arXiv:2506.07190v1 [cs.CR] 8 Jun 2025

A Simulation-based Evaluation Framework for
Inter-VM RowHammer Mitigation Techniques

Hidemasa Kawasakit

Soramichi Akiyamaf

Ritsumeikan Universityy

Inter-VM RowHammer is an attack that induces a bitflip be-
yond the boundaries of virtual machines (VMs) to compromise
a VM from another, and some software-based techniques have
been proposed to mitigate this attack. Evaluating these mitiga-
tion techniques requires to confirm that they actually mitigate
inter-VM RowHammer in low overhead. A challenge in this
evaluation process is that both the mitigation ability and the
overhead depend on the underlying hardware whose DRAM ad-
dress mappings are different from machine to machine. This
makes comprehensive evaluation prohibitively costly or even
implausible as no machine that has a specific DRAM address
mapping might be available. To tackle this challenge, we pro-
pose a simulation-based framework to evaluate software-based
inter-VM RowHammer mitigation techniques across configurable
DRAM address mappings. We demonstrate how to reproduce
existing mitigation techniques on our framework, and show that
it can evaluate the mitigation abilities and performance overhead
of them with configurable DRAM address mappings.

1. Introduction

Inter-VM RowHammer attack is a serious concern in multi-
tenant cloud environments. In this attack, an attacker trig-
gers RowHammer [1] from their VM to compromise the VMs
of other tenants or even the hypervisor. It poses a signifi-
cant threat to hypervisor-based isolation, which is often the
strongest security measure employed in cloud environments.

Two software-based inter-VM RowHammer mitigation tech-
niques have been proposed: Siloz [2] and Citadel [3]. Siloz
leverages the observation that the RowHammer effect is con-
fined to DRAM subarrays and isolates VMs by allocating their
memory to different subarrays. Citadel inserts unused DRAM
rows, named guard rows, as buffers between the memory re-
gions allocated to different VMs.

Evaluating software-based inter-VM RowHammer mitiga-
tion techniques typically focuses on two key aspects: security
and performance overhead. Security involves conducting a
RowHammer attack within a VM to verify that the mitiga-
tion technique successfully prevents it from affecting other
VMs or the hypervisor. Performance overhead is quantified by
measuring application execution time and effective memory
bandwidth within the VMs under the mitigation technique.

A challenge in these evaluation methodologies is that they
require a comprehensive understanding of the DRAM address
mapping of the machines used. This is because the DRAM
address mapping affects the mitigation ability and the perfor-
mance overhead of software-based mitigation techniques. The
challenge is significant because DRAM address mappings vary

widely across different CPU models and machine configura-
tions, and even worse, no machine currently available may
have a specific DRAM address mapping.

To overcome this challenge, employing a simulator is a vi-
able approach. Simulators can potentially model various hard-
ware configurations and DRAM address mappings, enabling
broader evaluation. However, the issue here is that existing
simulators [4-6] focus on the hardware side of memory sys-
tems. Therefore, these simulators cannot straightforwardly
reproduce inter-VM RowHammer (e.g., they cannot run VMs
as-is) or its mitigation techniques.

In this paper, we propose a simulation framework to eval-
uate inter-VM RowHammer mitigation techniques across di-
verse DRAM address mappings. This is achieved by a whole-
system simulation including a hypervisor with configurable
DRAM address mappings and an interface to reproduce inter-
VM RowHammer mitigation techniques. bh. Our case study
demonstrates that the framework can reproduce two existing
inter-VM RowHammer mitigation techniques and evaluate
their mitigation effectiveness and performance overhead on
various DRAM address mappings.

2. Background

2.1. DRAM Internals

The physical organization of DRAM is hierarchical. This hi-
erarchy consists of channels, ranks, banks, subarrays, rows,
and columns. Channels are at the top level and each channel
is connected to one or more ranks. A rank can be divided into
banks, which are logically independent arrays of memory cells.
Memory requests (reads/writes) can be executed concurrently
in different banks, giving parallelism to the upper layer. A
bank itself is partitioned into smaller units called subarrays.
Each subarray contains a two-dimensional array of memory
cells, structured as rows and columns.

A DRAM address mapping translates a physical address to
the corresponding DRAM coordinates (e.g., channel, rank, bank,
subarray, row, and column). For example, a simple address
mapping would be to determine the channel using the most
significant bits of a physical address, and then determine the
rank by the subsequent bits, etc.

2.2. Inter-VM RowHammer Attacks

RowHammer [1] is an attack that exploits disturbance errors
in DRAM. An attacker can frequently access the same DRAM
row to induce bitflips in physically adjacent rows, which can
be allocated to a different user. The row that is frequently
accessed by the attacker is called the aggressor row and the

https://arxiv.org/abs/2506.07190v1

I yr——r

. Subarray 0
Unused memory region

VM 0 memory region l:l
VM 1 memory region l:l

& L
! rm======sd-========y
Bank 0 i Bank1 " ! Subarray 1
e “mitigations & | i
P __Subarray 0 Subarray 0 ons o ! il
— e 7> 'L J

o
RowHammer 9

poialll 7 citadel

'
'
'
'
'

’

i
i
i
occur H Bank0 ! Bank 1
e _ Bank0 ! Bank1
~X 1 Subarray 0 : Subarray 0
| : 0| [guardrow | [i[" T guard row |("Guard row

i L 4L
' N O N
i & !

= ~ N . | [aggressorrow|| " itflips

guard row |

Figure 1: Existing Inter-VM RowHammer Mitigation Tech-
niques

adjacent rows are called the victim rows. It is well known
that a single bitflip can cause OS-level privilege escalation and
other serious threats [7-10].

A major category of RowHammer-related attacks is inter-
VM RowHammer. In this attack, an attacker induces bitflips
across VM boundaries to compromise other VMs or the hy-
pervisor itself [11-13]. Inter-VM RowHammer poses a serious
threat as it breaks VM boundaries which are often the strongest
security measures employed by cloud providers.

2.3. Inter-VM RowHammer Mitigation Techniques

To prevent inter-VM RowHammer, two software-based mitiga-
tion techniques have been proposed. Fig. 1 shows how these
techniques prevent inter-VM RowHammer.

Siloz [2] leverages the fact that the RowHammer effect is
confined to DRAM subarrays. A subarray group is a set of
subarrays with the same subarray index across different banks.
Siloz isolates VM memory regions by allocating them to distinct
subarray groups. The memory region allocated to a VM is
static and contiguous in the host physical address space for
performance reasons (Section 5.4 in [2]).

Citadel [3] employs guard rows that are unused DRAM
rows inserted between the memory regions allocated to differ-
ent VMs and between VMs and the hypervisor. These guard
rows absorb inter-VM RowHammer-induced bitflips. Citadel
defines a global row as a set of DRAM rows sharing the same
row index across all banks and allocates a set of contiguous
global rows to a VM. A memory region allocated to a VM is
not necessarily contiguous in the host physical address space
due to the DRAM address mapping.

2.4. Challenge in Evaluating Software-based Inter-
VM RowHammer Mitigation Techniques

RowHammer mitigation techniques in general are evaluated
in two aspects. First, we must ensure that they successfully
prevent RowHammer attacks in various environments. Second,
we need to quantify the performance overhead to the user-
visible system (i.e., the VMs in the inter-VM RowHammer
context) incurred by the mitigation technique.

Evaluating inter-VM RowHammer mitigation techniques
must account for the DRAM address mapping of the under-
lying hardware. This is because they often impose strict con-

TN — N . ~
/ 3) Hypervisor ,/ 1) Architecture Simulator N
P — (Bac) S eems
4) Guest OS — (applied Ha/mmulator patch)\i
N ” o
RowHammer | 7| VCPU <> 5 Core [« o 2
5 <
Program S 5| &
P — = o 8 o
Y SN = S g % €
Guest 0OS - | 8 2]
. B E || core e | 8| 2| <§(
£ | E S| 2|3 =
l>{| VCPU <> & | & - s 5 2 x
o | T [£
N J @ 2 2 < n
§ & T <) 5]
\ / g |c o | E
> 2 Core <> > & || E
s |z S| a £
el — §& 3
s = 2N e)
~ 7] N\ - j/')

A 4 N B e

Figure 2: Overview of Our Inter-VM RowHammer Simulation
Framework

straints on the physical placement of VM memory regions
inside DRAM chips (e.g., Siloz contains a VM in a physical
subarray group). This means that evaluating their mitigation
ability is irrelevant without knowing the DRAM address map-
ping. In addition, such placement requirements can limit the
bank-level parallelism or degrade the rowbuffer hit rate. These
could result in lower VM performance compared to a case
where VM memory regions can be freely distributed across a
DRAM chip for the best performance.

Although important, evaluation with DRAM address map-
pings taken into account is challenging. First, it is known
that DRAM address mappings vary considerably across CPU
models and machine configurations [14-16]. This means that
no representative mapping exists and the evaluation must rely
on a diverse set of hardware. Second, it is possible that no
machine currently available in the world has a specific DRAM
address mapping. In this case, evaluation with this DRAM
address mapping on real hardware is merely impossible. Note
that it does not mean that this evaluation is meaningless be-
cause a machine in the near future could have that particular
DRAM address mapping.

3. Proposed Framework

3.1. Overview

We propose a simulation framework that enables evaluating
inter-VM RowHammer mitigation techniques under config-
urable DRAM address mappings. The key idea is to run a
hypervisor on an architecture simulator and reproduce inter-

VM RowHammer mitigation techniques inside it to avoid the

need for reverse engineering DRAM address mappings. Fig. 2

shows an overview of our framework. It has four key compo-

nents described below:

1. An architecture simulator that simulates a CPU and DRAM.
It is also capable of simulating RowHammer attacks by
considering the frequency of accesses to a particular DRAM
row.

2. A DRAM address mapping function that is configurable by
the user. It supports not only simple mappings but also
more sophisticated ones with XOR operations.

3. A lightweight hypervisor running on the architecture sim-
ulator. It provides an interface to configure its memory

management component so that the user can reproduce
inter-VM RowHammer mitigation techniques.

4. Guest VMs running on the hypervisor. The user can execute
an attacker program inducing an inter-VM RowHammer
attack in a VM and observe if the mitigation technique under
evaluation can prevent it.

Our framework enables the evaluation of software-based
inter-VM mitigation techniques through four steps:

1. Define DRAM address mapping: The user specifies a
DRAM address mapping that maps host physical addresses
to DRAM coordinates. This step allows reproducing realistic
or hypothetical mappings.

2. Reproduce inter-VM RowHammer mitigation tech-
niques: The user reproduces inter-VM RowHammer mit-
igation techniques by using the interface provided by the
memory management mechanism of the hypervisor.

3. Induce inter-VM RowHammer: The user executes a pro-
gram that conducts a RowHammer attack within one VM.
We refer to this program as an attacker program. Our frame-
work allows the attacker program to precisely access a par-
ticular DRAM row that is adjacent to the memory region
of the target VM. This is made possible by the fact that the
DRAM address mapping is known and that our hypervi-
sor adopts a straight mapping from guest physical to host
physical addresses. Due to the latter, we simply call both
addresses as physical addresses (PAs) throughout this pa-
per. The framework reports the locations (PAs and DRAM
coordinates) of bitflips induced by RowHammer.

4. Evaluate inter-VM RowHammer mitigation tech-
niques: The user evaluates inter-VM RowHammer mit-
igation techniques using the reports on bitflip locations
generated by our framework and the stats on performance
by the underlying architecture simulator.

3.2. Define DRAM Address Mapping

Our framework provides an interface for the user to define a
DRAM address mapping based on various translation functions.
These translation functions range from simple contiguous bit
selections to complex mappings involving non-contiguous bits
and XOR operations. This capability is important because
many platforms have DRAM address mappings with such com-
plexities [14-16]. The user can specify which PA bits (or XOR
of them) represent a particular DRAM coordinate (e.g., banks)
through the interface.

Our interface validates a given DRAM address mapping.
This validation ensures that a unique bidirectional conversion
exists between the PAs and the DRAM coordinates (i.e., for
any PA A, there exists one and only one DRAM coordinate C
that is mapped from A by the given DRAM address mapping,
and vice versa). The framework employs Gaussian elimination
for validation and reports an error if it fails.

3.3. Reproduce Inter-VM RowHammer Mitigation
Techniques

To reproduce inter-VM RowHammer mitigation techniques,
we use a hypervisor that satisfies the following conditions:

1. It can run multiple VMs on top of it so that both attacker
and victim VMs can be simulated simultaneously.

2. It uses a simple memory management mechanism that is
static and straight to facilitate easy reproduction of mitiga-
tion techniques.

Here, static means that the memory region for a given VM is

allocated at once in its boot-time, and straight means the guest

physical addresses are the same as the host physical addresses.
Our framework provides an interface to specify the start-

ing PA and the size of the memory region allocated to a VM.

The user can also create unused regions with this interface.

The interface only supports assigning a single contiguous PA

range to a VM. This is enough for reproducing Siloz because it

assumes the same limitation as described in Section 2.3. For

Citadel, it can only reproduce scenarios where the allocated

memory region to a single VM is contiguous in terms of DRAM

rows within all given channels, ranks, and banks.

3.4. Induce Inter-VM RowHammer Bitflips

To induce inter-VM RowHammer within our framework, the

user performs the following actions:

1. The user launches two VMs whose assigned rows are adja-
cent to each other. To do this, the user considers the DRAM
address mapping they define to allocate memory regions
with proper PAs.

2. The user identifies an aggressor row and calculates its PA.
An aggressor row must reside in the memory region of the
attacker VM and be adjacent to another DRAM row in the
memory region of the victim VM.

3. The user repeatedly accesses the identified PA from the
attacker VM. We explain how we can access a particular PA
from the userspace on Linux in Section 4.2.

3.5. Implementation Details

For the architecture simulator, we adopt gem5 [17] and DRAM-
Sim3 [18] with the Hammulator [4] patches applied. We extend
them so that they support complex DRAM address mappings
with XORed address bits and the interface for the user to specify
mappings. While other simulators such as Ramulator [6] sup-
port such address mappings, we chose to extend DRAMsim3 to
leverage Hammulator’s open-source RowHammer simulation
logic. This approach allowed us to focus our efforts on the
core aspects of our framework rather than re-implementing
fundamental capabilities. We also modify DRAMSim3 to simu-
late subarray-level isolation; accessing a row in a subarray in
our modified version does not affect rows in other subarrays.
We use the full-system mode of gem5 with an O3 (Out-Of-
Order) CPU and the ARM ISA. ARM is the only ISA in gem5
that implements hypervisor-related instructions'. The use of
a specific ISA does not hurt the generality of our framework
because its design is ISA-independent.

For the hypervisor, we extend Bao [19] because (1) it satisfies
the required conditions in Section 3.3 and (2) it runs on ARM

1A series of patches that implement the RISC-V Hypervisor extension was
merged to gem5 after the acceptance of this paper. https://github.com/
gem5/gem5/pull/1387

https://github.com/gem5/gem5/pull/1387
https://github.com/gem5/gem5/pull/1387

Table 1: Evaluation Environment and Parameters

Configurations
version 24.1.0.0
CPU: 3 cores 000 (Out of Order)
Cache Model: TwoLevelCacheHierarchy
DRAM Model: DDR4_4Gb_x8_2400
RowBufferPolicy: OpenPage
1 Channel, 1 Rank, 4 BankGroup,
2 Bank, 65536 rows, and 8192 columns,
128 subarray groups (512 rows each)
HC_first: 50K
Linux v6.1.0
Bao demo
U-Boot 2022.10
ARM Trusted Firmware-A v2.9.0

gem>

DRAMsim3

Hammulator

Software Stack

Fixed Virtual Platform [20] that gem5 can readily simulate. We
modify Bao so it receives the configuration on VM memory
regions from our framework. We use Trusted Firmware-A [21]
and U-Boot [22] to boot Bao on gemb5.

4. Case Study

As a case study of our framework, we reproduce existing
software-based inter-VM RowHammer mitigation techniques
and evaluate them. The case study focuses on three aspects:

« Functionality: We confirm that our framework can reliably

induce inter-VM RowHammer.

Security: We show that the mitigation techniques can pre-

vent inter-VM RowHammer in our tested cases.

« Performance overhead: We measure the VM performance
under the mitigation techniques and compare it against the
vanilla case with no mitigation applied.

The parameters for our simulation environment are summa-
rized in Table 1. We configure our framework to simulate an
out-of-order CPU with three cores and 4 GiB of DRAM. This
DRAM has 1 channel, 1 rank, 4 bank groups, 2 banks, 65536
rows, and 8192 columns. The rows are further divided into
128 subarray groups (512 rows each) internally. We set the
HC_first parameter of Hammulator to 50K, which means that
a bitflip is probabilistically induced after 50,000 activations
within a single refresh interval.

Each VM is given a contiguous memory region of 512 MiB.
The host machine is equipped with an Intel Core i5-12600KF
with 64 GiB of memory and runs Ubuntu 22.04 LTS.

4.1. Reproducing Mitigation Techniques

To reproduce Siloz, we calculate PA ranges that are contained
in different subarray groups by considering the DRAM address
mapping specified. We choose two contiguous PA ranges from
them and assign them to the two VMs using the interface in
our framework. This ensures that the memory region of each
VM is contained in a subarray group.

To reproduce Citadel, we calculate PA ranges that corre-
spond to global rows by considering the DRAM address map-
ping specified. We use the interface in our framework to specify
a PA range among them as an unused region. The VMs are

Table 2: Wall-clock Time (in seconds, measured in the host)
until the first bitflip is observed.

Wall-clock time (sec)
From boot 4277
From checkpoint | 123

assigned PA ranges that sandwich this unused region in the
DRAM row space. Note that this method does not reproduce
all possible cases in Citadel because our current framework
can only assign a contiguous PA range to a VM.

4.2. Setups

We describe the experimental setups for defining DRAM ad-
dress mappings and inducing inter-VM RowHammer (i.e., eval-
uation steps 1 and 3 in Section 3.1).

Define DRAM Address Mappings: We use three repre-
sentative DRAM address mappings from common categories
analyzed in prior work [14]. A mapping is defined as a set
of PA bits (x;) to index DRAM coordinates. Below, f,, repre-
sents the index for foo. For example, franx = ¢ means that an
access is served by bank b € {0, 1} if the least significant bit
of the address is b. For all mappings, fcolumn and fpankgroup are
fixed to 120 and x14,13, respectively. There are no indices
for channels and ranks because our DRAM only has one each.
The other indices are defined as follows.

« Simple mapping: This baseline configuration uses contigu-
ous PA bit fields: fpank = 731 and frow = T30..15

« Bank XOR mapping: This mapping introduces XOR for
bank indexing while keeping row indexing contiguous:
Joank = T31 ® 26 and frow = T30..15.

« Bank XOR and non-contiguous row mapping: This
complex mapping uses XOR for bank indexing and non-
contiguous bits for row indexing: fuue = 221 @ xg and
frow = 31..22,20..15. It is named non-contiguous row map-
ping because xo1 is missing in frow-

Inducing Inter-VM RowHammer: The attacker VM and
the attacker program running on it are configured as follows.
We assume that the attacker knows the DRAM address map-
ping and which PA corresponds to rows adjacent to the victim
VM. The attacker VM runs Linux kernel 6.1.0 compiled with
the CONFIG_STRICT_DEVMEM option disabled. This allows user-
space applications within the attacker VM to access any PA
via /dev/mem. The attacker program utilizes it and the cache
flush instruction (dc civac) to repeatedly access the PA corre-
sponding to an aggressor row adjacent to the memory region
of the victim VM. The hypervisor passes through this instruc-
tion to the underlying simulated hardware. Although we use
Linux for easy setup, the user of our framework can choose
any method that runs as a guest OS (e.g., writing their own
bare-metal program that induces RowHammer).

4.3. Procedures and Results

4.3.1. Functionality. To verify the framework’s ability to
induce inter-VM RowHammer, we execute the attacker pro-
gram within a VM (attacker VM). A checker program running
in the other VM (victim VM) periodically reads data from a
PA in its own memory region that is adjacent to the aggressor

Table 3: Security evaluation across different DRAM address

mappings. The symbol v/indicates that inter-VM RowHammer
was mitigated.

Simple | XOR | XOR and Non-Contiguous Row

Siloz v v v

Citadel v v v

row. Inter-VM RowHammer is considered successful when the
checker program detects changes in the read data.

The result of this experiment is twofold. First, we confirmed
that a bitflip was observed in the victim VM in all the ad-
dress mappings. This means that our framework can simulate
inter-VM RowHammer scenarios in various DRAM address
mappings. Note that the bitflips are not caused by any bugs
because they occurred in and only in the rows adjacent to the
ones we hammer. Second, we measured the wall-clock time (in
the host) that it tool to observe the first bitflip, shown in Table 2.
We tested with the XOR address mapping as a representative
case. The label “from boot” indicates that the simulation was
executed from the beginning, while “from checkpoint” indi-
cates that it was executed from a checkpoint where the VMs
have finished their boot processes. In the former case, observ-
ing the first bitflip took approximately 1.16 hours, while it only
took around 2 minutes in the latter. Due to this large speedup,
we use the same methodology (starting a simulation from a
checkpoint) in the subsequent experiments.

4.3.2. Security. To evaluate Siloz and Citadel in our frame-
work, we first change the memory allocation of the two VMs in
accordance with the allocation policy of each mitigation tech-
nique (e.g., assigning different subarray groups to them). After
that, we launch the VMs normally and try to induce inter-VM
RowHammer as we do in the functionality experiment.

Table 3 shows the results. We observed that both Siloz
and Citadel mitigated inter-VM RowHammer in any DRAM
address mapping tested. In the Siloz cases, we confirmed that
bitflips occurred within the subarrays assigned to the attacker
VM. In the Citadel cases, we detected bitflips within the guard
rows inserted between the VMs. It is important to note that
we only claim that these mitigation techniques prevent inter-
VM RowHammer in our tested configurations (e.g., address
mappings, VM region sizes). Our framework makes it possible
to conduct this kind of evaluation on various configurations.

4.3.3. Performance overhead. To quantify the performance
overhead, we measure the elapsed times of (1) the boot process
of the VMs, and (2) a matrix-vector multiplication program
executed on the VMs. The elapsed times are measured in the
unit of simulated seconds and acquired from the stat file of
gemb. The measurement of the VM boot process starts when
the hypervisor has finished its initialization and jumps to the
bootloader of the first VM (out of the two), and finishes when
both VMs have done booting Linux. The measurement for
the matrix-vector multiplication does not include the VM boot
time.

Fig. 3 (a) and Fig. 3 (b) show the results for the boot time and
matrix-vector multiplication, respectively. The bars labeled as

(a) VM Boot Time

(b) Matrix-vector multiplication

0.0
Simple XOR XOR & Non-Cont.
DRAM address mappings

Simple XOR XOR & Non-Cont.
DRAM address mappings

inter-VM RowHammer mitigation techniques
N None Siloz B Citadel

Figure 3: (a) VM boot time and (b) Execution time of matrix-
vector multiplication (matrix size: 256 MiB)

“None” are the results when no mitigation technique is applied.
Three observations are made from the results. First, the results
differed in VM boot time but did not in matrix-vector mul-
tiplication. Second, the XOR-based mappings yielded faster
boot times compared to Simple. Third, Siloz was slightly faster
than None in VM boot time while Citadel was slower. We hy-
pothesize that these observations stem from different DRAM
performance due to different data addresses. The Linux kernel
is placed statically by the boatloader, thus its alignment is af-
fected by the starting address of the VM memory region, which
in turn is affected by the mitigation technique (e.g., guard rows
in Citadel). On the other hand, the addresses of the matrix
and the vector are decided by libc (we use new). This could
conceal the different alignments of the starting addresses of
the VM memory regions. Although we do not further analyze
the phenomena in this paper, the important point is that our
framework enables this kind of analyses through simulation
on various DRAM address mappings.

5. Discussion

5.1. Related Work

DRAM address mappings can be configured to some extent in
limited hardware [23] and prior work utilizes this functionality
by writing a designated UEFI shell scripts [24]. However, this
method only provides an interface to toggle channel and bank
interleaving, but not to define an arbitrary address mapping
unlike our framework provides.

Existing simulators such as Hammulator [4] and Hemmer-
sim [5] can model RowHammer effects inside DRAM. They
could be more useful than our framework to evaluate hardware-
based mitigation techniques such as MINT [25]. However,
they cannot directly reproduce software-based mitigation tech-
niques as they only model the hardware side.

There are several studies on running hypervisors on micro-
architecture simulators [26,27]. Peter et al. [26] achieved full-
system RISC-V simulation in gem5. They demonstrated Linux
booting on a hypervisor in the M-mode defined in RISC-V.
George-Marios et al. [27] implemented the RISC-V hardware-
assisted virtualization extensions in gem5.

5.2. Internal DRAM Behaviors

Another hurdle of RowHammer attacks besides DRAM ad-
dress mappings for both attackers and defenders is the internal
behaviors of DRAM chips. They include the row coupling

effect [28] and internal address mappings [29]. For example,
rows specified by the memory controller can be remapped
internally in the DRAP chip to avoid faulty rows.

Considering internal DRAM behaviors is the responsibility
of DRAM simulators (e.g., DRAMSim3) and the user of our
framework, but not the framework itself. Once a DRAM simu-
lator supports simulating these behaviors, our framework can
be extended accordingly so that the user can specify them from
our framework to the underlying simulator.

5.3. Limitations

RowHammer between VM and Hypervisor: Siloz and
Citadel consider RowHammer-induced bitflips targeting the
hypervisor. In this paper, we focus specifically on inter-VM
RowHammer. Extending our framework to address attacks
targeting the hypervisor is left for future work.

Inter-VM RowHammer via SLAT: Hardware virtualiza-
tion support typically includes second-level address translation
(SLAT). SLAT translates guest physical addresses (GPAs) to
host physical addresses (HPAs). Bitflips induced by RowHam-
mer within these structures could corrupt this mapping. This
corruption allows a VM to access arbitrary HPAs and com-
promise isolation between VMs [13]. Our current framework
employs a straight GPA-to-HPA mapping that makes complex
SLAT lookups unnecessary and thus not performed. Therefore,
attacks targeting SLAT mechanisms currently lie outside the
scope of our evaluation.

Non-Contiguous Physical Address Allocation: Our
framework currently only supports allocating a single con-
tiguous host PA range per VM. This forbids our framework
from reproducing some defense scenarios in Citadel. To sup-
port non-contiguous host PA ranges, we need to extend Bao
(or use other hypervisor) so that the SLAT is fully configured
to support GPA-to-HPA mappings other than straight.

6. Conclusion

This paper proposed a simulation-based framework to evaluate
inter-VM RowHammer mitigation techniques under various
DRAM address mappings. By reproducing mitigation tech-
niques in a lightweight hypervisor on top of an architecture
simulator, we enable security and performance evaluation of
them without intense reverse-engineering to acquire address
mappings from real hardware. Our case study showed that it
can simulate inter-VM RowHammer as well as enable evalua-
tion of two existing inter-VM mitigation techniques.

Acknowledgements

This work was supported by JST, PRESTO Grant Number JP-
MJPR22P1, Japan. We thank the anonymous reviewers for their
valuable feedback to improve this paper.

References

[1] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson, K. Lai, and O. Mutlu,
“Flipping bits in memory without accessing them: An experimental study of DRAM
disturbance errors,” in International Symposium on Computer Architecture (ISCA),
2014, pp. 361-372.

[2] K. Loughlin, J. Rosenblum, S. Saroiu, A. Wolman, D. Skarlatos, and B. Kasikei,
“Siloz: Leveraging DRAM isolation domains to prevent inter-vim rowhammer,” in
Symposium on Operating Systems Principles (SOSP), 2023, p. 417-433.

[3] A. Saxena, W. Wang, and A. Daglis, “Preventing rowhammer exploits via low-cost
domain-aware memory allocation,” in arXiv:2409.15463, 2024, pp. 1 - 18.

[4] F. Thomas, L. Gerlach, and M. Schwarz, “Hammulator: Simulate now — exploit later,”
in Third Workshop on DRAM Security (DRAMSec), 2023, pp. 1-7.

[5] K. Goswami, A. Akram, H. Venugopalan, and J. Lowe-Power, “Hammersim: A tool
to model rowhammer,” in Young Architect Workshop (YArch), 2023.

[6] H.Luo, Y. C. Tugrul, F. N. Bostanci, A. Olgun, A. G. Yaglikei, and O. Mutlu, “Ramulator
2.0: A Modern, Modular, and Extensible DRAM Simulator,” in arXiv:2308.11030, 2023,
pp-1-4.

[7] M. Seaborn and T. Dullien, “Exploiting the DRAM rowhammer bug to
gain kernel privileges” https://googleprojectzero.blogspot.com/2015/03/
exploiting-dram-rowhammer-bug-to-gain.html, 2015.

[8] Z.Zhang, Y. Cheng, D. Liu, S. Nepal, Z. Wang, and Y. Yarom, “Pthammer: Cross-user-
kernel-boundary rowhammer through implicit accesses,” in International Symposium
on Microarchitecture (MICRO), 2020, pp. 28—41.

[9] A. Kwong, D. Genkin, D. Gruss, and Y. Yarom, “RAMBleed: Reading bits in memory
without accessing them,” in IEEE Symposium on Security and Privacy (S&P), 2020, pp.
695-711.

[10] K. Yoshioka and S. Akiyama, “GbHammer: Malicious inter-process page sharing by
hammering global bits in page table entries,” in Fourth Workshop on DRAM Security
(DRAMSec), 2024, pp. 1 - 7.

[11] Y. Xiao, X. Zhang, Y. Zhang, and R. Teodorescu, “One bit flips, one cloud flops: Cross-
VM row hammer attacks and privilege escalation,” in USENIX Security Symposium,
2016, pp. 19-35.

[12] K. Razavi, B. Gras, E. Bosman, B. Preneel, C. Giuffrida, and H. Bos, “Flip Feng Shui:
hammering a needle in the software stack,” in USENIX Security Symposium, 2016, pp.
1-18.

[13] W. Chen, Z. Zhang, X. Zhang, Q. Shen, Y. Yarom, D. Genkin, C. Yan, and Z. Wang,
“HyperHammer: Breaking free from kvm-enforced isolation,” in International Con-
ference on Architectural Support for Programming Languages and Operating Systems
(ASPLOS), 2025, pp. 545-559.

[14] P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and S. Mangard, “DRAMA: Exploiting
DRAM addressing for Cross-CPU attacks,” in USENIX Security Symposium, 2016, pp.
565-581.

[15] C. Helm, S. Akiyama, and K. Taura, “Reliable reverse engineering of intel DRAM
addressing using performance counters,” in International Symposium on Modeling,
Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS),
2020, pp. 1-8.

[16] L. Gerlach, S. Schwarz, N. Farof, and M. Schwarz, “Efficient and generic microarchi-
tectural hash-function recovery,” in IEEE Symposium on Security and Privacy (S&P),
2024, pp. 3661-3678.

[17] gem5, “The gem5 simulator,” https://www.gem5.org/, 2024.

[18] S.Li, Z. Yang, D. Reddy, A. Srivastava, and B. Jacob, “DRAMsim3: A cycle-accurate,
thermal-capable DRAM simulator,” IEEE Computer Architecture Letters, vol. 19, no. 2,
pp. 106-109, 2020.

[19] J. Martins, A. Tavares, M. Solieri, M. Bertogna, and S. Pinto, “Bao: A lightweight static
partitioning hypervisor for modern multi-core embedded systems,” in Workshop on
Next Generation Real-Time Embedded Systems (NG-RES), 2020, pp. 3:1-3:14.

[20] arm, “Fixed virtual platforms (fvp),” https://learn.arm.com/install-guides/fm_fvp/
fvp/, 2025.

[21] linaro, “TrustedFirmware,” https://www.trustedfirmware.org/, 2025.

[22] The U-Boot development community, “The U-Boot documentation,” https://docs.
u-boot.org/en/latest/, 2025.

[23] AMD, “BIOS and Kernel Developer’s Guide (BKDG) for AMD Family 15h Models
30h-3Fh Processors,” https://www.amd.com/content/dam/amd/en/documents/
archived-tech-docs/programmer-references/49125_15h_Models_30h-3Fh_BKDG.
pdf, 2015.

[24] M. Hillenbrand, M. Gottschlag, J. Kehne, and F. Bellosa, “Multiple physical mappings:
Dynamic DRAM channel sharing and partitioning,” in Asia-Pacific Workshop on
Systems (APsys), 2017, pp. 1 - 9.

[25] M. Qureshi, S. Qazi, and A. Jaleel, “MINT: Securely mitigating rowhammer with
a minimalist in-DRAM tracker,” in International Symposium on Microarchitecture
(MICRO), 2024, pp. 899-914.

[26] Y. H. H. Peter, L. Xiongfei, C. Jin, M. Andrea, M. S. Thannirmalai, and Z. Naxin,
“Supporting RISC-V full system simulation in gem5,” in Proceedings of Computer
Architecture Research with RISC-V, 2021.

[27] G.-M. Fragkoulis, N. Karystinos, G. Papadimitriou, and D. Gizopoulos, “Advanc-
ing cloud computing capabilities on gem5 by implementing the risc-v hypervisor
extension,” in Proceedings of Computer Architecture Research with RISC-V, 2024.

[28] H. Nam, S. Baek, M. Wi, M. J. Kim, J. Park, C. Song, N. S. Kim, and]J. H. Ahn,
“DRAMScope: Uncovering dram microarchitecture and characteristics by issuing
memory commands,” in International Symposium on Computer Architecture (ISCA),
2024, pp. 1097-1111.

[29] C.-S. Hou, Y.-X. Chen, J.-F. Li, C.-Y. Lo, D.-M. Kwai, and Y.-F. Chou, “A built-in self-
repair scheme for drams with spare rows, columns, and bits,” in IEEE International
Test Conference (ITC), 2016, pp. 1-7.

https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://www.gem5.org/
https://learn.arm.com/install-guides/fm_fvp/fvp/
https://learn.arm.com/install-guides/fm_fvp/fvp/
https://www.trustedfirmware.org/
https://docs.u-boot.org/en/latest/
https://docs.u-boot.org/en/latest/
https://www.amd.com/content/dam/amd/en/documents/archived-tech-docs/programmer-references/49125_15h_Models_30h-3Fh_BKDG.pdf
https://www.amd.com/content/dam/amd/en/documents/archived-tech-docs/programmer-references/49125_15h_Models_30h-3Fh_BKDG.pdf
https://www.amd.com/content/dam/amd/en/documents/archived-tech-docs/programmer-references/49125_15h_Models_30h-3Fh_BKDG.pdf

	Introduction
	Background
	DRAM Internals
	Inter-VM RowHammer Attacks
	Inter-VM RowHammer Mitigation Techniques
	Challenge in Evaluating Software-based Inter-VM RowHammer Mitigation Techniques

	Proposed Framework
	Overview
	Define DRAM Address Mapping
	Reproduce Inter-VM RowHammer Mitigation Techniques
	Induce Inter-VM RowHammer Bitflips
	Implementation Details

	Case Study
	Reproducing Mitigation Techniques
	Setups
	Procedures and Results
	Functionality
	Security
	Performance overhead

	Discussion
	Related Work
	Internal DRAM Behaviors
	Limitations

	Conclusion

