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Abstract—Arm Confidential Computing Architecture (CCA)
currently isolates at the granularity of an entire Confiden-
tial Virtual Machine (CVM), leaving intra-VM bugs such as
Heartbleed unmitigated. The state-of-the-art narrows this to
the process level, yet still cannot stop attacks that pivot within
the same process, and prior intra-enclave schemes are either
too slow or incompatible with CVM-style isolation. We extend
CCA with a three-tier zone model that spawns an unlim-
ited number of lightweight isolation domains inside a single
process, while shielding them from kernel-space adversaries.
To block domain-switch abuse, we also add a fast user-level
Code-Pointer Integrity (CPI) mechanism. We developed two
prototypes: a functional version on Arm’s official simulator
to validate resistance against intra-process and kernel-space
adversaries, and a performance variant on Arm development
boards evaluated for session-key isolation within server ap-
plications, in-memory key-value protection, and Non-Volatile
Memory (NVM) data isolation. NANOZONE incurs roughly a
20% performance overhead while retaining 95% throughput
compared to the system without fine-grained isolation.

1. Introduction

Confidential Computing has emerged as a proven ap-
proach to protect tenant assets from compromise by un-
trusted cloud providers and other tenants. Cloud tenants
can deploy sensitive code and data into Confidential Virtual
Machines (CVMs), with their security foundation rooted
in Trusted Execution Environments (TEEs) such as the
commercially available AMD SEV [1] and Intel TDX [2].
Recently, Arm introduced its Confidential Computing Archi-
tecture (CCA) [3] in Armv9-A. Alongside the normal world
and secure world in the legacy TrustZone [4] system, CCA
establishes a new execution environment, the realm world,
to facilitate the deployment of CVMs.

Although CVMs have become the standard foundation
for confidential computing, their isolation model remains
vulnerable to two major threats. (1) Kernel-Space Threats.
CVMs typically rely on general-purpose monolithic kernels
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Figure 1. Comparison between NANOZONE and other CCA-based TEEs.

for core functions like scheduling and memory management.
These kernels often include many unnecessary components,
such as legacy or device-specific drivers, which expand
the Trusted Computing Base (TCB) without benefiting the
workload. With recent Linux releases exceeding 40M lines
of code (LoCs), the risk of privilege-escalation bugs [5],
[6], [7] rises sharply. Adversaries can exploit such bugs to
bypass kernel isolation and compromise the entire CVM.
(2) Intra-Process Threats. Security-critical applications
inside a CVM can be quite large; for example, OpenSSL
exceeds 900K LoCs, but most of this code does not handle
sensitive data. When the entire program is treated as a single
protection unit, vulnerabilities such as Heartbleed [8] can
expose secrets even in non-critical code paths.

To reduce the attack surface in CVMs, researchers have
proposed multiple approaches. One category focuses on
replacing monolithic kernels with leaner alternatives. For
instance, Gramine-TDX [9] employs a kernel with only
approximately 57K LoCs to replace the original linux-based
TDX kernel. While this significantly reduces the TCB, the
kernel-space threats remain non-negligible. Another cate-
gory adopts more radical strategies. As shown in Figure 1,
on the CCA platform, RContainer [10] completely distrusts
the native OS and introduces a trusted mini-OS (under 5K
LoCs) to manage confidential containers. Shelter [11], in
contrast, avoids introducing any trusted kernel-space com-
ponents and refines the isolation granularity to the process
level, mitigating risks caused by multiple applications shar-
ing a single container. However, a fundamental issue in these
enhanced approaches lies in their adoption of a monolithic
isolation model, overlooking the intra-process threats.

https://arxiv.org/abs/2506.07034v1


We also note that some approaches attempt to introduce
hierarchical designs into TEEs. Built upon Intel SGX [12],
these schemes inherently address kernel-space threats and
instead concentrate on attacks that originate within the
enclave, a focus commonly referred to as intra-enclave
isolation. For instance, Nested Enclave [13] partitions an
enclave into outer and inner layers through hardware modi-
fications. However, the switching time between these layers
(1.1 µs, comparable to native ecall/ocall latency) makes
it impractical for high-frequency domain transitions (e.g.,
per-request key-value access). To further optimize perfor-
mance, LightEnclave [14] employs Memory Protection Keys
(MPK) [15] to partition an enclave into multiple domains.
The performance gain stems from complete user-space do-
main switches that require only about 20 cycles. However,
LightEnclave is incompatible with Arm CCA. The CVM-
style isolation in CCA and enclave-style isolation in SGX
differ substantially in their software SDKs and hardware
primitives. Although solutions like NestedSGX [16] attempt
to emulate SGX support within SEV-based CVMs, porting
such approaches to CCA demands non-trivial modifications
to the realm world hypervisor.

Nevertheless, MPK remains a highly promising tech-
nology, as each domain switch avoids costly kernel traps
(e.g., context switches and TLB flushes). However, this
feature has long been exclusive to Intel platforms. Although
Armv7 previously offered a similar feature called memory
domains [17], [18], the Domain Access Control Register is
inaccessible from user space, and this feature has been dep-
recated in AArch64. Fortunately, Arm recently introduced
the Permission Overlay Extension (POE) [19] in Armv8.9-
A, making efficient user-space domain switching feasible.

Building on this advancement, this paper introduces
NANOZONE, which leverages POE to overcome the limi-
tations of CCA-based systems in mitigating intra-process
threats (as depicted in Figure 1). By configuring the POE
index (similar to MPK’s protection keys) within Page Table
Entries (PTEs), NANOZONE partitions memory pages into
separate isolation domains. While executing in a domain,
NANOZONE temporarily grants access to sensitive memory
by directly modifying POE registers in user space, effec-
tively minimizing exposure time. Since POE provides per-
core permission registers, other cores remain restricted by
their own register configurations. Additionally, as POE relies
on OS management, NANOZONE incorporates a security
module (§4.3) into the root world (a higher-privileged layer)
to address kernel-space threats. Specifically, NANOZONE
prevents unauthorized modifications to POE domain con-
figurations (i.e., POE index) and memory mappings by
monitoring page table updates. Moreover, by intercepting
the interrupt control flow and first routing it to the root
world, NANOZONE can save and restore sensitive context
(e.g., POE permission register) to prevent OS corruption.

While the high-level design of NANOZONE may seem
straightforward, it faces challenges spanning scalability, effi-
ciency, and security. The core contribution of this paper lies
in balancing the trade-offs across these three dimensions.
Scalability Challenge: POE supports up to 16 domains, but

Figure 2. Domain-switching scenarios for 1,000 Memcached requests in
NANOZONE (■ POE switches, ■ PIE switches, ■ PAS switches).

only 7 are available for general use. For server workloads,
isolating private data for different clients in separate do-
mains is a safer practice. However, the typical number of
clients often exceeds this 7-domain limit.

We observe that Arm’s implementation of MPK differs
fundamentally. Beyond POE, it introduces another hardware
feature: the Permission Indirection Extension (PIE) [19]. A
memory page can be associated with both POE and PIE
domains. PIE sets base permissions in kernel space, while
POE supplies overlay permissions in user space, giving two
independent layers of control. By mapping four unused PIE
indexes onto existing POE indexes, NANOZONE increases
the number of available POE domains from 7 to 28. An-
other observation is that certain features in CCA resemble
POE and PIE: (1) Granule Protection Tables (GPT) [20],
which partition physical pages into distinct Physical Ad-
dress Spaces (PAS); and (2) Granule Protection Check 3
(GPC3) [21], which lets each core define bypass windows
that skip GPC for selected PASs. NANOZONE exploits these
features to reuse the same PIE and POE indexes across
different PASs, yielding a three-tier zone design (§4.1) that
scales to an effectively unlimited number of domains.
Efficiency Challenge: Enhancing scalability comes at the
cost of performance degradation. Switching between PIE
domains or across PAS boundaries requires trapping into
higher privilege levels. Compared to the lightweight user-
space POE domain switches, these transitions are pro-
hibitively expensive—our measurements show they incur
approximately 80× higher latency.

NANOZONE improves performance by optimizing do-
main allocation. The core idea is to route requests to the
same PIE domain and PAS whenever possible, thereby
minimizing the frequency of privileged traps. As shown in
Figure 2, this strategy yields a switch hit rate of 96.72%
within the POE domain, while restricting PIE domain tran-
sitions to 2.73% and PAS boundary crossings to 0.55%.
Overall, NANOZONE trims average domain-switch latency
to only 4.87% of that incurred by privileged switches.
Security Challenge: Domain-Switching Abuse. Intra-
process adversaries can hijack control flow and misuse
domain-switch instructions to obtain unauthorized access.

To address this, we apply the Guarded Control Stack
(GCS) [22], introduced in Armv9.4-A, to harden return
addresses against ROP [23]. We then extend GCS with a
Pointer-Integrity Memory (PIM) region (§4.2) that holds
shadow copies of all function pointers. Our LLVM pass



automatically inserts code to (1) store each function pointer
in PIM and (2) verify it against that backup on every derefer-
ence. PIM is writable only through a dedicated, unprivileged
instruction; a binary scan replaces any other occurrence of
this instruction with a standard store instruction, ensuring
that only our instrumentation can modify PIM. The entire
Code-Pointer Integrity (CPI) mechanism therefore runs in
user mode and adds minimal overhead (§7.2).

Since no commercial hardware yet supports the required
Arm features, we built two prototypes: a functional ver-
sion running on Arm’s official emulator and a performance
version on a hardware SoC. The software stack is about
4.5K LoCs. Kernel support demands a lightweight driver of
fewer than 1K LoCs. Compile-time support adds roughly
500 LoCs, comprising an LLVM pass and a runtime li-
brary. The core isolation module resides in the Monitor
(our TCB) and totals about 3K LoCs, small enough for
thorough testing. To evaluate NANOZONE’s security, we
systematically analyzed its attack surface (§6.1) and ex-
amined CVEs alongside other privileged-attack scenarios
(§6.2). Our findings showed that NANOZONE can thwart
both intra-process and privileged adversaries. We assessed
performance using micro-benchmarks (§7.2) and real-world
applications (§7.3). On micro-benchmarks, NANOZONE in-
curred moderate overhead, and in our three case stud-
ies—Nginx, Memcached, and NVM protection—it caused
no significant degradation. For example, Nginx experienced
a 22.67% overhead, most of which stemmed from privi-
leged isolation. Compared to the state-of-the-art Shelter [11]
(which lacks intra-process isolation), the additional overhead
from domain switching and CPI was only 4.40%.
In summary, we make the following contributions:
• We propose NANOZONE, which introduces a new hierar-

chical isolation model for Arm CCA, enabling multiple
isolation domains within a single process.

• Scalable Design: NANOZONE integrates POE, PIE, and
GPC3 hardware features to establish a three-tier zone
structure, supporting an unlimited number of domains.

• Robust Security: NANOZONE enhances GCS to thwart
domain-switch abuse and implements root-world moni-
toring to isolate attacks from a compromised OS.

• High Efficiency: NANOZONE demonstrates that, even
when domain switches involve privileged traps, optimized
domain allocation still delivers high performance.

2. Background and Motivation

2.1. Hardware Background

Permission Indirection Extension (PIE). Arm previously
used a direct memory permission model, where permissions
for each memory page were determined by the permission
bits in the PTE. In this model, modifying the permissions of
a domain requires updating the PTEs of all pages associated,
making it inefficient for domain-based isolation. Addition-
ally, the limited number of PTE bits restricts scalability
for supporting new permissions. To address these limita-
tions, Arm introduced an indirect permission model [19]
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Figure 3. Combination of permission indirection and overlay.

in Armv8.9-A. This model manages user-space permissions
using the 64-bit PIRE0_EL1 register, where each 4 bits
specify the permissions for a domain, supporting up to 16
domains. The original PTE permission bits (i.e., 54-bit UXN,
53-bit PXN, 51-bit WRITE/DBM, and 6-bit USER/AP[1])
are repurposed as indexes to indicate a page’s domain.
Notably, the direct and indirect permission models are com-
patible. As shown in Figure 3, in the direct model, a user-
space memory page with read-write permissions has the
bits UXN = 1, PXN = 1, WRITE = 1, and USER = 1 set.
In the indirect model, these bits instead serve as an index
in PIRE0_EL1 (i.e., perm15), which is pre-configured
with read-write permissions (i.e., 0b0101). Among the 16
domains supported by PIRE0_EL1, 12 are pre-configured
with fixed permissions to cover common use cases.
Permission Overlay Extension (POE). Although PIE can
configure base permissions, permission switching requires
trapping to privileged mode and flushing the TLB, leading
to inefficiencies. To address this, Arm also introduced the
POE [19] in Armv8.9-A, delegating part of permission
management to user-space. As shown in Figure 3, base
permissions can be further restricted by overlay permis-
sions stored in the 64-bit POR_EL0 register, which do not
need to be cached in the TLB. During runtime, the MMU
transparently combines and checks both base and overlay
permissions. POE uses three unused bits [62:60] in the PTE
as the index, supporting up to 8 POE domains1. However,
the POE index defaults to 0, where perm0 is fixed with
full permissions (i.e., 0b0111, read, write, and execute) to
ensure that default base permissions are not overridden. As
a result, only 7 POE domains are available for general use.
Guarded Control Stack (GCS). Arm introduced GCS [22]
in Armv9.4-A to defend against ROP [23], similar to the x86
Shadow Stack [24]. GCS leverages a new permission (i.e.,
perm11 in PIRE0_EL1) introduced by PIE, allowing non-
privileged read operations while disallowing writes, except
through the specific GCSSTR instruction. Notably, POE does
not apply to GCS. When enabled, GCS allocates a protected
stack for each thread in PIE domain11, pointed to by
the GCS pointer register (GCSPR_EL0). During branch
instructions with a link (e.g., BL, BLR), the CPU saves the
return address in the link register (LR) and transparently

1. In Armv9.4-A, the 128-bit translation tables [22] extend support for
a 4-bit POE index, enabling all 16 POE domains. However, software stack
support for the 128-bit translation tables is still under development.
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Figure 4. The architecture of CCA and its PAS access permissions.

pushes it onto the protected stack. Similarly, during a RET
instruction, the CPU verifies the LR against the top of the
protected stack to ensure return address integrity.
Confidential Computing Architecture (CCA). In the
Armv9.2-A, Arm introduced the Confidential Compute Ar-
chitecture (CCA) [3] with a hardware primitive called the
Realm Management Extension (RME) [20]. CCA introduces
a new execution environment called the realm world and
separates the entire Exception Level 3 (EL3) into a distinct
root world. Confidential Virtual Machines (CVMs), origi-
nally created by the normal world hypervisor, are executed
in the realm world, as shown in Figure 4(a). RME achieves
fine-grained physical memory access control by leveraging
two main steps: configuring Physical Address Spaces (PAS)
through the Granule Protection Table (GPT) and enforc-
ing PAS access checks with the Granule Protection Check
(GPC). Specifically, the GPT maps each physical memory
page (at a 4KB granularity) to one of several PAS: normal,
secure, realm, root, full-access, or no-access.
During memory accesses, the MMU consults the GPT to
retrieve PAS of the target memory page and performs a GPC
to validate access permissions based on the current security
state, as illustrated in Figure 4(b). If an access is invalid,
a Granule Protection Fault (GPF) is triggered immediately.
The most privileged root world ensures that other worlds
cannot modify the GPT or GPC’s registers.
Granule Protection Check 3 (GPC3). Armv9.6-A intro-
duced GPC3, an upgraded GPC that lets designated memory
regions bypass the check by configuring the GPC bypass
window register (GPCBW_EL3) [21]. Bypass windows are
configurable from 1GB to 64GB. Each core has its own
GPCBW_EL3. A core can directly access its configured
bypass windows, while other cores must undergo GPC.

2.2. Limitations of Existing Solutions

Intra-process isolation is the leading technique for en-
forcing the principle of least privilege. Existing mechanisms
(see Table 1) partitions memory into distinct domains within
a single address space and uses specialized hardware in-
structions to switch between them. For example, lwC [25]
builds contexts by assigning each a separate virtual memory
mapping via page tables. Context switches require updating
the page-table base, and even with PCID support to avoid
global TLB flushes, the transition still traps into privileged
mode, incurring non-negligible overhead.

TABLE 1. COMPARISON OF INTRA-PROCESS/ENCLAVE ISOLATION.

System Efficiency1 Scalability2 Security3
PlatformPA SA

lwC [25] Slow Many ✗ ✗ Portable
MPK [15] Fast 16 ✗ ✗ Intel

Donky [27] Fast 1,024 ✗ ✝ RISC-V
libmpk [28] Slow Many ✗ ✗ Intel

EPK [29] Fast 7,680 ✗ ✝ Intel
LightZone [30] Fast 65,536 ✗ ✝ Arm

Nested Enclave [13] Slow Many ✓ ✝ Intel
LightEnclave [14] Fast 16 ✓ ✝ Intel

NANOZONE Fast Many ✓ ✓ Arm
1 Efficiency refers to domain-switching performance.
2 Scalability refers to the maximum number of supported domains.
3 Security refers to the ability to resist the PA (Privilege Attack) from

the OS or the internal SA (Switch Abuse). ✝: Incomplete defense.

Unlike page-table-based approaches, Intel MPK [15] en-
ables unprivileged domain switching, achieving <2% over-
head when isolating SSL keys in Nginx [26]. However,
MPK supports only 16 domains, which hampers scalabil-
ity in multi-tenant workloads, prompting new designs that
lift this limit. For instance, Donky [27] leverages the 10
reserved bits of the PTE to support up to 1,024 domains
but requires substantial hardware modifications. libmpk [28]
employs an LRU-based algorithm to evict inactive domains,
reusing their domain IDs without hardware changes. How-
ever, evicting a domain involves modifying the PTEs of
all associated memory pages. As the number of pages or
domains grows, eviction costs and rates increase, leading to
significant overhead. EPK [29] leverages Intel’s Extended
Page Table (EPT) to reuse MPK domain IDs. Since the
VMFUNC instruction used for EPT switching is also non-
privileged, domain switching can be efficiently performed
in user space. LightZone [30], like lwC, creates separate
memory mappings for domains to enhance scalability. The
key difference is that LightZone runs processes in kernel
space to avoid trapping overhead of domain switching.
However, both EPK [29] and LightZone [30] still rely on
privileged software (e.g., kernel), resulting in a large TCB.

While intra-enclave isolation effectively mitigates threats
posed by privileged adversaries, it struggles with efficiency
and scalability. Nested Enclave [13] incurs substantial over-
head during switches between outer and inner enclaves,
whereas MPK-based solutions such as LightEnclave [14]
inherently restrict the number of isolation domains to 16.
On the other hand, domain-switching abuse creates internal
attack vectors that are often overlooked. lwC [25] entirely
ignores such threats, while libmpk [28] treats control-flow
integrity (CFI) as orthogonal to isolation and therefore
provides no protection against it. Existing defenses against
this abuse are also incomplete. Donky [27], EPK [29], and
LightEnclave [14] authenticate the caller before entering the
domain-switch trampoline, and Nested Enclave [13] vali-
dates the caller’s execution state. LightZone [30] goes fur-
ther by whitelisting specific call sites. However, all of these
defenses remain vulnerable to confused-deputy attacks: an
adversary can corrupt control-flow data (e.g., return address)
in untrusted code to redirect execution to a whitelisted



location, thereby “legitimately” invoking the trampoline.

3. System Overview

The coarse-grained isolation offered by CCA, combined
with the limitations of existing fine-grained techniques, calls
for a fresh look at the architecture. As Table 1 shows, earlier
proposals fall short of balancing scalability, efficiency, and
security. We therefore set out to reconcile these dimensions,
guided by the following design goals and insights:
• Scalability Goal. The design should allow creating un-

limited isolation domains in a process’s address space,
each with sufficient memory resources. It should also
maintain compatibility by avoiding hardware changes.

• Efficiency Goal. The design should mitigate performance
overhead caused by factors like domain switching.

• Security Goal. The design should block domain-
switching abuse. Moreover, it should decouple isolation
mechanisms from trust in the OS and minimize the TCB.

Scalability Insight: Combining hardware isolation mech-
anisms at different levels can substantially expand the
number of domains. EPK [29] utilizes MPK (user level) in
tandem with 512 EPTs (virtualization level) to reach 7,680
domains. Inspired by this, NANOZONE integrates existing
POE (user level), PIE (kernel level), and GPC3 (firmware
level) to enable a theoretically unlimited number of domains.
This is mainly realized through GPT’s ability to instantiate
multiple PAS for isolation, thereby overcoming EPK’s 512-
EPT limitation. Additionally, given that GPC3 supports a
maximum bypass window of 64 GB, each isolated domain
can accommodate up to approximately 2.2 GB of memory.
Efficiency Insight: Combining non-privileged and privi-
leged isolation primitives can also preserve low overhead.
In previous solutions [28], [29], the domain-switch instruc-
tions (e.g., WRPKRU and VMFUNC) are non-privileged. Sim-
ilarly, NANOZONE retains non-privileged domain-switching
for POE domains; however, switching PIE domains and
GPT PAS unavoidably requires privileged instructions on
Arm. To mitigate this overhead, our proposed three-tier zone
design leverages request locality—similar in principle to
caching. Specifically, we observe that user requests tend to
exhibit temporal locality, with a single client often issuing
consecutive requests within short time intervals. To leverage
spatial locality, we implement an affinity-based domain ID
allocation algorithm that attempts to co-locate requests from
different clients in the same PAS on each core.
Security Insight: (1) CPI can fully stop domain-switching
abuse. Previous whitelist schemes [14], [30] verify only
the immediate caller that invokes the trampoline, giving a
single-point control-flow check. Our CPI mechanism instead
keeps shadow copies of every return address and function
pointer, validating each one on use. By securing the control-
flow chain that leads to the trampoline, CPI eliminates
domain-switch abuse at its root. (2) Isolating the OS can
be achieved by offloading security-critical tasks to a min-
imal, higher-privilege layer. Under CCA, the root world,
accounting for just 1.9% of the OS code base, holds the
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highest privilege. Therefore, NANOZONE offloads essential
security operations (e.g., configuring PIE and POE indexes)
to the root world, rather than relying on the untrusted OS.
System Architecture. The architecture of NANOZONE is
illustrated in Figure 5. To eliminate reliance on the Realm
Management Monitor (RMM, 46K LoCs) in the realm
world, we instead run protected processes in the normal
world and divide their address spaces into developer-defined
domains across three tiers: POE domains (L1-Zone), PIE
domains (L2-Zone), and GPT PASs (L3-Zone). The security
of these domains is enforced by the Monitor in the root
world. To further minimize the TCB, NANOZONE adopts
a delegation-based design that separates control from own-
ership. Specifically, we introduce a driver to the OS that
manages the lifecycle of protected processes and memory
allocation. While the OS can create, schedule, and destroy
protected processes, it cannot access their data, code, page
tables, or register states once the processes are delegated.

During compilation, we modify the LLVM compiler to
identify all code pointers (e.g., function pointers, return ad-
dresses) for instrumentation protection, combined with post-
compilation binary scanning to prevent pre-inlined domain-
switch or GCS store instructions (§4.2).

In the setup phase, the OS first loads the instrumented
and scanned binaries and then invokes the driver to pre-
allocate and map memory for isolation domains, along with
their security control structures (e.g., page table and control-
flow backups). The driver requests the Monitor to audit the
loading procedure and delegates the pre-allocated physical
memory to the protected process by configuring the OS’s
GPT, ensuring that the OS cannot access these memory
regions. The Monitor then configures the protected process’s
GPT to isolate all L3-Zones from intra-process adversaries
(§4.3). Next, the Monitor partitions the L3-Zone into L2-
Zones and L1-Zones through PTE configurations (i.e., PIE
and POE indexes) and marks the control-flow-backup pages
with the GCS attribute (§4.1). Finally, the Monitor initializes
all registers associated with these features.

During runtime, the Monitor assigns isolation domain



IDs for the current execution context. The user space facili-
tates L1-Zone context switching alongside CPI mechanisms
without requiring privileged transitions to the Monitor. How-
ever, switching between L2-Zones and L3-Zones requires
the Monitor to update the GPC3 and PIE registers (§4.1).
Throughout process execution, the Monitor intercepts each
interrupt to enforce memory isolation and protect the register
state. Before resuming the process, the Monitor verifies and
synchronizes page table updates to prevent unauthorized
modifications to PIE, POE, and GCS configurations (§4.3).
Threat Model and Assumptions. NANOZONE’s TCB is
confined to the native root-world firmware and the se-
curity modules it adds. This firmware is loaded through
CCA Secure Boot, so its integrity can be verified with
the vendor’s signature. We trust the underlying hardware to
implement the required features (e.g., RME, PIE/POE, and
GCS) correctly and assume a clean toolchain—meaning the
application is built on a secure host. The normal-world OS
(including our driver) and the software stacks in the realm
and secure worlds are treated as untrusted.

NANOZONE protects against both privileged and intra-
process adversaries. Privileged attackers may control the
OS to remap domain memory, alter domain configurations,
tamper with permission registers, inject malicious interrupts,
forge domain-switch requests, or exploit DMA devices.
NANOZONE also accounts for Iago [31] attacks. In paral-
lel, intra-process adversaries may exploit memory bugs [8]
within the untrusted code to breach domain boundaries
or hijack control flow [23], [32], enabling domain-switch
abuse. Finally, NANOZONE enforces mutual isolation so
that a compromised domain cannot target other domains or
escalate privilege to higher-level software.

NANOZONE excludes scenarios where isolation domains
intentionally leak sensitive data or contain internal vulnera-
bilities. Physical attacks [33], [34], [35], micro-architectural
side channels [36], [37], and denial-of-service (DoS) at-
tacks are outside our threat model. The prototype targets
C programs such as Nginx. Attacks that exploit C++ vtable
pointers [38] or Data-Oriented Programming (DOP) [39] are
out of scope. Future work could add backup and verification
mechanisms for vtable and data pointers.

4. NANOZONE Design

4.1. Isolation Domain Extension

NANOZONE adopts the familiar code-centric work-
flow [40], [41] for intra-process isolation. Developers mark
code that handles secrets, obtain a domain ID, allocate
domain memory for those secrets, and place call gates at
isolation boundaries. These boundaries prevent bugs such as
buffer overflows [8] from granting untrusted code arbitrary
access to isolation domains. Since NANOZONE is aimed at
server software, the same protected logic is reused for many
clients, so it also supports a data-centric workflow [42]: each
request loads its own sensitive context into a domain on
demand. Conceptually, domain isolation boils down to two
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Figure 6. Structure of the domain extension: (a) shows the extension via
PIE, while (b) depicts the extension via multi-PAS.

tasks—configuring a domain’s memory and switching its
permissions. NANOZONE redesigns both so it can host an
unlimited number of domains, and it allocates domain IDs
strategically to minimize costly privileged switches.
Extended Domain Configuration. With POE alone, the
3-bit POE index (value 0 being reserved) limits the system
to seven addressable domains. NANOZONE breaks past this
cap in two ways: (1) it taps the remaining unused index
encodings, and (2) it reuses the same encoding concurrently
for separate, non-overlapping physical memory regions.

PTEs carry a 4-bit PIE field for base permissions in
addition to the 3-bit POE field for overlay permissions.
While most PIE index encodings are already in use—six
for common permissions, two for GCS, and four for ker-
nel—we observe that there remain four unused encodings.
As shown in Figure 6(a), NANOZONE combines PIE and
POE indexes to form the domain ID, expanding the ad-
dressable domains to 28. Isolation between these expanded
domains is enforced in two cases. (1) Domains within the
same L2-Zone. For example, Domain-A (PI:6, PO:1)
and Domain-B (PI:6, PO:2) share the same base permis-
sion (index 6) in the PIE permission register (PIRE0_EL1).
However, their overlay permissions differ in the POE per-
mission register (POR_EL0). When executing in Domain-
A, overlay perm1 is enabled and overlay perm2 is
forced to 0 (overriding base perm6), which blocks any
access to Domain-B. (2) Domains across different L2-Zones
with a shared POE index. Consider Domain-A (PI:6,
PO:1) and Domain-C (PI:3, PO:1). Both domains en-
able overlay perm1, but Domain-C’s base permission
(index 3) remains disabled. As a result, even though they
share the same POE index, no lateral access is allowed
from Domain-A into Domain-C. Notably, PIE indexes with
fixed semantics (for example, the default index 4) are never
reused, since their base permissions cannot be masked.

The 28 POE-PIE domains still fall short of the scalability
needed for multi-tenant servers, NANOZONE therefore turns
to another CCA feature—the GPT, which, beyond the page-
table layer, partitions physical memory into multiple PASs.
A simple idea is to map each POE-PIE domain to its own
PAS, so a domain is identified by 〈PAS, PIE, POE〉; see
Figure 6(b). This raises a new problem: the requesting
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Figure 7. Intra-process permission switching in the NANOZONE lifecycle.

core must gain exclusive access to its target PAS while all
other cores are blocked. Existing schemes give every PAS a
private access-control table (e.g., EPK [29] maintains extra
EPTs), but this per-PAS-per-table model inflates memory
and incurs creation latency (both detailed in §7.2), while
being constrained by hardware limits such as 512 EPTs per
VM. NANOZONE keeps all PASs inside a single process’s
GPT and uses the GPC3 bypass-window feature. During
setup each PAS is marked no-access. When a core
needs to access a particular PAS, the Monitor programs that
core’s GPCBW_EL3 register to disable the GPC only for
the required range; other cores still fail the check. Since the
Monitor pre-defines every legal window, attackers cannot
open arbitrary ones. As a result, our approach avoids extra
tables and provides effectively unlimited domain scalability.
Domain Switching. Like prior works [14], [27], [29],
[30], NANOZONE packages its domain-switching code into
a dedicated trampoline that orchestrates transitions across
the three isolation levels. Permission grants are usually
trap-free—each involves enabling the corresponding over-
lay permission by writing POR_EL0, but only transitions
that cross L2- or L3-Zone boundaries require a privileged
trap. To revoke access, user code simply clears all overlay
permissions; even if the PIE base permission or bypass
window stays active, the cleared overlay ensures untrusted
code cannot reach isolation domains (see Figure 7). For an
L2 switch, the Monitor writes PIRE0_EL1 to disable the
old base permission and enable the new one. For domains
within an L2-Zone that require special privileges, we set
their base permission to full R/W/X and use POE overlays
for fine-grained access control, avoiding unnecessary traps.
Switching between L3-Zones updates GPCBW_EL3 to point
the bypass window at the new PAS.
Domain ID Allocation Optimization. L2 and L3 switches
trigger privileged traps, so NANOZONE lowers their fre-
quency by redesigning domain allocation. First, it follows a
per-connection-per-domain policy, keeping consecutive re-
quests from the same connection in the same domain and
limiting them to inexpensive L1 switches. Second, servers
like Memcached hand connections to worker threads in
round-robin fashion; if domains were allocated in that same
order as shown in Figure 8(a), each thread would own
a scattered set spanning many L2 and L3 zones, sharply
raising the trap rate. NANOZONE instead grants each thread
a block of 28 consecutive domains that all map to the same
PAS. Threads still process connections sequentially, but each
one lands in a locally contiguous domain, as illustrated
in Figure 8(b). Thus only a small share of requests must

Thread

… … …… … … 3 L2 Switch

0 L3 Switch

11 L2 Switch

2 L3 Switch

Connection 

Queue

(a) Round-Robin (b) NANOZONE

#81 #83#82

#84 #86#85

#0 #2#1

#140#112#84

#83#55#27

#56#28#0

Domain

Figure 8. Domain allocation: round-robin vs. our optimized strategy.

perform L2 and L3 switches (see §7.2 for hit-rate details).

4.2. Code-Pointer Integrity

The root cause of domain-switching abuse lies in two
vectors. (1) pre-inlined switching instructions embedded in
the binary, and (2) control-flow hijacking attacks that exploit
existing switching logic—either via returns/jumps to the
trampoline or direct mid-trampoline execution of switching
instructions. To counter these attacks, NANOZONE first per-
forms binary scanning to eliminate pre-inlined switching in-
structions (e.g., unauthorized POR_EL0 updates), ensuring
that only the mapped trampoline can change permissions.
Second, NANOZONE blocks switching reuse by enforcing
CPI on return addresses and function pointers.
Return Address Protection. NANOZONE employs the off-
the-shelf GCS feature to secure return addresses. On each
branch-with-link, the CPU pushes the return address to the
protected GCS region and, on return, checks it against the
value popped from that stack. The enabling and configura-
tion of GCS, such as setting the stack pointer to a securely
pre-delegated memory area, are managed by the Monitor.
Function Pointer Protection. The core idea behind our
function pointer protection is to create a set of legitimate
landing pads (indirect jump targets), back them up into the
PIM region—a NANOZONE-managed read-only memory
area with GCS attributes—and enforce pre-jump integrity
checks. Despite conceptual simplicity, it faces three critical
challenges: (1) ensuring threads securely acquire their PIM
base address, (2) optimizing the efficiency of backup storage
and lookup during checks, and (3) preventing reuse attacks
that exploit previously backed-up legitimate targets.

We observe that TPIDRRO_EL0 is a read-only, user-
accessible per-thread register. The OS commonly uses
this zero-latency path to expose values that must re-
main constant for a thread’s lifetime. Following the same
practice, NANOZONE stores the PIM base address in
TPIDRRO_EL0, shielding it from intra-process tampering.

For efficient backups (Figure 9, backup_ptr), the
base is designed to point to the slot reserved for the next
pointer entry, allowing user-mode code to issue a single non-
privileged gcsstr instruction to store the backup and auto-
increment the slot address. Note that during binary scanning
we also strip out any pre-inlined gcsstr so that only our
instrumentation can invoke it. Lookup is also constant-time
(Figure 9, check_call): NANOZONE embeds the slot
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.macro backup_ptr, x1: address of the function to be stored
x2: memory address where the pointer resides

## 1) fetch next idle slot address from PIM[0]
mrs x3, TPIDRRO_EL0          ## x3 ← PIM base
ldr x0, [x3]                 ## x0 ← *PIM[0] (idle slot)
## 2) compute slot index and check bounds
sub x4, x0, x3 ## offset = slot − base
lsr x4, x4, #3               ## index  = offset / 8
cmp x4, #PIM_SIZE
b.hs .Lpim_oob ## abort if PIM is full
## 3) store function pointer to that slot (GCSSSTR)
.inst 0xD91FC101 ## GCSSSTR x1, [x0]
## 4) advance idle pointer and write it back to PIM[0]
add x0, x0, #8               ## next_free += 8
mov x1, x0                   ## value → x1
mov x0, x3                   ## PIM base → x0
.inst 0xD91FC101 ## GCSSSTR x1, [x0]
## 5) encode slot index into high-order bits (except bit 55)
and x5, x1, #PTR_MASK        ## clear old high bits
bfi x5, x4, #48, #7          ## index[0:6] → bits 48-54
lsr x4, x4, #7
bfi x5, x4, #56, #8          ## index[7:14] → bits 56-63
str x5, [x2]                 ## publish encoded pointer

.endm

.macro check_call, x1: The function pointer to be called
## 1) duplicate encoded pointer and then strip high bits 
mov x2, x1                   ## x2 ← encoded
and x1, x1, #PTR_MASK        ## x1 ← original
## 2) extract 15-bit index and check bounds
ubfx x4, x2, #48, #7          ## low 7 bits  → x4[6:0]
ubfx x7, x2, #56, #8          ## high 8 bits → x7[7:0]
lsl x7, x7, #7
orr x4, x4, x7               ## x4 ← full index
cmp x4, #PIM_SIZE
b.hs .Lpim_oob ## abort if out of bounds
## 3) fetch golden copy from PIM and compare integrity
mrs x5,  TPIDRRO_EL0         ## PIM base
add x5,  x5,  x4,  lsl #3    ## slot addr = base + idx*8
ldr x6,  [x5]                ## golden pointer
cmp x1,  x6
b.ne    .Lcorrupt ## abort if mismatch

.endm

Figure 9. Instrumentation code for pointer backup and call verification.

index into the unused high-order bits of the pointer during
backup. This index travels with the pointer as it is copied,
avoiding extra memory or propagation tracking. To eliminate
redundant storage during pointer propagation, NANOZONE
checks the high-order bits: if they already contain a valid
index, the pointer has been backed up previously and the
operation is skipped. NANOZONE retrieves the backup di-
rectly from the PIM using the base address and index for
comparison with the target. Before utilizing the index, range
checks ensure accesses stay within the PIM boundaries,
preventing attackers from retrieving forged backups via out-
of-bounds indexes (see §7.2 for detailed CPI costs).

Attackers could try to reuse legitimate landing pads.
To mitigate this, we introduce pointer-type tags for func-
tion pointers. During compilation, we extract each function
signature at the LLVM IR level, generate a truncated 64-
bit hash (serving as a unique type ID), and embed this
ID directly into IR instructions to preserve type context
across the compilation pipeline. When backing up function
pointers, the ID is stored as metadata alongside the pointer
in the PIM. At call sites, both the pointer and its associated
ID are retrieved, and the ID is validated against the expected
type hash, thereby hindering gadget chaining.

NANOZONE also needs to handle some corner cases.

Process Memory

L3-Zone 0 L3-Zone 1 …GCSCodePageTabVectorTab

L3-Zone 0 L3-Zone 1GCSCodePageTabVectorTab …

Normal No-Access

OS GPT

Proc GPT

Figure 10. A dual-GPT design blocking OS access to secure memory.

Global function pointers are initialized at compile time,
bypassing the runtime backup. We modify the linker script to
place all initialized global function pointers into a dedicated
segment. During binary loading, this segment is copied into
the PIM, and each pointer is stamped with its corresponding
PIM index in the high-order bits. Additionally, to address
backup omissions from assignments to universal pointers
(e.g., void*), we insert extra checks to detect whether the
source address is a function pointer that has been typecast
(i.e., via bitcast). If so, the pointer is backed up, and
the type ID is derived from the original source type. LLVM
IR’s strong typing guarantees that any later call through the
universal pointer must cast it back to a concrete function-
pointer type, and that cast exposes the type we need. Further
propagations (even nested ones) need no extra handling
because the pointer has already been recorded.

4.3. OS Privilege Reduction

To prevent the OS from breaking the established isola-
tion, NANOZONE restricts its privileges in three ways: (1)
it denies the kernel access to secure memory regions, (2) it
blocks any kernel changes to sensitive interrupt context, and
(3) it forbids unauthorized updates to page-table mappings
or permission configurations of POE, PIE, and GCS pages.
Memory Isolation. Managing access at the virtual memory
layer, such as hooking page tables for the kernel and all
other processes to block alias attacks, is both complex and
heavyweight. Prior works [10], [11] shift control to the
physical memory layer with GPTs, delivering a simpler and
more efficient solution. NANOZONE therefore maintains two
distinct GPTs: an OS GPT and a proc GPT (see Figure 10).
The OS GPT denies the kernel any access to process mem-
ory, including domain pages, the GCS and PIM regions,
and executable code, and also revokes access to interrupt-
vector tables and page tables. Once the driver allocates
these regions, the Monitor marks them no-access before
handing them to the process. The proc GPT, by contrast,
leaves everything accessible except the PASs that make up
L3-Zones, which stay blocked until a bypass-window switch
occurs (§4.1). Other sensitive areas (e.g., read-exec code)
remain protected by ordinary page-table permissions. To
ensure both GPTs coexist safely, the Monitor checks that
delegated memory never overlaps existing regions and, when
the realm world or secure world requests pages, updates
the proc GPT to prevent isolation domains from reaching
them. For system calls that pass arguments through a process
buffer, the Monitor allocates and maintains shared memory
to keep the OS from touching process memory directly.
Interrupt Interception. To isolate process state from the
OS, NANOZONE intercepts all user-to-kernel transitions (see



§7.2 for detailed costs). A pre-delegated interrupt vector
(see Figure 10) ensures that control first enters EL3 before
reaching the kernel. The Monitor swaps the proc GPT for
the OS GPT, saves and sanitizes sensitive context (POE/PIE
permission registers and GCS/PIM pointer registers), and,
just before handing control back, restores this context while
re-enabling PIE, POE, and GCS so the OS cannot silently
disable them. However, we observe that domain switches
occur far more often than interrupts, so forwarding each
L2- or L3-Zone transition through a two-stage trap (first
to the vector table, then to the Monitor) would be too
expensive. Capturing PIE register accesses from EL3 (i.e.,
via SCR_EL3) is also impractical due to overly coarse con-
trol—once enabled, all POE register accesses would likewise
trap to the Monitor, undermining our efficiency goal (§3).
Instead, NANOZONE exploits the Armv8.5-A RNG TRAP
feature: any user-space read of RNDR or RNDRRS traps
directly to the Monitor. NANOZONE co-opts these registers
as lightweight triggers for L2 and L3 switches, entirely
bypassing kernel mode. Since RNG trapping also applies
to the OS, the Monitor validates each request by checking
the current GPT base, blocking domain-switching abuse.
Page Table Protection. As noted earlier, NANOZONE con-
figures the OS GPT to deny the OS access to process page
tables (see Figure 10). When a page fault occurs, the OS for-
wards the mapping request to the Monitor, which performs
the actual page table updates. The Monitor enforces strict
checks to ensure that: (1) newly mapped pages are non-
executable, and (2) existing secure memory mappings and
their configurations (i.e., PIE/POE indexes in PTEs) are not
modified. Additionally, NANOZONE defends against known
Iago attacks [31], such as malicious mmap, by verifying that
new mappings do not overlap with existing ones.

5. Implementation

At present, even the latest Cortex-X925 [43] lacks the
Arm extensions our work depends on. Therefore, we imple-
mented: (1) a functional prototype on the Arm Fixed Virtual
Platform (FVP) [44], which natively supports these features,
to evaluate security properties; and (2) a performance pro-
totype on physical Arm SoCs, where the missing features
are emulated, to assess execution overhead.
Functional Prototype. NANOZONE instruments source
code with LLVM 16.0.0 to secure function pointers. To
locate where a function pointer is stored, it iterates over
every StoreInst and MemCpyInst—the latter often
initializes struct fields that are function pointers. With
getPointerElementType, it checks the pointee type:
if the destination is a function pointer, or the source
was a function pointer before a BitCastInst, it inserts
backup-protection code. NANOZONE then analyzes each
CallInst to identify call sites. When the callee is a run-
time Value (e.g., from a LoadInst or BitCastInst),
it inserts code that verifies the pointer against its backup.
Both backup and verification derive a function-type ID by
hashing the type with SHAKE-128, mitigating reuse attacks.

Since GPC3 supports only contiguous bypass windows,
the NANOZONE kernel driver leverages the Contiguous
Memory Allocator (CMA) to allocate a contiguous block
of PAS for the L3-Zone and remaps it into the process’s ad-
dress space. Domains can then request the Monitor (Trusted
Firmware-A 2.9.0) to allocate this pre-mapped memory us-
ing dedicated zone_mmap and zone_munmap interfaces.
Each interface call is wrapped in an svc instruction, which
traps into a protected vector table that immediately issues
an smc to enter the Monitor. Regular interrupt traps follow
a similar path to reach the Monitor. Before the exception
returns to the process, the Monitor re-enables the S1POE
and S1PIE bits in ID_AA64MMFR3_EL1 and the GCS and
RNDR_trap bits in ID_AA64PFR1_EL1, ensuring these
features stay active in user space. During our development,
the latest available Linux kernel (v6.7.0) officially supported
only the PIE. Support for POE and GCS had not yet been
upstreamed, so we applied patches for these features from
Patchwork [45], which were still under review at the time. It
is worth noting that starting from v6.13-rc1, these features
have been merged into the mainline. To enable these features
in the FVP, the required boot parameters must be enabled:
has_rndr_trap, has_permission_overlay_s1,
rme_support_level, has_rme_gpc3, has_gcs,
and has_permission_indirection_s1.
Performance Prototype. We built the performance pro-
totype on a Rockchip RK3399 (Armv8) board [46]. Its
implementation mirrors the functional prototype, except that
the required hardware features are emulated as follows: For
L1-Zone switches we emulate accesses to POR_EL0 with
TPIDR_EL0. L2-Zone switches repurpose AFSR0_EL1 as
PIRE0_EL1, while L3-Zone bypass windows substitute
ACTLR_EL3 for GPCBW_EL3. Since the hardware RNG-
trap is absent, L2 and L3 transitions are also driven by
svc and smc; actual hardware overhead will therefore
be lower than our emulation. We also map AFSR0_EL3
and AFSR1_EL3 to GPCCR_EL3 (GPC control) and
GPTBR_EL3 (GPT base) to measure GPC-setup and GPT-
switching costs. PIE domains are emulated by reusing avail-
able PTE bits in the direct-memory model, while POE
domains use reserved PTE fields. The gcsstr instruction
is replaced by a standard str, and tlbi paallos, which
normally flushes only cached GPT entries, is conservatively
replaced by a full TLB invalidation.

6. Security Evaluation

6.1. Theoretical Security Analysis

We analyze security by listing attack vectors from the
threat model and detailing how NANOZONE mitigates them.
Untrusted OS. At startup, the OS might tamper with a
program’s image or map several binaries onto overlapping
pages. The Monitor counters this by validating the load
address and the integrity of the in-memory binary. To pre-
vent races between concurrent delegation requests, all GPT
operations are synchronized with a spinlock.



At runtime, the OS GPT blocks the kernel from touching
a protected process’s page tables; every mapping request is
vetted by the Monitor. The kernel therefore cannot place
an isolation-domain or GCS/PIM page outside the assigned
L3-Zones or change a page’s L1- or L2-Zone assignment
by editing its PTE indexes. From EL1, the kernel might
still try to (1) tweak POE/PIE permission registers to force
an L1/L2 switch, (2) redirect the GCS stack pointer, (3)
forge an interrupt-return address, or (4) disable the isolation
features. All attempts fail because control always returns to
EL3 first, where the Monitor restores the registers and re-
enables the features (§4.3). Any effort to trigger an L2 or
L3 switch by touching the RNG TRAP register under the
OS GPT is likewise rejected; the Monitor allows access only
when execution is under the proc GPT. Iago attacks [31] that
manipulate syscall return values such as mmap are thwarted
because the Monitor refuses overlapping mappings, and
GCS/PIM make a follow-on control-flow hijack even harder.
Running in the highest-privilege root world, the Monitor is
beyond the kernel’s reach: the OS cannot bypass its interrupt
interception, GPT memory control, or change EL3 settings
(e.g., GPT base or L3-Zone bypass windows). Finally, since
GPT entries and bypass windows can reside in the TLB, the
Monitor flushes the TLB on each interrupt or L3 switch and
sets the TTBR CnP bit to prevent cross-core sharing.

Peripheral-side attacks deserve equal caution. We config-
ure the SMMU’s GPT to enforce GPC for devices, blocking
DMA access to protected memory. Additionally, we flush its
translation caches, mirroring CPU-side hardening, to prevent
TLB leaks through stale entries or bypass windows.
Intra-process Adversaries. Memory isolation for each do-
main is enforced via a three-tier regime (POE/PIE/GPC3),
thwarting even arbitrary out-of-bounds reads/writes by un-
trusted code (§4.1). Backed-up return addresses and function
pointers stop control-flow hijacks such as ROP [23] or
JOP [32], blocking any attempt to abuse domain switches;
reuse attacks invoking legitimate targets are likewise de-
feated due to type ID validation at call sites (§4.2).
Malicious Domains. A domain runs at EL0 in the normal
world, so although it can access its own private memory, it
lacks the privilege to access the other worlds or the normal-
world kernel. Note that the OS page table can still pre-
vent lateral escalation into other user processes. To address
potential collusion with the OS, the Monitor checks that
each OS-supplied L3-Zone region does not overlap existing
memory and synchronously updates any memory delega-
tions requested by other worlds in the proc-GPT (§4.3).

6.2. CVE Mitigation Analysis

Beyond theoretical analysis, we evaluated NANOZONE’s
practical defenses against known CVEs. On Arm FVP,
NANOZONE blocks all vulnerabilities in Table 2, including
five memory-safety flaws and five control-flow hijacks.

Memory bugs typically arise from missing bounds
checks, enabling out-of-bounds reads (e.g., CVE-2014-
0160) or writes (e.g., CVE-2023-3138) that can leak or
corrupt sensitive data like private keys. In NANOZONE, all

TABLE 2. CVES FOR MITIGATION ANALYSIS.

CVE-* Description
Memory Safety Vulnerabilities:
2014-0160 Out-of-bounds read in OpenSSL’s TLS heartbeat
2017-2800 Off-by-one overwrite in wolfSSL’s X.509 parser
2017-18922 Heap overflow in LibVNCServer’s WebSocket decoder
2022-24834 Heap overflow in Redis’s cjson library
2023-3138 Out-of-bounds write in libX11’s InitExt
Control-Flow Hijacking:
2013-2028 Return address overwrite in Nginx’s chunked parser
2015-7805 Func pointer overwrite in libsndfile’s AIFF parser
2016-5314 Func pointer overwrite in LibTIFF’s PixarLogDecode
2021-44486 Func pointer overwrite in YottaDB’s op_write
2024-22857 Func pointer overwrite in zlog’s zlog_rule_new

secret pages reside in their own isolation domain; any out-
of-bounds access therefore triggers a POE/PIE permission-
check fault and, if necessary, escalates to a GPF. Take the
well-known Heartbleed (CVE-2014-0160) as an example.
In OpenSSL’s tls1_process_heartbeat, the code
copies a user-supplied payload length without confirming
that it fits within the record, allowing an attacker to over-
read up to 64 KB of memory with each request. Under
NANOZONE, the TLS private key and other user secrets are
mapped to a separate domain, so the attempted over-read
generates a hardware fault instead of revealing data.

Control-flow hijacks exploit memory corruption to over-
write critical control data, such as return addresses (e.g.,
CVE-2013-2028) or function pointers (e.g., CVE-2021-
44486), thereby redirecting program execution. Consider
CVE-2024-22857, a heap-based buffer overflow in zlog’s
zlog_rule_new. While parsing a user-provided configu-
ration file, the function fails to check the length of generated
strings; a crafted file can overflow the record_name
buffer in a zlog_rule_s structure and clobber the ad-
jacent record_func pointer, enabling arbitrary code ex-
ecution. NANOZONE prevents this attack: on every indirect
call it validates the function pointer against its backup stored
in PIM, terminating execution if tampering is detected.

We designed two attacks to evaluate NANOZONE’s re-
silience to privileged adversaries, and its defenses blocked
both attempts. (1) We mapped the process page tables into
kernel space and altered the domain’s PTEs, changing the
POE and PIE indexes so that the pages would lie in a
region with ordinary read/write permissions. The change
immediately triggered a GPF. (2) While handling getpid,
we modified the POE and PIE permission registers in the
kernel to grant read access to a domain that should have been
private. When control returned to user mode, code outside
the domain still could not access its memory because the
Monitor had already restored the correct register values.

7. Performance Evaluation

7.1. Experimental Setup

All code is compiled on an Arm server with a 96-
core HiSilicon Kunpeng-920 CPU (2.6 GHz) and 256 GB



TABLE 3. COST OF BASIC OPERATIONS OF NANOZONE.

Operation L1 L2 L3 Pointer Pointer getpid Hooked
Switch Switch Switch Backup Check getpid

Cycles 74.13 6,169.47 6,173.36 18.02 11.07 725.36 6,533.63

RAM. Performance experiments run on a Rockchip RK3399
board (Armv8-A) with two Cortex-A72 cores (1.8 GHz),
four Cortex-A53 cores (1.4 GHz), and 4GB RAM—a setting
widely adopted in prior works [10], [11], [47]. To eliminate
variability from the SoC’s big.LITTLE design, we lock the
Cortex-A72 cores at their maximum frequency and disable
all Cortex-A53 cores. Our evaluation covers two vectors:
Micro-benchmarks. We first show benefits of our bypass-
window-based isolation versus the per-PAS-per-GPT ap-
proach. NANOZONE provides defense against both intra-
process and privileged adversaries, with performance over-
heads stemming from three main sources—domain switch-
ing, CPI enforcement, and OS privilege de-escalation. To
quantify these costs, we evaluate each protection feature in
the following three experiments: (1) Measure the hit rate and
average latency of our three-tier zone switching optimiza-
tion. (2) Use SPEC CPU2017 [48] to gauge the overhead
introduced by enforcing CPI. (3) Run lmbench [49] to assess
the impact of OS monitoring on process-side performance.
Real-world Applications. We assess NANOZONE’s real-
world performance through three case studies: (1) hardening
Nginx by isolating cryptographic keys, (2) securing Mem-
cached by protecting its key-value pairs, and (3) safeguard-
ing persistent NVM data via intra-process memory isolation.

7.2. Evaluation on Micro-benchmarks

Initialization Optimization. To quantify the benefits of
NANOZONE’s bypass-window design during initialization,
we reimplemented the state-of-the-art per-PAS-per-GPT
scheme from CAGE [47] as a baseline. Both approaches
construct the same OS GPT and proc GPT (Figure 10),
but diverge thereafter. In the baseline, each new L3-Zone
requires cloning the proc GPT, marking its PAS as normal
(i.e., accessible), and assigning the copy to that zone. Note
that the Level 1 (L1) tables in the proc GPT can be reused
and each PAS is referenced by a single block descriptor in
the Level 0 (L0) table, only the L0 table needs to be dupli-
cated per zone. In contrast, NANOZONE always reuses the
original two GPTs; each core simply programs its bypass-
window register to open the PAS. As a result, under a 25-
zone workload, the baseline consumes 100 KB more DRAM
than NANOZONE. However, the performance overhead of
GPT duplication remains negligible, adding only 0.02%.
Domain Switching Cost. To measure the base-operation
overhead of each protection mechanism, we used the Perfor-
mance Monitoring Unit (PMU) to record CPU cycles over
one million iterations (see Table 3). An L1 switch incurs
only 74.13 cycles, while L2 and L3 switches each exceed
6,100 cycles—motivating our domain allocation strategy
(§4.1) to maximize inexpensive L1 transitions. Table 4 re-
ports performance on our platform with two worker threads:

TABLE 4. AVERAGE DOMAIN SWITCHING OVERHEAD (IN CYCLES) AND
DIFFERENT SWITCHING-LEVEL HIT RATE.

Domain Num.1 7 14 28 112 168 224
Avg. Switch Cost 86.00 198.42 255.88 300.63 303.06 303.43
L1-Zone Hit Rate2 100.00% 98.21% 97.32% 96.65% 96.58% 96.52%
L2-Zone Hit Rate2 0.00% 1.79% 2.68% 2.68% 2.68% 2.68%
L3-Zone Hit Rate2 0.00% 0.00% 0.00% 0.67% 0.74% 0.78%
1 Domain Number refers how many domains are assigned per core.
2 Hit Rate refers to the proportion of switches where the highest

switching level is L1, L2, or L3.

with up to seven domains (all within a L2-Zone), only
lightweight L1 switches occur (100% hit rate) at the cost
of 86 cycles; expanding to 28 domains still confines them
to one L3-Zone, so L3 switches remain unnecessary, but L2
transitions appear, reducing the L1 hit rate to 98.21% and
raising average cost to 255.88 cycles; even at 224 domains,
L2 switches persist at a 2.68% rate and L3 switches at
just 0.78%, with the average cost stabilizing around 300
cycles—less than half the overhead of a getpid call. These
results demonstrate that our allocation optimization effec-
tively reduces the impact of expensive privileged transitions.
CPI Enforcement Overhead. Table 3 shows that CPI (§4.2)
is lightweight: both backup and check complete in under 20
cycles, as they involve only user-space memory accesses.
To assess the impact on high-stress workloads, we turned to
SPEC CPU2017 [48]. Since the speed suite needs 16 GB
of RAM while our board has just 4 GB, we evaluated the
overhead with all the C benchmarks from SPEC rate2017 in-
stead. We tested three scenarios: 1) enabled GCS protection
for all return addresses, 2) enabled PIM backup protection
for function pointers, and 3) integrated protection for both.
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Figure 11. Performance overhead on the SPEC CPU2017 C benchmarks.

As shown in Figure 11, protecting return addresses alone
averaged 4.83% runtime overhead. Most tests exhibited
low overhead, with some, such as 505.mcf and 519.lbm,
showing no noticeable impact due to their small code sizes
(approximately 3K and 1K LoCs, respectively) and low
complexity. The highest overhead was observed in 525.x264,
which is tied to its video encoding nature: functions in
x264 are invoked repeatedly, often within deeply nested
loops, during the processing of each macroblock, slice,
and frame. Protecting function pointers alone resulted in a
lower average overhead of 2.37%, as function pointers are
generally used less frequently. Some benchmarks, such as
519.lbm, 538.imagick, and 557.xz, showed negligible impact
because they contain very few function pointers. In contrast,
programs like perlbench, which rely heavily on function



TABLE 5. PERFORMANCE OVERHEAD ON LMBENCH.

Time (µs) null null stat open/ slct sig sig fork Mmap Page
call I/O close TCP inst hndl proc Latency Fault

Native 0.47 0.52 1.72 2.82 6.95 0.63 2.47 1.1K 13.2K 0.81
NANOZONE 3.70 4.85 8.17 11.4 11.5 3.94 7.88 12.0K 49.8K 1.14

pointers for opcode dispatch in the interpreter core, expe-
rienced higher overhead of 7.52%. Overall, the integrated
protection introduced an average overhead of 7.13%. We
also tested Nginx and found that CPI reduced throughput by
just 1.61%, confirming its practicality in production settings.
Runtime Monitoring Impact. NANOZONE intercepts the
control flow between a protected process and the OS, in-
troducing additional overhead to kernel services the process
relies on. Hooking the trivial getpid call adds about 5,808
cycles (Table 3), reflecting only the cost of trap entry/exit,
context save-and-restore, and GPT switching that the Mon-
itor performs (§4.3). More complex syscalls demand extra
work from the Monitor, so we used lmbench v3.0-a9 [49]
to profile the overall impact. As Table 5 shows, monitoring
adds less than 10 µs to most operations. The most expensive
one is mmap, which incurs 36.6 ms because, in addition to
intercepting the call, the Monitor must validate the requested
region (e.g., detect overlaps) and update page tables.

7.3. Evaluation on Real-world Applications

Performance Comparison. We compare the performance
with three alternative schemes besides native execution: (1)
Shelter [11], which provides only process-level isolation by
serving all client requests within a single address space; (2) a
bypass-window-only design, implemented by us to map each
bypass window to its own domain and trap interrupts to the
Monitor; and (3) lwC [25], originally built for FreeBSD—its
overhead is estimated as in prior work [29], [50], with
additional hooks added to emulate privileged isolation.
Case Study 1: Server Application Protection. We de-
ployed Nginx v1.26.3 [51] with OpenSSL v3.3.4 [52]
and isolated each client’s SSL session key in a separate
domain following established methods [28] to assess the
performance impact of intra-process and privileged isola-
tion. NANOZONE also enforced safeguards against domain-
switching abuse. On our two-core board, the server ran two
worker processes with keep-alive enabled to avoid repeated
connection setups. We generated workloads with the ab [53]
tool from a separate machine within the same LAN and
measured throughput under varying concurrency levels and
file sizes. In concurrency tests, the number of clients ranged
from 100 to 500, each issuing 80 simultaneous requests for a
small (22 B) document. In file-size tests, 300 clients (each
issuing 80 requests) requested documents ranging from 1
KB to 16 KB. Average throughput was computed from
50 test repetitions; with the CPU fully loaded, any added
processing cost directly reduced throughput.

Figure 12(a) presents the results of the concurrency
test. Overall, NANOZONE incurs a 22.67% average through-
put overhead. Compared to Shelter [11], which provides
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Figure 12. Comparison of Throughput Overhead on Nginx.
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Figure 13. Comparison of Throughput Overhead on Memcached.

only privileged isolation, our finer-grained protection adds
just 4.40% overhead. Excluding CPI overhead, domain iso-
lation alone contributes only 2.84%, owing to our opti-
mized three-tier zone design. Further comparisons reinforce
this advantage: relative to the bypass-window-only scheme,
NANOZONE achieves 1.58% higher throughput, and it out-
performs lwC [25] by 20.07%, even though neither alterna-
tive defends against domain-switching abuse (and thus has
no CPI overhead). These improvements stem from the fact
that both of those schemes trap to higher privilege levels
on each domain switch. Figure 12(b) shows the file-size
test results, which mirror the concurrency findings. Here,
the overall average overhead is 21.06%. Against Shelter,
performance drops by 4.55%, while throughput improves by
1.16% and 17.49% over the other two schemes, respectively.
Case Study 2: In-Memory Key-Value Shielding. We
used Memcached v1.6.31 [54] to evaluate the performance
overhead of shielding an in-memory key-value store. Mem-
cached preallocated 512 MB to store all key-value pairs.
Each client’s key-value pairs were isolated in separate do-
mains, with domain-switching trampolines inserted before
and after access operations and CPI protection applied. The
server ran two worker threads. On a different machine, we
used twemperf [55] to generate 100–1,000 connections, each
issuing 30 simultaneous requests. Keys were 12 bytes and
values were 64 bytes. Each experiment was repeated 300
times under full CPU utilization.

Figure 13 compares throughput across schemes.
NANOZONE incurs an average overhead of 15.10%, ris-
ing to 17.58% at 1,000 concurrent clients. Most of this
overhead stems from privileged isolation (§4.3): relative to
Shelter [11], NANOZONE preserves 95.85% of its through-
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Figure 14. Data-structure benchmarks: (a) linked list (20 KB per domain); (b) B+ tree (5 MB per domain); (c) hash table (20 KB per domain).

put. Against the bypass-window-only scheme and lwC [25],
NANOZONE achieves 16.58% and 91.13% higher through-
put, respectively. Those alternatives suffer from costly do-
main switches; in contrast, our domain-allocation optimiza-
tion (§4.1) confines most switches to user space, boosting
overall performance significantly.
Case Study 3: NVM Data Isolation. When NVM was
mapped directly into a process, any compromised code can
read or tamper with persistent data. Prior work [56] em-
ployed intra-process isolation to reduce that risk by briefly
granting NVM access to trusted code, thereby minimizing
the exposure window for untrusted code. In our test, we em-
ulated NVM with DRAM as in prior studies [56], [57] and
leveraged the same three data-structure benchmarks used by
EPK [29] (linked list, B+ tree, and hash table) to measure
throughput overhead across different time complexities. For
each domain, we created a separate data structure and had a
single thread switch into that domain before and after each
random query. We varied the number of domains from 1 to
200, repeating each query at least 1,000 times.

The throughput overhead is illustrated in Figure 14. In
general, the protection imposes greater relative overhead on
workloads with faster queries. For instance, NANOZONE
adds just 0.21% overhead on the linked-list benchmark, but
this rises to 9.09% for the B+ tree and 30.68% for the hash
table. This behavior is intuitive: as query latency decreases,
the relative cost of each domain switch grows, consuming
a larger fraction of total query time and thus reducing
throughput more sharply. Consequently, the bypass-window-
only scheme and lwC [25] suffer even greater drops in
throughput due to their more expensive domain switches.
In the linked-list benchmark, they incur 5.01% and 22.61%
more overhead than NANOZONE, respectively. For the B+
tree, the bypass-window-only scheme’s overhead increases
by 4.82×, while lwC’s increases by 21.55×. In the hash
table, those gaps widen to 24.22× and 108.92× greater
than NANOZONE. These results demonstrate that optimizing
domain switching (§4.1) is critical for preserving throughput
in memory-bound pointer-chasing workloads (e.g., walking
a B+ tree), where most CPU time is spent on random
DRAM accesses. If every switch requires a full trap and
global TLB invalidation, those costs quickly dominate raw
memory-access time. Since these data-structure benchmarks
do not rely heavily on frequent system calls, interrupt-hook

overhead remains low: Shelter’s [11] performance is nearly
native, with a maximum throughput drop of only 2.30%
on the hash table. Compared to Shelter, NANOZONE’s ad-
ditional overhead comes primarily from domain switching.
This is minimal for slower queries—0.05% on the linked
list—but more pronounced for faster queries such as the B+
tree (8.59%) and hash table (29.04%).

8. Related Work

MPK-based Mechanisms. MPK is now a popular technique
on x86 for fast memory permission switching. ERIM [50]
uses MPK as a general-purpose shield around sensitive
data. Other projects apply MPK in targeted settings: PKRU-
Safe [58] separates the heap between safe Rust code and
C/C++ in mixed-language environments, and PKUWA [59]
isolates WebAssembly function memory. System software
also benefits: FlexOS [60] partitions a library OS into
MPK-protected components, and MOAT [61] uses MPK to
restrict BPF’s access to kernel space. Researchers have even
turned MPK into a speed hack: uProcess [62] builds a user-
space process abstraction that slashes context-switch costs.
All of these advances, however, depend on x86 hardware
support. NANOZONE fills this gap by delivering an equally
lightweight isolation facility on Arm, enabling the same
kinds of protection and optimizations in that ecosystem.
Hardware-assisted Control-flow Integrity. Intel proces-
sors provide Control-flow Enforcement Technology (CET),
which guards both forward edges (function pointers) and
backward edges (return addresses). HEK-CFI [63] builds
on CET to secure kernel control-flow data. Armv8 lacks
hardware like CET’s shadow stack, so researchers have
adapted other features to enforce CFI. PARTS [64] and
PACTight [65], for example, use Pointer Authentication (PA)
to sign and verify control-flow pointers. PA, however, is at
risk of pointer reuse and brute-force attacks, so a hardware-
based shadow stack is still desirable. PANIC [66] takes a
different route and combines Privileged Access Never (PAN)
with load/store-unprivileged (LSU) instructions to create a
shadow stack that protects return addresses. Armv9 finally
adds a native shadow stack through the GCS. NANOZONE
is the first system to build on GCS and extend its protection
to cover both forward and backward edges.



OS Security Monitors. Research continues to explore finer-
grained isolation inside a CVM to shrink the TCB. Interstel-
lar [67] alters the hardware to add a secure monitoring layer
that shields enclaves from privileged software such as the
OS. A more common strategy inserts a software monitor
at a higher privilege level to limit how the OS interacts
with the computation. Under AMD SEV, Veil [68] and
NestedSGX [16] use the Virtual Machine Privilege Level
(VMPL) feature to place a monitor inside the CVM, fencing
off the enclave. Arm CCA lacks VMPL, but its Realm EL2
offers a comparable slot. Moving the monitor there would
enlarge the TCB by bringing the original RMM, so CCA
designs such as Shelter [11] instead keep the extra monitor
logic in the root world at EL3. RContainer [10] shifts most
security logic into a mini-OS, yet GPT maintenance and
switching still run in the root world. NANOZONE follows
this model and leaves all monitor logic in the root world,
making it the only trusted component.

9. Conclusion

Arm CCA isolates at the level of an entire CVM, which
enlarges both the attack surface and the TCB. NANOZONE
replaces that coarse approach with fine-grained, intra-
process domains that also defend against OS-level attacks.
Leveraging three complementary hardware features, it builds
a three-tier isolation hierarchy that scales to an unlimited
number of domains and offers fast, intra-process CPI to
block domain-switch abuse. Optimized domain allocation al-
lows NANOZONE to maintain high performance even when
certain switches must cross privileged boundaries. Micro-
benchmarks and three application case studies confirm that
NANOZONE adds only moderate overhead, with pure intra-
process isolation costing below 5%.
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