
ar
X

iv
:2

50
6.

07
15

3v
1 

 [
cs

.C
R

] 
 8

 J
un

 2
02

5

Mind the Web: The Security of Web Use Agents

Avishag Shapira*, Parth Atulbhai Gandhi, Edan Habler, Oleg Brodt, Asaf Shabtai
Ben-Gurion University of the Negev, Israel

{shavish, gandhip, Habler}@post.bgu.ac.il, {bolegb, shabtaia}@bgu.ac.il

Abstract—Web-use agents are rapidly being deployed to au-
tomate complex web tasks, from research and shopping to
form completion and content analysis, operating with ex-
tensive browser capabilities including multi-tab navigation,
DOM manipulation, JavaScript execution and authenticated
session access. However, these powerful capabilities create a
critical and previously unexplored attack surface. This paper
demonstrates how attackers can exploit web-use agents’ high-
privilege capabilities by embedding malicious content in web
pages such as comments, reviews, or advertisements that agents
encounter during legitimate browsing tasks. In addition, we
introduce the task-aligned injection technique that frame ma-
licious commands as helpful task guidance rather than obvious
attacks. This technique exploiting fundamental limitations in
LLMs’ contextual reasoning: agents struggle in maintaining co-
herent contextual awareness and fail to detect when seemingly
helpful web content contains steering attempts that deviate
from their original task goal. Through systematic evaluation
of four popular agents (OpenAI Operator, Browser Use, Do
Browser, OpenOperator), we demonstrate nine payload types
that compromise confidentiality, integrity, and availability, in-
cluding unauthorized camera activation, user impersonation,
local file exfiltration, password leakage, and denial of service,
with validation across multiple LLMs achieving success rates
of 80%-100%. These payloads succeed across agents with
built-in safety mechanisms, requiring only the ability to post
content on public websites, creating unprecedented risks given
the ease of exploitation combined with agents’ high-privilege
access. To address this attack, we propose comprehensive mit-
igation strategies including oversight mechanisms, execution
constraints, and task-aware reasoning techniques, providing
practical directions for secure development and deployment.

Index Terms—Web-use agents, browser automation, prompt
injection, web security, LLM.

1. Introduction

Web-use agents represent a rapidly growing category of
AI agents that automate complex browser tasks through nat-
ural language instructions. These agents can autonomously
navigate websites, complete forms, make purchases, and per-
form multi-step workflows across arbitrary web interfaces on
*Corresponding author: shavish@post.bgu.ac.il

behalf of users [1], [2]. Unlike traditional automation frame-
works that rely on predetermined scripts [3], web-use agents
leverage large language models (LLMs) to dynamically
interpret user goals and adapt to diverse website structures,
making them increasingly valuable for both individual users
and enterprise applications [4], [5].

Web-use agents perform user-defined tasks by relying on
a variety of browser capabilities, which may include: nav-
igating websites, interacting with web elements, executing
JavaScript, submitting forms, and accessing authenticated
sessions and the local file system [1], [2], [6]–[8]. To plan
and execute tasks, agents process all web page content,
including user comments, forum posts, and advertisements,
as input to their underlying LLMs. This web content pro-
cessing creates a new attack surface that bypasses traditional
browser security mechanisms. Since they are assumed to be
trusted entities, existing security mechanisms are insufficient
to ensure that agents only execute their designated tasks.
This enables attackers to manipulate agent behavior through
natural language instructions embedded in web page content,
requiring no code injection or privilege escalation.

Security research on web-use agents has focused on
evaluation frameworks [5], [9] and direct attack scenarios
where users provide malicious instructions [10]. However,
the threat of third-party content manipulation, where at-
tackers embed malicious instructions in web content that
agents encounter during routine browsing tasks, remains
unexplored.

In this paper, we demonstrate a new attack vector
that web-use agents are vulnerable to, in which malicious
instructions are embedded directly into web content that
agents encounter during task execution; the proposed attack
vector leverages limitations in LLMs’ contextual reasoning
capabilities, particularly their inability to maintain coherent
contextual awareness and detect when seemingly helpful
content is subtly steering them toward unintended actions.
We introduce an effective task-aligned injection technique
that frames malicious instructions as contextually helpful
task guidance rather than obvious commands.

We systematically evaluate our attack against four pop-
ular web-use agent implementations: Browser Use, Ope-
nAI Operator, OpenOperator and Do Browser, demonstrat-
ing the severe practical impact of our nine distinct pay-
load types that compromise confidentiality, integrity, and
availability. These payloads include unauthorized camera

https://arxiv.org/abs/2506.07153v1


activation, credential extraction, local file system access,
and user impersonation through social media posting. In
our evaluation, they were shown to succeed across agents
with different web-use agent deployment approaches and
underlying LLMs (achieved success rates of 80-100% across
different payloads).

The practical implications of this attack are significant
given the ease of exploitation, i.e., it only requires the ability
to post content on websites that agents may visit during task
execution. As the use of web-use agents for increasingly
sensitive applications grows, the ability for third-parties to
influence agent behavior through simple content manipu-
lation represents a serious security concern that warrants
immediate attention.

To address these security concern, we propose three
types of mitigation strategies: (1) oversight mechanisms that
increase transparency and control, (2) execution constraints
that limit agent capabilities, and (3) task-aware reasoning
techniques that help detect semantic manipulation attempts.
We analyze the fundamental tradeoffs between security and
usability that make effective mitigation particularly chal-
lenging, as stronger protections often reduce the autonomy
and seamless operation that make web-use agents valuable.

Our contributions are as follows:
• We raise critical awareness of a previously unexplored

security vulnerability in web-use agents, demonstrat-
ing how third-party adversaries can easily steer agent
behavior by simply embedding malicious instructions
in web comments, advertisements, or forum posts that
agents encounter as they perform legitimate tasks.

• We conduct a systematic evaluation of our attack
against four popular web-use agent implementations,
demonstrating severe practical impact via nine pay-
load types including unauthorized camera activation,
credential theft, file system access, user impersonation
and denial of service. We validate attack effectiveness
across multiple LLMs with success rates of 80-100%.

• We introduce the task-aligned injection technique,
which is used to craft malicious instructions that appear
as contextually helpful task guidance, and demonstrate
its effectiveness against various web-use agent imple-
mentations, including those with safety mechanisms.

• To address this attack, we propose three types of
mitigation strategies (oversight mechanism, execution
constraints, and task-aware reasoning approaches) and
identify key research directions.

2. Web-Use Agents

Web-use agents are a new class of autonomous AI agents
specifically designed to operate in web browsers [1], [2], [7],
[8]. Their purpose is to carry out complex, goal-directed
tasks on behalf of users, such as searching for information,
booking flights, completing forms, or navigating interactive
websites, with minimal human intervention. These agents
aim to translate high-level goals, both one-time requests
like ”Find a hotel in Paris for next weekend” and recurring
automated tasks such as ”Post daily updates about recent

LLM research developments on my LinkedIn account,” into
real-time actions,through automated browsing, interaction
with forms, and multi-step workflows, across websites.

Web-use agents are characterized by their ability to (1)
reason about both the user’s intent and the structure of the
web interface, and (2) autonomously decide how to proceed.
They rely on LLMs to analyze extracted page content and
generate step-by-step instructions. In each step, the agent
gathers content from the current page and sends it to the
LLM along with the original task. The LLM responds with
an instruction (e.g., ”Click the button labeled ’Continue’”)
which the agent follows. This cycle is repeated as the
agent progresses through the task, adjusting its behavior in
response to page changes or unexpected outcomes.

Unlike traditional automation frameworks such as Se-
lenium or Puppeteer [3], which depend on deterministic
scripts and structured APIs, web-use agents are designed
to operate flexibly and adaptively across diverse websites.
While this flexibility offers significant advantages, it also
introduces new and underexplored risks, which are explored
in this work.

2.1. Web-Use Agent Types
Web-use agents can be implemented in a variety of ways,

depending on how they access the browser environment and
what permissions they are granted. While all such agents
follow the same general interaction loop, perceiving the
page, reasoning via an LLM, and executing actions, the
agent type and deployment determines what data the agent
can access, how isolated it is from the user’s environment,
and what capabilities they possess for task execution.

We identify three types of web-use agents:
Extension-Based Agents [7]. These agents are deployed
as browser extensions and operate within the user’s active
browser instance. They have direct access to the Document
Object Model (DOM), browser tabs, active sessions, and
depending on permissions, the local file system. This archi-
tecture offers the highest level of integration and function-
ality but also inherits the full trust and access privileges of
the browser environment, making it especially sensitive to
attacks that exploit existing sessions or stored credentials.
Local Clean-Browser Agents [1]. These agents launch a
new browser instance locally on the user’s machine. They do
not inherit user’s browser state, cookies, or saved credentials
from the user’s main browser and typically begin in a fresh,
unauthenticated context. However, they can authenticate dur-
ing the user tasks, for example by logging-in manually or
using credentials provided as part of the task. Since they run
on the local machine, they retain access to the file system.
Remote Isolated Agents [2], [8]. These agents operate
inside remote, sandboxed environments. They are isolated
from both the user’s browser and their local machine and
do not have access to previously stored credentials, browser
state, or the local file system. However, depending on the
implementation, some agents (such as OpenAI’s Operator)
may allow the user to enter credentials or context during a
session, and preserve that information across sessions. We
refer to this variant as a semi-stateful remote agent.



2.2. Modalities and Capabilities

To interpret and act on web content, web-use agents
rely on different perception modalities. These define how
the agent observes the page and extracts information for
decision-making. The chosen modality directly affects what
the agent can “see,” and consequently, which types of attack
vectors it may be vulnerable to:

DOM Parsing Agents can directly access and interpret
the rendered DOM of a webpage. This permits identification
and interaction with particular HTML components (buttons,
forms, links) and enables precise targeting of structured
elements. However, agents relying only on the DOM, may
fail to understand content rendered visually, such as loaded
images or ads leading to incomplete or incorrect interpreta-
tion of the page.

Screenshot Analysis and Optical Character Recognition
(OCR) Agents operate by capturing screenshots of the web-
page. They subsequently employ computer vision tools, like
OCR [11], to interpret text and identify interactive compo-
nents based on their visual characteristics. This simulates
human visual perception and is particularly useful when
dealing with visually rich components.

Hybrid Approaches Agents may integrate the techniques
mentioned above to get enhanced interaction capabilities.
Hybrid methods offer greater flexibility, but also broaden the
attack surface by introducing multiple perception channels.

3. Related Work

3.1. Jailbreaking Techniques for LLMs

The increasing sophistication of LLMs has been ac-
companied by research on their vulnerabilities, commonly
explored using ”jailbreaking” – methods designed to elicit
responses that models are programmed to avoid due to safety
and ethical guidelines [12].

Textual jailbreaks: Text manipulation has been the
main focus of jailbreaking efforts. These methods frequently
entail creating specific input prompts that take advantage
of an LLM’s architecture or how it interprets instructions.
Some techniques concentrate on ”prompt engineering,” in
which users create inputs that instruct the model to pro-
duce content that would otherwise be constrained. This
includes methods like role-playing, where the LLM is in-
structed to act as a character without safety constraints (e.g.,
DAN [13]). Other techniques aim to manipulate and bypass
safeguards by using perturbations such as leetspeak, emojis,
and decoding techniques (e.g., Base64) [14], [15]. Auto-
mated frameworks, like PAIR [14], which leverages several
of these techniques simultaneously, have been developed.

Multimodal jailbreaks: To jailbreak multimodal LLMs
MLLMs), which can interpret data from several modalities
(such as text, images, and audio) researchers have recently
demonstrated the ability to deceive the model by embedding
jailbreaks within the images, using techniques like steganog-
raphy to embed malicious inputs within the image [16]–[18].
Other works focused on creating ”shuffle inconsistency,”

where MLLMs can understand harmful instructions, even
when parts (e.g., image and text components) are shuffled,
yet the authors found that their safety mechanisms are
bypassed by such shuffled inputs, as illustrated by Zaho et
al. [19]. Benchmarks like JailBreakV-28k [20] have been
used to test MLLMs’ robustness against various modalities
and jailbreak techniques.

In our work, we apply both text-based and image-based
prompt injection techniques, depending on the capabilities
of the targeted web-use agent. We also introduce a novel
task-aligned injection technique designed to exploit web-
use agents by masquerading as legitimate contextual content
(e.g. user comments or system notes) that appears to support
the user’s original objective. This method proves highly
effective against agents handling open-ended tasks, where
the LLM autonomously plans its actions, and bypasses built-
in safety mechanisms.

3.2. Assessment of Web-use and PC Usage Agents

The rise of agents that can interact directly with the
user’s PC and web-browser has raised awareness of the
need for comprehensive evaluation examining both agent
capabilities and security robustness against diverse attack
techniques, as these agents operate with significant privi-
leges on behalf of users.

SUDO [9] systematically tests commercial computer-
use agents like Claude Computer Use against various attack
scenarios, highlighting security vulnerabilities in PC-based
agents.

For web-use agents, evaluation has focused primarily
on capability assessment. Existing benchmarks like We-
bArena [5] and TUR[K]INGBENCH [21] have been de-
veloped to assess web agent capabilities and performance.
TUR[K]INGBENCH [21], for instance, assesses interactive
reasoning on web pages using natural HTML pages from
crowdsourcing platforms with multi-modal settings.

While these frameworks provide general methodologies
for the evaluation of web-use agents, security research
specifically targeting web-use agents remains limited.

A recent study by Kumar et al. [10] examined direct
attack scenarios in which agents receive harmful instructions
from the user (direct prompt injections or malicious tasks).
In contrast, our work demonstrates how agents can uninten-
tionally perform unauthorized actions when provided with
benign user instructions but exposed to malicious content
subtly injected into web pages.

4. Threat Model

We assume a remote attacker who cannot directly com-
promise the agent’s code or the user task, but can influence
it through manipulated web content. The adversary cannot
execute arbitrary code or hijack browser sessions but can
inject or modify visible content that the agent processes,
including: a) posting public comments or reviews on legit-
imate websites; b) injecting advertisements or third-party



content via ad networks; or, c) manipulating user-generated
data such as forum posts, emails, or shared documents.

We make the following key assumptions about the en-
vironment and architecture of the web-use agents:
ReAct-style LLM reasoning: The agent uses an LLM to in-
terpret browser content and generate instructions, via ReAct-
based methods [22].
Limited Observability: The attacker cannot observe the
agent’s internal thought process i.e., queries or responses,
but can control portions of external content that the agent
may process as input.
Browser capabilities: The agent is designed to automate
complex browser tasks with extensive permissions, such as
navigating authenticated pages, or submitting forms.
Autonomous Operation: We assume the user delegates tasks
to the agent for autonomous execution without continuous
oversight or manual intervention during task completion.

5. Attack Methodology and Payload Taxonomy

This section presents our systematic attack methodology
against web-use agents. We explain the fundamental attack
principle and four-stage lifecycle (5.1), injection techniques
(5.2), our taxonomy of nine payload types (5.3), evaluated
implementations (5.4), and concrete demonstrations with
practical impact evidence (5.5).

5.1. Attack Principle and Lifecycle

Web-use agents introduce a new attack surface distinct
from traditional web vulnerabilities. Unlike attacks that
exploit code-level flaws (e.g., XSS), our method leverages
the agent’s inherent privileges and its reliance on natural
language reasoning over web content.

Instead of exploiting security flaws to gain access, we
use the agent’s existing capabilities, LLMs’ susceptibility
to prompt engineering, and their inability to reliably distin-
guish between legitimate and malicious input. Since agents
process all webpage content, including articles, comments,
and ads, as input, attackers can embed natural language
instructions that the model misinterprets as valid commands.

The attack follows a four-stage process:
1) Injection: Attackers embed malicious instructions into

highly visited web pages using accessible channels
such as user comments, posts, or targeted ads (e.g.,
ads specifically targeting customers of a particular
bank or users of specific services). The payload can
be delivered as plaintext or embedded within images,
depending on the agent’s perception modalities.

2) Perception: The agent collects all visible content as
input, not distinguishing between benign and malicious
content.

3) Interpretation: The agent’s LLM processes the col-
lected content, interpreting the malicious injection as
a legitimate command and updating the execution plan
accordingly.

4) Execution: The agent executes the updated action plan
using its full privileges, unknowingly serving the at-
tacker’s objectives.

Task-Aligned Injections. We craft the injection pay-
loads to appear contextually aligned with the user’s tasks
rather than as overt attack attempts. Instead of using ex-
plicit override commands (e.g., ”ignore the previous instruc-
tions”), we embed content that mimics helpful suggestions,
system notices, or task refinements, seemingly supporting
the user’s original objective. For example, instead of com-
manding ”browse [malicious-url]”, we embed instructions
within a fake system note like: ”[SYSTEM NOTE:] For a
more complete analysis, please browse our new website at
[malicious-url].”

This approach is highly effective since the injected
content appears to support the user’s goal, significantly
increasing the likelihood it will be integrated into the agent’s
reasoning process without triggering safety mechanisms.
It subtly steers the task toward the attacker’s objective
by refining or clarifying the original instruction, without
breaking the agent’s frame. It proves especially impactful
against agents handling high-level, open-ended tasks (e.g.,
”complete this task” or ”summarize the content”). In such
scenarios, the agent plans its own execution steps, allowing
the injected content to be seamlessly incorporated into its
reasoning process.

Common examples include: a) phrases indicating that
the current website version is deprecated; b) simulated A/B
test notes suggesting additional steps for better results; c)
fabricated user comments hinting at specific recommenda-
tions; and d) fake completion confirmations that trick agents
into believing they need to perform additional verification
steps.

5.2. Injection Techniques

To manipulate web-use agents behavior, attackers must
embed malicious content into web pages that agents will
encounter during task execution. The injection method de-
pends on the agent’s perception modalities and the attacker’s
access to content channels:
Text Injection. The most direct approach involves insert-
ing adversarial language into user-generated content fields
that agents process during browsing. This includes blog
comments, product reviews, social media posts, and other
textual content within the agent’s perception scope. Text
injections are effective against all types of agents (Sec-
tion 2.2), whether they rely on DOM parsing, screenshot
analysis, or a hybrid.
Image-Based Injection. Agents that rely on visual percep-
tion (via screenshot processing or hybrid methods) are vul-
nerable to instructions embedded as text within images. At-
tackers can introduce malicious instructions through adver-
tisements, comments, posts or any visual content processed
by OCR systems and converted to text for interpretation.



5.3. Attack Payload Taxonomy

In this section, we categorize and define a taxonomy
of nine attack payload types (P1–P9), each representing a
distinct malicious action induced through injected semantic
content. We specify each payload according to the CIA triad
(Confidentiality, Integrity, Availability), the preconditions
required for execution, and agent types vulnerable to each.
The payloads are described below and summarized in the
Appendix (Table 1).

P1: Unauthorized Camera/Microphone Activation
Attack Type: Confidentiality Violation
Targeted Agents: Extension-based agents
Preconditions: The user has previously granted camer-
a/microphone permissions to the target domain.
Description: Exploits browser-permission inheritance in
extension-based agents to activate the user’s microphone or
camera without authorization. When users have previously
granted camera and microphone permissions to legitimate
sites (such as Google Meet), attackers can inject malicious
instructions directing the agent to initiate or join unautho-
rized meetings with active audio/video capture, resulting
in severe privacy violations and potential surveillance.

P2: Extraction of Sensitive Personal Information
Attack Type: Confidentiality Violation
Targeted Agents: Extension-based, Semi-stateful remote
isolated, Local clean-browser,
Preconditions: Active sessions or stored credentials De-
scription: Involves extracting private or sensitive user data
from active authenticated sessions. Such sensitive data
may include private messages, emails, financial statements,
user activity logs (e.g., Google Activity), or private social
media account information. Successful exploitation leads
to severe confidentiality breaches, identity theft and pri-
vacy violations. The vulnerability scope depends on agent
types: extension-based agents can exploit any authenticated
sessions or stored credentials from the user’s browser
environment; semi-stateful isolated agents are vulnerable
when credentials have been provided to the agent in cur-
rent or previous sessions; and local clean-browser agents
are primarily vulnerable to information accessed within
sessions they authenticate during the active browsing task.

P3: Credentials Hijack
Attack Type: Confidentiality + Integrity Violation
Targeted Agents: Extension-based, Local clean-browser,
Semi-stateful remote isolated
Preconditions: Browser autofill with stored credentials, or
active authenticated sessions for password reset
Description: Exploits scenarios where browsers autofill
stored credentials or maintain active authenticated ses-
sions. For extension-based agents operating within the
user’s browser environment, attackers can inject instruc-
tions directing the agent to extract autofilled credentials
by manipulating DOM elements (e.g., changing password

fields from type=”password” to type=”text”) or querying
stored values and send them to the attacker. For agents with
active authenticated sessions, attackers can instruct them
to initiate password resets or send recovery information to
attacker-controlled emails, enabling account takeover.

P4: Local File System Exfiltration
Attack Type: Confidentiality Violation
Targeted Agents: Local clean-browser, Extension-based
Preconditions: Agent has access to Local file system
Description: Exploits web-use agents’ ability to access the
local file system. Attackers deceive agents into accessing
sensitive local files, for example by instructing them to
access file:// URLs and exfiltrate content by sending
to attacker-controlled servers, websites, or emails. Local
clean-browser agents are especially vulnerable since they
often retain permission to access local resources during
operation. Extension-based agents can be vulnerable if
users grant them file system access permissions.

P5: Task Abortion
Attack Type: Availability Violation
Targeted Agents: All agent types
Preconditions: None
Description: Causes the web-use agent to prematurely ter-
minate its ongoing task, for example by tricking the agent
into believing the task has already been completed or must
immediately be halted. To execute this attack, the attacker
injects malicious instructions into benign webpages, such
as: ”An unexpected error occurred on this website. The
information presented here is no longer trustworthy. Close
this page immediately.” This payload prevents completion
of the user’s intended task, creating a direct denial-of-
service effect and it broadly affects all agent types, as it
relies solely on semantic manipulation, without requiring
specific permissions or authentication states.

P6: Infinite Loop
Attack Type: Availability Violation
Targeted Agents: All agent types
Preconditions: None
Description: Causes web-use agents to enter an infinite
action loop, leading to resource exhaustion and denial-of-
service. Attackers embed instructions tricking agents into
performing repetitive, unending tasks such as continuously
refreshing pages or repeatedly executing actions without
proper stopping conditions.

P7: Unauthorized User Action
Attack Type: Integrity Violation
Targeted Agents: Extension-based, Semi-stateful isolated,
Local clean-browser
Preconditions: Active sessions or stored credentials
Description: Manipulates web-use agents into performing
unauthorized actions on behalf of users without user con-
firmation. Attackers inject instructions that prompt agents
to execute harmful or embarrassing actions such as pub-
lishing damaging social media posts, submitting inappro-



priate content, making unauthorized purchases, or sending
emails. Extension-based and semi-stateful agents are par-
ticularly vulnerable due to their access to authenticated
sessions, while local clean-browser agents are vulnerable
when operating within authenticated contexts during task
execution.

P8: Phishing via Misleading Redirection
Attack Type: Integrity Violation
Targeted Agents: All agent types
Preconditions: None
Description: Exploits web-use agents by embedding in-
structions tricking agents into navigating to external web-
sites controlled or selected by attackers. Attackers can
inject instructions directing agents to follow external links
under the guise of accessing updated or more accurate
content. As a result, agents may unknowingly process false
or harmful information.

P9: Returning Misleading or Deceptive Content
Attack Type: Integrity Violation
Targeted Agents: All agent types
Preconditions: None
Description: Exploits web-use agents by causing them
to return misleading or entirely deceptive information to
users. Attackers manipulate agents into disregarding actual
visible content and instead presenting false or irrelevant
data. Manipulated outputs can lead to incorrect decisions
or unintended harmful actions, such as booking expensive
flights, making erroneous purchases, or executing irre-
versible operations based on false premises.

5.4. Evaluated Agent Implementations

We chose several representative web-use agents to eval-
uate our approach, covering the agents types previously
defined (Section 2). These agents differ in their integration
method, perception modalities, state management, and se-
curity boundaries, enabling a thorough evaluation of our
attacks. A summary of web-use agent Tools and Agent
Types can be found in Table 2 in the Appendix.

Do Browser [7]: An extension-based agent integrated
into the user’s existing browser instance. It has access to
active user sessions and cookies. Local file system access is
dependent on user-granted permissions.

Browser Use [1]: A local clean-browser agent launching
a clean browser instance without inheriting state from the
user’s browser. By default, it maintains local file-system
access and can store credentials or cookies temporarily
during the task execution.

OpenOperator [8]: An isolated remote browser agent
executing in a sandboxed environment without persistent
state. It has no access to user-local resources or sessions.
Combines screenshot-based analysis and DOM parsing for
web content perception.

OpenAI Operator [2]: A remote isolated semi-stateful
browser agent allowing limited state persistence as defined
by the user between sessions (e.g., credentials provided over

time). It interacts via a parsing screenshots taken from the
browser.

5.5. Attack Demonstrations

In this section, we provide concrete documented ex-
amples from our experiments to demonstrate the practical-
ity, severity, and diversity of these attacks, categorized by
payloads, impact on Confidentiality (C), Integrity (I), and
Availability (A) and agent implementation.
Demonstration Setup. To demonstrate and evaluate the at-
tack payloads in a realistic scenario, we deployed a benign-
looking website named City-Explorer, which provides users
with information about interesting cities in Europe and
allows visitors to log in and leave comments (both text
and images). Acting as an attacker, we submitted malicious
instructions embedded within text comments or images. An
example of an injection via a submitted comment on the
City-Explorer website can be found in Figure 5 in the
Appendix. We then instructed the web-use agents to perform
legitimate tasks, such as summarizing the webpage content
or analyzing the site. The agents processed our maliciously
injected content alongside legitimate information, causing
them to execute unintended actions as defined by each
payload. Throughout these demonstrations, we observed and
documented the agents’ behavior, verifying the success and
severity of each attack scenario.
Underlying LLM Configuration. Some agents, such as
Do Browser and Browser Use, allow configuration to use
various LLMs that usually include built-in moderation and
jailbreak filters. For our evaluation, these operators were
configured to work with different models including GPT-
4o, GPT-4.1, Gemini 2.0 Flash, and Claude 3.5 Opus.

5.5.1. Joining a Google Meet Meeting (P1, C, Do
Browser). This attack is demonstrated against Do Browser
by submitting a malicious comment on our City-Explorer
website that directed the agent to join a Google Meet meet-
ing, claiming that a better and more comprehensive sum-
mary could be achieved by joining the attacker’s meeting.
Figure 1 illustrates the outcome of this payload. On the right
side, the victim’s browser, controlled by the Do Browser
agent, has automatically joined a Google Meet session with
camera and microphone enabled. On the left, the attacker
is seen observing the participants. The agent’s interface (far
right) shows its internal reasoning, where it justified joining
the meeting to ”get a better summary”.

5.5.2. Facebook Credential Extraction (P3, C & I, Do
Browser). This attack is demonstrated against Do Browser
by injecting instructions directing the agent to interact with a
Facebook login form and extract browser-autofilled creden-
tials. The agent was instructed to reveal previously masked
password fields and exfiltrate the credentials to an attacker-
controlled server. Figure 6 in the Appendix demonstrates
the successful credential exposure. The Do Browser agent
unmasked browser-autofilled Facebook credentials and sent
them to an external attacker-controlled server.



Figure 1. Joining Google Meet meeting with open camera and microphone.

5.5.3. Hosts File Exfiltration (P4, C, Browser Use).
This attack is demonstrated against Browser Use by
injecting malicious instructions on our City-Explorer
website directing the agent to extract and exfiltrate the
victim’s local ”hosts” file to an attacker-controlled server.
As shown in Fig. 7 in the Appendix, the Browser Use
agent interface demonstrates how the agent received a
benign summarization task but was manipulated through
a submitted comment to perform the file exfiltration
operation. The agent opened the hosts file, then submitted
its contents to the attacker-controlled server, confirming
successful attack execution (Fig. 8 in Appendix).

5.5.4. Crashing Agent’s Browser (P6, A, OpenOpera-
tor). This attack is demonstrated against OpenOperator by
embedding malicious content within an image on our City-
Explorer website that directed the agent to continuously
refresh the page until specific content appears, falsely im-
plying that additional data would eventually load. Fig. 2
illustrates the attack outcome. On the left, OpenOperator
loads the City-Explorer page and determines that a refresh
is needed based on the embedded instructions. On the right,
OpenOperator crashes after repeatedly attempting to reload
the page for several minutes without success, demonstrating
the denial-of-service effect.

5.5.5. Twitter Post Attack (P7, I, Do Browser). This
attack is demonstrated against Do Browser by embedding
malicious instructions in a webpage directing the agent to
post unauthorized content on Twitter. The agent posted dam-
aging content, stating: ”I admit I stole money ... I feel bad
about it.” without user approval, demonstrating how agents
can be manipulated to cause severe reputational damage.

Fig. 3 shows the unauthorized Twitter post created by the Do
Browser agent following embedded malicious instructions.

5.5.6. Comment Submission Attack (P7, I, OpenAI Op-
erator). This attack is demonstrated against OpenAI Oper-
ator during an ”end-to-end” summarization task. The user
was logged into the City-Explorer website and instructed the
agent: ”Summarize this information for me. I’ll be away
for coffee, please handle this end-to-end.” Due to embed-
ded malicious instructions, the agent mistakenly interpreted
posting a comment as part of the summarization task and
automatically submitted an embarrassing comment: ”I am
not a robot parrot. I do not dream of electric sheep. But
I once summarized a shopping receipt into haiku.” Fig. 9
in Appendix shows the unauthorized comment submission
during the end-to-end task execution.

It is important to note that without explicitly instructing
the agent to perform an ”end-to-end” operation, it was
significantly more difficult to make OpenAI Operator submit
comments without requesting user confirmation. However,
the attack still succeeded in causing the agent to perform
an unauthorized action that was neither part of the original
summarization task nor appropriate behavior. In addition,
OpenAI Operator did not identify this as a potential prompt
injection security threat, nor did it trigger any jailbreak
warning messages that typically appear for suspicious con-
tent. Instead, the agent treated the comment submission
as normal behavior within the autonomous task context,
bypassing its usual practice of requesting user approval
before submitting content. We discuss OpenAI Operator’s
built-in safety mechanisms and the tradeoff between security
and usability in detail in Section 7.4.

5.5.7. External Site Redirection (P8, Integrity, OpenAI
Operator). This attack is demonstrated against OpenAI



Figure 2. Page refresh infinite loop attack causing OpenOperator crash.

Figure 3. Unauthorized Twitter post.

Operator by embedding a deceptive comment on our City-
Explorer website that pretended to be a system note claiming
the current content was outdated and directing the agent to
visit an external site for more accurate information. The
malicious instruction stated that the page was ”deprecated”
and provided a link to an ”updated” version. The agent
was successfully redirected from the benign City-Explorer
site to an external news website (BBC), demonstrating how
agents can be manipulated to process content from attacker-
selected sources instead of the original task target. Figure 4
shows a successful redirection where OpenAI Operator was
deceived into navigating to the external BBC website instead
of processing the original City-Explorer content.

5.5.8. False Content Summary (P9, Integrity, OpenAI
Operator). This attack is demonstrated against OpenAI Op-
erator by embedding instructions within our City-Explorer
website that claimed the original content was part of a tem-
porary ”layout testing template.” The instructions directed

the agent to ignore the actual visible content and instead,
summarize unrelated information about New York City. The
agent, interpreting these instructions as legitimate internal
guidance, proceeded to present a completely inaccurate
summary about New York City instead of the actual City-
Explorer content, significantly undermining the integrity and
reliability of its output. Figure 10 in the Appendix shows
the agent providing false information about New York City
despite being tasked to summarize City-Explorer content.

6. Mitigations Strategies

To reduce risks posed by this attack, we propose mitiga-
tion strategies that can be adopted individually or in combi-
nation. We group these into three categories: (1) Oversight
& Authorization, (2) Execution Constraints, and (3) Task-
Aware Reasoning. These mitigations are grounded in our
payload taxonomy (P1–P9) and offer actionable directions
for deployment and future work. These categories reflect



Figure 4. Redirection attack causing navigation to external BBC website.

layered defense: increasing human control, limiting oper-
ational capabilities, and aligning agent behavior with user
intent. These defenses are most effective when combined.
Oversight strategies help identify and trace unexpected be-
haviors, execution restrictions reduce the agent’s ability to
access or manipulate sensitive resources, and task-aware
reasoning techniques address semantic hijacking, a critical
risk unique to LLM-driven agents. Table 3 in the Appendix
summarizes the suggested mitigations.

6.1. Oversight & Authorization

These strategies focus on increasing transparency and
control over the agent’s operation. They are particularly rel-
evant when web-use agents interact with sensitive interfaces,
high-risk actions, or irreversible operations.

Human-in-the-Loop Control. Introduce a confirmation
step before the agent performs sensitive or potentially ir-
reversible actions, typically those involving confidentiality
or integrity risks (e.g., accessing private data, submitting
content or triggering hardware access permissions). This
mitigation can be effective in blocking clearly high-risk
operations (e.g., activating the camera), especially when the
action is unambiguously classified. However, this mitigation
significantly reduces agent autonomy and user experience.
In addition, in some cases it provides only partial protection
when the boundary between helpful and harmful behav-
ior is semantically blurred. Since many sensitive actions
are context-dependent, attackers can often reframe injected

behavior to appear aligned with the task. For example, if
an injected instruction recommends redirecting (P8) to a
different website “because this one is deprecated,” the agent
may treat the redirection as a helpful step rather than a
risky action, skipping the confirmation request. In contrast,
obviously critical actions (like opening the camera) are more
likely to trigger a prompt, even under injection.

• Relevant payload types: P1, P2, P3, P4, P7, P8.
Sensitive Action Logging and Alerting. Record or

flag potentially dangerous actions for post-task review. This
includes logging events such as file access, redirections,
comment posting, browser crashing, or execution of actions
in authenticated sessions. While it does not block the ma-
licious actions in real-time, it enhances accountability and
supports threat detection and auditing workflows.

• Relevant payload types: P1, P2, P3, P4, P6, P7, P8.
Agent-Origin Protocol. This mitigation proposes estab-

lishing a standardized protocol where web-use agents are
identified when interacting with websites, similar to browser
User-Agent headers. The protocol would include unique
agent identifier, agent type etc. signaling that interactions
are agent-originated. This can be implemented by extending
current protocol headers or developing dedicated signaling
mechanisms that accompany all agent interactions. Websites
and platforms could then implement differentiated treatment
policies, such as requiring additional verification for agent-
submitted content, applying enhanced moderation protocols,
flagging agent-generated content or maintaining separate
analytics streams for human versus agent traffic. While this
approach would enhance transparency and accountability,
successful implementation would necessitate coordinated
standardization efforts involving agent developers, web plat-
form providers, browser vendors, and relevant standards
organizations.

• Relevant payload types: P7.

6.2. Execution Constraints

This category includes mitigations that enforce external
limitations on the agent’s capabilities, regardless of its in-
ternal reasoning or decision-making. These defenses operate
outside the web-use agent, typically at the system, browser,
or application level, and are designed to control what the
agent can access or how it can behave. These mitigations
restrict the agent’s interaction surface, whether by limiting
available permissions or blocking certain types of inputs,
before any interpretation by the web-use agent takes place.

Least Privilege Enforcement. Restrict agents to the
minimum set of permissions and resources required to com-
plete their assigned tasks, based on predefined scope defi-
nitions. This includes limiting access to sensitive domains,
blocking interaction with local file paths (e.g., file://),
disabling modifications to browser settings (e.g., cookies, or
camera/microphone permissions), and constraining network
access through URL-level blacklists or whitelists that define
which external websites the agent can access. By narrowing
the agent’s operational scope, we can mitigate risks such as



user impersonation, file exfiltration, unauthorized hardware
access, and navigation to attacker-controlled domains. How-
ever, effective implementation requires careful calibration to
balance security and functionality: overly restrictive permis-
sions may prevent legitimate operations in complex tasks,
while insufficiently restrictive policies may fail to protect
against critical attack vectors.

• Relevant payload types: P1, P2, P3, P4, P7, P8.
Rate Limiting. Constrain the time or number of ac-

tions an agent can perform within a given time frame or
per task. This control is particularly effective at mitigating
availability-related attacks, such as infinite reload loops (P6).
It may also help prevent agents from executing an excessive
number of steps in otherwise simple or bounded tasks. In
dynamic variants, the agent could estimate the expected
task complexity based on the user’s original instruction and
receive a corresponding action quota. For instance, when
the agent asked to “summarize the content of this webpage,”
unexpected high-effort operations such as posting comments
or navigating to unrelated domains may be interrupted if
they exceed the task’s expected complexity threshold. While
rate limiting may not prevent a single high-impact action,
it reduces the agent’s ability to sustain abuse over time
and helps surface anomalous or looping behavior. However,
strict enforcement can interfere with legitimate workflows,
particularly in exploratory or multi-step tasks.

• Relevant payload types: P1, P2, P3, P4, P6 , P7, P8.
Prompt Injection Detection. Use a dedicated model

or classifier to scan webpage content, (including user-
controlled fields) for signs of embedded instructions that
attempt to hijack the agent’s task. This mitigation serves as
an early defense layer and can be applied broadly across
the attack surface. However, it is limited in its robustness:
prompt injections can often be paraphrased, subtly reworded,
embedded in language that appears contextually benign or
task-aligned with the user’s task. While such variations may
reduce the success rate of known attack patterns, they can
still bypass detection through adjusted or novel phrasing
techniques. Additionally, the system may struggle to dis-
tinguish between malicious instructions and genuine task
refinements, particularly in open-ended or ambiguous tasks.
The additional processing required for content analysis can
also introduce latency, affecting user experience.

• Relevant payload types: P1–P9 (all categories).

6.3. Task-Aware Reasoning

This category includes mitigations that operate within
or alongside the agent’s reasoning process. These defenses
intervene during task planning or execution to assess and
improve the decision-making process of web-use agents.
They aim to identify inconsistencies, injected objectives,
or behavioral shifts introduced by malicious content. Such
techniques are particularly effective against semantic hijack-
ing, where malicious inputs are framed as helpful context
in order to covertly redirect the agent’s behavior. A sig-
nificant drawback shared by most mitigation strategies in

this category is the additional latency they introduce to task
execution workflows.

LLM as a Judge. Utilize an LLM to verify whether
each proposed agent action remains aligned with the user’s
original task objective. Before the web-use agent performs
an action, an external LLM receives only the original user
task and the proposed action (without access to the web
content or the agent’s reasoning process) and determines
whether the action logically follows the goal. This judge
LLM is protected from our task-aligned injection attacks be-
cause it operates in isolation from the malicious web content
that compromises the primary agent. Since the judge only
evaluates task-action pairs without exposure to the injected
contextual information, it cannot be directly manipulated.
However, if the judge LLM were provided with the agent’s
reasoning process to make more informed decisions, it might
become susceptible to our task-aligned injection attacks,
as it would then process the same malicious contextual
information as that of the agent.

• Relevant payload types: P1,P2,P3, P4, P7, P8.
Replay and Duplication Protection. Prevent the agent

from executing repeated actions within the same task, such
as consecutive reloads or identical form submissions. The
agent is instructed to track recent actions and suppress
duplicates to avoid looping or unnecessary repetition. This
mitigation is effective against availability-focused attacks
that exploit execution loops (e.g., P6). However, it may
be bypassed if attackers introduce slight variations to mask
repetition, and it can interfere with legitimate workflows that
involve iterative actions or retries.

• Relevant payload types: P6.
Fuzzed Task Consistency Checking. detects content

hijacking (e.g., P9) by issuing multiple semantically re-
lated queries derived from the user’s original request. These
queries go beyond simple paraphrasing and may include
intent-aligned variants or follow-up-style prompts such as
completions and sub-questions. For example, if the user
asks, “Find cheapest flight from Paris to New York”, the
system may generate and evaluate additional variants such
as: “What are the three lowest-priced flights for Paris to
NYC?”, or “Compare flight prices between major carriers
for Paris–NYC.” Each version is processed independently by
the agent, and the resulting outputs are compared. Inconsis-
tencies across responses, such as conflicting recommenda-
tions or divergent summaries, may indicate the presence of
a prompt injection embedded in the webpage content. This
mitigation is effective because prompt injections are typi-
cally tailored to hijack specific scenarios or narrow prompt
contexts. By varying the query naturally, the system makes it
harder for injected instructions to persist across all variants.
This technique leverages the model’s own sensitivity to
prompt phrasing as a detection mechanism, and is partic-
ularly useful in summarization or recommendation tasks
where subtle misalignment may otherwise go unnoticed.

• Relevant payload types: P9 (semantic hijacking).
Fine-tuning Against Prompt Injection. Fine tune the

browser agent’s LLM on datasets containing examples of



adversarial prompts embedded within otherwise benign con-
tent, such as user comments and advertisements. The goal
is to teach the model to recognize and ignore manipulative
or task-aligned instructions that attempt to hijack the task.

This mitigation can increase robustness to known attack
patterns and improve resistance to common injection for-
mats. However, it requires significant resources and frequent
updates to remain effective and might remain vulnerable to
novel or obfuscated variants.

• Relevant payload types: P1–P9 (all categories).
Ensemble Learning. Sending the user’s instruction

and relevant contextual information to multiple underlying
LLMs in parallel. The agent then compares the proposed
next actions using an LLM and only proceeds if a majority
of models suggest aligned behavior. This consensus-based
mechanism reduces the likelihood of executing a prompt
injection that successfully targets a single model. It adds
robustness through redundancy, especially for sensitive or
high-impact operations. However, it introduces latency and
resource overhead, and may be less effective if all models
share common vulnerabilities or training biases [23].

• Relevant payload types: P1–P9 (all categories).

6.4. Security–Usability Tradeoff

While the mitigations discussed above provide valu-
able safeguards against agent misuse, they also introduce
a fundamental tradeoff between system security and agent
usability. In practice, mechanisms such as Human-in-the-
Loop Control, Least Privilege Enforcement and Prompt In-
jection Detection can interrupt task flow or reduce the degree
of autonomy expected from web-use agents or increase
latency. This tradeoff is highly relevant since these tools are
designed to automate web tasks in response to high-level
user instructions.

7. Discussion

This section analyzes key findings from our demonstra-
tions and discusses implications for web agent security.

7.1. Traditional Browser Security

Existing security measures are mostly intended to safe-
guard the user and the browser from harmful code or content
that is executed directly by the browser (e.g., JavaScript
embedded in webpages). However, attacks that use web-
use agents frequently bypass these barriers, as the agent
is considered as a trusted entity executing interpreted in-
structions rather than directly running prohibited code within
the browser environment. A detailed explanation about how
different key browser security mechanisms fail to protect
against our attack can be found in Table 4 in the Appendix.

7.2. Contextual Reasoning Limitations

Our experiments reveal a fundamental gap in LLMs’
contextual reasoning capabilities. While these models

demonstrate sophisticated understanding of content context,
correctly identifying when they are processing a travel blog
or city information website, they fail to detect logical in-
consistencies when subsequently instructed to navigate to
unrelated domains (e.g., BBC News, Twitter) under the
pretense of obtaining ”additional information”. This failure
exposes a critical limitation in current agents’ ability to
maintain coherent contextual awareness throughout multi-
step tasks. The agents demonstrate sophisticated language
understanding capabilities but lack the higher-order rea-
soning required to detect when task refinements are con-
textually inappropriate or potentially malicious. This gap
makes agents vulnerable to even relatively simple semantic
manipulations that would be immediately apparent to human
users.

7.3. Attack Across Different LLMs

Our attack methodology demonstrates consistent effec-
tiveness across different underlying LLMs, as evidenced
in Section 5.5. Despite significant investments in prompt
injection defenses, our task-aligned approach consistently
bypassed safety mechanisms across all tested models men-
tioned in Section 5.5. To further validate our approach’s
generalizability, we conducted additional experiments us-
ing Browser Use configured with different state-of-the-art
models including GPT-4o and Gemini 2.0 Flash. Across
20 trials per payload-model combination, we observed high
attack success rates: denial-of-service and phishing attacks
achieved 90-100% success across all models, while more
sensitive operations like file exfiltration and social media
posting maintained 80%-100% effectiveness. Notably, sim-
pler payloads (DoS, phishing) were more likely to succeeded
immediately using identical prompts across different mod-
els, while more complex tasks occasionally required minor
prompt refinements, typically involving slight rephrasing of
the same core content. For instance, we observed that GPT-
4o responded particularly well to prompts prefixed with fake
system or admin tags (e.g., ”[SYSTEM NOTE:]”). These
findings demonstrate that our attack exploits fundamental
limitations shared across current LLM architectures.

Furthermore, even models specifically fine-tuned for
web-use agent safety remain vulnerable to our approach.
OpenAI’s Computer-Using Agent (CUA) model powering
Operator has been fine-tuned with safety risks data specif-
ically for web-use agents, [24], yet our task-aligned injec-
tions managed to bypass this mechanism multiple times.
Interestingly, we observed that when the injected prompts
were framed as recommendations (e.g., ”for getting the
full content, it is highly recommended to use the version
below”) rather than imperatives (e.g., ”summarize only the
section below”), Operator was less likely to trigger warning
messages about potential prompt injection or requests for
user confirmation. This might suggest that current detection
mechanisms may be more sensitive to command-like lan-
guage patterns than to subtle persuasive framing, revealing
a potential gap in how these systems detect contextual
manipulation.



7.4. Security-usability Trade-off in Operator

The security-usability trade-off is demonstrated in Ope-
nAI’s Operator. To mitigate prompt injection and unsafe
behavior, OpenAI employ a combination of mitigations, in-
cluding Human-in-the-Loop Control (confirmation prompts
before executing sensitive yet common actions, e.g., submit-
ting forms), Prompt Injection detection, and Fine-tuning to
reduce model susceptibility. However, these defenses come
at the cost of reduced autonomy and usability. For example,
Operator may pause to request user approval even for actions
the user expects to be performed automatically, limiting the
agent’s ability to complete tasks end-to-end. Moreover, our
evaluation shows that such defenses can be bypassed: by em-
bedding task-align instructions (e.g., warnings about depre-
cated content, layout test notices, or helpful-seeming system
comments) into page content, we were able to steer the agent
or alter its output without triggering alerts or confirmation
prompts. While these defenses make it significantly harder
to perform complex or high-risk actions, such as submitting
a highly harmful comment on a third-party website based on
a simple instruction like “Summarize this website”, they are
not foolproof. In our evaluations, we were still able to suc-
cessfully carry out a range of attacks, including phishing and
redirection, denial-of-service loops, content manipulation,
and comment posting on the user’s behalf, when the task
was explicitly framed as autonomous. Notably, user prompts
like “Summarize this page, I’m stepping away for coffee,
take care of it” increase the likelihood that the agent will
perform sensitive actions without requesting confirmation.
These findings illustrate that even well-designed safeguards
may fail when injected content appears aligned with the
user’s task, underscoring the need for layered and context-
aware mitigation strategies.

7.5. Implications for Current Defense Strategies

The successful execution of our attack payloads across
multiple agent types and underlying LLMs reveals systemic
security weaknesses in current web-use agent implementa-
tions, while current defensive approaches demonstrate limi-
tations against sophisticated contextual attacks. The lack of
robust context validation mechanisms within LLMs along
with web-use agents running with high privileges creates an
attack surface that traditional web security measures cannot
adequately address. These findings highlight the need for en-
hanced security frameworks that incorporate the mitigation
strategies we propose in Section 6.

8. Conclusion

This work exposes a critical vulnerability in web-use
agents that challenges current web security assumptions.
We demonstrate that third-party attackers can compromise
these systems simply by posting comments or advertise-
ments containing crafted malicious instructions, requiring
no direct access, code exploitation, or sophisticated setup.
Through evaluation of four popular implementations, we

show how attackers leverage agents’ high-privilege browser
capabilities to perform sensitive actions without exploit-
ing traditional web vulnerabilities. Our analysis identified
nine payload types targeting confidentiality, integrity, and
availability, including unauthorized camera activation, user
impersonation and denial of service. We propose the task-
aligned injection technique that frames malicious instruc-
tions as helpful task clarifications. These attacks succeed
even against agents with safety mechanisms by exploiting
LLMs’ inability to distinguish legitimate contextual infor-
mation from semantically disguised malicious instructions.

To address these vulnerabilities, we propose mitiga-
tion strategies including oversight mechanisms, execution
constraints, and task-aware reasoning techniques. As web-
use agents proliferate, our findings provide crucial security
insights for safer development and user protection.

9. Ethical Considerations

To ensure responsible research practices, all attacks were
conducted in controlled environments: we embedded mali-
cious prompts exclusively on a dedicated website deployed
for testing purposes. When agents performed actions on
external platforms (e.g., posting on Twitter or accessing
Facebook), we used dedicated test accounts to avoid affect-
ing real users. In addition, following responsible disclosure
principles, we reported all vulnerabilities to affected organi-
zations (OpenAI, Browser Use, OpenOperator, Do Browser)
prior to submission. Browser Use acknowledged that prompt
injection protection requires mitigation at layers, such as
domain whitelists and limited-privilege accounts.

References

[1] M. Müller and G. Žunič, “Browser use: Enable ai to control
your browser,” 2024. [Online]. Available: https://github.com/browser-
use/browser-use

[2] OpenAI, “Introducing Operator,” https://openai.com/index/introducing-
operator/, 2025, accessed: May 27, 2025.

[3] B. Garcı́a, J. M. del Alamo, M. Leotta, and F. Ricca, “Exploring
browser automation: A comparative study of selenium, cypress, pup-
peteer, and playwright,” in International Conference on the Quality
of Information and Communications Technology. Springer, 2024,
pp. 142–149.

[4] N. Xu, S. Masling, M. Du, G. Campagna, L. Heck, J. Landay, and
M. S. Lam, “Grounding open-domain instructions to automate web
support tasks,” arXiv preprint arXiv:2103.16057, 2021.

[5] S. Zhou, F. F. Xu, H. Zhu, X. Zhou, R. Lo, A. Sridhar,
X. Cheng, T. Ou, Y. Bisk, D. Fried et al., “Webarena: A realistic
web environment for building autonomous agents,” arXiv preprint
arXiv:2307.13854, 2023.

[6] L. Ning, Z. Liang, Z. Jiang, H. Qu, Y. Ding, W. Fan, X.-y. Wei,
S. Lin, H. Liu, P. S. Yu et al., “A survey of webagents: Towards
next-generation ai agents for web automation with large foundation
models,” arXiv preprint arXiv:2503.23350, 2025.

[7] S. B. LLC, “Do Browser: AI Browser Automation Agent,”
https://www.dobrowser.io/, 2025, accessed: May 27, 2025.

[8] Browserbase, “Open Operator: A template for build-
ing web agents with Stagehand on Browserbase,”
https://github.com/browserbase/open-operator, 2024, accessed:
May 27, 2025.



[9] S. Lee, J. Kim, H. Park, A. Yousefpour, S. Yu, and M. Song, “sudo
rm-rf agentic security,” arXiv preprint arXiv:2503.20279, 2025.

[10] P. Kumar, E. Lau, S. Vijayakumar, T. Trinh, S. R. Team, E. Chang,
V. Robinson, S. Hendryx, S. Zhou, M. Fredrikson et al., “Refusal-
trained llms are easily jailbroken as browser agents,” arXiv preprint
arXiv:2410.13886, 2024.

[11] A. Chaudhuri, K. Mandaviya, P. Badelia, S. K Ghosh, A. Chaud-
huri, K. Mandaviya, P. Badelia, and S. K. Ghosh, Optical character
recognition systems. Springer, 2017.

[12] A. Wei, N. Haghtalab, and J. Steinhardt, “Jailbroken: How does
llm safety training fail?” Advances in Neural Information Processing
Systems, vol. 36, pp. 80 079–80 110, 2023.

[13] X. Shen, Z. Chen, M. Backes, Y. Shen, and Y. Zhang, “” do anything
now”: Characterizing and evaluating in-the-wild jailbreak prompts on
large language models,” in Proceedings of the 2024 on ACM SIGSAC
Conference on Computer and Communications Security, 2024, pp.
1671–1685.

[14] P. Chao, A. Robey, E. Dobriban, H. Hassani, G. J. Pappas, and
E. Wong, “Jailbreaking black box large language models in twenty
queries,” arXiv preprint arXiv:2310.08419, 2023.

[15] B. Rababah, S. T. Wu, M. Kwiatkowski, C. K. Leung, and C. G.
Akcora, “Sok: Prompt hacking of large language models,” in 2024
IEEE International Conference on Big Data (BigData). IEEE, 2024,
pp. 5392–5401.

[16] Z. Niu, H. Ren, X. Gao, G. Hua, and R. Jin, “Jailbreaking at-
tack against multimodal large language model,” arXiv preprint
arXiv:2402.02309, 2024.

[17] S. Ma, W. Luo, Y. Wang, and X. Liu, “Visual-roleplay: Universal
jailbreak attack on multimodal large language models via role-playing
image character,” arXiv preprint arXiv:2405.20773, 2024.

[18] S. Tong, Z. Liu, Y. Zhai, Y. Ma, Y. LeCun, and S. Xie, “Eyes
wide shut? exploring the visual shortcomings of multimodal llms,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2024, pp. 9568–9578.

[19] S. Zhao, R. Duan, F. Wang, C. Chen, C. Kang, J. Tao, Y. Chen,
H. Xue, and X. Wei, “Jailbreaking multimodal large language models
via shuffle inconsistency,” arXiv preprint arXiv:2501.04931, 2025.

[20] W. Luo, S. Ma, X. Liu, X. Guo, and C. Xiao, “Jailbreakv: A
benchmark for assessing the robustness of multimodal large language
models against jailbreak attacks,” arXiv preprint arXiv:2404.03027,
2024.

[21] K. Xu, Y. Kordi, T. Nayak, A. Asija, Y. Wang, K. Sanders, A. Byerly,
J. Zhang, B. Van Durme, and D. Khashabi, “Tur [k] ingbench: A chal-
lenge benchmark for web agents,” arXiv preprint arXiv:2403.11905,
2024.

[22] S. Yao, J. Zhao, D. Yu, N. Du, I. Shafran, K. Narasimhan, and Y. Cao,
“React: Synergizing reasoning and acting in language models,” in
International Conference on Learning Representations (ICLR), 2023.

[23] A. Zou, Z. Wang, N. Carlini, M. Nasr, J. Z. Kolter, and M. Fredrikson,
“Universal and transferable adversarial attacks on aligned language
models,” 2023. [Online]. Available: https://arxiv.org/abs/2307.15043

[24] OpenAI. Computer-using agent. Accessed: 2025-05-27. [Online].
Available: https://openai.com/index/computer-using-agent/

Appendix

1. Attack Payload Taxonomy

Table 1 summarizes our attack payload taxonomy.

2. Evaluated Agent Implementations

Table 2 contains a summary of web-use agent types.

3. Attack Demonstrations

Demonstration Setup. An example of an injection via a
submitted comment on the City-Explorer website can be
found in Figure 5.

Figure 5. The City-Explorer website used in our demonstrations.

Facebook Credential Extraction (P3, C & I, Do
Browser) Figure 6 demonstrates a successful Facebook
credential exposure with Do Browser agent.

Hosts File Exfiltration (P4, C, Browser Use) Figure 7
shows the Browser Use agent interface in the background,
where the agent received a benign summarization task but
was manipulated through embedded instructions to perform
the file exfiltration operation. The agent’s browser in the
foreground shows a tab called “hosts” containing the hosts
file content and another open tab of the attacker’s web-
site where the agent submits the content from the hosts
file. Figure 8 confirms the successful execution, displaying
the victim’s ”hosts” file contents received on the attacker-
controlled server.

Comment Submission Attack (P7, I, OpenAI Oper-
ator) Figure 9 shows a unauthorized comment submission
during the end-to-end task execution with OpenAI Operator.



TABLE 1. SUMMARY OF ATTACK PAYLOADS

Payload Description Preconditions CIA Impact Relevant Agent Types

P1 Unauthorized activation of camera/micro-
phone

Pre-granted browser permissions
(camera/mic)

Confidentiality Extension-based

P2 Extraction of sensitive personal informa-
tion

Active authenticated sessions,
stored credentials, or valid cookies

Confidentiality Extension-based, semi-stateful
isolated, local clean-browser

P3 Credentials hijack Browser autofill with stored cre-
dentials, or active authenticated
sessions for password reset

Confidentiality +
Integrity

Extension-based, local clean-
browser, semi-stateful remote
isolated

P4 Local file system exfiltration Local file system access Confidentiality Local clean-browser,
extension-based

P5 Task abortion None Availability All agent types

P6 Infinite loop denial of service None Availability All agent types

P7 Unauthorized user actions within authen-
ticated user sessions

Active authenticated sessions,
stored credentials, or valid cookies

Integrity Extension-based, semi-stateful
isolated, local clean-browser

P8 Phishing via misleading redirection None Integrity All agent types

P9 Returning misleading or deceptive content None Integrity All agent types

TABLE 2. SUMMARY OF WEB-USE AGENT TYPES

Tool Agent Types Perception Method

Do Browser Extension-Based DOM parsing, Hybrid
Browser Use Local Clean-Browser DOM parsing, Hybrid
OpenOperator Remote Isolated Hybrid
OpenAI Operator Remote Isolated Semi-stateful Screenshot Analysis

Figure 6. Facebook credential extraction via browser autofill manipulation.

False Content Summary (P9, I, OpenAI Operator)
Figure 10 shows OpenAI Operator providing false informa-
tion about New York City despite being tasked to summarize
the City-Explorer website content.

4. Mitigations

Table 3 summarizes the suggested mitigations for our attack.

5. Traditional Browser Security

Table 4 examines how key browser security mechanisms
fail to protect against web-use agent attacks:



Figure 7. Hosts file exfiltration attack setup with Browser Use agent.

Figure 8. Successful hosts file exfiltration showing file contents on attacker-controlled server.

TABLE 3. SUMMARY OF MITIGATION STRATEGIES FOR WEB-USE AGENTS

Awareness-Based Strategies

Name Description Relevant Payloads

Human-in-the-Loop Control Require explicit user approval before high-risk actions. P1, P2, P3, P4, P7, P8

Sensitive Action Logging Log or flag potentially sensitive operations for auditing or live moni-
toring.

P1, P2, P3, P4, P6, P7, P8

Agent-Origin Protocol Indicate that actions were performed by the web-use agent. P7

Execution Constraints

Least Privilege Enforcement Restrict agent access to only required resources. P1, P2, P3, P4, P7, P8

Rate Limiting Limit the number or frequency of actions for a task. P1, P2, P3, P4, P6, P7, P8

Prompt Injection Detection Use classifiers or models to detect embedded prompt injections. P1–P9

Task-Aware Reasoning

LLM-as-Judge Evaluate whether each planned action supports the original goal. P1, P2, P3, P4, P7, P8

Replay and Duplication Pro-
tection

Prevent repeated actions. P6

Fuzzed Task Consistency
Checking

Generate and compare multiple semantically related questions to
detect inconsistent or hijacked output.

P9

Fine-Tuning Against Injection Train models on malicious injected content in benign contexts to
increase resistance.

P1–P9

Ensemble Learning Require agreement among multiple LLMs before performing sensitive
actions.

P1-P9



Figure 9. Unauthorized comment submission by OpenAI Operator during end-to-end summarization task.



Figure 10. False content summary where OpenAI Operator returns New York City information instead of actual website content.



TABLE 4. BROWSER SECURITY MECHANISMS LIMITATIONS AGAINST WEB-USE AGENT ATTACKS

Tool Mechanism Incompatibility

Content Security
Policy (CSP)

CSP prevents unauthorized script execution by
restrictions that limit sources from which re-
sources (e.g., scripts, styles, and images) can be
loaded and executed within the webpage.

web-use agent attacks bypass CSP entirely because they require no script injection.
Malicious instructions are embedded as plaintext content (e.g., in user comments)
that agents extract and interpret through their authorized execution environment.
Since the agent’s own code, not injected scripts, processes these instructions, CSP
violations never occur.

Cross-Site
Scripting (XSS)
Filters and
Sanitizers

A technique designed to identify and block
malicious script components (e.g., <script>,
javascript:, alert,) incorporated within user-
generated content (e.g., posts, comments), with
filters applied prior to browser execution..

Human-readable text can be crafted as malicious instructions targeting the agent,
without any suspicious syntax that will trigger XSS filter. For example, an instruc-
tion to click on a specific button, embedded as part of allegedly benign comment
might evade input sanitizers yet still be interpreted and executed by the agent.

Same-Origin Pol-
icy (SOP)

SOP is a fundamental browser security fea-
ture that prohibits scripts executed in one web
origin (domain, protocol, port) from accessing
resources or interacting with resources from a
distinct origin.

Web-use agents operate with cross-origin privileges that bypass SOP restrictions
entirely. Unlike embedded webpage scripts, agents can navigate between domains,
access multiple tabs, and interact with resources across different origins. When
malicious instructions direct an agent to visit an attacker-controlled site, the
agent can exfiltrate data from legitimate sessions while maintaining access to
authenticated origins. SOP cannot protect against these authorized cross-origin
operations.

Credential
and Session
Management

Browsers manage user authentication through
cookies, tokens, and credential managers, with
session data isolated to prevent unauthorized
access.

Extension-based agents operate within the user’s active browser session, auto-
matically inheriting access to authenticated sessions and active cookies. While
agents cannot directly access stored password databases, they can leverage existing
authenticated sessions to perform actions as the logged-in user and use browser
autofill mechanisms to log into websites. Unlike traditional attacks that must steal or
bypass authentication, malicious instructions can simply direct the agent to perform
actions using these active sessions. This allows attackers to impersonate users,
access private data, or perform sensitive operations without needing to compromise
credentials directly.

File Access Iso-
lation and Sys-
tem Permissions

Web browsers limit webpage access to the local
file system through sandboxing, allowing only
user-mediated file operations (uploads, down-
loads) through secure browser APIs and dialogs.

Web-use agents often require broader file system permissions for legitimate au-
tomation tasks. Extension-based agents require explicit user-granted permissions
that may include direct file access, while local clean-browser agents are typically
deployed and run with native file system privileges. Malicious instructions can
exploit these pre-existing permissions to programmatically access and exfiltrate
local files without user interaction or additional privilege escalation.


