three common distortion profiles are considered: the constant
profile c (x) = 1, linear profile c (x) = x, and square profile
c (x) = x2. The value of ρi is then computed as c

(
i
N

)
. The

embedding rate R = q
N is measured in bit per pixel (bpp).

The results for the constant distortion profile are provided
in [20]. Here, we consider the linear and square distortion
profiles. For both linear and square distortion profiles, Eb

is monotonically non-increasing as N increases. This phe-
nomenon is illustrated in Fig. 3. As N increases, Eb converges
to a fixed value. Therefore, we use Eb at N = 222 as the
theoretical bound in our experiments. With θ = 0.05 and
R varying from 0.1 to 0.5, we use the SCL decoder with
L = 16, and the results are averaged over 100 simulations.
The simulation results are shown in Fig. 4. It shows that
the performance achieved by polar codes approaches the
theoretical bound as N increases.

Fig. 3. Eb variation with N = 2n under linear distortion profile.

B. Robustness

Recall that θ is the preset attack noise parameter for
designing polar codes, not the actual attack noise parameter.
For AM1, the actual attack noise Z̃i ∼ Ber(θ̃), and for AM2,
Z̃i ∼ Ber(θ̃i), i ∈ [N ]. We define the constant Rθ=b = θ̃i

θi
,

where θi is the value determined under AM2 for θ = b. The
relationship between the actual noise θ̃i and the preset noise
θi can be characterized as follows:

• Rθ=b<1: the actual noise is less than the preset noise;
• Rθ=b=1: the actual noise is equal to the preset noise;
• Rθ=b>1: the actual noise is greater than the preset noise.

For N = 216 and R = 0.1, the simulations of our scheme
using an SCL decoder with L = 16 are averaged over 200
runs. The simulation results are shown in Tables I and II, where
’0’ denotes an average bit error rate of less than 10−5. Under
the constant distortion profile, AM1 and AM2 are identical,
thus omitted in Table II. The adaptive steganography performs
poorly across the three common distortion profiles. In con-
trast, our proposed pixel-sensitive and robust steganographic
scheme shows improved robustness against noise attacks, with
robustness increasing as the preset attack noise θ increases.

VI. CONCLUSION

In this paper, we introduce adaptive steganographic schemes
based on polar codes and present the embedding capacity-
achieving theorem for the adaptive distortion. We redefine



(a) Linear distortion profile (b) Square distortion profile

Fig. 4. Per-bit average distortion.

TABLE I
AVERAGE SECRET MESSAGE BIT ERROR RATE (AM1)

Profiles θ̃ 0.001 0.002 0.004 0.006

Constant
Adaptive 0.19023 0.48943 0.49883 0.49962

Ours(θ = 0.005) 0.00000 0.00062 0.12212 0.49782
Ours(θ = 0.01) 0.00000 0.00000 0.00011 0.00123

Linear
Adaptive 0.16633 0.48138 0.49581 0.49888

Ours(θ = 0.005) 0.00000 0.00017 0.11720 0.49678
Ours(θ = 0.01) 0.00000 0.00000 0.00003 0.00041

Square
Adaptive 0.15917 0.48110 0.49573 0.49901

Ours(θ = 0.005) 0.00000 0.00036 0.13071 0.49645
Ours(θ = 0.01) 0.00000 0.00000 0.00003 0.00071

TABLE II
AVERAGE SECRET MESSAGE BIT ERROR RATE (AM2)

Profiles Rθ=0.005 0.2 0.4 0.8 1.2

Linear
Adaptive 0.46863 0.49109 0.49805 0.49973

Ours(θ = 0.005) 0.00000 0.00064 0.17693 0.49782
Ours(θ = 0.01) 0.00000 0.00000 0.00002 0.00039

Square
Adaptive 0.46857 0.49101 0.49836 0.49964

Ours(θ = 0.005) 0.00008 0.00058 0.17746 0.49892
Ours(θ = 0.01) 0.00000 0.00000 0.00000 0.00044

the mathematical formulations of the PLS and DLS problem
in robust scenarios of adaptive steganography, propose a
corresponding steganographic scheme based on polar codes,
and present the embedding capacity-achieving theorem in
these robust scenarios. Additionally, We describe two attack
models and their solutions. We show our proposed scheme
can approach the theoretical bounds and demonstrate strong
robustness. Furthermore, this scheme is applicable to other
attack and steganographic models as well.

APPENDIX

A. Proof of Theorem 1

Prior to the proof of the theorem, essential notations
must be formally defined. In the channel polarization of
(W,W, · · · ,W ) 7→ (W

(1)
N ,W

(2)
N , · · · ,W (N)

N ), b1, · · · , bn de-
note the n-bit binary expansion of i and W(b1,··· ,bn) ≜ W

(i)
N .

Let {Bn : n ≥ 1} be a sequence of i.i.d. symmetric
Bernoulli RVs defined over a probability space (Ω,F , P ). Let
F0 = {ϕ,Ω} denote the trivial σ-field and let {Fn, n ≥ 1}
denote the σ-fields generated by the RVs (B1, · · · , Bn).
Assume that F is such that F0 ⊆ F1 ⊆ · · · ⊆ F . Let
W0 = W and {Wn, n ≥ 0} denote a tree process. We are
required to use the Bhattacharyya parameters random process
{Zn : n ≥ 0} : = {Z(Wn) : n ≥ 0}.

Proof. Consider a specific channel mapping π(i) = r + (t −
1)N,r ∈ [N ],t ∈ [J ]. The polarization of NJ channels wNJ

1

is divided into two stages. The first stage is the polarization
of parallel channels. For each t ∈ [J ], the parallel polariza-
tion of N channels is denoted by (w1,t, w2,t, · · · , wN,t) 7→
(W

(1)
N ,W

(2)
N , · · · ,W (N)

N ). The second stage is the polarization
of identical channels. For each r ∈ [N ], the polarization of
J uses of W

(r)
N is denoted by (W

(r)
N ,W

(r)
N , · · · ,W (r)

N ) 7→
(W

(1+(r−1)J)
NJ ,W

(2+(r−1)J)
NJ , · · · ,W (rJ)

NJ ). The NJ subchan-
nels W

(i)
NJ(i ∈ [NJ ]) are obtained through two-stage polar-

ization.
For the second-stage polarization, According to [14] Theo-

rem 3.15,

lim
J=2j ,j→∞

Pr(Zj,r ≥ 1− 2−Jβr
) = 1− C(W

(r)
N ),

where 0 < βr < 1
2 , r ∈ [N ] and Zj,r denotes the RV

representing the identical channel polarization of W
(r)
N . Let



β′ = min(β1, · · · , βN ), then

lim
J=2j ,j→∞

Pr
(
Znj ≥ 1− 2−Jβ′)

= 1− 1

N

N∑
r=1

C(W
(r)
N )

=
1

N

N∑
r=1

h2(pr),

where Znj denotes the RV representing the channel polariza-
tion of wNJ

1 . Let β = ln J
ln (NJ)β

′, 0 < β ≤ β′ < 1
2 , then

lim
J=2j ,j→∞

Pr
(
Znj ≥ 1− 2−(NJ)β

)
=

1

N

N∑
r=1

h2(pr). (20)

According to parallel channel polarization theorem [28] The-
orem 2, it is readily apparent that [14] Lemma 3.5-3.8 remain
valid.

For 0 < β < 1
2 and δNJ = 1

2NJdmax
2−(NJ)β , dmax =

maxr∈[N ],ρr ̸=∞ ρr, Consider a polar code with frozen set
FNJ ,

FNJ =
{
i ∈ [NJ ] : Z(W

(i)
NJ) ≥ 1− 2δ2NJ

}
.

For J sufficiently large there exists a β′ < 1
2 such that 2δ2NJ >

2−(NJ)β
′

. Equation (20) implies that

lim
NJ=2n+j ,j→∞

|FNJ |
NJ

=
1

N

N∑
r=1

h2(pr). (21)

The above equation implies that for any ϵ > 0 and for J
sufficiently large there exists a set FNJ such that

|FNJ |
NJ

≥ 1

N

N∑
r=1

h2(pr)− ϵ.

From [14] Lemma 3.6, we know that

DNJ(FNJ) ≤ D + 2 |FNJ | dmaxδNJ ≤ D +O(2−(NJ)β ),
(22)

for 0 < β < 1
2 .

Recall that DNJ(FNJ) is the average of the distortion over
all choices of uNJ . Since the average distortion fulfills (22)
it follows that there must be at least one choice of uNJ for
which

DNJ(FNJ , uFNJ
) ≤ D +O(2−(NJ)β ), 0 < β <

1

2
.

B. Proof of Theorem 2

Proof. Consider a specific channel mapping π(i) = r +
(t − 1)N,r ∈ [N ],t ∈ [J ]. We apply two-stage polarization
to the NJ channel qNJ

1 . For the second-stage polarization,
According to [31] Theorem 1,

lim
J=2j ,j→∞

Pr(Zj,r < 2−Jβr
) = C(Q

(r)
N ),

where 0 < βr < 1
2 , r ∈ [N ] and Zj,r denotes the RV

representing the identical channel polarization of Q
(r)
N . Let

β′ = min(β1, · · · , βN ), then

lim
J=2j ,j→∞

Pr
(
Znj < 2−Jβ′)

=
1

N

N∑
r=1

C(Q
(r)
N )

= 1− 1

N

N∑
r=1

h2(θr).

where Znj denotes the RV representing the channel polariza-
tion of qNJ

1 . Let β = ln J
ln (NJ)β

′, 0 < β ≤ β′ < 1
2 , then

lim
J=2j ,j→∞

Pr
(
Znj < 2−(NJ)β

)
= 1− 1

N

N∑
r=1

h2(θr)

and

lim
J=2j ,j→∞

Pr
(
Znj ≥ 2−(NJ)β

)
=

1

N

N∑
r=1

h2(θr). (23)

Let ϵ > 0 and 0 < β < 1
2 be some constants. Let δNJ =

1
NJ 2

−(NJ)β . Let F1 and F2 denote the sets

F1 ≜
{
i ∈ [NJ ] : Z

(
W

(i)
NJ

)
≥ 1− 2−(NJ)β

}
F2 ≜

{
i ∈ [NJ ] : Z

(
Q

(i)
NJ

)
≥ 2−(NJ)β

}
.

Equation (20) implies that for J sufficiently large

|F1|
NJ

≥ 1

N

N∑
r=1

h2(pr)−
ϵ

2
.

Similarly, equation (23) implies that for J sufficiently large

|F2|
NJ

≤ 1

N

N∑
r=1

h2(θr) +
ϵ

2
.

Since each pair (Wr, Qr) satisfy 0 ≤ θr ≤ pr ≤ 1
2 for r ∈

[N ], we know

W
(i)
NJ ≼ Q

(i)
NJ , for i ∈ [NJ ] .

When J is sufficiently large,

F2 ⊆ F1.

Partition [NJ ] into F ≜ F1 ∩F2, I ≜ F1 \F2, and P ≜ Fc
1 .

Therefore,

|F|
NJ
≤ 1

N

N∑
r=1

h2(θr) +
ϵ

2
, (24)

|I|
NJ
≥ 1

N

N∑
r=1

h2(pr)−
1

N

N∑
r=1

h2(θr)− ϵ, (25)

|P|
NJ

< 1− 1

N

N∑
r=1

h2(pr) +
ϵ

2
. (26)

The embedding rate is |I|
NJ , satisfing (25).

For message embedding, the polar code constructed based
on F1 and I1 = Fc

1 is the same as that of the adaptive
steganographic scheme. In conjunction with equation (22) and
Lemma 1, we know

DNJ(FNJ) ≤ D + 2 |F1| δNJ ≤ D +O(2−(NJ)β ). (27)



For message extraction, the polar code constructed based on
F2 and I2 = Fc

2 is a channel code for attack channels qNJ
1 .

The block error probability satisfies

PNJ ≤
∑
i∈I2

Z(Q
(i)
NJ) ≤ O(2−(NJ)β ). (28)

Algorithm 1 Monte Carlo Construction
Input: code length N , information length K, BSCs
(W1,W2, · · · ,WN ), simulation runs T
Output: information indices set A, frozen indices set Ac

1: define eN1 = 0N1
2: for i = 1 to T do
3: uN

1 ← randi([0, 1], 1, N)
4: xN

1 = uN
1 GN

5: generate noise zN1 from BSCs (W1,W2, · · · ,WN )
6: yN1 = xN

1 ⊕ zN1
7: calculate L

(i)
N

(
yN1 , ûi−1

1

)
using equations (75) and

(76) from [12]
8: if L(i)

N

(
yN1 , ûi−1

1

)
≥ 0 then

9: ûi = 0
10: else
11: ûi = 1
12: end if
13: if ui ̸= ûi then
14: ei = ei + 1
15: ûi = ui

16: end if
17: end for
18: Sort eN1 in ascending order and store the indices in idxN

1

19: A = idxK
1 , Ac = idxN

K+1

20: return (A,Ac)
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