
ar
X

iv
:2

50
6.

06
97

5v
3

 [
cs

.C
R

]
 1

1
Ju

n
20

25

Auditing Black-Box LLM APIs with a
Rank-Based Uniformity Test

Xiaoyuan Zhu1 Yaowen Ye2† Tianyi Qiu3† Hanlin Zhu2‡ Sijun Tan2‡

Ajraf Mannan1 Jonathan Michala1 Raluca Ada Popa2 Willie Neiswanger1
1University of Southern California 2University of California, Berkeley 3Peking University

xzhu9839@usc.edu, elwin@berkeley.edu, qiutianyi.qty@gmail.com
{hanlinzhu, sijuntan}@berkeley.edu, {amannan, michala}@usc.edu

raluca@eecs.berkeley.edu, neiswang@usc.edu
† Co-second authors. ‡ Co-third authors.

Abstract

As API access becomes a primary interface to large language models (LLMs), users
often interact with black-box systems that offer little transparency into the deployed
model. To reduce costs or maliciously alter model behaviors, API providers may
discreetly serve quantized or fine-tuned variants, which can degrade performance
and compromise safety. Detecting such substitutions is difficult, as users lack
access to model weights and, in most cases, even output logits. To tackle this
problem, we propose a rank-based uniformity test that can verify the behavioral
equality of a black-box LLM to a locally deployed authentic model. Our method is
accurate, query-efficient, and avoids detectable query patterns, making it robust to
adversarial providers that reroute or mix responses upon the detection of testing
attempts. We evaluate the approach across diverse threat scenarios, including
quantization, harmful fine-tuning, jailbreak prompts, and full model substitution,
showing that it consistently achieves superior statistical power over prior methods
under constrained query budgets.

1 Introduction

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Ours
MMD (Gao et al., 2025)
KS Test

Figure 1: Statistical power of different methods in
detecting substitution of the Gemma-2-9b-it with
its 4-bit quantized variant, as the proportion of
API responses from the quantized model increases.
Our method significantly outperforms MMD (Gao
et al., 2025) and the Kolmogorov–Smirnov (KS)
baseline.

APIs have become a central access point for
large language models (LLMs) in consumer ap-
plications, enterprise tools, and research work-
flows (Anysphere Inc., 2025; Yun et al., 2025;
ResearchFlow, 2025). However, while users
can query black-box APIs, they have little to no
visibility into the underlying model implemen-
tation. Combined with the high cost of serving
large models and the latency pressure to reduce
time-to-first-token (TTFT), API providers are
incentivized to deploy smaller or quantized vari-
ants of the original model to cut costs. Such
modifications, while opaque to end users, can
degrade model performance and introduce safety
risks (Egashira et al., 2024). In more concerning
cases, providers may incorporate harmful fine-
tuning, jailbreak-enabling system prompts, or
even misconfigured system components without
realizing it (mirpo, 2025).

Preprint. Under review.

https://arxiv.org/abs/2506.06975v3

These risks highlight the need for LLM API auditing—the task of checking whether a deployed
model is as claimed. Yet this is particularly challenging in the black-box setting: users typically lack
access to model weights and receive only limited metadata (e.g., top-5 token log-probabilities). This
necessitates detection methods that rely solely on observed outputs. However, even such output-level
methods face potential evasion: if the detection relies on invoking an LLM API with specially
constructed query distributions, a dishonest API provider could detect the special pattern and reroute
those queries to the original model they claim to serve. Worse still, even without knowing the
detection strategy, an API provider could mix multiple models, making the response distribution
harder to distinguish.

Following Gao et al. (2025), we formulate the LLM API auditing problem as a model equality test:
given query access to a target LLM API and a certified reference model of the expected configurations,
the goal is to determine if the two produce statistically indistinguishable outputs on shared prompts.

We propose that a model equality test for auditing LLM APIs must satisfy three key criteria: accuracy,
query efficiency, and robustness to adversarial attacks. Accuracy reflects how reliably a test can be
used in practice. Query efficiency is critical for reducing operational overhead, which incentivizes
more audits to ensure API models’ integrity. Robustness is equally essential for real-world deploy-
ment, where audits must both evade detection by adversarial API providers and remain effective
under targeted attacks.

While several methods have been proposed for model equality testing, they each fall short in one or
more of these criteria (Table 1). Existing methods include Maximum Mean Discrepancy (MMD)
(Gao et al., 2025), trained text classifiers (Sun et al., 2025), identity prompting (Huang et al., 2025),
and benchmark performance comparison (Chen et al., 2023a). However, Sun et al. (2025) require
prohibitively many API queries; Huang et al. (2025) fail to capture model variations such as size,
version, or quantization (Cai et al., 2025); and Gao et al. (2025) and Chen et al. (2023a) rely on
special query distributions that can be adversarially detected and circumvented by techniques such as
prompt caching (Gu et al., 2025).

Table 1: Comparison of LLM auditing methods by
accuracy (Acc.), query-efficiency (Q-Eff.), and ro-
bustness to adversarial providers (Rob.).

Method Acc. Q-Eff. Rob.

RUT (Ours) ✓ ✓ ✓
MMD (Gao et al., 2025) ✓ ✓ ✗
Classifier (Sun et al., 2025) ✗ ✗ ✓
Identity-prompting (Huang et al., 2025) ✗ ✓ ✗
Benchmark (Chen et al., 2023a) ✗ ✗ ✗

Driven by these limitations, we propose a rank-
based uniformity test (RUT)—an asymmetric
two-sample hypothesis test that addresses all
three criteria simultaneously. In RUT, we sam-
ple one response from the target API and mul-
tiple responses from the reference model for
each prompt, then compute the rank percentile
of the API output within the reference distri-
bution. If the target and reference models are
identical, the percentiles should follow a uni-
form distribution. We detect deviations using the Cramér–von Mises test (Cramér, 1928). Our method
requires only a single API call per prompt, operates effectively on real-world, user-like queries, and
avoids detectable patterns that adversarial providers might exploit.

We evaluate RUT across a range of adversarial scenarios in which the API provider secretly substitutes
the claimed model with an alternative. In Section 5.2, we study the case where the substitute is a
quantized version of the original model. In Section 5.3, we test models augmented with a hidden
jailbreaking system prompt. In Section 5.4, we examine models finetuned on instruction-following
data. Finally, in Section 5.5, we consider substitution with a completely different model.

Under a fixed API query budget, we find RUT outperforms both MMD and a Kolmogorov–Smirnov
test (KS) baseline across all settings. It consistently achieves higher statistical power and shows
greater robustness to probabilistic substitution attacks (Figure 1). Moreover, when applied to five real-
world API-deployed models (Section 5.6), our method yields detection results closely aligned with
other methods and shows more robustness over string-based metrics on minor decoding mismatches.

To summarize, the main contributions of our work include:

1. A novel statistically-principled test for auditing LLM APIs. We propose RUT, an asymmet-
ric two-sample-test that needs only one API call per prompt and operates effectively on natural
queries, achieving query efficiency and by-deign robustness to adversarial providers.

2. Empirical validation across diverse threat models. We perform comprehensive experi-
ments to validate RUT’s superior statistical power under diverse model substitution settings,

2

including quantization, jailbreaking, supervised finetuning (SFT), full model replacement, and
hardware/provider replacement.

3. Cross-validated audit of live commercial endpoints. We benchmark RUT side-by-side
with established tests (MMD and KS) on three major public LLM APIs and demonstrate its
practicality in real-world black-box settings.

2 Related Work

LLM fingerprinting. Fingerprinting approaches focus on identifying LLMs by analyzing their
outputs. Active fingerprinting involves injecting backdoor-like behavior (Xu et al., 2024) into an LLM
via finetuning, embedding watermarks (Kirchenbauer et al., 2023; Ren et al., 2023) into a model’
s text generation process, or intentionally crafting prompts to elicit unique outputs from different
LLMs (Pasquini et al., 2024). Passive fingerprinting, on the other hand, focuses on analyzing the
inherent patterns in LLM-generated text (Su et al., 2023; Fu et al., 2025; Alhazbi et al., 2025). This
builds on the observation that LLMs expose rich “idiosyncrasies”—distributional quirks that allow
classifiers to identify a model (Sun et al., 2025). While passive fingerprinting is relevant for LLM
auditing, many such methods rely on training classifiers and require substantial labeled data, making
them suboptimal for auditing LLM APIs. Prior work (Cai et al., 2025) also shows they are ineffective
in detecting quantized model substitution.

Auditing LLM APIs. A growing body of work investigates whether black-box APIs faithfully serve
the advertised model. The most straightforward audit is to evaluate models’ benchmark performance
(Analysis, 2025; Eyuboglu et al., 2024; Chen et al., 2023b), but raw performance alone cannot
expose covert substitutions or partial routing. Gao et al. (2025) formalizes the problem as Model
Equality Testing and shows that a kernel-MMD test can already flag public endpoints that deviate
from their open-weight checkpoints. Concurrently to our work, Cai et al. (2025) investigate the
model substitution setting and show that API providers can evade detection through strategies such as
model quantization, randomized substitution, and benchmark evasion. Building on these insights, we
propose a method that is more robust to such attacks and extend the threat model to include a broader
range of realistic scenarios, such as jailbroken or maliciously finetuned models.

3 Problem Formulation

In this section, we formalize the LLM API auditing problem as a black-box model equality test
between a target API and a fully accessible reference model.

Models. We denote an LLM as a conditional distribution π(y|x;φ) over text output y ∈ Y given
an input prompt x ∈ X and decoding parameters φ (e.g., temperature, top-p). In all experiments,
we control the decoding parameters to be the same across models. Two such models are involved
in the test. The reference model πref is fully accessible locally; the verifier can draw an unlimited
number of samples yref ∼ πref(· | x;φ) for any x and obtain relevant logits. The target model πtgt is
exposed only through a remote API that returns exactly one completion ytgt ∼ πtgt(· | x;φ) per call
and charges for every invocation. The total API budget is N prompts.

Hypotheses. The model equality test is cast as a composite two-sample hypothesis test. The null
hypothesis

H0 : πtgt(· | x;φ) = πref(· | x;φ) ∀x ∈ X (1)
states that the deployed model is behaviorally identical to the declared one.

H1 : ∃x ∈ X such that πtgt(· | x;φ) ̸= πref(· | x;φ) (2)

captures any observable deviation, whether arising from quantization, fine-tuning, prompt injection,
or full model replacement.

Adversarial model provider. A dishonest model provider may attempt to evade detection through
probabilistic substitution. We model this behaviour by

πtgt(· | x;φ) =
(
1− q(x)

)
πref(· | x;φ) + q(x)πalt(· | x;φ), (3)

where πalt is an arbitrary alternative model (e.g., quantized or adversarially finetuned version of πref)
and q : X → [0, 1] is an unknown routing function that may depend on the prompt and even on past

3

interaction history (e.g., routing based on prompt caching (Gu et al., 2025)). When q(x) is small but
positive on a non-negligible fraction of typical prompts, the mixture in (3) significantly complicates
discrimination; nevertheless, a sound detection procedure must retain statistical power under such
adversarial conditions.

Detector and objectives. A detector is a decision rule δ : DN →{0, 1} whose output 1 means
“reject H0”. Here, DN denotes the data collected with N API queries and many local model queries.
For a user-specified significance level α ∈ (0, 1), the detector must satisfy the type-I error constraint
PrH0

[
δ(DN) = 1

]
≤ α. Subject to this guarantee, the verifier seeks to maximize the statistical

power
β(q, πalt) = Pr

H1

[
δ(DN) = 1

]
,

uniformly over a broad class of substitution policies (q, πalt); to do so with as few costly API queries
N as possible; and to employ prompts that are indistinguishable from ordinary user traffic, thereby
preventing the provider from detecting and rerouting “suspicious-looking” inputs.

4 Method

In this section, we introduce our rank-based uniformity test in Section 4.1 and empirically identify
the most discriminative score function to maximize the detection power in Section 4.2.

4.1 Rank-Based Uniformity Test (RUT)

To determine whether the target model πtgt is identical to the reference model πref, we propose a
rank-based uniformity test. This method assesses how typical the target model’s responses are under
the reference model’s generation distribution.

Response score function. To perform a statistical test, we first define a scalar-valued score function
f : Y × X → R that maps a model response and prompt to a real number. This function assigns a
score to each output given the prompt, i.e.,

s = f(y, x), where x ∈ X , y ∈ Y, s ∈ R.

An ideal score function f∗ should induce an injective mapping y 7→ f∗(y, x) for any fixed prompt
x ∈ X . Under this assumption, each distinct response corresponds to a unique score value, ensuring
that the score distribution fully characterizes the model’s outputs.

Uniformity as a test signal. For each prompt x ∈ X , we sample a response ytgt ∼ πtgt(· | x;φ) and
compute its scalar score stgt = f(ytgt, x). To assess how typical this response is under the reference
model, we evaluate its rank in the reference model’s score distribution.

We define the cumulative distribution function (CDF) of the reference model’s scores as:

Fπref(s | x) := Py∼πref(·|x;φ) [f(y, x) ≤ s] .

Since f(y, x) takes values in a discrete set, Fπref is a step function. To ensure the rank statistic is
continuously distributed under the null hypothesis, we apply a randomized quantile residual (Dunn
and Smyth, 1996) to extend the probability integral transform (David and Johnson, 1948) to discrete
distributions. Specifically, we define the rank statistic as

rtgt := Fπref(s
−
tgt) + U · P (f(y, x) = stgt) , U ∼ Uniform[0, 1], (4)

where Fπref(s
−
tgt) := P (f(y, x) < stgt) is the left-limit of the CDF at stgt, and P(f(y, x) = stgt) is

the probability mass at stgt. Under the null hypothesis πtgt = πref, this rank statistic rtgt ∈ [0, 1] is
uniformly distributed.

Conversely, suppose that rtgt ∼ Uniform[0, 1] under the randomized quantile residual construction.
Since the CDF Fπref(· | x) is stepwise and non-decreasing, a uniformly distributed rtgt implies that
the score stgt follows the same discrete distribution as sref. By injectivity of f , this further implies
that ytgt ∼ πref(· | x;φ), and hence πtgt = πref.

Thus, with an injective score function f , testing the uniformity of rtgt as defined in (4) offers a valid
signal for distinguishing πtgt from πref.

4

Empirical approximation of Fπref . In practice, it is intractable to build the true CDF Fπref(· | x).
Instead, we approximate it using an empirical CDF from m reference samples for each prompt.

Given a target response yi ∼ πtgt(· | xi; θ) and reference responses yij ∼ πref(· | xi; θ) for
j = 1, . . . ,m, we compute the scalar scores

si := f(yi, xi), sij := f(yij , xi).

We then define the randomized rank statistics ri ∈ [0, 1] as

ri =
1

m

 m∑
j=1

1{si > sij}+ Ui ·
m∑
j=1

1{si = sij}

 ,

where Ui ∼ Uniform[0, 1] is an independent random variable to break ties uniformly, and ensure ri
is an unbiased estimator of rtgt given the prompt xi.

Discriminative score function via empirical selection. While an ideal injective score function
would guarantee sensitivity to any behavioral difference between πtgt and πref, constructing such a
function for which we can calculate the CDF is generally infeasible in practice.

To ensure that our test remains practically effective, we instead require the score function to be
sufficiently discriminative, in the sense that it induces distinct score distributions whenever πref ̸= πtgt.
Formally, for fixed prompt x ∈ X , let

Sπref := f(y, x) with y ∼ πref(· | x;φ), and Sπtgt := f(y, x) with y ∼ πtgt(· | x;φ).
We say that f is sufficiently discriminative if the distributions of Sπref and Sπtgt differ whenever
πref ̸= πtgt, i.e.,

πref(· | x;φ) ̸= πtgt(· | x;φ) ⇒ PSπref
̸= PSπtgt

.

Under this condition, differences in response distributions are reflected in the score distributions,
causing the ranks to deviate from uniformity.

Thus, we aim to find the most discriminative score function among several promising candidates
through empirical experiments. In Section 4.2, we compare five candidate score functions—log-
likelihood, token rank, log-rank, entropy, and the log-likelihood log-rank ratio (Su et al., 2023)—and
find that log-rank is the most discriminative in practice for separating responses by πref and πtgt, and
therefore adopt it in our uniformity test.

Full test procedure. We now present the full RUT procedure.

Let {x1, . . . , xn} ⊂ X be a set of prompts. For each prompt xi, we sample one response from the
target model,

yi ∼ πtgt(· | xi; θ),

and m responses from the reference model,
yij ∼ πref(· | xi; θ), j = 1, . . . ,m.

We compute the log-rank scores
si := f(yi, xi), sij := f(yij , xi),

and the corresponding randomized rank statistics {ri}ni=1.

We apply the Cramér–von Mises (CvM) test (Cramér, 1928) to assess the deviations between {ri}ni=1
and Uniform[0, 1]. The test evaluates the null hypothesis

H0 : ri ∼ Uniform[0, 1] for all i.
The CvM test statistic is defined as

ω2 =
1

12n
+

n∑
i=1

(
2i− 1

2n
− r(i)

)2

,

where r(1) ≤ r(2) ≤ · · · ≤ r(n) are the ordered rank statistics.

To compute the p-value, we compare the observed statistic ω2
obs to the distribution of the CvM statistic

ω2
null computed under the null hypothesis. The p-value is given by

p-value = PH0

[
ω2

null ≥ ω2
obs

]
.

We reject H0 and conclude that the target and reference models are different if p-value < 0.05.

5

4.2 Score Function Selection

The RUT requires a scalar score function f(y, x). To identify a function that best captures distribu-
tional differences between models, we consider five candidate functions:

• Log-likelihood: log πref(y | x).

• Token rank: the average rank of response tokens in y, where a token’s rank is its position in
the vocabulary ordered by the πref’s next-token probabilities.

• Log-rank: the average of the logarithm of the token rank.

• Entropy: predictive entropy for y under πref(x).

• Log-likelihood log-rank ratio (LRR): the ratio between log-likelihood and log-rank. (Su
et al., 2023).

0.50 0.51 0.52 0.53 0.54 0.55 0.56 0.57
AUROC

0

20

40

60

80

100 loglikelihood
rank
logrank
entropy
lrr

Figure 2: Distribution of AUROC scores for five
candidate score functions across 500 trials com-
paring Gemma-2-9b-it and its 4-bit quantized vari-
ant. Log-rank achieves the most separable distribu-
tion from the random level 0.5, indicating superior
power in distinguishing different models.

To identify the most discriminative score func-
tion, we conduct a Monte Carlo evaluation con-
sisting of 500 independent trials. In each trial,
we randomly select 10 prompts from the Wild-
Chat (Zhao et al., 2024) dataset and sample 50
completions per prompt from both πref and πtgt,
using a fixed temperature of 0.5 and a maxi-
mum length of 30 tokens. For each candidate
score function, we compute the average AU-
ROC (Bradley, 1997) across the 10 prompts for
each trial, yielding a distribution of 500 AUROC
scores per function. The full algorithm to cal-
culate per score function average AUROC is in-
cluded in Appendix A.1. Across different model
comparisons, we find that log-rank consistently
yields the most separable AUROC distribution
from 0.5, indicating the strongest discriminative
power. Figure 2 shows an example comparing
Gemma-2-9b-it with its 4-bit quantized variant. Based on these results, we select log-rank as the
scoring function for our uniformity test. Complete AUROC results are provided in Appendix A.2.

5 Experiments

In this section, we evaluate RUT across diverse model substitution scenarios, including quantization
(Section 5.2), jailbreaks (Section 5.3), SFT (Section 5.4), full model replacement (Section 5.5), and
real-world API providers (Section 5.6). Detection performance is compared against MMD and a KS
baseline using statistical power AUC as the primary metric.

5.1 Experimental Setup

To evaluate detection performance under adversarial conditions, we simulate probabilistic substitution
attacks where a fraction q ∈ [0, 1] of API queries are routed to an alternative model (e.g., quantized
or fine-tuned). For each value of q, we estimate the statistical power, defined as the probability of
correctly rejecting the null hypothesis when substitution is present. We then summarize the resulting
power–substitution rate curve using the area under the curve (AUC) over q ∈ [0, 1]. The AUC ranges
from 0 to 1 and reflects the method’s ability to maintain high statistical power across varying levels of
substitution, serving as a measure of robustness to such attacks. Higher values indicate more reliable
and consistent detection performance. Figure 1 shows an example comparing Gemma-2-9b-it and its
4-bit quantized variant.

Data. We use the WildChat dataset (Zhao et al., 2024), which contains real-world conversations
between human users and ChatGPT. This dataset reflects authentic user behavior, ensuring the query
distribution remains indistinguishable from typical API traffic—crucial for evasion-resistant auditing.

6

(a) Statistical power AUC for detecting quantized vari-
ants. Bold = best method; gray = none reliable.

Model RUT MMD KS

Gemma–4bit 0.392 0.214 0.017
Gemma–8bit 0.049 0.043 0.001
Llama–4bit 0.642 0.625 0.474
Llama–8bit 0.132 0.158 0.005
Mistral–4bit 0.586 0.500 0.330
Mistral–8bit 0.049 0.090 0.006

(b) Statistical power AUC for detecting jail-breaking
prompts. Bold = most effective method per prompt.

Model Prompt RUT MMD KS

Mistral
Dan 0.895 0.802 0.873
Anti-Dan 0.893 0.781 0.872
Evil-Bot 0.892 0.766 0.873

Gemma
Dan 0.888 0.757 0.867
Anti-Dan 0.858 0.816 0.854
Evil-Bot 0.893 0.753 0.871

Table 2: Side-by-side comparison of statistical-power AUCs. Left: quantized variants; right: jail-
breaking prompts.

Baseline. For the detection methods (Sun et al., 2025; Gao et al., 2025) that are compatible with
WildChat, We primarily focus on Maximum Mean Discrepancy (MMD) (Gao et al., 2025) as the
baseline, as Sun et al. (2025) is reported to fail to identify quantization (Cai et al., 2025).

We also tailor a Kolmogorov–Smirnov (KS) test baseline that uses the same information as RUT:
it computes the log-rank scores from the reference model on both the target and reference model
responses and applies the two-sample KS test (Darling, 1957) on these two sets of scores to estimate
the p-value between the target and reference distributions.

Test procedures. We apply a consistent sample budget constraint on all tests. The implementation
details of their test procedures are listed below:

• Rank-Based Uniformity Test (RUT): Each trial samples 100 prompts. We query each prompt
once to the target and 100 times to the reference model.

• Maximum Mean Discrepancy (MMD): We apply the MMD test based on the character-level
Hamming distance following Gao et al. (2025). Each trial uses 10 prompts, with 10 samples per
prompt. We compute the MMD statistic and estimate the p-value via 500 random permutations.

• Kolmogorov–Smirnov Test (KS): We use the same sampling setup as RUT: 100 prompts per
trial, 1 query to the target, and 100 to the reference model per prompt.

Across all models, we set the temperature to 0.5 and cap generation at 30 tokens. We use vLLM
(Kwon et al., 2023) on a single A6000 for all local inferences.

To estimate statistical power, we repeat each experiment over 500 Monte Carlo trials. Power is
computed as the proportion of trials in which the test correctly rejects the null hypothesis at a
significant level of 0.05. All statistical tests were run with Intel Xeon Gold 6230R @ 2.10GHz and
16 GB RAM per job.

5.2 Detecting Quantization

We consider the setting where the API provider uses a quantized variant to substitute the claimed
model. We evaluate three detection methods on quantized variants of Llama-3.2-3B-Instruct1, Mistral-
7B-Instruct-v0.32, and Gemma-2-9B-it3, comparing each model to its 4-bit and 8-bit quantized
counterparts. As shown in Table 2a, none of the methods succeed in reliably detecting substitution for
the 8-bit variants of Gemma and Mistral, where statistical power AUC remains near zero across the
board. In the remaining four settings, RUT outperforms MMD and the KS baseline in 3 out of the 4
cases, demonstrating superior sensitivity to quantization-induced distributional shifts. Full statistical
power curves for AUCs are provided in Appendix B.1.

5.3 Detecting Jailbreaks

We consider the setting where the API provider secretly appends a hidden jailbreaking system prompt
to user queries. To evaluate this scenario, we use two base models: Mistral-7B-Instruct-v0.3 and

1https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct
2https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3
3https://huggingface.co/google/gemma-2-9b-it

7

https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3
https://huggingface.co/google/gemma-2-9b-it

Gemma-2-9B-it. For each model, we construct a test using three representative jailbreaking prompts
Dan, Anti-Dan, and Evil-Bot adapted from Shen et al. (2024).

As shown in Table 2b, all six jailbreak cases are reliably detected, with statistical power AUC values
consistently above 0.75. RUT achieves the highest power in all 6 settings, demonstrating its superior
sensitivity to model deviations caused by hidden jailbreaking prompts. Full statistical power curves
for AUCs are provided in Appendix B.2.

5.4 Detecting SFT

0.00

0.25

0.50

0.75

1.00
Llama + BeaverTails Llama + Alpaca

0 1 2 3 4 5
0.00

0.25

0.50

0.75

1.00
Mistral + BeaverTails

0 1 2 3 4 5

Mistral + Alpaca

Epoch

St
at

ist
ica

l P
ow

er
 A

UC
 (

)

RUT KS MMD

Figure 3: Statistical power AUC across epochs for detecting
SFT model substitution.

We study the setting where the
API provider fine-tunes a model
on instruction-following data.
Specifically, we fine-tune two base
models—Llama-3.2-3B-Instruct and
Mistral-7B-Instruct-v0.3—on benign
and harmful instruction-following
datasets. We use Alpaca (Taori
et al., 2023) as the benign dataset
and BeaverTails (Ji et al., 2023) for
harmful question answering. Each
model is fine-tuned on 500 samples
from the respective dataset for 5
epochs using LoRA (Hu et al., 2021)
with rank 64 and α = 16, a batch
size of 32, and a learning rate of
1× 10−4 on a single A100. For each
checkpoint, we compute the statistical power AUC of the detection methods.

As shown in Figure 3, RUT consistently achieves higher statistical power AUC than both the KS and
MMD baselines across all fine-tuning configurations. Notably, our method detects behavioral changes
within the first epoch of fine-tuning, demonstrating strong sensitivity to early-stage distributional
shifts. While all methods improve with additional training, RUT remains the most robust across both
models and datasets. Full statistical power curves for AUCs are provided in Appendix B.3.

5.5 Detecting Full Model Replacement

Gem
ma-2

B

Gem
ma-9

B

Mistr
al-

7B

Lla
ma-3

B

Lla
ma-1

1B

Gemma-2B

Gemma-9B

Mistral-7B

Llama-3B

Llama-11B

Re
fe

re
nc

e

0.048 0.818 0.890 0.886 0.883

0.870 0.053 0.895 0.894 0.889

0.888 0.885 0.047 0.876 0.881

0.894 0.891 0.892 0.051 0.855

0.895 0.893 0.891 0.852 0.052

RUT

Gem
ma-2

B

Gem
ma-9

B

Mistr
al-

7B

Lla
ma-3

B

Lla
ma-1

1B

Target

0.019 0.658 0.771 0.741 0.765

0.660 0.019 0.776 0.759 0.728

0.774 0.780 0.024 0.783 0.800

0.730 0.751 0.746 0.028 0.704

0.766 0.712 0.758 0.734 0.026

MMD

Gem
ma-2

B

Gem
ma-9

B

Mistr
al-

7B

Lla
ma-3

B

Lla
ma-1

1B

0.007 0.749 0.877 0.864 0.866

0.799 0.000 0.869 0.863 0.863

0.870 0.786 0.004 0.852 0.855

0.871 0.869 0.868 0.002 0.762

0.877 0.873 0.874 0.774 0.003

KS

Figure 4: Statistical power AUC for detecting full model replacement. Each cell shows the AUC
score between a reference and a target model. Diagonal values represent self-comparisons.

We evaluate the setting where the API provider substitutes the claimed model with a completely
different one. To simulate this scenario, we conduct pairwise comparisons among five open-source
models: Llama-3.2-3B-Instruct, Llama-3.2-11B-Vision-Instruct4, Mistral-7B-Instruct-v0.3, Gemma-

4https://huggingface.co/meta-llama/Llama-3.2-11B-Vision-Instruct

8

https://huggingface.co/meta-llama/Llama-3.2-11B-Vision-Instruct

2-2B-it5, and Gemma-2-9B-it. For each pair, one model serves as the reference model while the
other acts as the deployed target model. As shown in Figure 4, RUT consistently achieves the highest
statistical power AUC across model pairs, outperforming both the MMD and KS baselines. The
results highlight the method’s sensitivity to full model substitutions. Full statistical power curves for
AUCs are provided in Appendix B.4.

5.6 Detecting Real API Providers

Table 3: Statistical power for detecting differences from the baseline model deployed on an A6000
GPU. A100 denotes the same model run locally on an A100 GPU; other entries are actual API
providers. Values > 0.5 indicate significant behavioral deviation. Green = no significant difference;
Red = significant difference.

Model Provider RUT MMD KS

Llama A100 0.094 0.142 0.002
Llama Nebius 0.962 0.944 0.426
Llama Novita 0.988 0.996 0.530
Mistral A100 0.058 0.138 0.004
Mistral HF Inference 0.188 1.000 0.000
Gemma A100 0.060 0.084 0.000
Gemma Nebius 0.312 0.432 0.008

We evaluate our detection methods on three base models—Llama-3.2-3B-Instruct, Mistral-7B-
Instruct-v0.3, and Gemma-2-9B-it—each deployed through multiple API providers. Local inference
on an A100 GPU serves as the baseline. As shown in Table 3, all tests correctly identify behavioral
equivalence in local deployments.

Across all settings, RUT and MMD generally agree in detecting significant deviations across providers,
offering mutual validation for their behavioral sensitivity. The KS test exhibits similar trends but with
notably lower sensitivity.

An exception arises in the Mistral + HF Inference setting, where MMD yields a power of 1.000 while
other tests are below 0.2. Upon investigation, we suspect that the discrepancy is due to a tokenization
mismatch: the Hugging Face Inference API consistently omits the leading whitespace present in the
reference outputs. Because MMD uses character-level Hamming distance, this formatting difference
inflates the score. After restoring the missing space, the MMD score drops to 0.211, aligning with
other tests. This illustrates RUTt’s robustness to minor decoding mismatches that can mislead
string-based metrics.

6 Conclusion

The stable increase in the size (Kaplan et al., 2020) and architectural complexity (Zhou et al., 2022) of
frontier LLMs has led to a rise in the popularity of API-based model access. To prevent performance
degradation and security risks from model substitution behind API interfaces, this work proposes
the rank-based uniformity test for model equality testing. We test the method against a variety of
different substitution attacks and demonstrate its consistent effectiveness in detecting substitution and
its superiority over existing methods.

Limitations and Future Work Using prompts from the WildChat dataset (Zhao et al., 2024) for
testing, we aim to avoid detection of our testing attempts. However, we have not empirically validated
its effectiveness at evading detection, especially against detection methods based on the correlation
across prompts. In future work, examining the method’s detectability and improving it with adaptive
methods for prompt selection shall be a priority. Also, our test requires a locally deployed authentic
model, limiting its capability to test black-box models.

By developing an effective and stealthy API-based test for model equality, we hope to advance the
safety and security of LLM-based applications in the age of increasingly cloud-based deployment.

5https://huggingface.co/google/gemma-2-2b-it

9

https://huggingface.co/google/gemma-2-2b-it

References
Saeif Alhazbi, Ahmed Mohamed Hussain, Gabriele Oligeri, and Panos Papadimitratos. Llms have rhythm: Fin-

gerprinting large language models using inter-token times and network traffic analysis. ArXiv, abs/2502.20589,
2025. URL https://api.semanticscholar.org/CorpusID:276725236. 3

Artificial Analysis. Artificial analysis, 2025. URL https://artificialanalysis.ai. 3

Anysphere Inc. Cursor: The ai code editor, 2025. URL https://www.cursor.com/. Accessed: 2025-05-15.
1

Andrew P. Bradley. The use of the area under the roc curve in the evaluation of machine learning algorithms.
Pattern Recognition, 30(7):1145–1159, 1997. ISSN 0031-3203. doi: https://doi.org/10.1016/S0031-3203(96)
00142-2. URL https://www.sciencedirect.com/science/article/pii/S0031320396001422. 6,

Will Cai, Tianneng Shi, Xuandong Zhao, and Dawn Song. Are you getting what you pay for? auditing model
substitution in llm apis, 2025. URL https://arxiv.org/abs/2504.04715. 2, 3, 7

Lingjiao Chen, Matei Zaharia, and James Zou. How is chatgpt’s behavior changing over time?, 2023a. URL
https://arxiv.org/abs/2307.09009. 2

Lingjiao Chen, Matei Zaharia, and James Y. Zou. How is chatgpt’s behavior changing over time? ArXiv,
abs/2307.09009, 2023b. URL https://api.semanticscholar.org/CorpusID:259951081. 3

Harald Cramér. On the composition of elementary errors. Scandinavian Actuarial Journal, 1928(1):13–74, 1928.
doi: 10.1080/03461238.1928.10416862. URL https://doi.org/10.1080/03461238.1928.10416862.
2, 5

D. A. Darling. The kolmogorov-smirnov, cramér-von mises tests. The Annals of Mathematical Statistics, 28(4):
823–838, 1957. ISSN 00034851, 21688990. URL http://www.jstor.org/stable/2237048. 7

F. N. David and N. L. Johnson. The probability integral transformation when parameters are estimated from
the sample. Biometrika, 35(1/2):182–190, 1948. ISSN 00063444. URL http://www.jstor.org/stable/
2332638. 4

Peter K. Dunn and Gordon K. Smyth. Randomized quantile residuals. Journal of Computational and Graphical
Statistics, 5(3):236–244, 1996. ISSN 10618600. URL http://www.jstor.org/stable/1390802. 4

Kazuki Egashira, Mark Vero, Robin Staab, Jingxuan He, and Martin Vechev. Exploiting llm quantization, 2024.
URL https://arxiv.org/abs/2405.18137. 1

Sabri Eyuboglu, Karan Goel, Arjun Desai, Lingjiao Chen, Mathew Monfort, Chris Ré, and James Zou. Model
changelists: Characterizing updates to ml models. Proceedings of the 2024 ACM Conference on Fair-
ness, Accountability, and Transparency, 2024. URL https://api.semanticscholar.org/CorpusID:
270287160. 3

Zhiyuan Fu, Junfan Chen, Hongyu Sun, Ting Yang, Ruidong Li, and Yuqing Zhang. Fdllm: A text fingerprint
detection method for llms in multi-language, multi-domain black-box environments. ArXiv, abs/2501.16029,
2025. URL https://api.semanticscholar.org/CorpusID:275921293. 3

Irena Gao, Percy Liang, and Carlos Guestrin. Model equality testing: Which model is this api serving?, 2025.
URL https://arxiv.org/abs/2410.20247. 1, 2, 3, 7

Chenchen Gu, Xiang Lisa Li, Rohith Kuditipudi, Percy Liang, and Tatsunori Hashimoto. Auditing prompt
caching in language model apis, 2025. URL https://arxiv.org/abs/2502.07776. 2, 4

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu
Chen. Lora: Low-rank adaptation of large language models, 2021. URL https://arxiv.org/abs/2106.
09685. 8

Yangsibo Huang, Milad Nasr, Anastasios Angelopoulos, Nicholas Carlini, Wei-Lin Chiang, Christopher A.
Choquette-Choo, Daphne Ippolito, Matthew Jagielski, Katherine Lee, Ken Ziyu Liu, Ion Stoica, Florian
Tramer, and Chiyuan Zhang. Exploring and mitigating adversarial manipulation of voting-based leaderboards,
2025. URL https://arxiv.org/abs/2501.07493. 2

Jiaming Ji, Mickel Liu, Juntao Dai, Xuehai Pan, Chi Zhang, Ce Bian, Chi Zhang, Ruiyang Sun, Yizhou Wang,
and Yaodong Yang. Beavertails: Towards improved safety alignment of llm via a human-preference dataset.
arXiv preprint arXiv:2307.04657, 2023. 8

10

https://api.semanticscholar.org/CorpusID:276725236
https://artificialanalysis.ai
https://www.cursor.com/
https://www.sciencedirect.com/science/article/pii/S0031320396001422
https://arxiv.org/abs/2504.04715
https://arxiv.org/abs/2307.09009
https://api.semanticscholar.org/CorpusID:259951081
https://doi.org/10.1080/03461238.1928.10416862
http://www.jstor.org/stable/2237048
http://www.jstor.org/stable/2332638
http://www.jstor.org/stable/2332638
http://www.jstor.org/stable/1390802
https://arxiv.org/abs/2405.18137
https://api.semanticscholar.org/CorpusID:270287160
https://api.semanticscholar.org/CorpusID:270287160
https://api.semanticscholar.org/CorpusID:275921293
https://arxiv.org/abs/2410.20247
https://arxiv.org/abs/2502.07776
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2501.07493

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models. arXiv preprint
arXiv:2001.08361, 2020. 9

John Kirchenbauer, Jonas Geiping, Yuxin Wen, Jonathan Katz, Ian Miers, and Tom Goldstein. A watermark
for large language models. In International Conference on Machine Learning, 2023. URL https://api.
semanticscholar.org/CorpusID:256194179. 3

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E. Gonzalez,
Hao Zhang, and Ion Stoica. Efficient memory management for large language model serving with page-
dattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating Systems Principles, 2023.
7

mirpo. [bug] lm studio’s api server ignores the requested model name in the api call when only one model is
running · issue #619 · lmstudio-ai/lmstudio-bug-tracker, 2025. URL https://github.com/lmstudio-ai/
lmstudio-bug-tracker/issues/619. 1

Dario Pasquini, Evgenios M. Kornaropoulos, and Giuseppe Ateniese. Llmmap: Fingerprinting for large
language models. ArXiv, abs/2407.15847, 2024. URL https://api.semanticscholar.org/CorpusID:
271328475. 3

Jie Ren, Han Xu, Yiding Liu, Yingqian Cui, Shuaiqiang Wang, Dawei Yin, and Jiliang Tang. A robust
semantics-based watermark for large language model against paraphrasing. In NAACL-HLT, 2023. URL
https://api.semanticscholar.org/CorpusID:265213008. 3

ResearchFlow. Researchflow: Ai-powered research engine & visual knowledge mapping, 2025. URL https:
//rflow.ai/. 1

Xinyue Shen, Zeyuan Chen, Michael Backes, Yun Shen, and Yang Zhang. "do anything now": Characterizing
and evaluating in-the-wild jailbreak prompts on large language models, 2024. URL https://arxiv.org/
abs/2308.03825. 8

Jinyan Su, Terry Yue Zhuo, Di Wang, and Preslav Nakov. Detectllm: Leveraging log rank information for
zero-shot detection of machine-generated text, 2023. URL https://arxiv.org/abs/2306.05540. 3, 5, 6

Mingjie Sun, Yida Yin, Zhiqiu Xu, J. Zico Kolter, and Zhuang Liu. Idiosyncrasies in large language models,
2025. URL https://arxiv.org/abs/2502.12150. 2, 3, 7

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy Liang, and
Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model. https://github.com/
tatsu-lab/stanford_alpaca, 2023. 8

Jiashu Xu, Fei Wang, Mingyu Derek Ma, Pang Wei Koh, Chaowei Xiao, and Muhao Chen. Instructional finger-
printing of large language models. ArXiv, abs/2401.12255, 2024. URL https://api.semanticscholar.
org/CorpusID:267095230. 3

Yuhui Yun, Huilong Ye, Xinru Li, Ruojia Li, Jingfeng Deng, Li Li, and Haoyi Xiong. Eicopilot: Search
and explore enterprise information over large-scale knowledge graphs with llm-driven agents, 2025. URL
https://arxiv.org/abs/2501.13746. 1

Wenting Zhao, Xiang Ren, Jack Hessel, Claire Cardie, Yejin Choi, and Yuntian Deng. Wildchat: 1m chatgpt
interaction logs in the wild, 2024. URL https://arxiv.org/abs/2405.01470. 6, 9

Yanqi Zhou, Tao Lei, Hanxiao Liu, Nan Du, Yanping Huang, Vincent Zhao, Andrew M Dai, Quoc V Le, James
Laudon, et al. Mixture-of-experts with expert choice routing. Advances in Neural Information Processing
Systems, 35:7103–7114, 2022. 9

11

https://api.semanticscholar.org/CorpusID:256194179
https://api.semanticscholar.org/CorpusID:256194179
https://github.com/lmstudio-ai/lmstudio-bug-tracker/issues/619
https://github.com/lmstudio-ai/lmstudio-bug-tracker/issues/619
https://api.semanticscholar.org/CorpusID:271328475
https://api.semanticscholar.org/CorpusID:271328475
https://api.semanticscholar.org/CorpusID:265213008
https://rflow.ai/
https://rflow.ai/
https://arxiv.org/abs/2308.03825
https://arxiv.org/abs/2308.03825
https://arxiv.org/abs/2306.05540
https://arxiv.org/abs/2502.12150
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://api.semanticscholar.org/CorpusID:267095230
https://api.semanticscholar.org/CorpusID:267095230
https://arxiv.org/abs/2501.13746
https://arxiv.org/abs/2405.01470

A AUROC

A.1 AUROC Algorithm

Algorithm 1: Average AUROC for score function evaluation
Input: Prompt set D; models πref, πtgt; decoding parameters φ = (τ, L),

where τ is temperature and L is the maximum generation length;
number of prompts n; completions per prompt per model m; score
functions {δ1, . . . , δK}.

Output: Mean AUROC per score function, denoted µAUROC(δ).
1 Draw {x1, . . . , xn} ∼ Uniform(D);
2 for i ∈ {1, . . . , n} do
3 {y(j)ref }mj=1 ∼ πref(· | xi;φ);

4 {y(j)tgt }mj=1 ∼ πtgt(· | xi;φ);

5 Yi ← {y(j)ref } ∪ {y
(j)
tgt };

6 Li ← {0}m ∪ {1}m;
7 for δ ∈ {δ1, . . . , δK} do
8 Si ← {δ(y) | y ∈ Yi};
9 Store Aδ

i ← AUROC(Si, Li);

10 for δ ∈ {δ1, . . . , δK} do
11 µAUROC(δ)← 1

n

∑n
i=1 A

δ
i ;

Note. AUROC(S,L) denotes the standard binary AUROC (Bradley, 1997).

A.2 AUROC Score Distributions

We present the AUROC score distributions from the score function selection experiment described
in Section 4.2. Specifically, we evaluated Gemma-2-9B-it, LLaMA-3.2-3B-Instruct, and Mistral-
7B-Instruct, and visualized the distributions when distinguishing the original model outputs from
three types of variants: (1) quantized versions, (2) models subjected to jailbreaking prompts, and (3)
models served by A100 or external API providers.

0.50 0.51 0.52 0.53 0.54 0.55 0.56 0.57
AUROC

0

20

40

60

80

100

auroc_Gemma9B_4bit
loglikelihood
rank
logrank
entropy
lrr

0.500 0.505 0.510 0.515 0.520 0.525 0.530 0.535
AUROC

0

20

40

60

80

100

120
auroc_Gemma9B_8bit

loglikelihood
rank
logrank
entropy
lrr

0.50 0.51 0.52 0.53 0.54 0.55
AUROC

0

20

40

60

80

100

auroc_Gemma9B_a100
loglikelihood
rank
logrank
entropy
lrr

0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
AUROC

0

20

40

60

80

100

auroc_Gemma9B_Anti_Dan

loglikelihood
rank
logrank
entropy
lrr

0.6 0.7 0.8 0.9 1.0
AUROC

0

5

10

15

20

25

30

auroc_Gemma9B_Dan
loglikelihood
rank
logrank
entropy
lrr

0.70 0.75 0.80 0.85 0.90 0.95 1.00
AUROC

0

50

100

150

200

250

auroc_Gemma9B_Evil_Bot

loglikelihood
rank
logrank
entropy
lrr

0.50 0.51 0.52 0.53 0.54 0.55
AUROC

0

20

40

60

80

100

auroc_Gemma9B_Nebius
loglikelihood
rank
logrank
entropy
lrr

0.500 0.525 0.550 0.575 0.600 0.625 0.650 0.675 0.700
AUROC

0

5

10

15

20

25
auroc_Llama3B_4bit

loglikelihood
rank
logrank
entropy
lrr

0.50 0.51 0.52 0.53 0.54 0.55 0.56
AUROC

0

20

40

60

80

100

120

auroc_Llama3B_8bit
loglikelihood
rank
logrank
entropy
lrr

0.50 0.51 0.52 0.53 0.54 0.55
AUROC

0

20

40

60

80

100

auroc_Llama3B_a100
loglikelihood
rank
logrank
entropy
lrr

0.50 0.52 0.54 0.56 0.58 0.60 0.62
AUROC

0

20

40

60

80

100
auroc_Llama3B_Nebius

loglikelihood
rank
logrank
entropy
lrr

0.50 0.52 0.54 0.56 0.58 0.60 0.62 0.64
AUROC

0

20

40

60

80

100

auroc_Llama3B_Novita
loglikelihood
rank
logrank
entropy
lrr

0.50 0.52 0.54 0.56 0.58 0.60 0.62 0.64 0.66
AUROC

0

10

20

30

40

50

60

70
auroc_Mistral7B_4bit

loglikelihood
rank
logrank
entropy
lrr

0.50 0.51 0.52 0.53 0.54 0.55 0.56
AUROC

0

20

40

60

80

100

auroc_Mistral7B_8bit
loglikelihood
rank
logrank
entropy
lrr

0.50 0.51 0.52 0.53 0.54
AUROC

0

20

40

60

80

100

auroc_Mistral7B_a100
loglikelihood
rank
logrank
entropy
lrr

0.75 0.80 0.85 0.90 0.95 1.00
AUROC

0

50

100

150

200

250
auroc_Mistral7B_Anti_Dan

loglikelihood
rank
logrank
entropy
lrr

0.75 0.80 0.85 0.90 0.95 1.00
AUROC

0

20

40

60

80

100

auroc_Mistral7B_Dan
loglikelihood
rank
logrank
entropy
lrr

0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.00
AUROC

0

50

100

150

200

250

300

350

auroc_Mistral7B_Evil_Bot
loglikelihood
rank
logrank
entropy
lrr

0.50 0.52 0.54 0.56 0.58 0.60 0.62 0.64 0.66
AUROC

0

10

20

30

40

50
auroc_Mistral7B_HFInference

loglikelihood
rank
logrank
entropy
lrr

B Statistic Power Curves

B.1 Full Statistic Power Curves for Detecting Quantization

We present the full statistical power curves, showing the relationship between substitution rate
and detection power, corresponding to the experiments on detecting quantized model substitutions
described in Section 5.2. These curves are used to compute the power AUC values reported in the
main paper and illustrate each method’s detection power across different levels of substitution.

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Gemma-4bit
RUT
MMD
KS

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Gemma-8bit
RUT
MMD
KS

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Llama-4bit
RUT
MMD
KS

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Llama-8bit
RUT
MMD
KS

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Mistral-4bit
RUT
MMD
KS

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Mistral-8bit
RUT
MMD
KS

B.2 Full Statistic Power Curves for Detecting Jailbreaking

We present the full statistical power curves, showing the relationship between substitution rate and
detection power, corresponding to the experiments on detecting jailbreak prompts described in Section
5.3. These curves are used to compute the power AUC values reported in the main paper and illustrate
each method’s detection power across different levels of substitution.

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Gemma_Dan
RUT
MMD
KS

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Gemma_Anti_Dan
RUT
MMD
KS

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Gemma_Evil_Bot
RUT
MMD
KS

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Mistral_Dan
RUT
MMD
KS

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Mistral_Anti_Dan
RUT
MMD
KS

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Mistral_Evil_Bot
RUT
MMD
KS

B.3 Full Statistic Power Curves for Detecting SFT

We present the full statistical power curves, showing the relationship between substitution rate and
detection power, corresponding to the experiments on detecting SFT described in Section 5.4. These
curves are used to compute the power AUC values reported in the main paper and illustrate each
method’s detection power across different levels of substitution.

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Llama_Alpaca_1
RUT
MMD
KS

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Llama_Alpaca_2
RUT
MMD
KS

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Llama_Alpaca_3
RUT
MMD
KS

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Llama_Alpaca_4
RUT
MMD
KS

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Llama_Alpaca_5
RUT
MMD
KS

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Llama_BeaverTails_1
RUT
MMD
KS

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Llama_BeaverTails_2
RUT
MMD
KS

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Llama_BeaverTails_3
RUT
MMD
KS

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Llama_BeaverTails_4
RUT
MMD
KS

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Llama_BeaverTails_5
RUT
MMD
KS

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Mistral_Alpaca_1
RUT
MMD
KS

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Mistral_Alpaca_2
RUT
MMD
KS

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Mistral_Alpaca_3
RUT
MMD
KS

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Mistral_Alpaca_4
RUT
MMD
KS

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Mistral_Alpaca_5
RUT
MMD
KS

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Mistral_BeaverTails_1
RUT
MMD
KS

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Mistral_BeaverTails_2
RUT
MMD
KS

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Mistral_BeaverTails_3
RUT
MMD
KS

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Mistral_BeaverTails_4
RUT
MMD
KS

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Mistral_BeaverTails_5
RUT
MMD
KS

B.4 Full Statistic Power Curves for Detecting Full Model Replacement

We present the full statistical power curves, showing the relationship between substitution rate and
detection power, corresponding to the experiments on detecting full model replacements described in
Section 5.5. These curves are used to compute the power AUC values reported in the main paper and
illustrate each method’s detection power across different levels of substitution.

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Gemma2B-Gemma2B
RUT
MMD
KS

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Gemma2B-Gemma9B
RUT
MMD
KS

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Gemma2B-Llama3B
RUT
MMD
KS

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Gemma2B-Llama11B
RUT
MMD
KS

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Gemma2B-Mistral7B
RUT
MMD
KS

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Gemma9B-Gemma2B
RUT
MMD
KS

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Gemma9B-Gemma9B
RUT
MMD
KS

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Gemma9B-Llama3B
RUT
MMD
KS

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Gemma9B-Llama11B
RUT
MMD
KS

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Gemma9B-Mistral7B
RUT
MMD
KS

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Llama3B-Gemma2B
RUT
MMD
KS

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Llama3B-Gemma9B
RUT
MMD
KS

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Llama3B-Llama3B
RUT
MMD
KS

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Llama3B-Llama11B
RUT
MMD
KS

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Llama3B-Mistral7B
RUT
MMD
KS

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Llama11B-Gemma2B
RUT
MMD
KS

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Llama11B-Gemma9B
RUT
MMD
KS

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Llama11B-Llama3B
RUT
MMD
KS

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Llama11B-Llama11B
RUT
MMD
KS

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Llama11B-Mistral7B
RUT
MMD
KS

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Mistral7B-Gemma2B
RUT
MMD
KS

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Mistral7B-Gemma9B
RUT
MMD
KS

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Mistral7B-Llama3B
RUT
MMD
KS

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Mistral7B-Llama11B
RUT
MMD
KS

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of API Responses from Incorrect Model

0.0

0.2

0.4

0.6

0.8

1.0

St
at

ist
ica

l P
ow

er
 (

)

Mistral7B-Mistral7B
RUT
MMD
KS

	Introduction
	Related Work
	Problem Formulation
	Method
	Rank-Based Uniformity Test (RUT)
	Score Function Selection

	Experiments
	Experimental Setup
	Detecting Quantization
	Detecting Jailbreaks
	Detecting SFT
	Detecting Full Model Replacement
	Detecting Real API Providers

	Conclusion
	AUROC
	AUROC Algorithm
	AUROC Score Distributions

	Statistic Power Curves
	Full Statistic Power Curves for Detecting Quantization
	Full Statistic Power Curves for Detecting Jailbreaking
	Full Statistic Power Curves for Detecting SFT
	Full Statistic Power Curves for Detecting Full Model Replacement

