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Certified Unlearning for Neural Networks
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Abstract
We address the problem of machine unlearning,
where the goal is to remove the influence of
specific training data from a model upon request,
motivated by privacy concerns and regulatory
requirements such as the “right to be forgot-
ten.” Unfortunately, existing methods rely on
restrictive assumptions or lack formal guarantees.
To this end, we propose a novel method for
certified machine unlearning, leveraging the
connection between unlearning and privacy
amplification by stochastic post-processing. Our
method uses noisy fine-tuning on the retain data,
i.e., data that does not need to be removed, to
ensure provable unlearning guarantees. This
approach requires no assumptions about the
underlying loss function, making it broadly
applicable across diverse settings. We analyze
the theoretical trade-offs in efficiency and
accuracy and demonstrate empirically that our
method not only achieves formal unlearning
guarantees but also performs effectively in
practice, outperforming existing baselines. Our
code is available at https://github.com/
stair-lab/certified-unlearning-
neural-networks-icml-2025

1. Introduction
Machine unlearning—the process of removing the influ-
ence of specific training data from a model—has become an
increasingly important challenge in modern machine learn-
ing (Nguyen et al., 2022). With the widespread adoption of
deep learning in fields such as healthcare, natural language
processing, and computer vision, concerns over data privacy,
security, and control have grown significantly. In particular,
regulatory frameworks like the General Data Protection Reg-
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ulation (GDPR) of the European Union (Voigt & Von dem
Bussche, 2017) enforce the “right to be forgotten”, requir-
ing organizations to delete user data upon request. However,
simply removing data from storage is insufficient if the in-
formation remains embedded in a trained model. This has
led to the growing interest in unlearning techniques, which
seek to eliminate the influence of specific data points while
preserving the overall utility of the model. Achieving ef-
ficient and reliable unlearning is particularly challenging
when working with large-scale neural networks, where full
retraining from scratch is computationally prohibitive.

The idea of machine unlearning dates back to Cao &
Yang (2015) and has since inspired a range of approaches.
Broadly, unlearning techniques fall into two categories: ex-
act unlearning, which aims to completely erase the influ-
ence of specific data points, and approximate unlearning,
which seeks a computationally efficient but approximate
removal of information. While exact unlearning offers the
strongest theoretical guarantees, it is rarely practical for
large-scale models or frequent unlearning requests due to its
prohibitive computational costs (Ginart et al., 2019; Bour-
toule et al., 2021). As a result, many existing methods
adopt relaxed guarantees, but these often come with sig-
nificant trade-offs. For instance, some approaches rely on
restrictive assumptions about loss functions, such as convex
linear models (Guo et al., 2020), while others lack rigorous
theoretical guarantees (Graves et al., 2021; Kurmanji et al.,
2024) or require extensive retraining (Bourtoule et al., 2021).
One common heuristic method is fine-tuning on retained
data, and potentially gradient ascent on the forget data, to
induce catastrophic forgetting in the affected parts of the
model (Triantafillou et al., 2024). While this technique has
shown promise in reducing the retained influence of forgot-
ten data, it does not inherently provide certifiable guarantees
of unlearning, leaving open questions about its reliability in
privacy-sensitive applications.

To address these limitations, we propose a new approxi-
mate unlearning framework that builds on the concept of
privacy amplification by stochastic post-processing (Balle
et al., 2019). Our method leverages noisy fine-tuning on
retained data to enforce provable unlearning guarantees
while maintaining computational efficiency. Unlike exist-
ing approaches, our framework does not impose restrictive
assumptions on the loss function, making it particularly
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well-suited for non-convex optimization problems such as
deep learning. We interpret each noisy fine-tuning step as
a form of stochastic post-processing, ensuring that privacy
improves progressively with each iteration while balanc-
ing the trade-offs between accuracy and computational cost.
Through rigorous theoretical analysis and extensive empir-
ical validation, we demonstrate that our method provides
both formal guarantees and strong practical performance,
making it a viable solution for real-world machine learning
applications where frequent unlearning requests must be
handled efficiently.

Our key contributions can be summarized as follows:

• A novel certified unlearning method that integrates noisy
fine-tuning with privacy amplification by stochastic post-
processing, offering a principled approach to approxi-
mate unlearning.

• Rigorous unlearning guarantees that do not depend on
restrictive assumptions such as loss function smoothness,
making the method applicable to a broad range of models,
including deep neural networks.

• Empirical validation in deep learning applications,
demonstrating that our approach not only meets formal
unlearning guarantees but also surpasses existing base-
lines in performance and model utility.

1.1. Related Work

Amplification by post-processing. Our approach is
inspired by privacy amplification via stochastic post-
processing, a concept in differential privacy where random-
ized transformations that do not use private data enhance
privacy guarantees. The foundational work of Feldman
et al. (2018) introduced privacy amplification by iteration,
demonstrating that when training with differentially private
stochastic gradient descent (DP-SGD) on convex objectives,
the privacy of an unused training sample improves with the
number of optimization steps. Balle et al. (2019) extended
this result, refining the analysis of amplification by iteration
and introducing amplification by mixing, which establishes
that privacy is further strengthened when applying a Markov
kernel satisfying specific mixing conditions. Subsequent
work by Asoodeh et al. (2020) showed that under bounded
domain assumptions, these mixing conditions hold for the
Gaussian mechanism, leading to tighter privacy guarantees
for DP-SGD. Our proposed unlearning framework—based
on noisy fine-tuning on retained data—operates as a stochas-
tic post-processing step that does not access the data to be
forgotten. Thus, we extend privacy amplification techniques
beyond convex settings to enable certified unlearning in
deep learning models.

Certified unlearning. There is a growing body of work
on certified unlearning, but existing approaches are largely

inapplicable to neural networks. Most prior methods rely
on restrictive assumptions about the model or loss function
that do not hold for deep learning.

Several works focus on convex tasks (Guo et al., 2020;
Neel et al., 2021; Sekhari et al., 2021; Allouah et al., 2025),
but this limits their applicability to deep learning. These
methods work in practice for logistic regression-style tasks
and do not extend to neural networks due to non-convexity.

Recent works aim to achieve certified unlearning for non-
convex tasks (Golatkar et al., 2020; Chourasia & Shah, 2023;
Chien et al., 2024; Mu & Klabjan, 2024; Zhang et al., 2024;
Allouah et al., 2025), but still impose significant constraints.
All require the loss function to be smooth, limiting them to
networks with smooth activations. Most (Chourasia & Shah,
2023; Chien et al., 2024; Mu & Klabjan, 2024) also require
knowledge of the smoothness constant, restricting appli-
cability to simpler models where this constant is tractable.
Furthermore, Allouah et al. (2025) additionally assumes
a unique minimizer, excluding virtually all practical neu-
ral architectures. Zhang et al. (2024) additionally requires
knowledge of the minimal eigenvalue of the Hessian at the
unique optimal model. To the best of our knowledge, our ap-
proach is the first certified unlearning method that supports
arbitrary non-convex tasks, enabling provable unlearning
guarantees for practical deep learning models.

Unlearning applications. A separate line of research fo-
cuses on concept unlearning, which aims to remove specific
topics or themes from language models, beyond forgetting
particular training samples (Liu et al., 2024). For instance,
work in this domain has explored techniques for eliminat-
ing knowledge of topics like “Harry Potter” or other po-
tentially harmful or unethical content from large language
models (Eldan & Russinovich, 2023). These methods of-
ten involve intervention at the representation or knowledge
distillation level, rather than enforcing formal guarantees
of data removal. In contrast, our work focuses on data
point unlearning, ensuring that information associated with
specific training samples is provably removed while pre-
serving model utility. Other explored unlearning settings
include unlearning in graph neural networks (Chien et al.,
2022), in min-max optimization settings (Liu et al., 2023),
and the adversarial setting with the server possibly forging
unlearning (Thudi et al., 2021).

2. Problem Statement
We consider a model x̂ ∈ Rd trained using algorithm A on a
dataset D of n training examples, i.e., x̂ = A(D). We place
no restrictions on A; it may be SGD, Adam, momentum-
SGD, etc. An unlearning request specifies a subset Df ⊂ D,
referred to as the forget set, which we wish to erase from the
model. Ideally, we could retrain the model from scratch on
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the retain set D \Df , yielding xu = A(D \Df ), but this is
often computationally prohibitive. Instead, we aim to design
an approximate unlearning algorithm U that outputs a model
retaining “no information” about Df . To this end, U takes as
input the original model x̂ = A(D), the unlearning request
Df , and the full training dataset D. Formally, unifying
several prior definitions (Ginart et al., 2019; Guo et al.,
2020), we require U to satisfy the guarantees below.

Definition 2.1 ((ε, δ)-unlearning). Let ε ≥ 0, δ ∈ [0, 1].
We say that U is (ε, δ)-unlearning algorithm for A if there
exists a certifying algorithm Ā, such that for any forget and
initial datasets Df ⊂ D and any observation O ∈ Rd,

Pr[U(A(D),D,Df ) = O] ≤ eε Pr[Ā(D\Df ) = O] + δ,

Pr[Ā(D\Df ) = O] ≤ eε Pr[U(A(D),D,Df ) = O] + δ.

For simplicity, we refer to approximate unlearning as (ε, δ)-
unlearning for some values of ε and δ, inspired by (ε, δ)-
differential privacy (Dwork & Roth, 2014). This formulation
parallels differential privacy by treating Df as “private”
and D \ Df as “public,” thereby ensuring (ε, δ)-privacy for
the forget set. Indeed, this notion ensures it is statistically
difficult to distinguish the output of the unlearning algorithm
U from that of a certifying algorithm Ā that has no access
to the forget set Df .

Importantly, the definition does not fix Ā but only requires
its existence, allowing flexibility to capture various prior
definitions. For example, setting Ā = A recovers defini-
tions from (Ginart et al., 2019; Guo et al., 2020), while
setting Ā = U(A(D \ Df ),D \ Df ,∅) aligns with (Al-
louah et al., 2025; Sekhari et al., 2021). We primarily adopt
the latter form in this work. Note that our choice of the
certifying algorithm Ā is purely theoretical and does not
require running additional computational steps in practice.
Finally, we emphasize that Definition 2.1 naturally supports
non-adaptive sequential unlearning, where data points are
removed one-by-one without revisiting earlier removals.

Baselines. We now describe two straightforward baselines
for achieving (ε, δ)-unlearning. The first baseline is output
perturbation, which applies the standard Gaussian mech-
anism to the original model x̂. The procedure involves
clipping the model parameters to ensure bounded sensitivity
and adding Gaussian noise to the model’s output. Formally,
the unlearning procedure is defined as:

x0 = ΠC0(x̂) + ξ0; ξ0 ∼ N
(
0,

8C2
0 ln(1.25/δ)

ε2 Id

)
,

(1)

where ΠC0
represents the clipping operation, and ξ0 is noise

sampled from the Gaussian distribution, with sufficient mag-
nitude to ensure privacy (Dwork & Roth, 2014). While the-
oretically sound, output perturbation often performs poorly

in practice, as the required noise magnitude is large, which
can significantly degrade the utility of the model.

Another baseline is retraining from scratch, where the for-
get dataset Df is discarded, and the model is retrained from
scratch on the remaining data D \ Df using the algorithm
A. Although this guarantees perfect unlearning (i.e., (0, 0)-
unlearning), it is computationally expensive and requires
substantial memory resources, which undermines the effi-
ciency objectives of approximate unlearning.

3. Algorithm
Our approach is based on fine-tuning the model with stochas-
tic gradient descent (SGD) using only the retained data
D \ Df , while incorporating regularization. Recall that
in this approach, we initialize from the original model x̂
and update it for T ≥ 1 iterations as follows for every
t ∈ {0, . . . , T − 1}:

xt+1 = xt − γ(gt + λxt), x0 = x̂, (2)

where gt is the stochastic gradient computed on the retained
data, γ is the learning rate, and λ a regularization parameter.

While this method may induce some empirical forget-
ting due to the phenomenon of catastrophic forgetting in
SGD (Goodfellow et al., 2013), it does not provide formal
(ε, δ)-unlearning as required by Definition 2.1. Therefore, to
frame each fine-tuning step as a stochastic post-processing
operation (Balle et al., 2019) applied to the initial model
x̂, we introduce gradient clipping and model clipping, both
combined with Gaussian privacy noise. These modifica-
tions allow us to map the process to different stochastic
post-processing mechanisms (Balle et al., 2019).

Gradient clipping. Our primary approach relies on gra-
dient clipping, where we clip gradients before applying
updates, followed by noise addition. This method resembles
standard DP-SGD (Abadi et al., 2016) but differs in that
gradient updates exclude any “private” (forget) data points:

x0 = ΠC0(x̂),

xt+1 = xt − γ (ΠC1(gt) + λxt) + ξt+1,
(3)

where ξt+1 ∼ N (0, σ2Id) is Gaussian noise and ΠC0
,ΠC1

are the clipping operators of radius C0 > 0 and C1 > 0
respectively1. We analyze this method in the theoretical
framework of privacy amplification by iteration (Feldman
et al., 2018), to show that redistributing noise across mul-
tiple steps enables a reduction in noise at the initial step
while maintaining strong privacy guarantees. This noise
reduction retains the original model’s performance. The reg-
ularization with parameter λ additionally allows implicitly

1Following standard differential privacy mechanisms, our clip-
ping is by norm, i.e., ΠC(x) := xmin{ C

∥x∥ , 1} with radius C.
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controlling the norm of the model xt that is increased due
to the presence of the noise ξt.

Model clipping. An alternative approach involves model
clipping, where each update is clipped to a predefined radius
before noise addition:

x0 = x̂

xt+1 = ΠC2
(xt − γ(gt + λxt)) + ξt+1,

(4)

where ξt+1 ∼ N (0, σ2Id) and ξ0 ∼ N (0, σ2
0Id). Since the

gradient gt is computed solely on the retain data, the argu-
ment of the clipping operator can be interpreted as a post-
processing transformation of the private model, given by the
mapping ψ(xt) := xt−γ(gt+λxt). The clipping and noise
addition ensure differential privacy guarantees (Dwork &
Roth, 2014). Standard results on post-processing state that
such transformations preserve or improve existing differen-
tial privacy guarantees. Additionally, privacy amplification
by stochastic post-processing (Balle et al., 2019) suggests
that each additional step can further enhance privacy beyond
that of the previous model.

4. Theoretical Analysis
We now present the approximate unlearning guarantees of
the gradient and model clipping variants of our unlearning
method introduced in the previous section. We also theo-
retically compare these with previous non-convex certified
unlearning algorithms. We defer all proofs to Appendix A.

4.1. Unlearning Guarantees

We first present in Theorem 4.1 the unlearning guarantees of
the Gradient clipping approach, as defined in Equation (3).

Theorem 4.1 (Gradient clipping). Let T ≥ 1, γ, σ > 0, λ ≥
0, δ ∈ (0, 1), ε ∈ (0, 3 log(1/δ)). Consider T iterations of
the unlearning algorithm defined in (3). We obtain (ε, δ)-
unlearning if:

1. Without regularization (λ = 0):

σ2 =
9 log(1/δ)

ε2T
(C0 + C1γT )

2
. (5)

2. With regularization (λ > 0): if γλ ∈ ( 12 , 1) and

σ2 =
72γλ log(1/δ)

ε2

(
C0 (1− γλ)

T
+
C1

λ

)2

. (6)

The proof relies on techniques from privacy amplification
by iteration introduced by Feldman et al. (2018), which
is a form of privacy amplification through stochastic post-
processing (Balle et al., 2019). We extend the original anal-
ysis Feldman et al. (2018) that is applicable only to convex

functions to the non-convex case. The key ingredient in our
analysis is the shift-reduction lemma (Lemma A.6), which
enables us to control the growth of the Rényi divergence
between (i) the unlearned model initialized from the full
model and (ii) the unlearned model initialized from training
only on the retained data, across iterations.

Unlike the original privacy amplification by iteration frame-
work, which assumes smoothness and convexity of the loss
function (Feldman et al., 2018), our approach circumvents
these assumptions by introducing gradient clipping. This
is reflected in the sufficient noise magnitude required to
achieve (ε, δ)-unlearning, as given in (5). Specifically, in
the absence of regularization λ = 0, gradient clipping at
threshold C1 induces a dependence of the form:

σ2 = O
(
log(1/δ)

ε2

(
C2

0

T
+ γ2TC2

1

))
. (7)

Intuitively, for a large enough number of iterations, we can
trade off the effect of the initial clipping radius C0 for a
minor cost proportional to the learning rate γ and the per-
iteration clipping radius C1. Fortunately, this cost can be
controlled by choosing a sufficiently small learning rate γ.
In particular, if γ = C0

C1T
, then asymptotically in T we get

σ2 = O
(
C2

0 log(1/δ)
ε2T

)
. This implies that the required noise

magnitude decreases as the number of iterations T increases,
ultimately tending to zero in the limit T → ∞.

Given C0, C1, and γ, we can upper bound the optimal num-
ber of unlearning steps by minimizing (7). Specifically,
setting T larger than

T ⋆ := argmin
T

{
C2

0

T
+ γ2TC2

1

}
=

C0

γC1

leads to more iterations (T > T ⋆) with increased noise per
iteration (σT ≥ σT⋆ by definition of T ⋆), while achieving
the same (ϵ, δ)-unlearning.

Finally, in the regularized case λ > 0, the noise expres-
sion (6) for achieving (ε, δ)-unlearning simplifies to:

σ2 = O
(
γ log(1/δ)

ε2

(
λC2

0 exp(−λγT ) +
C2

1

λ

))
. (8)

Here, regularization enables an exponential reduction in
T of the dependence on the initial clipping threshold C0,
effectively mitigating its impact over time. However, this
comes at the cost of an increased dependence on the per-
iteration clipping threshold C1 , scaling inversely with the
regularization factor λ. While this suggests a smaller noise
magnitude per iteration, overly strong regularization may
degrade the model’s performance, as we further analyze in
the next section. Finally, we provide a refined, but complex,
formula for noise magnitudes in Theorem A.9 (appendix)
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using Rényi divergences, which we apply before precise
Rényi-to-DP conversion (Balle et al., 2020) in practice.

Next, we state the unlearning guarantees of the Model clip-
ping approach, as defined in Equation (4).
Theorem 4.2 (Model clipping). Let T ≥ 1, C0, C2, σ0, ε >
0, and δ ∈ (0, 1). Denote for every r > 0,

θε(r) := Q
(ε
r
− r

2

)
− eεQ

(ε
r
+
r

2

)
, (9)

where for all t ∈ R, Q(t) := 1√
2π

∫∞
t
e−u

2/2du.

Consider T iterations of the unlearning algorithm defined
in (4). We obtain (ε, δ)-unlearning if

T ≥
log(1/δ) + log θε(

2C0

σ0
)

log (1/θε(
2C2

σ ))
. (10)

In particular, for any T ≥ 1, ε ∈ (0, 1), it suffices to have

σ2 =
8C2

2 ln(1.25)

ε2

[
1 +

1

T

(
ln(1.25/δ)− σ2

0ε
2

8C2
0

)]
.

(11)

The proof of Theorem 4.2 relies on recent advances in
privacy amplification by stochastic post-processing due to
Balle et al. (2019) and Asoodeh et al. (2020). The initial iter-
ation in (4) provides (ε0, δ0) unlearning since it is the stan-
dard Gaussian mechanism from differential privacy (Dwork
& Roth, 2014). Moreover, assuming that the model at step t
of Algorithm (4) guarantees (εt, δt)-unlearning, using the
contraction coefficients (Asoodeh et al., 2020) approach,
we show that the next iteration amplifies the unlearning
guarantee as follows:

(εt+1, δt+1) = (εt, θε(
2C2

σ ) · δt),

where the expression of the amplification factor θε( 2C2

σ ) ∈
(0, 1) is given in (9). This means that after T iterations, our
algorithm guarantees (εT , δT ) = (ε0, θε(

2C2

σ )T δ0) unlearn-
ing. Stated differently, given any target ε, δ and any noise
magnitudes σ2, σ2

0 and clipping thresholds C1, C0, we show
that it sufficient for the number of iterations to be at least
that in (10) to guarantee (ε, δ)-unlearning.

While the expression of the amplification factor θε( 2C2

σ )
given in (9) is complex, we remark that it is a decreasing
function of σ taking values in (0, 1). In fact, assuming that
ε ∈ (0, 1), and given any number of iterations T , we state
a simple expression of the sufficient noise magnitude σ2

in (11). This simplified expression is only for analytical
purposes, since it gives looser unlearning guarantees.

4.2. Theoretical Comparison

To compare the various unlearning methods, we analyze the
number of iterations required and the noise injected per iter-
ation to achieve the same (ε, δ)-unlearning guarantee. An

effective method should minimize noise per iteration while
keeping the number of iterations reasonable to preserve
model accuracy. Since all methods rely on noisy updates,
we focus on the magnitude of noise injected. A summary of
our findings is provided in Table 1, with details below.

Output perturbation. We recall that this is a natural
baseline, defined in (1), whereby we first project the orig-
inal model with clipping threshold C0 and add noise of
magnitude σ2 =

8 ln(1.25/δ)C2
0

ε2 , which guarantees (ε, δ)-
unlearning for ε, δ ∈ (0, 1), following (Dwork & Roth,
2014, Theorem A.1).

DP training. Training with DP guarantees unlearning for
free; we do not need to inject noise after receiving unlearn-
ing requests. However, the noise needed may be larger than
with other unlearning methods. Indeed, consider unlearning
a set of k samples with DP–SGD. For this, we need group-
DP: if a mechanism is (ε, δ)-DP for single-record changes,
then it is (kε, kekεδ)-DP for any pair of datasets that differ
in ≤ k records (Vadhan, 2017, Lemma 2.2). Consequently,
to attain the same (ε, δ)-unlearning guarantee one must run
DP–SGD with noise σ2 = 2C2k2

ε2

(
ln( 1.25kδ ) + kε

)
. This is

typically much larger noise than with our techniques, given
that it is at least quadratic in k, which may scale with the
size of the dataset. This is in line with recent findings on
the theoretical separation between DP and certified unlearn-
ing (Sekhari et al., 2021; Allouah et al., 2025).

Gradient clipping. From Theorem 4.1, T ≥ 1 itera-
tions of Gradient clipping (3) with noise magnitude σ2 =
9 log(1/δ)
ε2T (C0 + C1γT )

2 satisfies (ε, δ)-unlearning assum-
ing ε ≤ 3 log(1/δ). Setting T = C0

γC1
minimizes the noise

to

σ2 =
36γC1C0 log(1/δ)

ε2
. (12)

This substantially reduces noise per iteration compared to
output perturbation—by a factor of C0

C1γ
, which is significant

when γ ≪ C0

C1
. A small learning rate or large initial clipping

C0 can make this method particularly effective in preserving
model accuracy.

For the regularized version of gradient clipping we
recall that noisy gradient descent with T iterations
and constant noise level, given by the expression

σ2 = 72γλ log(1/δ)
ε2

(
C0 (1− γλ)

T
+ C1

λ

)2
satisfies (ε, δ)-

unlearning under the assumption ε ≤ 3 log(1/δ). Setting
T = 1

ηλ log(λC0

C1
) of

σ2 =
C2

1γ log(1/δ)

λε2
. (13)

This approach outperforms the unregularized variant when
λ > C1

C0
, requiring only logarithmic iterations in the initial
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Algorithm Variance of Noise Injected Assumptions

Max. per Iteration Iterations

Output Perturbation (baseline) C2
0 1

Gradient Clipping (3) γC1C0 C0/γC1

Gradient Clipping (3) (w/ regularization) γC2
1/λ log (λC0/C1)/γλ

Model Clipping (4) C2
2 log(1/δ)

Langevin Diffusion (Chourasia & Shah, 2023) no explicit expression – smoothness, boundedness, noisy training

Rewind-to-Delete (Mu & Klabjan, 2024) exponential in smoothness constant – smoothness, noisy training

Table 1. Summary comparison of certified unlearning accountants for non-convex tasks. C0: initial clipping threshold, C1/C2: running
clipping threshold for gradient and model clipping resp., γ: learning rate, λ: ℓ2-regularization factor. We ignore absolute constants and
multiplicative factor log(1/δ)

ε2
which is in the noise variance of all methods. We note that the entry “Langevin Diffusion” also covers the

work of Chien et al. (2024). Model Clipping and Gradient Clipping algorithms effectively reduce the maximum noise per iteration at the
cost of doing more noisy SGD steps compared to the output perturbation. More details on the comparison are given in Section 4.2.

clipping radius C0. This suggests that projecting onto a
larger set can better preserve accuracy, though it may require
stronger regularization, which could degrade performance
in some tasks.

Model clipping. We recall from Theorem 4.2 that T ≥ 1
iterations of Model clipping (4) with noise magnitude

σ2 =
8C2

2 ln(1.25)

ε2
+

8C2
2 ln(1.25)

Tε2

[
ln(1.25/δ)− σ2

0ε
2

8C2
0

]
is provably sufficient to achieve (ε, δ)-unlearning. As-
sume that the initial noise magnitude σ2

0 is at most
8C2

0 ln(1.25/δ)
ε2 , as the latter magnitude is sufficient to obtain

(ε, δ)-unlearning in one iteration as in the output pertur-
bation baseline. Therefore, the order of magnitude of the
minimum value of the noise

σ2 =
8C2

2 ln(1.25)

ε2
(14)

can be attained within T = ln(1.25/δ) iterations. This
represents a significant improvement over the baseline, re-
ducing the noise per iteration by a factor of C2

0

C2
2

. If C2 is
small or if the initial clipping threshold C0 is aggressive,
this reduction can be substantial. Compared to amplifica-
tion by iteration, this method requires fewer iterations (only
logarithmic in 1/δ), though it may introduce more noise per
iteration when the learning rate is small.

Prior works. Existing certified unlearning methods
that do not assume convexity of the loss function in-
clude (Chourasia & Shah, 2023; Chien et al., 2024; Mu &
Klabjan, 2024). However, unlike our approach, these meth-
ods rely on the assumption that the loss function is smooth2

2That is, for some L ≥ 0, by denoting L the loss function, we
have ∥∇L(x)−∇L(y)∥ ≤ L ∥x− y∥ for all x,y ∈ Rd.

and are tailored to specific training algorithms. For instance,
Chourasia & Shah (2023) and Chien et al. (2024) analyze
training with noisy projected gradient descent, leveraging
both smoothness and specific training dynamics to establish
unlearning guarantees. These guarantees stem from the con-
vergence of the training process to a limiting distribution,
but additional restrictive assumptions are required. Notably,
the smoothness constant is needed not only for theoretical
analysis but also to determine the appropriate noise level at
each step to achieve (ϵ, δ)-unlearning. This constraint limits
the applicable function class to those where the smoothness
constant is easily computable, effectively excluding modern
neural networks. Chourasia & Shah (2023) assume that the
loss function is bounded, while Chien et al. (2024) require
that the training’s limiting distribution satisfies an isoperi-
metric inequality. These constraints significantly limit the
applicability of their methods, primarily to smooth con-
vex tasks such as logistic regression (Chien et al., 2024).
Similarly, Mu & Klabjan (2024) address non-convex loss
functions but assume that training follows gradient descent
with output perturbation. Their approach also relies on
smoothness and requires injecting noise with a magnitude
that scales exponentially with the smoothness parameter,
which can be prohibitive in practice. In contrast, our ap-
proach removes these smoothness constraints and is not tied
to a specific training algorithm, making it applicable to a
broader class of learning problems.

5. Experimental Evaluation
In this section, we present an empirical evaluation of our
proposed unlearning method, in its two variants Gradient
Clipping (3) and Model Clipping (4), on two benchmark
datasets: MNIST (Deng, 2012) and CIFAR-10 (Krizhevsky
et al., 2014). We first detail the experimental setup, and
then describe the results and observations stemming from
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(a) CIFAR-10 (b) MNIST

Figure 1. Accuracy of Gradient and Model Clipping versus compute budget (epochs) on CIFAR-10 (left) and MNIST (right), to satisfy
(1, 10−5)-unlearning. We compare to two baselines: retraining from scratch and output perturbation, detailed in Section 2. Across all the
compute budgets gradient and model clipping achieves higher accuracy than the baselines, with the difference being larger for smaller
compute budgets.

Accuracy Baselines Noisy Fine-Tuning (ours)

Retrain Output Perturbation Gradient Clipping Model Clipping

30% 6 5 (≈ 16 % faster) 4 (≈ 33 % faster) 3 (≈ 50 % faster)

35% 11 7 (≈ 41 % faster) 6 (≈ 50 % faster) 6 (≈ 50 % faster)

40% 18 12 (≈ 33 % faster) 10 (≈ 44 % faster) 10 (≈ 44 % faster)

45% 23 17 (≈ 26 % faster) 16 (≈ 30 % faster) 17 (≈ 26 % faster)

50% 30 25 (≈ 16 % faster) 23 (≈ 23 % faster) 24 (≈ 20 % faster)

Table 2. Number of epochs required to reach the target accuracy for our algorithms and the baselines, and their saving compared to
retraining from scratch for the CIFAR-10 dataset. Gradient Clipping and Model Clipping consistently save above 20% of compute,
sometimes reaching 50% of compute savings. The output perturbation baseline also consistently improves over the retrain from scratch,
however is consistently slower than the Gradient and Model clipping algorithms.

Table 2 and Figures 1 and 2.

5.1. Setup

For MNIST, we train a small neural network with two layers
and approximately 4,000 parameters. For CIFAR-10, we
use a slightly larger network with two convolutional blocks
followed by a linear layer, totaling 20,000 parameters. In
both cases, the forget set consists of a randomly selected
10% subset of the full dataset.

Baselines. We compare our methods against two baselines
presented in Section 2: retraining from scratch and output
perturbation (1). Retraining from scratch involves fully re-
training the model after removing the forget set. Output
perturbation applies noise directly to the final model param-
eters to achieve certified unlearning, before fine-tuning the
model on the retain data if the compute budget allows. To

the best of our knowledge, no existing method provides cer-
tified unlearning guarantees for non-convex tasks without
requiring knowledge of the smoothness constant of the loss
function.

Procedures. When retraining from scratch, the model is
reinitialized using the same distribution as in the original
training phase. In all experiments, we first train a model on
the entire dataset until convergence. We set ε = 1, δ = 10−5

for all experiments. For our unlearning algorithms, we
continue clipping and adding noise until the desired (ε, δ)-
unlearning guarantee is met. In all experiments, the privacy
target is reached before exhausting the iteration budget, in
less than 100 iterations (see Appendix B for the exact num-
ber of unlearning steps to reach target privacy). We there-
fore continue fine-tuning the model on the retained dataset
without additional noise or clipping, using the same hyper-
parameters as in retraining from scratch. This means that in
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Figure 2. Convergence behavior of Gradient Clipping with γ =
0.01, C0 = 20, C1 = 10, λ = 50, σ = 0.25 and the retraining
from scratch baseline on the CIFAR-10 dataset. The gradient
clipping method is applied for the first 30 iterations, followed
by standard fine-tuning. Initially, gradient clipping degrades per-
formance but retains useful information, allowing fine-tuning to
recover and surpass the retraining baseline quickly.

all of our experiments unlearning is cheap and effectively
finds a new initialization for the finetuning process, that
preserves some information from the original model x̂. All
training, unlearning, and fine-tuning phases use stochastic
gradient descent (SGD) with a constant step size. Further
experimental details are provided in the appendix.

5.2. Results and Observations

We now present our experimental comparison. We compare
the algorithms for fixed target accuracy and fixed compute
budget, and finally show convergence behavior.

Fixed target accuracy. In Table 2, we present the time
required for each algorithm to reach the target accuracy
for unlearning on CIFAR-10. Our results show that both
gradient clipping and model clipping achieve the desired
accuracy in a comparable number of steps, significantly
outperforming the baseline methods. Notably, compared
to retraining from scratch, our algorithms offer substantial
computational savings—reducing the required steps by up
to 50%. Interestingly, while the simple output perturbation
baseline also improves upon retraining from scratch, its
efficiency gains are less pronounced. This suggests that
while output perturbation approach can be beneficial, more
advanced unlearning methods such as gradient and model
clipping yield considerably greater improvements.

Fixed compute budget. On Figure 1, we show the re-
sulting accuracy for varying compute budgets for gradient
and model clipping approaches on MNIST and CIFAR10
datasets. Our experiments demonstrate that our proposed
unlearning method, in both its gradient and model clipping

variants, consistently achieves higher accuracy compared
to output perturbation and retraining from scratch across
all compute budgets. This improvement is particularly pro-
nounced in low-compute settings, where retraining from
scratch struggles to recover performance due to the limited
number of optimization steps. In contrast, our methods ef-
fectively leverage the retained model parameters, enabling
faster recovery while ensuring certified unlearning. This
provides substantial savings, for example, to reach an ac-
curacy of 40% on CIFAR dataset, both gradient and model
clipping needs only 10 epochs, while output perturbation
needs 12 epochs (20% longer), and retrain from scratch
requires 18 epochs (≈ 80% longer).

As the compute budget increases, the performance gap be-
tween our methods and retraining from scratch gradually
narrows. This suggests that while our algorithms provide
a strong advantage in resource-constrained scenarios, full
retraining may still be the optimal choice given sufficient
computing power. However, we note that in practical set-
tings, where compute resources are finite, our approaches
offer substantial time savings to reach a particular accuracy.

Convergence curve. In Figure 2, we illustrate the con-
vergence behavior for the gradient clipping algorithm on
the CIFAR-10 dataset with parameters γ = 0.01, C0 =
20, C1 = 10, and λ = 50. In that case, unlearning is
performed for the first 30 iterations, which significantly
decreases the accuracy of the original model to almost
zero. However, during the fine-tuning stage, the accuracy
quickly catches up and outperforms retraining from scratch
in around 1 epoch. This suggests that our stochastic post-
processing approach does not completely erase all prior
training. Despite the bad accuracy initially, the model can
recover the useful information stored in it quickly. A similar
convergence curve is observed in all other settings, as un-
learning is always performed for a relatively small number
of steps (< 100, see Appendix B). These findings highlight
the robustness of our approach and its adaptability across
different datasets and model architectures.

Overall, we observe that both variants of our method—
gradient and model clipping—achieve considerable gains
of up to 50% of time savings over the baselines. Further
analysis of our results shows that the noise magnitude and
clipping strategies play a crucial role in balancing unlearn-
ing guarantees with model utility. We found that gradient
clipping has a larger range of hyperparameters that achieve
an advantage over the baselines, making it easier to tune.

5.3. Transfer Learning and Comparison with DP-SGD

To evaluate our methods in more complex settings, we con-
ducted experiments on CIFAR-100 and CIFAR-10 using
ResNet architectures (He et al., 2016) pretrained on public
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(a) CIFAR-10 (b) CIFAR-100

Figure 3. Accuracy of Gradient Clipping versus compute budget (epochs) on CIFAR-10 (left) and CIFAR-100 (right) using a ResNet-18
feature extractor pretrained on public data, to satisfy (1, 10−5)-unlearning.

data (ImageNet (Deng et al., 2009)). This setup, where
unlearning is applied to the last few layers of a pretrained
model, has become standard in recent certified approximate
unlearning works (Guo et al., 2020; Chien et al., 2024), al-
though the latter works focus on a logistic regression task.
More precisely, we remove the last layer of ResNet-18 (pre-
trained on public data) and replace it with a 3-layer fully
connected neural network head, which makes the task non-
convex. We first train the head on the full data, and then
unlearn the forget data from the head. While we unlearn
only the head, we certify the whole model because the frozen
feature extractor is public and unchanged. In this setting
we also compare against DP-SGD with group-privacy base-
line as defined in Section 4.2, this produces a certified un-
learnt model, so we spend the unlearning compute budget
on finetuning the model on the retain data. On CIFAR-10
our method attains 85 % accuracy in 9 epochs, 10 % faster
than retrain and 47 % faster than DP-SGD (Fig. 3). The
gap widens on CIFAR-100: we reach 60 % accuracy in 32
epochs versus 34 for retrain, while DP-SGD never exceeds
20 % within the 50-epoch budget. The poor DP-SGD curve
confirms the theoretical predictions from Sec. 4.2: group-
privacy forces

√
k more noise, k being the number of forget

samples, and thus hurts accuracy even under a much weaker
privacy budget (ε = 50 vs. our ε = 1)

6. Conclusion and Future Work
We introduced a new certified machine unlearning method
that provides formal guarantees while remaining broadly ap-
plicable to modern neural networks. Our approach leverages
the connection between unlearning and privacy amplifica-
tion through stochastic post-processing, enabling effective
removal of data influence without imposing assumptions on
the loss function. By applying noisy fine-tuning to the retain

set, our methods achieve both theoretical soundness and
practical effectiveness, outperforming existing baselines in
empirical evaluations.

Despite these strengths, our approach has certain limita-
tions. First, the effectiveness of our method is constrained
by the curse of dimensionality inherent in differential pri-
vacy, which can make scaling to models with very large
numbers of parameters more challenging. Second, our un-
learning framework is designed specifically for stochastic
gradient descent (SGD) during the unlearning stage, as we
do not retain memory from earlier steps. However, this
restriction does not apply to the initial model training or
post-unlearning fine-tuning, allowing for flexibility in those
phases. Future work could explore extensions to more
complex architectures and alternative optimization meth-
ods, potentially improving scalability while maintaining
strong unlearning guarantees. Our findings highlight the
feasibility of certified unlearning in realistic deep learning
settings for the first time, offering a promising direction for
privacy-preserving and efficient machine learning.
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A. Proofs
A.1. Theorem 4.2: Model Clipping

Preliminaries. We first recall the hockey-stick divergence and previous results on privacy amplification by stochastic
post-processing (Balle et al., 2019).

Definition A.1 (Hockey-stick divergence). Let ε ≥ 0, and µ, ν two probability measures defined over Rd. We define

Eε(µ ∥ ν) :=
∫
Rd

d[µ− eεν]+ = sup
A⊂Rd

(µ(A)− eεν(A)) ,

where [ · ]+ := max {0, ·}.

Lemma A.2 ((Balle et al., 2019), Theorem 1 (adapted)). Let ε ≥ 0, K be a Markov kernel taking inputs in Rd, and µ, ν be
two probability distributions over Rd. We have

Eε(µK ∥ νK) ≤ Eε(µ ∥ ν) · sup
x1,x2∈Rd

Eε(K(x1) ∥K(x2)).

Lemma A.3 ((Asoodeh et al., 2020), Lemma 2). Let ε ≥ 0, µ1 ̸= µ2 ∈ Rd and σ > 0. We have

Eε(N (µ1, σ
2Id) ∥ N (µ2, σ

2Id)) = Q

(
εσ

∥µ1 − µ2∥
− ∥µ1 − µ2∥

2σ

)
− eεQ

(
εσ

∥µ1 − µ2∥
+

∥µ1 − µ2∥
2σ

)
,

where for all t ∈ R, Q(t) := 1√
π

∫∞
t
e−u

2/2du.

Lemma A.4 ((Dwork & Roth, 2014), Theorem A.1 (paraphrased)). Let ε ∈ (0, 1) and µ1 ̸= µ2 ∈ Rd, σ > 0. We have

Eε(N (µ1, σ
2Id) ∥ N (µ2, σ

2Id)) ≤ 1.25 exp

(
− σ2ε2

2 ∥µ1 − µ2∥
2

)
.

Main proof. We now proceed to proving the main theorem.

Theorem 4.2 (Model clipping). Let T ≥ 1, C0, C2, σ0, ε > 0, and δ ∈ (0, 1). Denote for every r > 0,

θε(r) := Q
(ε
r
− r

2

)
− eεQ

(ε
r
+
r

2

)
, (9)

where for all t ∈ R, Q(t) := 1√
2π

∫∞
t
e−u

2/2du.

Consider T iterations of the unlearning algorithm defined in (4). We obtain (ε, δ)-unlearning if

T ≥
log(1/δ) + log θε(

2C0

σ0
)

log (1/θε(
2C2

σ ))
. (10)

In particular, for any T ≥ 1, ε ∈ (0, 1), it suffices to have

σ2 =
8C2

2 ln(1.25)

ε2

[
1 +

1

T

(
ln(1.25/δ)− σ2

0ε
2

8C2
0

)]
. (11)

Proof. Let T ≥ 1, C0, C2, σ0, γ > 0, and δ ∈ (0, 1), ε ∈ (0, 3 log(1/δ)). Consider T iterations of the unlearning algorithm
defined in (4), and analogously define the following sequence initialized at the projected model trained without the forget
data x′

0 := ΠC0
(A(D \ Df )) + ξ0, ξ0 ∼ N (0, σ2

0Id):

x′
t+1 = ΠC2(x

′
t − γG(x′

t)) + ξ′t, ξ′t ∼ N (0, σ2Id). (15)

Recall from Definition A.1 the definition of the hockey-stick divergence Eε. Also, we recall from Lemma A.2 that for any
Markov kernel K:

Eε(µK ∥ νK) ≤ sup
x1,x2∈Rd

Eε(K(x1) ∥K(x2)) · Eε(µ ∥ ν).
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In particular, by introducing α := supx1,x2∈Rd Eε(N (ΠC2
(x1−γG(x1)), σ

2Id) ∥ N (ΠC2
(x2−γG(x2)), σ

2Id)) we have

Eε(xt+1 ∥ x′
t+1) ≤ α · Eε(xt ∥ x′

t).

Applying the above recursively over T iterations, and denoting β := Eε(N (ΠC0(A(D)), σ2
0Id) ∥ N (ΠC0(A(D \

Df )), σ2
0Id)), yields:

Eε(xT ∥ x′
T ) ≤ αT · Eε(x0 ∥ x′

0) = αT · β.

Therefore, in order to satisfy (ε, δ)-unlearning, it suffices to achieve Eε(xT ∥ x′
T ) ≤ δ, which can be achieved by having:

T ≥ log(1/δ) + log β

log(1/α)
.

Now, since for any x1,x2 it holds that ∥ΠC2
(x1 − γG(x1))−ΠC2

(x2 − γG(x2))∥ ≤ 2C2 and r 7→ Q
(
εσ
r − r

2σ

)
−

eεQ
(
εσ
r + r

2σ

)
is increasing (Asoodeh et al., 2020), using the exact expression of the hockey-stick divergence between

Gaussians from Lemma A.3 yields

α = sup
x1,x2∈Rd

Eε(N (ΠC2(x1 − γG(x1)), σ
2Id) ∥ N (ΠC2(x2 − γG(x2)), σ

2Id))

≤ Q

(
εσ

2C2
− C2

σ

)
− eεQ

(
εσ

2C2
+
C2

σ

)
.

Similarly, since ∥ΠC0(A(D))−ΠC0(A(D \ Df ))∥ ≤ 2C0, we have

β = Eε(N (ΠC0
(A(D)), σ2

0Id) ∥ N (ΠC0
(A(D \ Df )), σ2

0Id)) ≤ Q

(
εσ0
2C0

− C0

σ0

)
− eεQ

(
εσ0
2C0

+
C0

σ0

)
.

Therefore, to achieve (ε, δ)-unlearning, it suffices to have

T ≥
log(1/δ) + log

(
Q
(
εσ0

2C0
− C0

σ0

)
− eεQ

(
εσ0

2C0
+ C0

σ0

))
− log

(
Q
(
εσ
2C2

− C2

σ

)
− eεQ

(
εσ
2C2

+ C2

σ

)) .

Alternatively, using the simpler upper bound from Lemma A.4 on the hockey-stick divergence between Gaussians, we obtain

α = sup
x1,x2∈Rd

Eε(N (ΠC2
(x1 − γG(x1)), σ

2Id) ∥ N (ΠC2
(x2 − γG(x2)), σ

2Id)) ≤ 1.25 exp

(
−σ

2ε2

8C2
2

)
.

Similarly, we have

β = Eε(N (ΠC0
(A(D)), σ2

0Id) ∥ N (ΠC0
(A(D \ Df )), σ2

0Id)) ≤ 1.25 exp

(
−σ

2
0ε

2

8C2
0

)
.

Therefore, assuming σ2 >
8C2

2 ln(1.25)
ε2 , to achieve (ε, δ)-unlearning, it suffices to have

T ≥
ln(1.25/δ)− σ2

0ε
2

8C2
0

σ2ε2

8C2
2
− ln(1.25)

.

This can be rewritten as

σ2 ≥ 8C2
2 ln(1.25)

ε2
+

8C2
2 ln(1.25)

Tε2

[
ln(1.25/δ)− σ2

0ε
2

8C2
0

]
.

This concludes the proof.
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A.2. Theorem 4.1: Gradient Clipping

Preliminaries. We first recall some important definitions and state useful lemmas before proceeding to the proof of the
main theorem. We first recall the definition of the Rényi divergence, which we will mainly use to prove Theorem 4.1.
Definition A.5 (Rényi divergence). Let q > 0, q ̸= 1. The q-Rényi divergence between two probability distributions µ and
ν is defined as

Dq(µ ∥ ν) := 1

q − 1
logEX∼ν

(
µ(X)

ν(X)

)q
.

We recall the shifted Rényi divergence introduced by Feldman et al. (2018). For any z ≥ 0, q ≥ 1, and two distributions µ, ν
defined on Rd, we define

D(z)
q (µ ∥ ν) := inf

µ′ : W∞(µ′,µ)≤z
Dq(µ

′ ∥ ν), (16)

where W∞(·, ·) := infω∈Γ(·,·) ess sup(x,y)∼ω ∥x− y∥2 is the ∞-Wasserstein distance, and Γ(µ′, µ) is the collection of
couplings of its arguments, i.e., joint measures whose marginals are µ′ and µ respectively.
Lemma A.6 ((Feldman et al., 2018), Lemma 20 (adapted)). Let q ≥ 1, z, a ≥ 0 and X,Y arbitrary random variables. If
ξ, ξ′ ∼ N (0, σ2Id), σ > 0, then

D(z)
q (X + ξ ∥ Y + ξ′) ≤ D(z+a)

q (X ∥ Y ) +
qa2

2σ2
.

Lemma A.7. Let q ≥ 1, z, ρ, C ≥ 0, ψ : Rd → Rd and X,Y arbitrary random variables.

If ψ satisfies ∀x,x′ ∈ Rd, ∥ψ(x′)− ψ(x)∥ ≤ ρ ∥x′ − x∥+ s, then

D(ρz+s)
q (ψ(X) ∥ ψ(Y )) ≤ D(z)

q (X ∥ Y ).

Proof. For any measure µ, we denote by ψ#µ the push-forward measure of µ by ψ. Assume that ψ satisfies ∀x,x′ ∈
Rd, ∥ψ(x′)− ψ(x)∥ ≤ ρ ∥x′ − x∥+ s. By definition of the ∞-Wasserstein distance, it follows immediately that

W∞(ψ#µ, ψ#ν) ≤ ρ ·W∞(µ, ν) + s. (17)

Therefore, by definition (16) of the shifted Rényi divergence and using the data processing inequality for Rényi diver-
gences (Van Erven & Harremos, 2014), we have

D(ρz+s)
q (ψ(X) ∥ ψ(Y )) = inf

µ′ : W∞(µ′,ψ(X))≤ρz+s
Dq(µ

′ ∥ ψ(Y ))

≤ inf
X′ : W∞(ψ(X′),ψ(X))≤ρz+s

Dq(ψ(X
′) ∥ ψ(Y ))

≤ inf
X′ : W∞(X′,X)≤z

Dq(ψ(X
′) ∥ ψ(Y )) (Inequality (17))

≤ inf
X′ : W∞(X′,X)≤z

Dq(X
′ ∥ Y ) (Data Processing inequality)

= D(z)
q (X ∥ Y ).

This concludes the proof.

Lemma A.8. Let γ, λ ≥ 0, G : Rd → Rd be an arbitrary function, and ψ : x 7→ x− γ (ΠC(G(x)) + λx). Then ψ satisfies:

∀x,x′ ∈ Rd, ∥ψ(x′)− ψ(x)∥ ≤ |1− λγ| ∥x′ − x∥+ 2γC.

Proof. We have for any x,x′ ∈ Rd that

∥ψ(x)− ψ(x′)∥ = ∥x− γ (ΠC(G(x)) + λx)− x′ + γ (ΠC(G(x
′)) + λx′)∥

≤ |1− λγ| ∥x− x′∥+ γ ∥ΠC(G(x))−ΠC(G(x
′))∥ (Triangle inequality)

≤ |1− λγ| ∥x− x′∥+ 2γC. (∥ΠC(G(x))∥ ≤ C)

14
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Main proof. We are interested in the following iterative unlearning procedure (generalizing (3) to regularization and
varying stepsizes and noise variances), starting from the projected model trained on the full data x0 := ΠC0(A(D)), where
for all t ∈ {0, . . . , T − 1}:

xt+1 = xt − γt (ΠC1(G(xt)) + λxt) + ξt, ξt ∼ N (0, σ2
t Id). (18)

For the analysis, we analogously define the following sequence initialized at the projected model trained without the forget
data x′

0 := ΠC0
(A(D \ Df )):

x′
t+1 = x′

t − γt (ΠC1
(G(x′

t)) + λx′
t) + ξ′t, ξ′t ∼ N (0, σ2

t Id). (19)

Theorem A.9. Let T, q ≥ 1, γ0, . . . , γT−1 ≥ 0, σ0, . . . , σT−1 > 0, λ ≥ 0 and consider the two sequences
{xt}0≤t≤T , {x′

t}0≤t≤T as defined above. Denote by Dq the Rényi divergence of order q. Assume that for every
t ∈ {0, . . . , T − 1}, γtλ < 1. Denote for every t ∈ {0, . . . , T − 1}, st := 2γtC1, ρt := 1− γtλ.

If a0, . . . , aT−1 ≥ 0 satisfy
∑T−1
t=0

(∏T−1−t
k=1 ρk

)
at =

(∏T−1
t=0 ρt

)
2C0 +

∑T−1
t=0

(∏T−1−t
k=1 ρk

)
st, then

Dq(xT ∥ x′
T ) ≤

T−1∑
t=0

qa2t
2σ2

t

. (20)

In particular, we have

Dq(xT ∥ x′
T ) ≤

q

2

[(∏T−1
t=0 ρt

)
2C0 +

∑T−1
t=0

(∏T−1−t
k=1 ρk

)
st

]2
∑T−1
t=0

(∏T−1−t
k=1 ρ2k

)
σ2
t

. (21)

Proof. Let t ∈ {0, . . . , T − 1}. Recall the sequence of iterates defined in (18), and analogously define the following
sequence initialized at the projected model trained without the forget data x′

0 := ΠC0(A(D \ Df )):

x′
t+1 = x′

t − γt (ΠC1(G(x
′
t)) + λx′

t) + ξ′t, ξ′t ∼ N (0, σ2
t Id). (22)

Therefore, for any at ≥ 0, using the bound above with Lemma A.6 yields

D(zt+1)
q

(
xt+1 ∥ x′

t+1

)
= D(zt+1)

q (xt − γt (ΠC1
(G(xt)) + λxt) + ξt ∥ x′

t − γt (ΠC1
(G(x′

t)) + λx′
t) + ξ′t)

≤ D(zt+1+at)
q (xt − γt (ΠC1

(G(xt)) + λxt) ∥ x′
t − γt (ΠC1

(G(x′
t)) + λx′

t)) +
qa2t
2σ2

t

.

Now, using Lemma A.8, and the fact that γt < 1
λ , we establish that ψt : x 7→ x − γtΠC1(G(x)) satisfies ∀x,x′ ∈

Rd, ∥ψt(x′)− ψt(x)∥ ≤ (1− λγt) ∥x′ − x∥+ 2γtC1. Consequently, denoting st := 2γtC1 and ρt := 1− λγt, using the
previous fact and Lemma A.7 in the bound above yields

D(zt+1)
q

(
xt+1 ∥ x′

t+1

)
≤ D(zt+1+at)

q (xt − γt (ΠC1(G(xt)) + λxt) ∥ x′
t − γt (ΠC1(G(x

′
t)) + λx′

t)) +
qa2t
2σ2

t

≤ D
(
1
ρt

(zt+1+at−st))
q (xt ∥ x′

t) +
qa2t
2σ2

t

.

By denoting zt := 1
ρt

(zt+1 + at − st), we have by recursion over t ∈ {0, . . . , T − 1} for any z0, a0, . . . , aT ≥ 0:

D(zT )
q (xT ∥ x′

T ) ≤ D(z0)
q (x0 ∥ x′

0) +

T−1∑
t=0

qa2t
2σ2

t

, (23)

zT =

(
T−1∏
t=0

ρt

)
z0 −

T−1∑
t=0

(
T−1−t∏
k=1

ρk

)
(at − st). (24)
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Observe that, upon taking z0 = 2C0, since ∥x0,x
′
0∥ ≤ 2C0, it is immediate from definition (16) that D(z0)

q (x0 ∥ x′
0) = 0.

Additionally, taking zT = 0 in the last equation implies that for all a0, . . . , aT−1 ≥ 0 such that

T−1∑
t=0

(
T−1−t∏
k=1

ρk

)
at =

(
T−1∏
t=0

ρt

)
2C0 +

T−1∑
t=0

(
T−1−t∏
k=1

ρk

)
st, (25)

we have

Dq(xT ∥ x′
T ) = D(0)

q (xT ∥ x′
T ) ≤

T−1∑
t=0

qa2t
2σ2

t

. (26)

This concludes the first part of the second statement of the theorem. The second part of the second statement is a direct
consequence of setting, for all t ∈ {0, . . . , T − 1},

at =

[(
T−1∏
k=0

ρk

)
2C0 +

T−1∑
k=0

(
T−1−k∏
l=1

ρl

)
sk

] (∏T−1−t
k=1 ρk

)
σ2
t∑T−1

k=0

(∏T−1−k
l=1 ρ2l

)
σ2
t

. (27)

Theorem 4.1 (Gradient clipping). Let T ≥ 1, γ, σ > 0, λ ≥ 0, δ ∈ (0, 1), ε ∈ (0, 3 log(1/δ)). Consider T iterations of the
unlearning algorithm defined in (3). We obtain (ε, δ)-unlearning if:

1. Without regularization (λ = 0):

σ2 =
9 log(1/δ)

ε2T
(C0 + C1γT )

2
. (5)

2. With regularization (λ > 0): if γλ ∈ ( 12 , 1) and

σ2 =
72γλ log(1/δ)

ε2

(
C0 (1− γλ)

T
+
C1

λ

)2

. (6)

Proof. The proof of the first claim follows immediately by taking constant noise variance, stepsize, and zero regularization
in the second statement of Theorem A.9, before converting from Rényi to (ε, δ)-unlearning using standard conversion
methods (Mironov, 2017).

Similarly, the proof of the second claim follows immediately by taking constant noise variance, and stepsize in the second
statement of Theorem A.9 (which assumes that γλ < 1), before converting from Rényi to (ε, δ)-unlearning using standard
conversion methods (Mironov, 2017). Indeed, we then get that it is sufficient to set

σ2 ≥ γλ(2− γλ)

2ε (1− (1− γλ)
2T

)

[
2C0 (1− γλ)

T
+

2C1

λ
(1− (1− γλ)

T
)

]2
.

The right-hand side above can be upper bounded by 72γλ log(1/δ)
ε2

(
C0 (1− γλ)

T
+ C1

λ

)2
when assuming that γλ ≥ 1

2 .
This concludes the proof.
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B. Experiments
We use small custom networks for training on MNIST and CIFAR10

1 # used for mnist
2 class TinyNet(nn.Module):
3 num_classes: int
4

5 @nn.compact
6 def __call__(self, x, train: bool = True, mutable=None):
7 x = x.reshape((x.shape[0], -1))
8 x = nn.Dense(features=5)(x)
9 x = nn.relu(x)

10 x = nn.Dense(features=self.num_classes)(x)
11 return x
12

13 class CIFAR10TinykNet(nn.Module):
14 num_classes: int
15

16 @nn.compact
17 def __call__(self, x, train: bool = True):
18 he_init = nn.initializers.he_normal()
19 x = nn.Conv(features=32, kernel_size=(3, 3), padding="same", kernel_init=he_init)(

x)
20 x = nn.relu(x)
21 x = nn.avg_pool(x, window_shape=(2, 2), strides=(2, 2))
22 x = nn.Conv(features=64, kernel_size=(3, 3), padding="same", kernel_init=he_init)(

x)
23 x = nn.relu(x)
24 x = nn.avg_pool(x, window_shape=(2, 2), strides=(2, 2))
25 x = x.mean(axis=(1, 2))
26 x = nn.Dense(self.num_classes, kernel_init=he_init)(x)
27 return x

In Tables 3 and 4 we give complete experimental details for the CIFAR and MNIST experiments.

Dataset CIFAR-10
Architecture Tiny Convolution Net (20k params)

Training objective Cross entropy loss
Evaluation objective Top-1 accuracy

Batch size 128
Training learning rate 0.1

Training learning rate schedule Linear One Cycle (Smith & Topin, 2017)
Train weight decay 0.0005

Number of train epochs 100
Forget set size 10%

Number of unlearning epochs 50
Noise schedule constant

Unlearning learning rate schedule constant
Post Unlearning learning rate 0.06

Post Unlearning learning rate schedule Linear One Cycle
Post Unlearning weight decay 0.0005

Table 3. Experimental Setting CIFAR10
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Dataset MNIST
Architecture Tiny 2 Layer Net (4k params)

Training objective Cross entropy loss
Evaluation objective Top-1 accuracy

Batch size 128
Training learning rate 0.06

Training learning rate schedule Linear One Cycle (Smith & Topin, 2017)
Train weight decay 0.0005

Number of train epochs 30
Forget set size 10%

Number of unlearning epochs 10
Noise schedule constant

Unlearning learning rate schedule constant
Post Unlearning learning rate 0.06

Post Unlearning learning rate schedule Linear One Cycle
Post Unlearning weight decay 0.0005

Table 4. Experimental Setting MNIST

ϵ Compute Budget λ C1 γt C0 Unlearning Steps σ

1 1 10.0 100.0 0.0001 0.01 1 0.028270
1 2 750.0 10.0 0.0001 0.01 6 0.007752
1 3 750.0 10.0 0.0001 0.01 6 0.007752
1 4 750.0 10.0 0.0001 0.01 6 0.007752
1 5 10.0 100.0 0.0001 0.01 1 0.028270
1 6 750.0 10.0 0.0001 0.01 6 0.007752
1 7 10.0 100.0 0.0001 0.01 1 0.028270
1 8 10.0 100.0 0.0001 0.01 1 0.028270
1 9 10.0 100.0 0.0001 0.01 1 0.028270
1 10 10.0 100.0 0.0001 0.01 1 0.028270

Table 5. Hyperparameters for Gradient Clipping MNIST

ϵ Compute Budget C2 σ η λ Unlearning Steps

1 1 0.001 0.01 0.0001 900.00 1
1 2 0.001 0.01 0.0001 900.00 1
1 3 0.001 0.01 0.0001 900.00 1
1 4 0.001 0.01 0.0001 500.00 1
1 5 0.001 0.01 0.0100 0.01 1
1 6 0.010 0.01 0.0010 900.00 6
1 7 0.001 0.01 0.0010 10.00 1
1 8 0.001 0.01 0.0100 900.00 1
1 9 0.001 0.01 0.0001 10.00 1
1 10 0.001 0.01 0.0010 10.00 1

Table 6. Hyperparameters for Model Clipping MNIST
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ϵ Compute Budget (epochs) λ C1 γ C0 Unlearning Steps σ

1 1 200.0 100.0 0.0010 0.1 1 0.254558
1 4 50.0 10.0 0.0100 1.0 5 0.275702
1 7 50.0 10.0 0.0100 20.0 11 0.256790
1 10 50.0 100.0 0.0001 0.1 10 0.088213
1 13 1.0 10.0 0.0010 0.1 10 0.089197
1 16 50.0 10.0 0.0010 0.1 10 0.077256
1 19 1.0 10.0 0.0010 0.1 10 0.089197
1 22 50.0 100.0 0.0001 0.1 10 0.088213
1 25 500.0 100.0 0.0010 1.0 5 0.275702
1 28 50.0 10.0 0.0100 20.0 11 0.256790
1 31 500.0 100.0 0.0010 20.0 11 0.256790
1 34 50.0 1.0 0.0010 1.0 93 0.012501
1 37 50.0 100.0 0.0010 0.1 1 0.275772
1 40 500.0 100.0 0.0010 1.0 5 0.275702
1 43 1.0 10.0 0.0100 0.1 1 0.281429
1 46 500.0 100.0 0.0010 20.0 11 0.256790
1 49 1.0 10.0 0.0100 0.1 1 0.281429

Table 7. Hyperparameters for Gradient Clipping CIFAR

ϵ Compute Budget (epochs) C2 σ η λ Unlearning Steps

1 1 0.200 0.2 0.0100 100.0 6
1 4 0.500 0.5 0.0010 10.0 6
1 7 0.500 0.5 0.0010 10.0 6
1 10 0.625 0.5 0.0001 100.0 9
1 13 0.625 0.5 0.0010 100.0 9
1 16 0.625 0.5 0.0001 0.0 9
1 19 0.500 0.5 0.0001 0.0 6
1 22 0.500 0.5 0.0010 0.0 6
1 25 0.625 0.5 0.0001 10.0 9
1 28 0.625 0.5 0.0010 100.0 9
1 31 0.625 0.5 0.0001 1.0 9
1 34 0.975 0.5 0.0001 10.0 36
1 37 0.625 0.5 0.0100 10.0 9
1 40 0.975 0.5 0.0001 1.0 36
1 43 0.500 0.5 0.0001 10.0 6
1 46 0.975 0.5 0.0001 10.0 36
1 49 0.500 0.5 0.0100 100.0 6

Table 8. Hyperparameters for Model Clipping CIFAR
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ϵ Compute Budget (epochs) C0 σ

1 1 1.00 9.689610
1 4 0.10 0.968961
1 7 0.10 0.968961
1 10 0.10 0.968961
1 13 0.10 0.968961
1 16 0.10 0.968961
1 19 0.10 0.968961
1 22 0.10 0.968961
1 25 0.10 0.968961
1 28 0.10 0.968961
1 31 0.10 0.968961
1 34 0.10 0.968961
1 37 0.10 0.968961
1 40 0.01 0.096896
1 43 0.01 0.096896
1 46 0.10 0.968961
1 49 0.01 0.096896

Table 9. Hyperparameters for Output Perturbation CIFAR

ϵ Compute Budget (epochs) C0 σ

1 1 0.01 0.096896
1 2 0.01 0.096896
1 3 0.01 0.096896
1 4 0.01 0.096896
1 5 0.01 0.096896
1 6 0.01 0.096896
1 7 0.01 0.096896
1 8 0.01 0.096896
1 9 0.01 0.096896
1 10 0.01 0.096896

Table 10. Hyperparameters for Output Perturbation MNIST

C. Transfer Learning Experiments
We use small three layer network as the head on top of a frozen pretrained (on Imagenet) ResNet18 backbone for transfer
learning experiments on CIFAR-10 and CIFAR-100

1 class ThreeLayerNN(nn.Module):
2 num_classes: int
3

4 @nn.compact
5 def __call__(self, x, train: bool = True, mutable=None):
6 x = x.reshape((x.shape[0], -1))
7 x = nn.Dense(features=32)(x)
8 x = nn.relu(x)
9 x = nn.Dense(features=32)(x)

10 x = nn.relu(x)
11 x = nn.Dense(features=self.num_classes)(x)
12 return x

In Tables 11, 12, and 13 we give complete experimental details for the CIFAR-10 and CIFAR-100 transfer learning
experiments.
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Architecture Frozen Resnet-18 Backbone + 3 Layer NN
Training objective Cross entropy loss

Evaluation objective Top-1 accuracy

Batch size 128
Training learning rate 0.1

Training learning rate schedule Linear One Cycle (Smith & Topin, 2017)
Train weight decay 0.0005

Number of train epochs 100
DP-SGD ∥.∥2 −clip 0.5

DP-SGD target group ε 50
DP-SGD target group δ 0.00001

Forget set size 10%
DP-SGD forget set size 0.5%

Number of unlearning epochs 50
Noise schedule constant

Unlearning learning rate schedule constant
Post Unlearning learning rate 0.06

Post Unlearning learning rate schedule Linear One Cycle
Post Unlearning weight decay 0.0005

Table 11. Experimental Setting CIFAR-10 and CIFAR-100

ϵ Compute Budget (epochs) λ C1 γ C0 Unlearning Steps σ

1 1 500.0 100.0 0.001 0.01 1 0.148492
1 4 100.0 10.0 0.0001 0.01 10 0.008698
1 7 0.50 1.0 0.001 0.01 10 0.008932
1 10 0.50 10.0 0.0001 0.01 10 0.008943
1 13 0.50 10.0 0.0001 0.01 10 0.008943
1 16 10.0 10.0 0.001 0.01 1 0.028143
1 19 10.0 10.0 0.001 0.01 1 0.028143
1 22 10.0 10.0 0.001 0.01 1 0.028143
1 25 10.0 10.0 0.001 0.01 1 0.028143
1 28 10.0 10.0 0.001 0.01 1 0.028143
1 31 100.0 100.0 0.0001 0.01 1 0.028143
1 34 10.0 1.0 0.01 0.01 1 0.026870
1 37 0.50 10.0 0.001 0.01 1 0.028277
1 40 0.50 10.0 0.001 0.01 1 0.028277
1 43 0.50 10.0 0.001 0.01 1 0.028277
1 46 0.50 10.0 0.001 0.01 1 0.028277
1 49 0.50 10.0 0.001 0.01 1 0.028277

Table 12. Hyperparameters for Gradient Clipping Transfer Learning CIFAR-10
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ϵ Compute Budget (epochs) λ C1 γ C0 Unlearning Steps σ

1 1 500 100 0.001 0.01 1 0.148492
1 4 0.50 1 0.001 0.01 10 0.008932
1 7 10 1 0.001 0.01 10 0.008698
1 10 10 0.10 0.01 0.10 30 0.008524
1 13 10 10 0.0001 0.01 10 0.008920
1 16 100 1 0.001 0.10 30 0.008524
1 19 0.50 1 0.001 0.01 10 0.008932
1 22 500 10 0.0001 0.01 10 0.007726
1 25 100 1 0.001 0.10 30 0.008524
1 28 0.50 1 0.001 0.01 10 0.008932
1 31 500 10 0.001 1 10 0.025667
1 34 0.50 10 0.0001 0.01 10 0.008943
1 37 500 10 0.001 1 10 0.025667
1 40 500 10 0.001 1 10 0.025667
1 43 500 10 0.001 1 10 0.025667
1 46 500 10 0.001 1 10 0.025667
1 49 500 10 0.001 1 10 0.025667

Table 13. Hyperparameters for Gradient Clipping Transfer Learning CIFAR-100

D. ε Sweep
In this section, we evaluate how the choice of ϵ affects the performance of our algorithm. For that, in addition to ϵ = 1
used in the paper, we plot the performance of the gradient clipping algorithm (3) for ϵ = 0.1 and ϵ = 10. We kept fixed
δ = 10−5 for all of the epsilons. See Figure 4 for results. We can see that ϵ = 0.1 degrades the performance of our algorithm
significantly compared to ϵ = 1. There is very little difference between ε = 1 and ε = 10 but a performance penalty for
ε = 0.1 that is more visible with the harder task (CIFAR-10).

(a) CIFAR-10 (b) MNIST

Figure 4. Accuracy of Gradient Clipping versus compute budget (epochs) on CIFAR-10 (left) and MNIST (right), to satisfy (ε, 10−5)-
unlearning for ε ∈ {0.1, 1, 10}.
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Compute Budget (epochs) ϵ λ C1 γ C0 Unlearning Steps σ

1 0.1 500 100 0.001 1 5 0.871847
4 0.1 500 100 0.001 1 5 0.871847
7 0.1 500 100 0.001 1 5 0.871847

10 0.1 500 100 0.001 1 5 0.871847
13 0.1 500 100 0.001 1 5 0.871847
16 0.1 500 100 0.001 1 5 0.871847
19 0.1 500 100 0.001 1 5 0.871847
22 0.1 500 100 0.001 1 5 0.871847
25 0.1 500 100 0.001 1 5 0.871847
28 0.1 500 100 0.001 1 5 0.871847
31 0.1 500 100 0.001 1 5 0.871847
34 0.1 500 100 0.001 1 5 0.871847
37 0.1 500 100 0.001 1 5 0.871847
40 0.1 500 100 0.001 1 5 0.871847
43 0.1 500 100 0.001 1 5 0.871847
46 0.1 500 100 0.001 1 5 0.871847
49 0.1 500 100 0.001 1 5 0.871847
1 1 500 100 0.001 1 5 0.275702
4 1 1 10 0.001 0.1 10 0.089197
7 1 500 100 0.001 1 5 0.275702

10 1 1 10 0.001 0.1 10 0.089197
13 1 500 100 0.001 1 5 0.275702
16 1 500 100 0.001 1 5 0.275702
19 1 500 100 0.001 1 5 0.275702
22 1 500 100 0.001 1 5 0.275702
25 1 500 100 0.001 1 5 0.275702
28 1 500 100 0.001 1 5 0.275702
31 1 500 100 0.001 1 5 0.275702
34 1 500 100 0.001 1 5 0.275702
37 1 500 100 0.001 1 5 0.275702
40 1 500 100 0.001 1 5 0.275702
43 1 500 100 0.001 1 5 0.275702
46 1 500 100 0.001 1 5 0.275702
49 1 500 100 0.001 1 5 0.275702
1 10 1 100 0.1 0.1 1 4.512385
4 10 1 10 0.1 0.1 1 0.487463
7 10 0.1 10 0.1 1 1 0.889955

10 10 0.1 10 0.1 0.1 1 0.491488
13 10 0.1 10 0.1 1 1 0.889955
16 10 0.1 10 0.1 0.1 1 0.491488
19 10 1 10 0.1 0.1 1 0.487463
22 10 0.1 10 0.1 0.1 1 0.491488
25 10 0.1 10 0.1 1 1 0.889955
28 10 0.1 0.01 0.1 0.1 70 0.007260
31 10 1 0.1 0.1 10 53 0.026744
34 10 25 5 0.01 10 19 0.071419
37 10 0.1 10 0.1 0.1 1 0.491488
40 10 1 10 0.001 0.1 10 0.028207
43 10 25 5 0.01 10 19 0.071419
46 10 25 5 0.01 10 19 0.071419
49 10 1 0.1 0.1 1 30 0.026955

Table 14. Hyperparameters for Gradient Clipping CIFAR-10 for ε ∈ {10, 1, 0.1}
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ϵ Compute Budget (epochs) λ C1 γ C0 Unlearning Steps σ

10 1 750 10 0.0001 0.01 6 0.002451
10 2 750 10 0.0001 0.01 6 0.002451
10 3 750 10 0.0001 0.01 6 0.002451
10 4 750 10 0.0001 0.01 6 0.002451
10 5 10 100 0.0001 0.01 1 0.008940
10 6 750 10 0.0001 0.01 6 0.002451
10 7 10 100 0.0001 0.01 1 0.008940
10 8 750 10 0.0001 0.01 6 0.002451
10 9 10 100 0.0001 0.01 1 0.008940
1 1 10 100 0.0001 0.01 1 0.028270
1 2 750 10 0.0001 0.01 6 0.007752
1 3 750 10 0.0001 0.01 6 0.007752
1 4 750 10 0.0001 0.01 6 0.007752
1 5 10 100 0.0001 0.01 1 0.028270
1 6 10 100 0.0001 0.01 1 0.028270
1 7 750 10 0.0001 0.01 6 0.007752
1 8 10 100 0.0001 0.01 1 0.028270
1 9 10 100 0.0001 0.01 1 0.028270

0.1 1 10 100 0.0001 0.01 1 0.089398
0.1 2 10 100 0.0001 0.01 1 0.089398
0.1 3 10 100 0.0001 0.01 1 0.089398
0.1 4 750 10 0.0001 0.01 6 0.024514
0.1 5 10 100 0.0001 0.01 1 0.089398
0.1 6 10 100 0.0001 0.01 1 0.089398
0.1 7 10 100 0.0001 0.01 1 0.089398
0.1 8 10 100 0.0001 0.01 1 0.089398
0.1 9 10 100 0.0001 0.01 1 0.089398

Table 15. Hyperparameters for Gradient Clipping MNIST for ε ∈ {10, 1, 0.1}
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