arXiv:2506.07372v1 [cs.CR] 9 Jun 2025

Enhanced Consistency Bi-directional GAN
(CB1GAN) for Malware Anomaly Detection

Thesath Wijayasiri, Kar Wai Fok and Vrizlynn L. L. Thing
Cybersecurity Strategic Technology Centre
ST Engineering, Singapore

Abstract—Static analysis, a cornerstone technique in cyber-
security, offers a noninvasive method for detecting malware
by analyzing dormant software without executing potentially
harmful code. However, traditional static analysis often relies
on biased or outdated datasets, leading to gaps in detection
capabilities against emerging malware threats. To address this,
our study focuses on the binary content of files as key features for
malware detection. These binary contents are transformed and
represented as images, which then serve as inputs to deep learning
models. This method takes into account the visual patterns within
the binary data, allowing the model to analyze potential malware
effectively. This paper introduces the application of the CBiGAN
[2] in the domain of malware anomaly detection. Our approach
leverages the CBiGAN for its superior latent space mapping
capabilities, critical for modeling complex malware patterns by
utilizing a reconstruction error-based anomaly detection method.
We utilized several datasets including both portable executable
(PE) files as well as Object Linking and Embedding (OLE) files.
We then evaluated our model against a diverse set of both PE
and OLE files, including self-collected malicious executables from
214 malware families. Our findings demonstrate the robustness
of this innovative approach, with the CBiGAN achieving high
Area Under the Curve (AUC) results with good generalizability,
thereby confirming its capability to distinguish between benign
and diverse malicious files with reasonably high accuracy.

Index Terms—Cybersecurity, Anomaly Detection, Generative
Adversarial Networks, Malware Analysis, Feature Processing

I. INTRODUCTION

In the ever-evolving cybersecurity landscape, malware de-
tection is a critical frontline defense, protecting systems
against unauthorized access and potential harm. Among the
techniques deployed, static analysis is particularly vital due
to its ability to analyze software without executing the code.
This method ensures safety and efficiency, as opposed to
dynamic analysis techniques which require the program to be
executed in order to analyze behavior, making it indispensable
for environments where security cannot be compromised. The
key downside being its overall higher consumption of time.

The reliance on biased or outdated datasets has traditionally
challenged static malware analysis. These datasets often do
not accurately represent the full spectrum of modern malware
threats, leading to a gap in detection capabilities against
newer or more sophisticated attacks. As malware continues
to evolve in complexity and stealth, there is a pressing need
for methodologies that not only detect known threats but can
also adapt to identify new patterns of anomalies. Malware
images created by visualizing binary sequences present an
approach that has garnered significant research interest over

time. Features used for the static analysis of malware range
from entire byte sequences to more purpose driven features
such as Operation code (opcode). The conversion of features
to visual representations has been a popular method in deep
learning solutions since its proposal by Nataraj et al [3]. This
method involved transforming the higher dimension malware,
to a lower dimension visual representation that can be more
effectively processed by machine learning algorithms whilst
still retaining all the global features. Global features are
features derived from the entire program, providing a broader
overview of its behavior or structure. In comparison, local
features focus on specific sections such as API calls or specific
code sections.

Generative Adversarial Networks (GANs), a model com-
prising a generator and a discriminator that learn in an
adversarial manner, in order to effectively map data to a latent
space and then reconstruct it, have been widely used in the
field of image generation. GANs have been known for their
exceptional ability to model and understand complex data
distributions, a feature crucial for malware’s complex nature.
However, in the realm of malware detection, the potential
of GANs extends beyond simple data generation to more
sophisticated applications involving anomaly detection. Sabuhi
et al. [4] outlines various GAN architectures and correlates
them with the types of datasets they are typically employed
in. For example, the BiGAN or Bi-directional GAN, which
introduces an encoder that learns to encode real samples in the
latent space concurrently with the generator, which decodes
from the latent space to construct generated samples. Based on
the higher successful usage of BIGANs with complex imagery,
we selected the consistency Bidirectional GAN (CBiGAN), a
variant of the BiGAN, as our foundational model. This deci-
sion was further informed by the CBiGAN’s [2]demonstrated
efficacy with texture-based images, a mean balanced accuracy
of 0.836 for the texture dataset in the MVTec Adversarial
Dataset, which aligns closely with our primary focus on
analyzing the texture and layout of global malware images.
This suggests it could be particularly adept at distinguishing
subtle anomalies in data.

This paper explores the integration of CBiGANS into static
malware analysis, utilizing a novel approach that employs
comprehensive malware imaging techniques. Using the above
mentioned techniques on both PE and OLE files, our model
flags significant anomaly scores as potential malware by
training exclusively on benign data.

Our method takes the existing CBiGAN architecture and

https://arxiv.org/abs/2506.07372v1

Realdataset ———— > Real Sample Discriminator loss

Discriminator

Random input| Generator ——>»{ Generated sample Generator loss

Fig. 1: Generative Adversarial Network

replaces the base encoder with a deep-learning model that
would be better suited for the encoding of complex image
data such as malware images.

We replaced the base encoder of the CBiGAN with several
deep networks(ResNet, DenseNet, Inception), and observed
improved performances on our selected datasets.

Our evaluations involve a curated dataset containing 6,330
benign PE files, 10,820 malicious executables, covering 214
families. We also included 9000 benign and 10,980 malicious
PDF’s from contagio [19]. We further tested the transferability
of our model against 9 classes from the Microsoft Malware
Challenge dataset. The findings highlight the capability of our
approach to achieve a high Area Under the Curve (AUC)
score. In this paper, we discuss the existing works such
as the CBiGAN and how we have effectively altered it to
our specifications, as well as image processing techniques
which have not priorly been used for the anomaly detection
of malware. We also compare our method with state-of-the-
art works, in which our method being a simplified process
provides comparable results to said works and shows better
generalizability.

II. RELATED WORK

Static analysis has been shown to have more research focus
in recent times due to the lower risk, using local feature sets
[6] [8] and global feature sets [3] [7]. We leverage

When considering existing work, majority of malware
anomaly detection methods tend to lean towards the usage
of support vector machines, which might be preferable for
simpler or smaller datasets or when there are clear boundaries
between normal and abnormal points, however with novel
malware techniques this may not be sufficient. A potential
solution was the usage of GANs, as they excel in more
complex scenarios, where anomalies need to be detected in
highly complex patterns.

Initially introduced by Ian Goodfellow [14], Generative Ad-
versarial Networks (GANSs) comprise of two key components
as shown in figure 1, the generator and the discriminator,
engaged in a zero-sum game. The generator generates data
from a latent variable (z drawn from a prior distribution p(z))
aiming to produce images realistic enough to deceive the
discriminator, while the discriminator’s objective is to distin-
guish between authentic and generated images consistently and
accurately.

Through adversarial training, these components iteratively
improve their performance. Like an art counterfeiter and an
art critic, the generator (counterfeiter) attempts to produce in-
creasingly realistic counterfeits. In contrast, the discriminator
(critic) aims to discern authentic artworks from counterfeits.
The training process continues until the discriminator can no

z+G(2)

fake encoded Generated
input Generator data sample
@) 6(2))

Discriminator

Real dataset Encoded data
Encoder
x) (E0)

x+E(x)

Fig. 2: Bi-directional GAN

longer effectively differentiate between real and fake images.
A Generative adversarial network is considered trained once
a Nash equilibrium is reached between the generator and the
discriminator. In this state, neither party can improve their
position unilaterally.

The Bi-directional GAN (BiGAN) [15], extends the GAN
by incorporating an encoder as shown in figure 2, which maps
the data to the latent space, enabling bidirectional translation
between images and latent representations. The generator
and the encoder are trained concurrently, with the generator
serving as a decoder to reconstruct images from latent space.
The discriminator retains its role of distinguishing real from
generated images.

The Consistency Bi-GAN (CBiGAN) [2], introduces a
consistency constraint as a regularization term in both the
encoder and decoder components as shown in figure 3. Unlike
traditional GANs focused on generative modeling, CBiGAN is
tailored for anomaly detection as a one-class classifier. During
inference, CBiGAN computes an anomaly score as a linear
combination of pixel-based reconstruction error and feature-
based discrimination error. For anomalous images, both the
reconstruction error and the discrepancy between discriminator
features increase, reflecting the failure of the generator to
reconstruct the input faithfully. Significant deviations in the
reconstruction of test samples indicate anomalies. This method
exploits the model’s inability to accurately reconstruct samples
that differ from the benign training set, identifying them as
anomalies.

The application of space-filling curves, originally proposed
by Vu et al. [10], and color manipulations in image pro-
cessing has been a focal area in various recent research
studies, particularly in fields demanding image segmentation
and enhancement for analytical purposes. One such study
is by Saridou et al. [11]. Space-filling curves, such as the
H-indexing technique, maintain the spatial locality of data
points in an image when mapped from a high to a lower-
dimensional space. This preservation is crucial, ensuring pixel-
related anomalies remain detectable after the transformation.
Although the method used by Saridou et al. was for classifi-
cation, exploring space-filling curves and color manipulations
in anomaly detection offers significant possibilities in image
processing techniques, particularly in fields where identifying
deviations from a norm is crucial, such as anomaly detection.

Discriminator

Generated
data sample Enc{gggg;.‘!ata
(G(2)

T A

h 4 h 4 h 4 h
Encoder Generator Z+G(z) x+E(x) Encoder Generator

A Fy 'y T i

v

Encoded data of

generated data = keiﬁgﬁ?ded
sample @)
(E(G(z))

Generated data

Real dataset | ___________._| sample from
(14 I encoded data
(G(EX))

Fig. 3: Consistency Bi-GAN

Once the feature sets were considered, the next step was to
identify how these features, namely the byte sequences and
opcodes, should be processed before being fed as input to the
machine learning models. Reviewing several survey papers,
such as Sabuhi et al. [4] on GAN-based anomaly detection
methods, it was shown that the most common method used as
a dataset was in the form of images.

Malware has also been processed into images as proposed
by Nataraj L. et al. [3] in 2011, where they visualize the
malware by converting the malware binaries into greyscale
images also known as byteplots. Low-level features such as
intensity-based or texture-based features were extracted and
used as the input for a support vector machine. Nataraj L.
et al. observed that images generated by the same malware
family often exhibit similar texture and layout, making them
suitable for classification tasks. However, traditional methods
face challenges when it comes to anomaly detection due to
the diverse range of benign and malicious applications, each
exhibiting unique visual patterns. To address this, we hypoth-
esized that leveraging color information instead of grayscale,
coupled with using space-filling curves as proposed by Vu
et al. [10], could enhance the representation of meaningful
features within a single image. Space-filling curves, such as the
Hilbert curve, offer a computationally efficient approach for
retaining locality while reducing dimensionality. It recursively
subdivides a square, connecting smaller squares’ centers in a
continuous curve, thus preserving spatial relationships effec-
tively.

Malware images act as visual representations of features
extracted from malicious software programs. They are known
for their varied methods of modifying existing code, thus
impacting different feature sets. Historically, malware images
have been generated by utilizing the entire byte sequence of
these programs as a feature set, a precedent set by Nataraj L. et
al. [3]. Additionally, Operation Codes (OpCodes) can achieve
similar objectives, although this method focuses exclusively
on the operational commands within the software.

In malware image anomaly detection, our methodology sets
itself apart from prior works, such as Shaukat et al. [13],
by adopting a different image processing technique. While
Shaukat et al. utilize a pixel mapping method from Nataraj
et al [3]. that processes images left to right, line by line, our
approach leverages Vu et al’s [10] technique using space-
filling curves, specifically the Hilbert curve. This method
preserves locality better, enhancing our ability to detect smaller
variations in image anomalies. Notably, most current studies
in this area utilize the MalIMG dataset [3]. While this dataset
has been instrumental in advancing the field, it does not
adequately reflect the evolving nature of malware threats.
Since 2011, significant developments in malware technology
have occurred, with new variants emerging that exhibit increas-
ingly sophisticated characteristics designed to evade detection.
These changes often result in malware samples that are less
distinguishable from benign software, a challenge that our
approach seeks to address by leveraging more current data and
less intrusive preprocessing to potentially enhance detection
accuracy in today’s more complex threat landscape.

III. PROPOSED METHODOLOGY

Our research adopted a methodology centered primarily on
analyzing global features while minimizing the pre-processing
steps involved. This approach was chosen to explore a more
streamlined and practical processing pipeline, potentially suit-
able for deployment on local devices with limited computa-
tional resources. By focusing on global features, we aim to
harness broad contextual information, which may prove crucial
for the robustness and accuracy of our models, especially in
real-world scenarios. Reducing pre-processing not only con-
tributes to faster execution times but also decreases the com-
plexity and potential for errors. This strategy is particularly
relevant as the demand increases for real-time applications in
mobile and edge computing environments, where efficiency
and speed are paramount for detection.

Figure 4 presents the overall methodology regarding the PE
file-to-image conversion. This same process is repeated for
OLE files as well. The file is converted to an array of hex-
adecimal values, which then go through the image processing
step to get converted into our final image. Figure 5 shows
the image processing step, wherein the array of hexadecimal
values are rearranged following the Hilbert transformation and
then mapped to RGB vectors which are then used to create
the final image. These images are then used to train our model
which is a variation of the CBiGAN proposed by Carrera et
al. [2] with a secondary deep learning model substituting for
the encoder of the model.

Our model acts as a one-class classifier, using images from
benign applications as the training data. The model would
then learn to classify images made from malicious files as
anomalous due to the higher reconstruction error.

A. Datasets

1) Primary Dataset: The primary experiment employs a
self-collected dataset consisting of 6,330 benign Portable Exe-
cutable (PE) files. These files were sourced using a webcrawler
and subsequently verified as benign through VirusTotal checks.
The benign data was split with a 60/20/20 ratio, with 60% of
the data being used for training: 3798 samples, 20% each used
for testing and validation: 1266 samples each. Complementing
this, the dataset for malicious files comprises 10,820 samples
belonging to 214 families, sourced from MalwareBazaar [16].
MalwareBazaar is a public repository of malicious samples.
A script was used to download PE samples with the .exe
extension based on the upload date from the latest. The sample
set was then further refined by limiting the size between
2MB to 50MB to reflect the size range in the benign data.
The malicious samples were split evenly for testing and
validation with 5,410 samples each. Furthermore, to assess
the transferability and generalizability of our trained model,
we utilize the Microsoft Malware Challenge Dataset [17]. The
Microsoft dataset is a curated dataset from 2015 containing
10868 malicious samples from 9 key families. This dataset is
instrumental in testing how well our model, trained on PE file
types and malware families, adapts to a broader and previously
unseen set of malware samples.

2) Extended Primary dataset: We further test the efficacy
of increased benign dataset size and variation by adding
more benign samples to the primary dataset, from Michael
Lester’s curated PE dataset [18]. We decided to extend only
the training set of the primary dataset, in order to keep other
variables constant, as the focus on this experiment was to
test the increase in size and variation of the training set.
Therefore, we extended the 3798 benign training samples of
the primary dataset to form a training set of 15,000 benign
samples for training. Michael Lester’s curated dataset consists
of 86,812 benign samples and 114,737 malicious samples. For
our experiments we did not use malicious samples from this
dataset and only selected 11,202 benign samples which were
split from the dataset with a seed of 42 and combined with
the training samples from the primary experiment to form the
new training samples.

3) Secondary Dataset (Contagio): In a sub-experiment,
we focus on Object Linking and Embedding (OLE) files,
particularly PDFs, using the Contagio dataset. This includes
9,000 benign OLE files and 10,980 malicious OLE files,
allowing us to test the model’s effectiveness in a different
binary context and evaluate its performance across varying
file types.

B. Conversion of Raw Files to Features

This involves identifying features to extract from OLE and
PE files as the first step. Although our datasets are composed
of PE and OLE files, this method is transferable to any type
of file. Several literature surveys were considered, all within
the past five years [7] [8] [9] [10], to look into which features
were used most in malware anomaly detection and how those
features were processed. These were then correlated to what
datasets GANs used for anomaly detection and the format of
those datasets (i.e., images, 1D arrays, etc.). The first step was
converting the files to images. The process could essentially be
broken down into two key steps. One was converting the file
to a set of features selected through the literature surveys [5],
such as bytecode and Op-code. The second step was converting
these features into an image. Although the process itself was
broken down into two steps, the two were interdependent.

C. Feature Selection and Extraction

1) Byte Sequences and Opcode Ildentification: The primary
features targeted for extraction were byte sequences and op-
codes, which offer critical insights into the file’s executable
behavior. Byte sequences represent the raw hexadecimal data
of the PE files. At the same time, opcodes (operation codes)
indicate the instructions executed by the processor.

2) Automation with Linux Terminal Commands : To effi-
ciently handle the vast quantity of PE files, we automated the
extraction process using Linux terminal commands integrated
within a Python script. We utilized the xdd command for byte
sequences to generate hex dumps of the files. For extracting
opcodes, the objdump command was employed, coupled with
a custom Python script tailored to isolate just the opcodes from
the output.

D. Conversion of Extracted Features into Images

Integration of Features: The extracted features, namely the
byte sequences and opcodes, were then integrated to form
a coherent data set suitable for image conversion. This step
is critical as it translates textual or numerical data into a
visual format that image-based anomaly detection systems can
process. Feature to image The conversion of features to images
can also be considered to be comprised of two key facets: pixel
color and pixel mapping. Images are made up of individual
pixels. Each of these pixels are represented by 3 RGB values
ranging from 0-255, for example a white pixel would have
the RGB values 255,255,255. These pixels are then arranged
on a grid of predetermined size. The way they are arranged
would determine how the image finally looks and is referred to
here as pixel mapping. Per the literature review, the most used

“xdd”
Byte sequence
images

Hex Dump

PE File Image processing

OpCode OpCode Images

“objdump”

Fig. 4: PE to image conversion process

Apply Hilbert Map values to RGB
transformation vectors
Array of Re-arranged

values . hexadecimal values
Fig. 5: Image Conversion

Image Processing

Aray of RGB vectors

method was presented with the malware visualization paper
proposed by Nataraj L. et al., which consists of converting the
PE files into a series of binary values grouped into sets of 8§ or
a byte. This was then converted into a decimal value between
0 and 255, which would relate to a color on the greyscale.
This method was used to create each pixel. The pixels were
mapped from left to right until a set width was met, and then
they continued from the next row. This method created images
with a fixed width but variable length.

Vu et al. [10] proposed that this method did not capture
local features well enough and suggested a different method,
the usage of space-filling curves. Space-filling curves are a
Hamiltonian path widely used in computer image generation
for converting one-dimensional arrays to two-dimensional and
vice versa while keeping the local features grouped. Saridou
et al. [1] showed that in classification methods, this image
processing method proved superior to the generic method
proposed in Nataraj et al. [3] Therefore, to address the local
feature retention issues for mapping that may arise when
converting PE files to images, space-filling curves were con-
sidered, namely the Hilbert curve. The Hilbert curve is simple,
with a repetitive shape change with each increment.

Furthermore, with the reconstruction error-based classifica-
tion of our model, we integrated a novel approach combining
geometrically distant colors with the 2D locality-preserving
properties of the Hilbert curve. This integration aims to refine
the color differentiation process, thus improving the accuracy
of the model in classifying the instances based on their
reconstruction characteristics.

1) Pixel color allocation: We made a strategic decision to
standardize the color allocation to colors of high RGB value
contrast. While Saridou et al. [11] proposed a color scheme for
enhancing image representation, we took this concept further
by standardizing colors based on geometric contrast. In our
methodology, we envisioned the color space as represented by
Red (R), Green (G), and Blue (B) values, each constrained
to the interval [0, 256]. We conceptualized the RGB value
as a vector in this color space, confined within a cube, and

Fig. 6: Malware sample converted using Nataraj et al. method

sought to identify the 16 most contrasting values for RGB
values within that space. Geometrically, this contrast is defined
as the points farthest away from the given RGB value while
still residing on the boundaries of the cube. By employing
such standardized colors with maximal contrast, we aimed to
enhance the discriminative power of our image representations,
thereby improving anomaly detection performance. The con-
version of hexadecimal values to RGB vectors is mentioned
as follows in Table 1.

Hexadecimal R value | G value | B value
Character

0 0 0 0

1 128 0 0

2 154 99 36
3 128 128 0

4 70 153 144
5 0 0 117
6 230 25 75
7 245 130 49
8 255 225 25
9 191 239 69
A 60 180 75
B 66 212 244
C 67 99 216
D 145 30 180
E 240 50 230
F 255 255 255

TABLE I: Standardized color allocation to hexadecimal chart

2) pixel mapping: Once the pixel colors were decided, they
need to be mapped onto a grid in order to form an image. As
stated before there are several methods such as Nataraj.et al.
[3] which used a left to right mapping, wherein once the end
of a row was reached, it would then begin mapping again from
the next row in a similar fashion and that that was proposed by
Vu et al. [10] which was the utilization of space filling curves
such as the Hilbert curve. We follow the method proposed by
Vu et al. due to the ability for space filling curves to better
retain locality when being converted from 1d arrays to 2d
arrays. This tends to better represent local patterns of the files
as shown in the comparison between figure 6 and figure 7. We
used python script to apply the Hilbert transformation taking
approximately 6 seconds per SOMB sample

E. Model

Our method incorporates a variation of the CBiGAN pro-
posed by Carrera et al. [2] As stated before, the CBiGAN is a
variation of the BiIGAN [15] wherein a consistency constraint

e ik 0

Fig. 7: Malware sample converted using our method

is introduced. As shown in figure 3, this ensures that when
a real data sample and its corresponding latent representation
(generated by the encoder) are fed back into the Generator,
the output (reconstructed data) should closely resemble the
original real data sample. Similarly, when a random latent
vector (drawn from the latent space distribution) is used to
generate synthetic data through the generator, and this syn-
thetic data is encoded back to the latent space by the encoder,
the resulting latent representation should be similar to the
original random latent vector. This is implemented by adding
the Wasserstein loss function (presented as L(R) in figure 3)
to the training process that penalizes discrepancies between
the original and reconstructed components. The CBiGAN had
no prior history of processing images as complex as those
generated from malware, raising concerns about its encoder’s
ability to map these images to the latent space effectively.
Traditionally, most malware image detection methods have
utilized CNN-type encoders, such as ResNet, configured as
autoencoders. Yumoto et al. [5] demonstrated that combining
GANs with CNN-type encoders could surpass the perfor-
mance of autoencoders in detecting anomalies in complex
images. Consequently, we replaced the CBiGAN’s encoder
with several CNN-type encoders ranging from lighter models
such as IncpetionV3 to denser models such as DenseNet201.
Namely ResNet50, ResNetl01, ResNET152, DenseNetl69
and InceptionV3. By doing so, we hope to explore the trade-
offs between computational efficiency and anomaly detection
accuracy. Lighter models, such as InceptionV3, offer faster
processing times and lower computational costs, making them
suitable for real-time applications. On the other hand, denser
models like DenseNet201 provide higher accuracy in detecting
subtle anomalies at the expense of increased computational
requirements. This aims to determine the optimal balance
between performance and efficiency.

IV. EXPERIMENTAL SETUP

Our experiments were conducted using a Linux system on a
system utilizing an intel i9-11900K processor and an NVIDIA
RTX 3090 graphics card with 24GB of VRAM as well as
128GB of system RAM.

A. Metrics

We utilized balanced accuracy and AUC (Area Under the
Curve) for evaluation metrics. These metrics were chosen

as they provide a more comprehensive view of model per-
formance across imbalanced datasets than standard accuracy
or F1 metrics. Balanced Accuracy (BalAcc) is calculated as
follows:

BalAcc = 1 rp + N
" 2\TP+FN TN+FP

Where; TP denotes True Positives, FN denotes False Neg-
atives, FP denotes False Positives, and TN denotes True
Negatives.

Balanced accuracy compensates for any bias introduced
by the disproportionate ratio of classes by averaging the
proportion of correct predictions in each class independently.
AUC, on the other hand, measures the ability of the model
to discriminate between classes at various threshold settings,
making it a robust indicator of model effectiveness across
different levels of classification threshold. The Area Under
the Receiver Operating Characteristic Curve (AUC-ROC) is
a performance measurement for classification problems. It
represents the degree or measure of separability. Higher the
AUC, better the model is at predicting Os as Os and 1s as 1s.

The AUC is calculated as the area under the ROC curve,
which plots the True Positive Rate (TPR) against the False
Positive Rate (FPR) at various threshold settings.

1
AUC = / TPR(FPR) d(FPR)
0

V. INITIAL EXPERIMENTS

In the early stages of our experiment, we explored different
feature extraction techniques to determine the most effective
method for converting binary files into image representations
for our CBiGAN model. Two primary methods were con-
sidered: the byte sequence method and the opcode method.
These methods were evaluated based on their performance in
distinguishing between benign and malicious software samples
from our self-collected dataset. As stated before, the models
were all trained on 3798 benign samples and tested and
validated against 1266 benign samples and 5410 malicious
samples each.

A. Evaluation of byte sequence method vs Opcode method

1) Byte Sequence Method: This approach involves convert-
ing the binary files into images based on the raw byte se-
quences. The resulting images visually represent the structural
patterns of the binaries, which are then used as input for a
CBiGAN-ResNet50 model. The byte sequence method demon-
strated a significant advantage in our experiments, achieving
an Area Under the Curve (AUC) score of 0.816.

2) Opcode Method: Alternatively, the opcode method con-
verts binary files into images based on the operation codes
extracted from the executable files. This method aimed to
capture the semantic information of the binaries more explic-
itly than the byte sequence approach. However, in our tests,
the opcode method yielded an AUC of only 0.616, which is
considerably lower than that of the byte sequence method. This
result suggests that while the opcode method provides valuable
insights into the behavioral patterns of the binaries, it is less

effective for the visual-based anomaly detection method used
in our study.

The initial testing conclusively showed that the byte se-
quence method was substantially more effective for our pur-
poses. This finding guided our decision to adopt the byte se-
quence approach for the detailed experiments and evaluations
conducted in this study.

B. Evaluation of the Hilbert curve and RGB colour mapping

The images created by applying the Hilbert curve and the
standardized color allocation method were initially hypothe-
sized to offer improvements. To validate these assumptions, we
conducted further testing using identical training and testing
data and the same GAN-encoder configuration to evaluate the
differences in outcomes. For testing we used the contagio
dataset as it provided a more focused scope for the initial test-
ing. Given the structured nature of PDFs and the availability
of comprehensive metadata within the Contagio dataset, initial
testing on PDFs provides a more controlled environment. This
focused scope helps in fine-tuning our conversion methods
before applying them to the more diverse and unstructured PE
files As indicated in Table 2 which shows a comparison of the
results using identical datasets with different image processing
approaches, this method significantly enhances results with a
0.795 AUC score compared to the 0.590 AUC score of the
approach introduced by Nataraj L. et al. [3] in 2011, which
remains widely adopted in current practices.

C. Evaluation of the encoder replacement for the CBiGAN

One of the key hypotheses made in our works is the
increased accuracy of a deep learning model substituted
CBiGAN as opposed to a CBiGAN with its base encoder
We conducted an initial test to evaluate this hypothesis by
comparing experiments that used the same configurations and
datasets, with the only difference being the encoder used.
For this test, we switched to the primary dataset of PE
files as the primary focus was testing on PE files. Table
3 shows the AUC scores for the trained models against
the test datasets as well as the validation datasets. The test
columns show the best result during training against the test
dataset, which consequently is used to save the best model.
The valid. columns show the validation results of the trained
model against the validation dataset. the test results show both
higher Area Under the ROC Curve and balanced accuracy
results for the experiments where the deep learning model
was substituted for the base encoder present in the CBiGAN
with a 22.3% increase in AUC for the ResNet50 encoder as
opposed to the base encoder. A potential hypothesis as to why
the ResNet5S0 model outperformed the deeper models would
be due to the way our model was designed to work. As the
result would be based off of reconstruction errors, the unique
color combinations would be easier to identify using a lighter
model as there would be too many features if the entire image
was considered. This however doesn’t excuse the inceptionV3
model having poor results. A secondary hypothesis would be
that the while Inception models focus on capturing multi-scale
features using multiple convolutional filters of different sizes

within the same layer, this complexity can sometimes lead to
suboptimal performance if not tuned precisely. However, this
would require further testing to identify.

VI. EXPERIMENTS

Our study aimed to evaluate the impact of varying en-
coder complexities, from lighter to deeper models, on the
initial model performance, including validation accuracy and
the model’s generalizability across unseen malware classes
through zero-shot testing. This comprehensive testing strategy
allows us to understand how different levels of model depth
influence our system’s immediate effectiveness and broader
applicability in identifying diverse malware threats. We assess
the model’s ability to generalize beyond its training dataset by
conducting zero-shot tests, where we test the model against
previously unseen classes of malware such as the Microsoft
Malware Challenge dataset [17], which is crucial for cyber-
security applications with new malware variants. The results
show that the deeper models tended to have better overall
results, albeit with a longer training time. Our methodology
involves training the model using the benign dataset, with
periodic evaluations against a test set of malware to assess both
balanced accuracy and the best AUC. Throughout the training
process, the model is configured to save two checkpoints: one
for the checkpoint that achieves the highest AUC, updated
each time an improved AUC is recorded, and another for
the final trained model after completing all training iterations.
This approach ensures that we retain the model that performs
best in terms of area under the curve and the model at the
end of the training cycle for further analysis and comparison.
Our methodology also incorporates an Exponential Moving
Average (EMA) to smooth out the fluctuations in the training
metrics. Using EMA helps stabilize the learning updates by
averaging the model parameters over time, which can lead
to more robust generalization performance. This approach
is beneficial for mitigating the effects of erratic changes in
model performance due to the nature of the training process,
ensuring that our evaluations of AUC and balanced accuracy
reflect a more consistent and reliable estimate of the model’s
capabilities.

A. Primary Experiment

Our primary experiment was based on PE files utilizing
the aforementioned primary dataset which is a self-collected
dataset of benign and malicious PE files. We chose to include
as many varying malware families as possible to get a more
generalized result which should translate to better transferabil-
ity of the model.

B. Dataset Size Experiment

This experiment was to see the effect of increased benign
samples in the training data that would allow the model to
generalize better and bring in more variation to the benign
samples as well. We tested this hypothesis by using the ex-
tended primary dataset mentioned in section 4.1.2 supplement-
ing our existing dataset using benign samples from Michael

Method

Traditional method [3]

Greyscale + Hilbert

Our method (RGB + Hilbert)

AUC | Balanced Accuracy
0.59 0.627

0.786 0.734

0.795 0.782

TABLE II: comparison of image processing methods between Nataraj et al. and ours using the contagio dataset

Test Valid.

Test Valid.
Encoder model used AUC Bal. AUC Bal.
Acc. Acc.
CBiGAN base encoder 0.667 0.662 0.661 0.659
ResNet50 0.816 0.781 0.818 0.787
ResNet101 0.766 0.731 0.768 0.730
ResNet152 0.791 0.737 0.778 0.724
DenseNet169 0.801 0.730 0.806 0.736
InceptionV3 0.833 0.762 0.620 0.599

TABLE III: Test and Validation results using different encoders with
against the self-collected malware dataset of 214 classes

Test Valid.

. . Test Valid.
Training Dataset Size Bal. Bal.
AUC Acc. AUC Acc.
3,798 0.816 0.781 0.818 0.787
15,000 0.864 0.831 0.857 0.822

TABLE IV: Test and Validation results using different training dataset
sizes for the CBiGAN - ResNet50 combination

Lester’s curated dataset [18]. The final training set was 15,000
benign samples. We tested using the model configuration with
ResNet50 encoder and all hyperparameters the same as our
main experiments.

C. Transferability Experiment

This experiment is to test the transferability of the model
resulting from the primary experiment, by testing it against 9
previously unseen malware classes from the Microsoft dataset.

D. Secondary Experiment

Our secondary experiment was based on using OLE files,
specifically PDF files, sourced from the contagio dataset.
This evaluates our methods effectiveness in a different binary
context.

VII. RESULTS
A. Primary Experiment Results

The comparative analysis of the performance across
ResNet50, ResNet152, and DenseNet169 models as Shown
in table 3 of section 7 provides a nuanced view of the effec-
tiveness of different network architectures in our malware de-
tection framework. While ResNet50 achieves a higher AUC in
both test and validation sets and reaches its performance peaks
earlier in the training process, this does not necessarily trans-
late to superior generalizability across all scenarios, notably,
the ResNet models reach their peak AUC considerably earlier
than the DenseNet model as observable in figure 8 which
shows the comparison of AUC over time for the ResNet50 an
DenseNet169 models. Initially, this might suggest a preference
for ResNet models; however, a deeper examination of model
transferability reveals a different perspective.

ResNet50’s earlier peaking in AUC might indicate faster
convergence, potentially due to its shallower architecture com-
pared to DenseNet169. This can be advantageous in scenarios

ResNet50

—auc

03

0.2
0.1

DenseNet169
09
0.8
07
0.6

05
—auc

0.4
0.3
0.2
0.1
0
CFCEEE EEESEFLEFEELF S

Fig. 8: Comparison of AUC over time for ResNet50 and DenseNet169
encoders

where quick deployment of updated models is crucial. How-
ever, the lower peak AUCs of ResNet152 and DenseNet169
suggest these models may capture more complex patterns that
are not immediately evident early in training.

B. Dataset Size Experiment Results

Table 4 shows the results of training an identical model to
the CBiGAN-ResNet50 model, which showed the best results
in the prior experiment, with an increased training dataset. We
tested by increasing the dataset size from 3,798 to 15,000 by
supplementing with benign samples from Michael Lester’s PE
machine learning dataset [18]. Samples were selected based
on a seed of 42. As we can see there is a positive correlation
in increasing the dataset size and variation of samples in
this context with an improved AUC of 0.864 as opposed to
the 0.816 of the smaller training set. This passes on to the
validation set as well with an AUC of 0.857 as opposed to
0.818 of the smaller training set.

C. Transferability Experiment Results

Table 5. further provides a critical insight into the trans-
ferability of the models, by testing the models trained on our
self-collected dataset against the 9 classes of the Microsoft
malware challenge dataset [17]. Despite their slower ascent to
peak performance, both ResNet152 and DenseNet169 demon-
strate superior capability in generalizing to the Microsoft
malware classification challenge dataset, including various
malware types unseen during training. This indicates that
the depth of the model plays a reasonable role in learning
generalized features rather than fitting them to the specificities
of the training data.

Best MS1 - MS2 - MS3 - ke- MS4 - MSS - MS6 - MS7. B MS8 — MS9 -
Name . Lol- . . Keli- Obfusca-
AUC ramnit . lihos_ver3 Vundo Simda Tracur Gatak
lipop hos_ver1l tor.ACY
CBiGAN-D169 0.801 0.555 0.448 0.252 0.353 0.771 0.456 0.916 0.478 0.568
CBIIS/;\I - 0.791 0.629 0.493 0.149 0.279 0.097 0.41 0.887 0.823 0.539
CBiGAN - R50 0.816 0.603 0.419 0.357 0.218 0.328 0.513 0.852 0.842 0.396
CBiGAN - R50
(larger training 0.864 0.683 0.413 0.314 0.724 0.618 0.475 0.925 0.886 0.665
set)
TABLE V: Transferability of model to unseen data
Model Used | AUC Feature
ResNet50 | 0.837 Model Used Reduction Step | AUC
ResNet101 0.74 OSVM + RegNetY320 No 0.89
ResNet152 0.767 OSVM + RegNetY320 Yes 0.921
DenseNet169 | 0.772 OSVM + ResNet152 No 0.84
InceptionV3 | 0.766 OSVM + ResNetl152 Yes 0.87
TABLE VI: Results using different encoders against Contagio dataset OSVM + VGG19 No 0.81
OSVM + VGG19 Yes 0.891

The ability of deeper models to perform better on a compre-
hensive challenge such as the Microsoft dataset, despite lower
AUCs initially, underscores the importance of architectural
depth for complex image recognition tasks like malware
detection. While ResNet50 may be efficient for quicker tasks
and performs well on known test and validation sets, models
like ResNetl52 and DenseNet169 are more robust when
dealing with diverse and previously unseen malware classes.
Therefore, while ResNet50 provides a good balance between
performance and speed, for applications where robustness
against diverse threats is critical, deeper networks might offer
more reliable protection, albeit at the cost of increased com-
putational resources and training time.

However, the most influential factor for transferability re-
sults was the increased dataset size. One could conclude that
the increased variation in the training set would affect the
transferability results positively. Although the results were not
great through each of the 9 classes in the Microsoft dataset, we
do see a clear increase in the results of the transferability test,
with the increased dataset size test showing the highest result
for 5 of 9 classes tested on. It also shows a relatively positive
result for MS5 - Simda, which for the other ResNet results
did not show good results. We can also see a correlation in
the encoder model used and results for certain classes, such
as for MS8 - Obfuscator.ACY showing subpar results for the
DenseNet experiment and ;0.8 AUC results for the ResNet
models.

D. Secondary Experiment Results

For the secondary experiment we tested our model against
the Contagio PDF dataset [19]. Table 6 shows the results of
using different encoder variants with the Contagio dataset,
with the ResNet50 encoder showing the best results by far
with 0.837 AUC score. We also test the usage of limiting the
PDF files to only ones containing JavaScript components to
see the effect on the AUC score, based on the findings of
Gu et al. [12]. For this we follow the same method as Gu et
al. by using PeePDF to separate the samples with JavaScript
components.

TABLE VII: Results of shaukat et al.

VIII. ANALYSIS
A. Comparison with Shaukat et al. [13]

Our principal comparison for the PE dataset is with the
model proposed by Shaukat et al., which employs a one-class
SVM trained solely on benign PE files converted to RGB
images using a method adapted from Nataraj et al. Shaukat
et al.’s study is one of the few utilizing malware images for
anomaly detection rather than classification. They test their
initial model against a combination of the Microsoft malware
challenge dataset and VirusShare. They show their results for
their model alone as well as with an extra feature extraction
process using PCA and a deep learning model. Table 7 is
an extract from shaukat et al.’s paper which shows their key
results which include the combination of an OSVM with three
different deep learning models used for feature extraction as
well as well as results for using each with and without the
feature reduction step

Our CBiGAN-ResNet50 model demonstrates comparable
results with an AUC of 0.816 on the PE dataset which contains
over 214 malware classes as opposed to the 9 classes used
by shaukat et al. (they do not specify how many samples
were taken off virus share so it is hard to approximate),
using a simpler and more integrated approach than the multi-
step method employed by Shaukat et al. Furthermore, their
transferability tests on the MalIMG dataset, which include
different data types (RGB for their method and greyscale for
MalIMG), are not considered comparable in our analysis due
to the discrepancies in data representation. Furthermore, we
tested their feature reduction technique with our method as
well, which showed an increase of the CBiGAN-ResNet50
models AUC to 0.837 however that negatively affected both
the transfer-ability results (reduced AUC for Microsoft’s 5,7
and 8 classes) which further polarizes us from their transfer-
ability findings.

B. Comparison with Gu et al. [12]

Our analysis also compares our methodology against the
JavaScript-based detection approach proposed by Gu et al.,

which employs a unique strategy focusing on JavaScript
code within PDF documents. We propose a comparison with
the work of Gu et al. as they utilized the same publicly
available OLE dataset [19]. The limited number of research
studies employing publicly available OLE datasets restricts
the scope of comparative analyses that can be conducted. Gu
et al. use PJscan and peepdf parsers to extract and tokenize
JavaScript from PDF files, applying a one-class SVM classifier
to differentiate between benign and malicious documents using
the Contagio OLE dataset—a dataset we also utilize in our
experiments.

Key findings from Gu et al. reveal that 97.51% of the mali-
cious PDF files in their dataset contain JavaScript, compared
to only 4.26% of benign files. Their approach achieved an
impressive detection accuracy of 96.9% with a relatively low
false positive rate of 3.2%. Our results fall short of theirs with
our experiment only yielding a 0.837 AUC with the ResNet50
encoder. We further test by limiting our dataset to the one
used by Gu et al. by using PeePDF to isolate the PDFs that
have JavaScript components. However, this only yielded an
increased AUC result of 0.855, which was only a marginal
increase over the prior result.

While their results are notable, it’s important to consider
the practical limitations of their method:

The dependency on JavaScript presence may not generalize
well across all types of PDF-based malware, particularly as
malware creators may shift away from using JavaScript due
to increased detection. The method requires the use of spe-
cific parsing tools, which introduces potential vulnerabilities,
particularly if malware obfuscation techniques interfere with
the parsers’ ability to detect JavaScript code. In contrast, our
CBiGAN-based approach does not rely on the presence of spe-
cific features such as JavaScript within the files. This broader
approach avoids the limitations associated with parsers and
does not confine the detection capability to specific malware
characteristics. Furthermore, our method has demonstrated
robustness against obfuscation techniques, achieving an AUC
of 82.3% in detecting the obfuscater.acy malware class during
our transferability tests.

IX. CONCLUSION

In this study, we introduced a novel approach for malware
detection using the consistency Bi-directional Generative Ad-
versarial Network (CBiGAN) combined with deep learning
models such as ResNet and DenseNet, specifically tailored
for anomaly detection. Our approach used visual representa-
tions of binary content to effectively capture intricate patterns
within malware binaries, employing deep learning to enhance
detection capabilities.

Our experimental results showed that the CBiGAN achieved
strong predictive performance and generalizability across di-
verse datasets including PE and OLE files. This method’s
efficacy is highlighted by its ability to handle a diverse set
of malicious executables from 214 malware families with
reasonable accuracy. Our CBiGAN-based method offers a
streamlined, single-model approach that contrasts with the
multiple, separate steps required in other studies. This sim-
plicity is advantageous for practical applications, where ease

of deployment and maintenance are critical. Additionally, our
method’s ability to detect sophisticated obfuscation techniques
in malware, such as those used in the obfuscater.acy malware
class, underscores its effectiveness and advanced capability in
handling real-world malware threats.

REFERENCES

[1] Saridou, B., Moulas, I., Shiaeles, S., & Papadopoulos, B. K. (2023).
Image-Based malware detection using A-Cuts and binary visualisation.
Applied Sciences, 13(7), 4624. https://doi.org/10.3390/app13074624

[2] Carrara, F., Amato, G., Brombin, L., Falchi, F., & Gennaro, C. (2021,
January 10). Combining GANs and AutoEncoders for efficient anomaly
detection. International Conference on Pattern Recognition. https://doi.
org/10.1109/icpr48806.2021.9412253

[3] Nataraj, K., Jacob, G., & Manjunath, B. S. (2011). Malware images:
visualization and automatic classification. Proceedings of the 8th Inter-
national Symposium on Visualization for Cyber Security.

[4] Sabuhi, M., Zhou, M., Bezemer, C., & Musilek, P. (2021). Applications
of Generative Adversarial Networks in anomaly Detection: A Systematic
Literature review. IEEE Access, 9, 161003—-161029. https://doi.org/10.
1109/access.2021.3131949

[5] Yumoto, S., Kitsukawa, T., Moro, A., Pathak, S., Nakamura, T.,
& Umeda, K. (2023). Anomaly detection from images in pipes
using GAN. ROBOMECH Journal, 10(1). https://doi.org/10.1186/
s40648-023-00246-y

[6] Wu, Q., Zhu, X., & Liu, B. (2021). A survey of Android malware
static detection technology based on machine learning. Journal of Mobile
Information Systems, 2021, 1-18. https://doi.org/10.1155/2021/8896013

[71 Ngo, Q., Nguyen, H., Le, V., & Nguyen, D. (2020). A survey of IoT
malware and detection methods based on static features. ICT Express,
6(4), 280-286. https://doi.org/10.1016/j.icte.2020.04.005

[8] Sihwail, R., Omar, K., & Ariffin, K. A. Z. (2018). A survey on malware
analysis techniques: static, dynamic, hybrid and memory analysis. In-
ternational Journal on Advanced Science, Engineering and Information
Technology, 8(4-2), 1662. https://doi.org/10.18517/ijaseit.8.4-2.6827

[9] Pan, Y., Ge, X., Fang, C., & Yi, F. (2020). A Systematic Literature Re-
view of Android Malware Detection using Static Analysis. IEEE Access,
8, 116363-116379. https://doi.org/10.1109/access.2020.3002842

[10] Vu, D., Nguyen, T., Nguyen, T. V., Nguyen, T. N., Massacci, F.,
& Phung, P. H. (2019). HIT4Mal: Hybrid image transformation for
malware classification. Transactions on Emerging Telecommunications
Technologies, 31(11). https://doi.org/10.1002/ett.3789

[11] Saridou, B., Rose, J. R., Shiaeles, S., & Papadopoulos, B. (2022).
SAGMAD-A signature agnostic malware detection system based on
binary visualisation and fuzzy sets. Electronics, 11(7), 1044. https:
//doi.org/10.3390/electronics 11071044

[12] Gu, J., Kong, R., Sun, H., Zhuang, H., Pan, F, & Lin, Z. (2023).
A novel detection technique based on benign samples and one-class
algorithm for malicious PDF documents containing JavaScript. Interna-
tional Conference on Computer Application and Information Security.
https://doi.org/10.1117/12.2637518

[13] Shaukat, K., Luo, S., & Varadharajan, V. (2024). A novel machine
learning approach for detecting first-time-appeared malware. Engineer-
ing Applications of Artificial Intelligence, 131, 107801. https://doi.org/
10.1016/j.engappai.2023.107801

[14] Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley,
D., Ozair, S., Courville, A., & Bengio, Y. (2014). Generative adversarial
networks. https://arxiv.org/abs/1406.2661

[15] Donahue, J., Krihenbiihl, P., & Darrell, T. (2016). Adversarial feature
learning. arXiv (Cornell University). https://arxiv.org/pdf/1605.09782

[16] MalwareBazaar - Malware sample exchange. (n.d.). https://bazaar.abuse.
ch/

[17] Microsoft Malware Classification Challenge (BIG 2015) — Kaggle.
(n.d.). https://www.kaggle.com/c/malware-classification

[18] Lester, M. (2021, June 8). PE Malware Machine Learning Dataset.
Practical Security Analytics LLC. https://practicalsecurityanalytics.com/
pe-malware-machine-learning-dataset/

[19] Mila. (2013, March 16). 16,800 clean and 11,960 malicious files for
signature testing and research. https://contagiodump.blogspot.com/2013/
03/16800-clean-and- 11960-malicious-files.html

