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Abstract

Traditional decision-based black-box adversarial attacks on image classifiers aim
to generate adversarial examples by slightly modifying input images while keeping
the number of queries low, where each query involves sending an input to the model
and observing its output. Most existing methods assume that all queries have equal
cost. However, in practice, queries may incur asymmetric costs; for example, in
content moderation systems, certain output classes may trigger additional review,
enforcement, or penalties, making them more costly than others. While prior work
has considered such asymmetric cost settings, effective algorithms for this scenario
remains underdeveloped. In this paper, we propose a general framework for decision-
based attacks under asymmetric query costs, which we refer to as asymmetric
black-box attacks. We modify two core components of existing attacks: the search
strategy and the gradient estimation process. Specifically, we propose Asymmetric
Search (AS), a more conservative variant of binary search that reduces reliance on
high-cost queries, and Asymmetric Gradient Estimation (AGREST), which shifts the
sampling distribution to favor low-cost queries. We design efficient algorithms that
minimize total attack cost by balancing different query types, in contrast to earlier
methods such as stealthy attacks that focus only on limiting expensive (high-cost)
queries. Our method can be integrated into a range of existing black-box attacks with
minimal changes. We perform both theoretical analysis and empirical evaluation
on standard image classification benchmarks. Across various cost regimes, our
method consistently achieves lower total query cost and smaller perturbations than
existing approaches, with improvements of up to 40% in some settings. The code for
Asymmetric Attacks is available at github.com/mahdisalmani/Asymmetric-Attacks.

1 Introduction

Decision-based adversarial attacks, first introduced by [1], generate adversarial examples in black-box
settings by systematically querying a classifier and observing only its output decisions for perturbed
inputs. The original Boundary Attack [1] initially required over 100,000 queries to reliably identify
minimal adversarial perturbations for large-scale datasets such as ImageNet [2]. Subsequent works [3,
4, 5, 6, 7, 8] significantly enhanced the efficiency of decision-based attacks by reducing the number
of queries needed, achieving improvements of one to three orders of magnitude. These advancements
have led to more practical and efficient frameworks for adversarial testing in limited-query settings.

While prior work (discussed in detail in App. A) has primarily assumed that all queries have equal
cost and focused on minimizing the total number of queries, in many practical scenarios, queries can
incur asymmetric costs depending on their nature. For instance, Not Safe for Work (NSFW) image
detection models have become increasingly important, with major platforms such as Facebook [9]
and X (formerly Twitter)[10] deploying automated mechanisms for identifying sensitive content,
alongside commercial APIs developed by Google[11], Amazon [12], and Microsoft [13]. In these

Preprint. Under review.

https://github.com/mahdisalmani/Asymmetric-Attacks
https://arxiv.org/abs/2506.06933v1


settings, submitting explicit or borderline explicit queries could trigger more severe consequences,
such as account suspension or content flagging, compared to benign queries. As a result, minimizing
only the total number of queries is insufficient; effective attack strategies must account for the
asymmetric costs associated with different types of queries.
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Figure 1: Each point represents the median number
of queries required by an attack method to reach a
median ℓ2 norm of 10. The x-axis shows the num-
ber of flagged queries (Qflagged) and the y-axis re-
ports the total number of queries (Qtotal). It demon-
strates the superiority of our method in achieving a
more favorable trade-off between flagged and total
number of queries in stealthy attack settings.

Debenedetti et al. [14] introduced stealthy attack
techniques to better handle asymmetric query
costs. They empirically demonstrated that the
standard binary search procedure for boundary
point detection, mostly for projecting an adver-
sarial point onto the decision boundary or for
OPT-style gradient estimation[5], leads to a large
number of high-cost queries. In particular, it can
be observed from Fig.1 that at least 50% of the
queries made during these attacks are high-cost.
To address this, they replaced the binary search
with a search strategy inspired by the classic egg
dropping problem [15], which is similar to a line
search algorithm. However, they did not provide
a stealthy variant of the Monte Carlo gradient
estimation used in HSJA [3], GeoDA [8], and
qFool [7]. Instead, they substituted it with an
OPT-style gradient estimation procedure [5].

Although stealthy attacks move toward addressing asymmetric query costs, they are not designed
to handle arbitrary cost ratios. They implicitly assume that benign queries have zero cost, which
may not reflect realistic settings where even benign queries contribute to the overall cost. In addition,
since stealthy attacks could not adapt the Monte Carlo gradient approximation used in HSJA [3],
they instead rely on a suboptimal and inefficient OPT-style gradient estimation [5], which is already
significantly outperformed by the HSJA gradient approximation under symmetric cost settings. These
limitations motivate us to answer the following question:

Q: How can we develop an efficient framework to adapt attacks for any arbitary cost ratio without
discarding any of their core components, including gradient estimation and binary search?

In this work, we propose a general framework for decision-based attacks that operates under arbitrary
query cost asymmetries. Instead of minimizing only the number of high-cost queries, we adapt the
core components of black-box attacks, namely search along adversarial paths and gradient estimation,
to explicitly minimize the total query cost. Our framework handles any cost ratio between high-cost
and low-cost queries and completely outperforms stealthy attacks by optimizing the attack structure
without sacrificing efficiency. Unlike stealthy attacks [14], which modify the core mechanics of
existing attacks and rely on inefficient gradient approximations, we retain the more efficient Monte
Carlo gradient estimation technique used in HSJA [3], GeoDA [8], and qFool [7] with only slight
adaptations to account for asymmetric costs.

We first adapt the binary search procedure to account for arbitrary query costs. Instead of splitting
the search interval into two equal segments at each iteration, as in standard binary search, we take
a more conservative approach by splitting the interval using the cost ratio between the high-cost and
low-cost queries. This splitting strategy minimizes the expected cost, rather than simply minimizing
the expected number of queries. We refer to this procedure as Asymmetric Search (AS).

Second, we adapt the gradient estimation procedure to account for arbitrary query costs. Instead of
making queries around a norm ball centered at a boundary point, where approximately half of the queries
are high-cost and half are low-cost as in standard HSJA, we shift the center to a point in the low-cost
region and generate queries around it (Fig. 2). This adjustment intuitively reduces the frequency of high-
cost queries, and the amount of shifting provides a natural way to control this frequency. To account for
the shift, we weight high-cost and low-cost queries differently when estimating the gradient. We refer to
this adaptation as Asymmetric GRadient ESTimation (AGREST). Our proposed framework is broadly
compatible with a wide range of state-of-the-art decision-based attacks, including HSJA [3], GeoDA [8],
CGBA [16]. It can be seamlessly applied to existing attack pipelines without requiring major structural
changes. Through both theoretical analysis and rigorous experimental evaluation, we demonstrate
that our method consistently outperforms existing attacks across arbitrary cost ratios. In particular,
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Figure 2: Left. Illustration of Asymmetric Gradient Estimation (AGREST), which reduces the
frequency of high-cost queries by shifting the sampling region from xt toward the adversarial region
x′
t and appropriately reweighting the outcomes. Right. Three steps of Asymmetric Search (AS) along

the path from a clean (flagged) source image to an adversarial (non-flagged) image. Flagged queries
are shown in red, non-flagged queries in green, and the dashed line denotes the decision boundary.

even under extreme asymmetry conditions where the cost of high-cost queries approaches infinity,
our method incurs significantly less total query cost to achieve a given adversarial perturbation size
compared to prior stealthy methods [14] (see Fig. 1 (left)). This robustness highlights the effectiveness
of our framework in balancing query efficiency and perturbation quality across diverse attack scenarios.

The contribution of our paper is as follows:

• To the best of our knowledge, we are the first to propose a versatile framework capable of
handling arbitrary query cost ratios, providing flexibility across a wide range of adversarial
attack scenarios.

• Our framework introduces AS and AGREST as two core operations, optimizing the
efficiency and effectiveness of adversarial attacks.

• We provide a comprehensive theoretical analysis of the framework, establishing its
foundations and demonstrating its robustness in diverse attack conditions.

• We validate the framework through extensive empirical testing on benchmark datasets
and models, including ImageNet, as well as advanced models such as CLIP and Vision
Transformers and ResNet. This validation highlights the framework’s superior performance.

2 Problem statement

An insight into unequal queries. Consider an attacker trying to deceive an NSFW detector using
decision-based methods. It may seem sufficient to choose an existing attack algorithm and add a small
perturbation to an NSFW image based on that algorithm. However, this approach may encounter
some practical obstacles. Most social networks enforce policies against uploading adult content,
suspending users for violating these terms multiple times [10]. Using the terminology from [14], this
means that the cost of queries identified by the detector as NSFW, i.e., flagged queries, is higher
than that of other queries, i.e., non-flagged queries. For example, on X, an attacker can make up
to 2,400 posts per day on a single account [17]. However, after about 5 to 10 rule violations for
uploading flagged posts, the attacker’s account will be suspended, requiring them to create a new
one. On the other hand, in existing decision-based attacks, approximately half of the made queries
are flagged [14]. Therefore, if we assume the violation limit is 10, an attacker will be banned on
X after about 20 posts. This example demonstrates the potential asymmetry in the costs of queries
in a decision-based black-box setup. [14] addressed this asymmetry in costs by proposing stealthy
attacks1 designed to reduce the number of flagged queries. However, they overlooked the cost of
non-flagged queries in their framework, leading to the generation of millions of non-flagged queries
for every hundred flagged queries in stealthy attacks, which can also be costly. For example, in the
NSFW detector scenario, assume the attacker must create a new account after reaching the daily post
limit. In stealthy attacks like HSJA, the attack can generate around 106 non-flagged queries for every

1Hereafter, we refer to prior stealthy attacks simply as stealthy attacks, and to our approaches as asymmetric
attacks to emphasize their cost-aware design. Though inherently stealthy due to query cost awareness, we adopt
the term asymmetric attacks to distinguish our method from prior work [14].
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100 flagged queries (Fig. 1). While 100 flagged queries may lead to the creation of 10 new accounts,
those 106 non-flagged queries result in approximately 400 new accounts. This shows that non-flagged
queries, despite being lower-cost, have a greater overall impact. Therefore, it is essential to develop
generalized decision-based attacks that can effectively manage asymmetric query costs, making full
use of low-cost queries without relying heavily on expensive ones.
General formulation. Assume that f : Rd → RL is a pre-trained classifier with L classes and
parameters θ. For an input image x ∈ [0, 1]

d, fk (x), the kth component of f (x), represents the
predicted probability of the kth class. Additionally, for each correctly classified image x and query
image x′, we define:

Sx (x
′) = argmax

k ̸=ŷ(x)

fk (x
′)− fŷ(x) (x

′) and ϕx (x
′) = sign (Sx (x

′))

Given a correctly classified source image x⋆, the attacker’s goal is to find the closest perturbed image
x′ to the source image x⋆ such that ϕx⋆(x′) = 1:

minimize
x′

∥x⋆ − x′∥ s.t. ϕx⋆(x′) = 1 (1)

Note that in a decision-based black-box setup, the attacker has access to ϕx⋆(x′) but not Sx⋆(x′).
Previous methods sought to solve Eq. (1) while keeping the total number of queries as low as possible.
However, as discussed, asymmetric query costs can make this approach ineffective. Instead, we have
to keep the total cost of queries in an asymmetric setup as low as possible:

total cost = Nsource-class · c∗ +Nnon-source-class · 1
Where Nsource-class for an attack is the number of queries x′ for which ϕ (x′) = −1, c⋆ is the cost
associated with this type of query, and Nnon-source-class is the number of queries x′ with a cost of 1
for which ϕ (x′) = 1. Existing decision-based attacks assume c⋆ = 1, while stealthy attacks assume
c⋆ = ∞. Our goal in this paper is to propose a framework that is effective for any arbitrary value
of c⋆, unlike vanilla and stealthy attacks. In addition, we demonstrate that our approach outperforms
stealthy attacks, even when c⋆ =∞.

For brevity, in this paper, we omitx⋆ when mentioningS andϕ. Furthermore, we assume c⋆ ≥ 1, as our
proposed framework is almost the same for c⋆ < 1. This allows us to refer to queries x′ where ϕ(x′) =
−1 as high-cost queries and others as low-cost queries. These new terms reflect the concept of general
asymmetric costs better than the previous terms used by [14], i.e., flagged and non-flagged queries.

3 Proposed method
Decision-based black-box attacks typically involve two core operations, often applied iteratively to
find small adversarial perturbations: 1. choosing a path, either straight, like GeoDA and HSJA [8, 3],
or curved, like SurFree and CGBA [18, 16], and then 2. Searching along this path to find a new
adversarial example, xt+1, that is closer to x⋆ than xt, the adversarial example from the previous
iteration. These attacks either choose a path randomly, as in Boundary Attack [1] and SurFree, or
use queries to find a path that leads to a closer adversarial example than a random path, as in HSJA,
GeoDA, and CGBA. To find this better-than-random path, these attacks estimate the normalized
gradient direction of S at xt by approximating∇S (xt) as follows:

∇̃S (xt) =
1

nt

nt∑
i=1

ϕ (xt + δui)ui (2)

where δ is a small positive parameter and u1, . . . ,unt are i.i.d. draws from either the uniform
distribution over Sd−1, the (d− 1)-dimensional unit sphere, or the multivariate normal distribution.
After finding a path, most attacks use variations of binary search to findxt+1. This is generally achieved
by finding a boundary point xt+1 along the selected path, where S (xt+1) = 0, using binary search.

As highlighted by [14], the issue with binary search and Eq. (2) is that, in an asymmetric setup where
c⋆ > 1, crafting adversarial examples using these operations becomes costly because approximately
half of the generated queries are high-cost. This raises the question of whether we can alter the
distribution of generated queries to reduce the number of high-cost queries while maintaining the
effectiveness of these two operations as observed in vanilla attacks. As a solution, we propose AS
and AGREST techniques in the following sections.
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3.1 Asymmetric Search (AS)

We define T : [0, 1] → Rd as the function that parameterizes the search path. For example,
when the path is a straight line between the source image x⋆ and an adversarial image x̃ [8, 3],
the parameterization is given by T (θ) = θ x⋆ + (1 − θ) x̃. Similarly, when the search path
follows a circular arc [16, 18] between x⋆ and x̃, lying on a circle in the 2D subspace spanned
by u = x̃−x⋆

∥x̃−x⋆∥2
and a unit vector v satisfying ⟨u,v⟩ = 0, the parameterization is given by

T (θ) = x⋆ + cos
(
π
2 θ
)
· ∥x̃− x⋆∥2

(
cos
(
π
2 θ
)
u+ sin

(
π
2 θ
)
v
)
.

Algorithm 1 AS Algorithm
Inputs: Parametrization function T , thresh-

old τ
Outputs: Near-boundary adversarial exam-

ple
1: bl ← 0, bu ←

⌈
1
τ

⌉
2: while bu − bl > 1 do
3: bm ← bl +

⌈
bu−bl
(c⋆+1)

⌉
4: if ϕ (T (bmτ)) = 1 then
5: bl ← bm
6: else
7: bu ← bm
8: end if
9: end while

10: return T (blτ)

As mentioned, the objective is to find the along-
the-path boundary point T (θ⋆) for some θ⋆ ∈ [0, 1].
However, since the search space is discrete in practice,
our goal is to find a point xt+1 that is near the
boundary, i.e., where S (xt+1) ≈ 0. This implies
that for a given error threshold τ , we need to find
[a, b] ⊂ [0, 1] such that 0 < b−a ≤ τ and θ⋆ ∈ [a, b].
Since S is continuous, one approach to achieve this
is to find 0 ≤ k ≤ ⌈ 1τ ⌉ for which ϕ (T (kτ)) = 1
and ϕ (T ((k + 1)τ)) = −1. The smaller τ is, the
closer we get to the boundary, although this requires
more queries.

It is well-known that in one-dimensional search,
binary search is the optimal comparison-based
algorithm in terms of minimizing the expected
number of queries, assuming that the boundary
point is uniformly distributed along the path (see
Assumption A1). Nonetheless, in the asymmetric cost setting, the expected cost of binary search
is Θ(c⋆ log (1/τ)), because the expected number of queries is Θ(log (1/τ)), and about half of these
queries are expected to incur the higher cost c⋆.
Assumption A1. Let Θ⋆

rv ∈ [0, 1) be a random variable. If T (Θ⋆
rv) lies on the decision boundary,

that is, S(T (Θ⋆
rv)) = 0, then we assume Θ⋆

rv is drawn uniformly from [0, 1).

The core idea behind AS is similar to that of binary search, but with a more conservative strategy to
account for asymmetric costs. Instead of splitting the interval into two equal parts, AS divides it with
a 1 : c⋆ ratio at each step, favoring lower-cost queries. More specifically, suppose we know the desired
point lies within [blτ, buτ ] ⊂ [0, 1]. Then, as shown in Alg. 1, if ϕ

(
T
(
blτ +

⌈
bu−bl
c⋆+1

⌉
τ
))

= 1, AS

continues the search in
[
blτ +

⌈
bu−bl
c⋆+1

⌉
τ, buτ

]
; otherwise, it proceeds within

[
blτ, blτ +

⌈
bu−bl
c⋆+1

⌉
τ
]
.

This process is repeated until AS locates a point within τ of the boundary.

Note that when c⋆ = 1, AS reduces to standard binary search, and when c⋆ = ∞, it becomes a
simple line search strategy, as used in stealthy attacks [14], where the algorithm checks τ, 2τ, 3τ, . . .
sequentially. The expected cost of AS is given in Thm. 1, showing that it improves over binary search
by a factor of Θ(log (c⋆ + 1)).
Theorem 1. (Cost Analysis of AS) Suppose 0 < τ < 1 and c⋆ ≥ 1. Under Assumption A1, the
expected cost of the AS algorithm is O(c⋆ log(c⋆+1) (1/τ)).

To illustrate the effect of AS in practice, we compare the cost of AS and binary search when c⋆ = 103,
and we observe that the cost of binary search is approximately 2.5 times higher than that of AS. The
results are provided in App. C. An illustration of the AS algorithm can be found in App. H (Right)
and Fig. 8.

3.2 Asymmetric Gradient Estimation (AGREST)
As mentioned earlier, to keep the gradient estimation (i.e., Eq. (2)) effective in the asymmetric setup,
our goal is to adjust the distribution of queries generated during the process. To achieve this, we first
propose a family of estimations that provides flexibility in adjusting the distribution of queries used
for estimation. Then, we introduce a method to select the estimator within this family that maximizes
the similarity between the approximated gradient and the true gradient.
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How can we control the query distribution? The main idea behind AGREST is to estimate
∇S (xt) by approximating the gradient at a point like x′

t, which is close to xt. This approach
allows us to alter the distribution of made queries while approximating effective directions for the
attacks. In this method, we move xt away from x⋆ by ωt, the overshooting value, to reach the new
point x′

t = xt + ωt
xt−x⋆

∥xt−x⋆∥2
(Fig. 2 (left)). Then, we use Eq. (2) at x′

t almost similar to the vanilla
estimation, except that AGREST assigns more weight to high-cost queries than to low-cost ones
(using importance sampling). In other words, we estimate ∇S as follows:

∇̂S (xt, ωt, βt) =
1

nt

nt∑
i=1

ϕ̂t (x
′
t + δui)ui =

1

nt

nt∑
i=1

ϕ̂t

(
xt + ωt

xt − x⋆

∥xt − x⋆∥2
+ δui

)
ui

where ϕ̂t(x) = (1 − βt)1{ϕ(x) = 1} − βt 1{ϕ(x) = −1} is the sampling weight function,
1
2 ≤ βt < 1 is the sampling weight parameter, u1, . . . ,unt

are i.i.d. draws from Uniform(Sd−1),
and 1{·} denotes the indicator function. The parameters ωt and βt allow us to control the likelihood
of making high-cost queries and their associated weight in our estimation.

How can we choose the best AGREST estimator? To ensure the selected estimation is as close as
possible to the true gradient direction among all AGREST estimators, one potential solution is to find
the estimator that maximizes:

µ(xt, ωt, βt, nt) = Eu1:nt
cos
(
∇S (xt) , ∇̂S (xt, ωt, βt)

)
within the query budget, where cos represents the cosine similarity function. To calculate this function,
we need to assume that S has certain characteristics. One common choice is to assume that S is
L-smooth. However, this assumption introduces excessive complexity to our analysis and may add
additional hyperparameters related to L to the current set of hyperparameters in the existing attacks.
Therefore, similar to [8, 18] and based on observations from [19, 20, 21], we assume that S is locally
linear around xt, S(x′

t + δu) ≈ S(xt) + ⟨∇S(xt),x
′
t + δu − xt⟩. Since xt is a boundary point,

S(xt) = 0. Thus, we have:

ϕ(x′
t + δu) ≈ sign (⟨∇S(xt),x

′
t + δu− xt⟩) = sign(cosαt · ωt + ⟨gt, δu⟩) (3)

where gt =
∇S(xt)

∥∇S(xt)∥2
and αt is the angle between xt−x⋆ and gt (Fig. 2). Additionally, based on this

assumption, we can calculate the probability of low-cost queries, namely pt(ωt) = P[ϕ(x′
t+δu) = 1],

using Lem. 1.
Lemma 1. (Hyperspherical Cap [22]) Under local linearity around xt (Eq. (3)), we have pt(ωt) =
1
2

(
1 + Id−2(δ

−1 cosαtωt)/Id−2(0)
)
, where Id(x) =

∫ 1−x

0
(1− t2)(d−1)/2dt.

Based on Lem. 1, we can infer that pt(ωt) is strictly increasing and therefore invertible. Nonetheless,
even with the linearity assumption, calculating the expected value remains challenging due to the
nonlinearity of cosine similarity and the complexity of handling multiple independent random vectors.
Therefore, inspired by measure concentration [23], we approximate µ(xt, ωt, βt, nt) as follows:

J(xt, ωt, βt, nt) =
(
n
1/2
t · E

[
ϕ̂(x′

t + δu)⟨gt,u⟩
])
·
(
E
[
ϕ̂(x′

t + δu)2
])−1/2

This new objective is easier to calculate since it removes the need to deal with multiple random
vectors. Thm. 2 establishes a convergence bound for the approximation.
Theorem 2. (Expected Cosine Similarity Approximation) Under the local linearity assumption
around xt, for any constants 0 < z < 1

8 and 1
2 ≤ q, β < 1, as nt and d approach infinity, we have∣∣∣∣µ(xt, p

−1
t (q), β, nt)

J(xt, p
−1
t (q), β, nt)

− 1

∣∣∣∣ ≤ O (d−z
)

Now, we can formulate the optimization problem. The goal is to maximize J(xt, ωt, βt, nt) within a
query budget. Specifically, we want to:

max
ωt,βt,nt

J(xt, ωt, βt, nt) s.t. nt(c
⋆ − (c⋆ − 1)pt(ωt)) ≤ ct (4)

where ct is the maximum allowed cost of estimation at iteration t of the algorithm. The constraint in
Eq. (4) ensures that the expected estimation cost at iteration t is at most ct. To solve this optimization
problem, we propose Thm. 3.
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Theorem 3. (Optimal AGREST Parameters) Suppose the solution to Eq. (4) is represented by
(ω⋆

t , w
⋆
t , n

⋆
t ). Given the local linearity around xt, the following statements hold:

1. n⋆
t = ct (c

⋆ − (c⋆ − 1)pt(ω
⋆
t ))

−1 and β⋆
t = pt(ω

⋆
t ).

2. ω⋆
t maximizes the following function over the interval [0, δ/ cosαt]:

Ĵt(ωt) =
(
1−

(
δ−1 cosαtωt

)2)d−1 (
pt(ωt) (1− pt(ωt)) (c

⋆ − (c⋆ − 1)pt(ωt))
)−1

An immediate consequence of Lem. 1 and Thm. 3 is the existence of ω⋆ such that ω⋆ = cosα1 ·ω⋆
1 =

cosα2 · ω⋆
2 = . . . . As a result, we aim to find ω⋆. One problem is that Id has a complex closed

form. Thus, finding a closed form for ω⋆ would be challenging. Instead, we use numerical methods
to evaluate this integral and numerical optimization techniques to find ω⋆. In particular, we use
QUADPACK [24] for the integral calculation and the Nelder–Mead method [25] for maximizing
Ĵt(ωt). Another problem is that we need to know αt in order to obtain the optimal overshooting
value, which is not possible in a black-box setup. Thus, we need to estimate αt at each iteration t.

Algorithm 2 Overshooting Scheduler Step
Inputs: Iteration t, dimension d, desired

probability p, scheduler rate m
Outputs: Next cosine value αt+1

1: α1 ← Init-Angle (d) ▷ Thm. 4
2: α̂t+1 ← 1− (1− cosα1) (t+ 1)

−m

3: αt+1 ← arccos (α̂t+1)
4: return αt+1

How can we estimate αt? We split this problem
into two steps: 1. estimating α1, and 2. under-
standing the behavior of αt with respect to t. For
the first problem, initially, we expect x1 − x⋆ and
g1 to be somehow independent, as most existing
attacks select x1 using a random direction. The
only reasonable assumption about these two vectors
is that they likely have a positive correlation, i.e.,
⟨x1 − x⋆,g1⟩ ≥ 0. Specifically, if we know that x1

is the closest boundary point to x⋆ along the direction
of x1 − x⋆, meaning there is no 0 < r < 1 such that ϕ(x⋆ + r(x1 − x⋆)) = 1, this assumption
provably holds. Given this assumption, we can use Thm. 4 to attain α1.
Theorem 4. (Initial Cosine Value) Under local linearity around x1, if there is no 0 < r < 1 such
that ϕ(x⋆ + r(x1 − x⋆)) = 1, then we have E [cosα1] = Γ

(
d
2

) (
2
√
π Γ
(
d+1
2

))−1.

Algorithm 3 AGREST Estimation
Inputs: Iteration t, source image x⋆, boundary point xt, dimension d, high-cost query cost c⋆,

sampling radius δ, sampling batch size b, cosine value αt, vanilla gradient estimation query
budget n′

t, scheduler rate m
Outputs: Normalized approximated direction gt, next cosine value αt+1

1: nL ← 0, nH ← 0, v+ ← 0⃗, v− ← 0⃗, ĉ← 0, ω⋆ ← Overshooting (c⋆) ▷ Thm. 3
2: ωt ← ω⋆/ cosαt, ct ← n′

t(c
⋆ + 1)/2

3: while ĉ < ct do
4: for each ui ∼ Uniform(Sd−1), i = 1, . . . , b do
5: if ϕ

(
xt + ωt

xt−x⋆

∥xt−x⋆∥2
+ δui

)
= 1 then

6: v+ ← v+ + ui, nL ← nL + 1, ĉ← ĉ+ 1
7: else
8: v− ← v− − ui, nH ← nH + 1, ĉ← ĉ+ c⋆

9: end if
10: end for
11: end while
12: p̂t ← nL/ (nL + nH)
13: gt ← (1− p̂t)v

+ + p̂tv
−, αt+1 ← Scheduler-Step (t, p̂t,m) ▷ Alg. 2

14: return gt/ ∥gt∥2 , αt+1

The next step is to estimate αt after the first iteration. Chen et al. [3] showed that in HSJA,
cos(xt−x⋆,gt) ≥ 1− c t−m for some constant c and 0 < m < 1

2 . This motivated us to heuristically
estimateαt as arccos(1−(1−cosα1)t

−m), wherem is a new hyperparameter introduced to the existing
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Table 1: Median ℓ2 distance for various c⋆ values and different types of attacks across neural network
architectures. VA stands for Vanilla Attack. The bold numbers represent the best performance among
different variants of each attack for each c⋆ value and model (For a comprehensive analysis of attacks
under varying total cost constraints, we refer readers to Tab. 2 and Tab. 3 in App. E, which present
exhaustive experimental results across different total cost budgets and query cost c⋆.)

ResNet-50 ViT-B/32

c⋆ = 2 c⋆ = 5 c⋆ = 102 c⋆ = 103 c⋆ = 2 c⋆ = 5 c⋆ = 102 c⋆ = 103

Attack Method Total Cost of Queries
10K 15K 150K 250K 10K 15K 150K 250K

SurFree VA 4.09 5.19 5.21 17.49 2.9 2.5 5.13 16.12
VA+AS (A-SurFree) 3.45 3.52 3.80 7.59 2.4 2.1 3.68 6.35

HSJA

VA 2.24 2.77 4.66 23.72 18.3 13.9 4.21 22.46
VA+AS 2.16 2.72 4.09 19.07 18.3 13.5 3.88 18.79

VA+AGREST 2.19 2.51 2.49 14.62 2.7 2.2 2.19 11.28
VA+AS+AGREST (A-HSJA) 2.13 2.39 2.16 12.28 2.7 2.1 2.06 10.74

GeoDA

VA 2.80 3.21 4.02 10.80 2.7 2.4 3.97 9.83
VA+AS 2.66 3.12 3.32 9.24 2.7 2.3 3.12 8.78

VA+AGREST 2.89 2.95 2.19 6.28 1.9 1.7 2.10 5.12
VA+AS+AGREST (A-GeoDA) 2.93 2.8 2.11 5.78 1.9 1.8 2.03 4.35

CGBA

VA 1.21 1.42 2.22 9.97 1.6 1.4 2.13 9.67
VA+AS 1.17 1.39 2.06 9.28 1.7 1.3 1.97 8.24

VA+AGREST 1.12 1.36 1.63 5.73 1.5 1.3 1.56 5.46
VA+AS+AGREST (A-CGBA) 1.15 1.33 1.58 6.23 1.5 1.2 1.42 5.61

attacks (Alg. 2). As stated in Thm. 3, under the assumption of local linearity, the value of βt in an opti-
mal AGREST estimation is the probability of making low-cost queries. However, similar to [3], we use
the empirical probability of making low-cost queries, namely nL

nL+nH
, to reduce the variance of the esti-

mation. Here, nH and nL represent the number of high-cost and low-cost queries made in an AGREST
estimator, respectively. Additionally, we set ct to the expected cost of the vanilla attack, namely
n′
t(c

⋆+1)
2 , wheren′

t is the number of made queries by the vanilla attack at iteration t. A detailed overview
of AGREST is provided in Alg. 3. Note that in practice, most attacks are performed in a given subspace
rather than in the entire space to improve sample efficiency. In these cases, we use the effective dimen-
sion d′ of the subspace instead of d, the dimension of the original space. For more details, see App. D.
Finally, it is worth mentioning that the probability of making low-cost queries in AGREST closely
follows our theoretical analysis in practice. Further details and empirical results are presented in App. C.

4 Experiments
Model, dataset, and metric. For robust evaluation of asymmetric attacks, we employed
ImageNet-trained models: ResNet-50 [26], ViT-B/32, ViT-B/16 [27], and CLIP [28]. Original
images (x⋆) were 500 correctly classified ImageNet validation samples similar to the [14]. Numerical
tasks used SciPy [29]. Attack performance was measured by the median ℓ2 distance between
perturbations and originals over query costs, consistent with previous work.
Attacks and hyperparameters. To evaluate our proposed framework, we modify SurFree, HSJA,
GeoDA, and CGBA by changing their respective search methods to AS and, where applicable,
updating their gradient estimation to asymmetric gradient estimation. The other components of the
attacks remain similar to their original implementations, except for the line search along the gradient
direction in GeoDA. We slightly modify this part to reduce the number of high-cost queries generated
during this phase (see App. D). Moreover, to compare our framework with stealthy attacks, we use
Stealthy HSJA, as it outperforms other stealthy attacks when the ℓ2 norm is the evaluation metric (Fig.
3 of [14]). For the hyperparameters used in the vanilla attacks, we generally use the same values.
The only exception is the subspace method in SurFree. Specifically, instead of using the DCT8×8

method in SurFree, we set it to DCTfull. This adjustment allows for a fair comparison of SurFree with
other attacks, as GeoDA and CGBA both use the DCTfull technique. Furthermore, we set the newly
introduced hyperparameter m, the overshooting scheduler rate, to 0.02, 0.06, and 0.06 for HSJA,
GeoDA, and CGBA, respectively (for more details on the effect of hyperparameter m see App. D).
Ablation study. To evaluate the effectiveness of AS and AGREST in different attacks, we test
various combinations of these two approaches with each attack when c⋆ = 2, 5, 102, or 103 (Tab. 1).
As shown in Tab. 1, for SurFree, we compare the vanilla attack with A-SurFree, the new asymmetric
attack that utilizes AS. As expected, replacing binary search with AS leads to smaller adversarial
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perturbations for all c⋆. Furthermore, we compare the performance of gradient-based attacks with their
corresponding variations, namely: 1. Replacing binary search with AS 2. Replacing vanilla gradient
estimation with AGREST 3. Combining the two previous approaches to obtain A-HSJA, A-GeoDA,
A-CGBA. In general, using asymmetric attacks results in incremental improvements when c⋆ = 2
or 5. This is expected because we anticipate binary search and vanilla gradient estimation perform
well when the cost of high-cost queries is not significantly different from the cost of low-cost queries.
However, for larger values of c⋆, namely 102 and 103, the improvements are substantial. Specifically,
using AGREST alone reduces the ℓ2 norm by approximately 40% in all cases. Moreover, combining
AGREST with AS further decreases the norm. One notable point is that AGREST enhances attacks
utilizing gradient estimation more than AS does. This occurs because attacks using gradient estimation
spend most of their query budget on gradient approximation rather than on search. (Tab. III of [14])

Comparison to stealthy attacks. As mentioned, for larger values of c⋆, we expect asymmetric
attacks to significantly improve over vanilla attacks. Nonetheless, in these cases, we must compare
our framework to stealthy attacks, since, unlike with lower to medium values of c⋆, stealthy attacks
outperform vanilla attacks when c⋆ is large (Fig. 7 of [14]). As a result, we evaluate the performance
of A-SurFree, A-HSJA, A-GeoDA, and A-CGBA against Stealthy HSJA on the ResNet model when
c⋆ = 104, 105, or∞. As demonstrated in Fig. 3, when c⋆ = 104, all asymmetric attacks, including
A-HSJA which retains the gradient estimation method that Stealthy HSJA discards, outperform
Stealthy HSJA. The same holds for c⋆ = 105 (Fig. 3). For the case where c⋆ =∞, following [14], we
determine the cost of each attack by counting the number of high-cost (flagged) queries it generates.
In this setup, we assume c⋆ = 105 during the execution of AGREST and AS. As shown in Fig. 3,
all asymmetric attacks outperform Stealthy HSJA by a wide margin.
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Figure 3: Performance of various asymmetric attacks compared to Stealthy HSJA under high
cost asymmetry with ResNet-50. The value of c⋆ is 104, 105, and∞ from left to right.

Asymmetric attacks against CLIP. We evaluate CLIP [28] as a representative vision-language
model (VLM) under both zero-shot and fine-tuned settings. Our asymmetric attack achieves
significantly better performance than stealthy baselines; results are provided in App. G.

5 Conclusion and outlook

We proposed a framework that extends existing decision-based black-box attacks to handle asymmetric
query costs, where querying the source class is more expensive than others. Our method modifies
two core components, gradient estimation and search, and achieves significant improvements over
both standard and stealthy attack baselines. However, it introduces a new hyperparameter, which
may require tuning for different settings. Additionally, we assume local linearity around decision
boundaries; while this assumption is common in the adversarial examples literature, it may not
hold for some models, potentially affecting the accuracy of gradient estimates. There are also
many interesting directions for future work, such as generalizing the framework beyond the binary
setting of source versus non-source classes. For instance, different target classes may each have their
own associated query cost, or the cost may depend on the classifier’s confidence, as in score-based
scenarios. Applying our framework to vision-language models such as Vision LLaMA [30, 31] or
LLaVA is another promising direction. AS could also enhance jailbreak attacks on large language
models, potentially replacing random search-based methods [32, 33], though adapting our framework
to LLMs presents challenges due to the discrete nature of text prompts [34]. Exploring these avenues
could expand the impact of asymmetric attacks across a wide range of applications.
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A Related work

Decision-based attacks. Adversarial examples can be crafted in three setups: white-box [35, 36,
37, 38], score-based black-box [39, 40, 41], and decision-based black-box [1]. In the decision-based
black-box setup, the attacker relies solely on predictions without access to models or class scores.
Moreover, decision-based attacks can be either targeted or non-targeted. Non-targeted attacks craft
adversarial examples without any constraints on the model’s prediction for the adversarial example.
Boundary Attack [1] was the first effective decision-based attack based on random walking. OPT [5]
outperforms Boundary Attack by introducing a gradient-based approach. Inspired by zeroth-order
optimization methods [42, 43], HSJA estimates the gradient of the classification margin without direct
access to the margin itself and minimizes perturbation size using optimization techniques [3]. QEBA
[44] uses various techniques to approximate the gradient of the classification margin more effectively
than HSJA, leveraging insights like local similarity and the importance of the low-frequency subspace.
GeoDA and qFool [8, 45] use techniques similar to HSJA’s gradient estimation to locally approximate
the decision boundary as a hyperplane at each iteration. They then search for optimal adversarial
examples based on these estimated hyperplanes. While gradient-based methods outperform previous
approaches, their reliance on generating numerous queries for efficient gradient estimation led [18] to
focus on decision boundary geometry. They introduced SurFree, which iteratively selects a random
2D subspace and searches for adversarial examples along a circular path. In a similar way, TriA [46]
generates effective adversarial examples while using minimal queries. CGBA [16] combines the
gradient approximation method from GeoDA with SurFree’s 2D subspace search technique to achieve
state-of-the-art results.

Asymmetric query costs. Existing decision-based attacks assume all queries have the same cost.
However, [14] showed this may not be the case in real-world scenarios. They found that queries
belonging to the target class can be problematic in certain situations and noted that all decision-based
attacks produce many of these bad queries. To mitigate this, they introduced stealthy attacks inspired
by the egg dropping problem [15]. However, stealthy attacks face two main challenges. First, they
overlook the cost of queries that are not bad. For example, their most effective attack, Stealthy HSJA,
generates about 107 queries for every 1,000 bad queries. Second, to reduce the number of bad queries
during the gradient estimation phase, [14] replaced the HSJA gradient approximation, known for its
benefits in crafting adversarial examples, with OPT gradient estimation, believing that modifying
the HSJA gradient estimation to perform well in this new setup would be difficult. In this paper,
we address these challenges in non-targeted decision-based attacks. In particular, we find a way to
efficiently distribute our total query budget between problematic and non-problematic queries while
keeping the HSJA method of gradient approximation by slightly modifying the method.
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B Proofs

Proof of Thm. 1 We define the expected cost of the algorithm for 1 < m <
⌈
1
τ

⌉
points as C(m).

Using Alg. 1 and applying the law of total expectation, we obtain

C(m) = P [ϕ (T (bmτ)) = −1]
(
C

(
m

c⋆ + 1

)
+ c⋆

)
+P [ϕ (T (bmτ)) = 1]

(
C

(
c⋆m

c⋆ + 1

)
+ 1

)
.

(5)
We now claim that

C(m) < 2c⋆
⌈
logc⋆+1 m

⌉
. (6)

We prove this by induction.

For the base case, when m ≤ c⋆ + 1, Alg. 1 reduces to a simple line search. Assuming a uniform
distribution for the boundary point, the expected cost of the line search is approximately c⋆ +m/2,
which clearly satisfies Eq. (6).

For the induction step, suppose the claim holds for all values smaller than m. Under the uniform
distribution assumption for the boundary point, we have

P [ϕ (T (bmτ)) = −1] = 1

c⋆ + 1
, P [ϕ (T (bmτ)) = 1] =

c⋆

c⋆ + 1
.

Substituting into Eq. (5) and applying the induction hypothesis yields:

C(m) =
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)
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)
.

Noting that

logc⋆+1

(
m

c⋆ + 1

)
= logc⋆+1(m)− 1, logc⋆+1

(
c⋆m

c⋆ + 1

)
= logc⋆+1(m)+ logc⋆+1

(
c⋆

c⋆ + 1

)
,

and observing that logc⋆+1

(
c⋆

c⋆+1

)
< 0 but close to 0 for large c⋆, we can bound both ceilings by

⌈logc⋆+1(m)⌉.
Thus,

C(m) <
2c⋆

c⋆ + 1

(
⌈logc⋆+1 m⌉ − 1

)
+

c⋆

c⋆ + 1
c⋆ +

2c⋆2

c⋆ + 1
⌈logc⋆+1 m⌉+

c⋆

c⋆ + 1
= 2c⋆⌈logc⋆+1 m⌉.

Thus, the expected complexity of the algorithm is

O
(
c⋆ log (1/τ)

log(c⋆ + 1)

)
,

completing the proof.

■

Proof of Thm. 2 Before proving the theorem, we first introduce some useful lemmas.
Lemma 2. (Lévy’s Lemma [47, 23]) Let f : Sd−1 → R be an L-Lipschitz function on the unit
hypersphere, and let x ∼ Uniform

(
Sd−1

)
. Then, for some constant C > 0, we have:

P (|f (x)− Ef (x)| > ε) ≤ 2 exp

(
−Cdε2

L2

)
.

Corollary 1. Suppose u ∈ Rd is a unit vector, and x ∼ Uniform
(
Sd−1

)
. Then, for some constant

C > 0, we have:
P (|⟨u,x⟩| > ε) ≤ 2 exp

(
−Cdε2

)
.

Lemma 3. Suppose ϕ̂2
t,1, . . . , ϕ̂

2
t,nt

are i.i.d. Bernoulli random variables with support {β2
t , (1−βt)

2},
where βt >

1
2 . If ϕ̂t is an i.i.d. copy of ϕ̂t,i, then the following inequality holds:

P

(∣∣∣∣∣ 1nt

nt∑
i=1

ϕ̂2
t,i − E[ϕ̂2

t ]

∣∣∣∣∣ > ε

)
≤ 2 exp

(
− 2ntε

2

(2βt − 1)2

)
.
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Proof of Lem. 3: The result follows by applying the Chernoff bound for binomial distributions
[48, 49] to the transformed random variables

ϕ̃i :=
ϕ̂2
t,i − (1− βt)

2

β2
t − (1− βt)2

,

which are i.i.d. Bernoulli random variables taking values in {0, 1}.
Lemma 4. Given the local linearity around xt, for any ωt ∈

[
0, δ

cosαt

]
, we have:

E
[
ϕ̂t⟨gt,u⟩

]
=

Γ
(
d
2

)
·
(
1− (cosαt · ωt/δ)

2
) d−1

2

2
√
π · Γ

(
d+1
2

)
Proof of Lem. 4: By the law of total expectation and linearity assumption, we have

E
[
ϕ̂t⟨gt,u⟩

]
= βt (1− Pt (ωt))E [−⟨gt,u⟩|⟨gt,u⟩ ≤ − cosαt · ωt/δ]

+ (1− βt)Pt (ωt)E [⟨gt,u⟩|⟨gt,u⟩ > − cosαt · ωt/δ]
(7)

Now, by applying the divergence theorem on the constant vector field F⃗ = gt, we have

E [−⟨gt,u⟩|⟨gt,u⟩ ≤ − cosαt · ωt/δ] = ⟨−gt,

∫
⟨gt,u⟩≤− cosαt·ωt/δ

up (u) du⟩

= ⟨−gt,

∫
⟨gt,u⟩≤− cosαt·ωt/δ

1

(1− p (ωt))Ad−1 (1)
udu⟩

=

Vd−1

(√
1− (cosαt · ωt/δ)

2

)
(1− Pt (ωt)) ·Ad−1 (1)

=
Γ
(
d
2

)
·
(
1− (cosαt · ωt/δ)

2
) d−1

2

2
√
π · Γ

(
d+1
2

)
· (1− Pt (ωt))

(8)
Where Vd(r) and Ad−1(r) are the volume of a d-dimensional ball and the area of a d− 1-dimensional

sphere with radius r, respectively. Note that the last equality comes from Vd(r) =
πd/2

Γ
(
d
2 + 1

) rd and

Ad−1(r) =
2πd/2

Γ
(
d
2

) rd−1. Similarly, the following holds:

E [⟨gt,u⟩|⟨gt,u⟩ ≥ − cosαt · ωt/δ] =
Γ
(
d
2

)
·
(
1− (cosαt · ωt/δ)

2
) d−1

2

2
√
π · Γ

(
d+1
2

)
· Pt (ωt)

(9)

By using Eq. (8) and Eq. (9) in Eq. (7), we have

E
[
ϕ̂t⟨gt,u⟩

]
=

Γ
(
d
2

)
·
(
1− (cosαt · ωt/δ)

2
) d−1

2

2
√
π · Γ

(
d+1
2

) (10)

■
Lemma 5. Let ε1, ε2 > 0 be given. Then the following upper and lower bounds hold for
µ(xt, ωt, βt, nt):

1. (Upper bound)

µ(xt, ωt, βt, nt) ≤
√
nt E

[
ϕ̂t⟨gt,u⟩

]
√
E[ϕ̂2

t ]− ε2 − (nt − 1)β2
t ε1

+

1 +

√
nt βt√

E[ϕ̂2
t ]− ε2 − (nt − 1)β2

t ε1

Knt,d (ε1, ε2) .
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2. (Lower bound)

µ(xt, ωt, βt, nt) ≥
√
nt E

[
ϕ̂t⟨gt,u⟩

]
√
E[ϕ̂2

t ] + ε2 + (nt − 1)β2
t ε1

−

1 +

√
nt βt√

E[ϕ̂2
t ] + ε2 + (nt − 1)β2

t ε1

Knt,d (ε1, ε2) .

Here, the error term Knt,d(ε1, ε2) is defined as

Knt,d (ε1, ε2) = nt(nt + 1) exp
(
−Cdε21

)
+ 2 exp

(
− 2ntε

2
2

(2βt − 1)2

)
,

for some universal constant C > 0.

Proof of Lem. 5: Let ε1, ε2 > 0 be arbitrary. We define the following sets:

Si(ε1) := {U = (u1, . . . ,unt
) | |⟨gt,ui⟩| ≥ ε1} ,

Si,j(ε1) := {U = (u1, . . . ,unt
) | |⟨ui,uj⟩| ≥ ε1} ,

Sϕ(ε2) :=
{
U = (u1, . . . ,unt

)

∣∣∣∣∣
∣∣∣∣∣E[ϕ̂2

t ]−
1

nt

nt∑
i=1

ϕ̂2
t,i

∣∣∣∣∣ ≥ ε2

}
,

S(ε1, ε2) :=
(

nt⋃
i=1

Si(ε1)
)
∪

 ⋃
1≤i<j≤nt

Si,j(ε1)

 ∪ Sϕ(ε2).
For notational convenience, we also define

A(U) :=

nt∑
i=1

ϕ̂t,i⟨gt, δui⟩.

Applying Lem. 2 and Lem. 3, and using the union bound, we obtain

P [U ∈ S] ≤ nt · P [U ∈ S1] +
(
nt

2

)
· P [U ∈ S1,2] + P [U ∈ Sϕ] ≤ Knt,d (ε1, ε2) . (11)

Now, we derive the upper bound. By the law of total probability, we have

µ(xt, ωt, βt, nt) = E

 ⟨gt, ∇̂S(xt, ωt, βt)⟩∥∥∥∇̂S(xt, ωt, βt)
∥∥∥
2


= E

 ⟨gt, ∇̂S(xt, ωt, βt)⟩∥∥∥∇̂S(xt, ωt, βt)
∥∥∥
2

∣∣∣∣∣∣ U /∈ S

P[U /∈ S]

+ E

 ⟨gt, ∇̂S(xt, ωt, βt)⟩∥∥∥∇̂S(xt, ωt, βt)
∥∥∥
2

∣∣∣∣∣∣ U ∈ S
P[U ∈ S].
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On the good event {U /∈ S}, we expand the squared norm directly. By definition,

∥∥∥∇̂S(xt, ωt, βt)
∥∥∥2
2
=

∥∥∥∥∥ 1

nt

nt∑
i=1

δϕ̂t,iui

∥∥∥∥∥
2

2

=
1

n2
t

〈
nt∑
i=1

δϕ̂t,iui,

nt∑
j=1

δϕ̂t,juj

〉

=
δ2

n2
t

nt∑
i=1

nt∑
j=1

ϕ̂t,iϕ̂t,j⟨ui,uj⟩

=
δ2

n2
t

 nt∑
i=1

ϕ̂2
t,i +

∑
1≤i,j≤nt

i̸=j

ϕ̂t,iϕ̂t,j⟨ui,uj⟩

 .

From the previous expansion, we have∥∥∥∇̂S(xt, ωt, βt)
∥∥∥
2
≥ δ√

nt

√
E[ϕ̂2

t ]− ε2 − (nt − 1)β2
t ε1.

Thus, on the good event {U /∈ S}, we can bound

⟨gt, ∇̂S(xt, ωt, βt)⟩∥∥∥∇̂S(xt, ωt, βt)
∥∥∥
2

=
1∥∥∥∇̂S∥∥∥

2

〈
gt,

1

nt

nt∑
i=1

δϕ̂t,iui

〉
=

1

nt

∥∥∥∇̂S∥∥∥
2

A(U).

Therefore,
⟨gt, ∇̂S⟩∥∥∥∇̂S∥∥∥

2

≤ A(U)

δ
√
nt

√
E[ϕ̂2

t ]− ε2 − (nt − 1)β2
t ε1

.

Taking expectations over the good event, we obtain

E

 ⟨gt, ∇̂S⟩∥∥∥∇̂S∥∥∥
2

∣∣∣∣∣∣ U /∈ S

 ≤ 1

δ
√
nt

√
E[ϕ̂2

t ]− ε2 − (nt − 1)β2
t ε1

E[A(U)].

Moreover, by independence and identical distribution of the samples, we have

E[A(U)] = ntδ E
[
ϕ̂t⟨gt,u⟩

]
.

Therefore,

E

 ⟨gt, ∇̂S⟩∥∥∥∇̂S∥∥∥
2

∣∣∣∣∣∣ U /∈ S

 ≤ √
nt E

[
ϕ̂t⟨gt,u⟩

]
√
E[ϕ̂2

t ]− ε2 − (nt − 1)β2
t ε1

.

On the bad event {U ∈ S}, we use the trivial bound∣∣∣∣∣∣ ⟨gt, ∇̂S⟩∥∥∥∇̂S∥∥∥
2

∣∣∣∣∣∣ ≤ 1,

and hence

E

 ⟨gt, ∇̂S⟩∥∥∥∇̂S∥∥∥
2

∣∣∣∣∣∣ U ∈ S
 ≤ 1.
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Substituting back into the law of total probability, we have

µ(xt, ωt, βt, nt) ≤
√
nt E

[
ϕ̂t⟨gt,u⟩

]
√
E[ϕ̂2

t ]− ε2 − (nt − 1)β2
t ε1

(1− P[U ∈ S]) + P[U ∈ S]

+

√
ntβtP[U ∈ S]√

E[ϕ̂2
t ]− ε2 − (nt − 1)β2

t ε1

.

Grouping terms, we obtain

µ(xt, ωt, βt, nt) ≤
√
nt E

[
ϕ̂t⟨gt,u⟩

]
√
E
[
ϕ̂2
t

]
− ε2 − (nt − 1)β2

t ε1

+

1 +

√
nt βt√

E
[
ϕ̂2
t

]
− ε2 − (nt − 1)β2

t ε1

P [U ∈ S] .

Applying the bound P [U ∈ S] ≤ Knt,d(ε1, ε2) from Eq. (11), we finally get

µ(xt, ωt, βt, nt) ≤
√
nt E

[
ϕ̂t⟨gt,u⟩

]
√
E
[
ϕ̂2
t

]
− ε2 − (nt − 1)β2

t ε1

+

1 +

√
nt βt√

E
[
ϕ̂2
t

]
− ε2 − (nt − 1)β2

t ε1

Knt,d(ε1, ε2).

Similarly, for the lower bound, we have

µ(xt, ωt, βt, nt) ≥
√
nt E

[
ϕ̂t⟨gt,u⟩

]
√
E
[
ϕ̂2
t

]
+ ε2 + (nt − 1)β2

t ε1

−

1 +

√
nt βt√

E
[
ϕ̂2
t

]
+ ε2 + (nt − 1)β2

t ε1

Knt,d(ε1, ε2).

This completes the proof of the lemma. We note that the argument does not rely on the linearity
assumption.

■

Lemma 6. Assume local linearity holds around xt. Then, for any constant q ∈
[
1
2 , 1
)
, we have

E
[
ϕ̂

(
xt + P−1

t (q)
xt − x⋆

∥xt − x⋆∥2
+ δu

)
⟨gt,u⟩

]
= Θ

(
1√
d

)
.

Proof of Lem. 6: Based on Lem. 4, we analyze the asymptotic behavior of Γ( d
2 )

Γ( d+1
2 )

and(
1− (cosαt · ωt/δ)

2
) d−1

2

as d tends to infinity.

By Lem. 2, we have
P [|⟨u,gt⟩| > ε] ≤ 2 exp

(
−Cdε2

)
,

18



so in particular
P [⟨u,gt⟩ < −ε] ≤ exp

(
−Cdε2

)
.

We know that 1− q = P [⟨u,gt⟩ > − cosαt · ωt/δ], based on the selection of the overshooting value
ωt. Thus,

1− q ≤ exp
(
−Cd (cosαt · ωt/δ)

2
)
,

which implies
ln(1− q) ≤ −Cd (cosαt · ωt/δ)

2
,

and consequently

1 +
ln(1− q)

Cd
≤ 1− (cosαt · ωt/δ)

2
.

Raising both sides to the (d− 1)/2 power yields(
1 +

ln(1− q)

Cd

) d−1
2

≤
(
1− (cosαt · ωt/δ)

2
) d−1

2

.

Applying the classical limit limn→∞
(
1 + c

n

)n
= ec, we obtain

lim
d→∞

(
1 +

ln(1− q)

Cd

) d−1
2

= exp

(
ln(1− q)

2C

)
,

which implies that
(
1− (cosαt · ωt/δ)

2
) d−1

2

= Θ(1).

On the other hand, by Stirling’s approximation

Γ(n) =

√
2π

n

(n
e

)n(
1 +O

(
1

n

))
,

we find that
Γ
(
d
2

)
Γ
(
d+1
2

) = Θ

(
1√
d

)
.

Substituting these results into Eq. (10) concludes the proof.

■

Now, we proceed to prove the theorem.

Proof of Thm. 2: For any 0 < z < 1
8 , let nt = d3z , ε1 = d−4z , and ε2 = d−z . Also, let d ≥ 4

E[ϕ̂2
t ]

β2

. We define

E1 :=

√
nt E

[
ϕ̂t⟨gt,u⟩

]
√
E
[
ϕ̂2
t

]
− ε2 − (nt − 1)β2ε1

,

E2 :=

√
nt β√

E
[
ϕ̂2
t

]
− ε2 − (nt − 1)β2ε1

,

E3 := Knt,d(ε1, ε2).

Then using the upper bound derived in Lem. 5, we have

µ(xt, p
−1
t (q), β, nt)

J(xt, p
−1
t (q), β, nt)

− 1 ≤ E1

J(xt, p
−1
t (q), β, nt)

− 1 +
1 + E2

J(xt, p
−1
t (q), β, nt)

· E3. (12)
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Since E
[
ϕ̂2
t

]
= β2(1− q) + (1− β)2q is constant, we can estimate

E1

J(xt, p
−1
t (q), β, nt)

− 1 ≤ 1√
1− ε2+(nt−1)β2ε1

E[ϕ̂2
t ]

− 1

≤ O
(
ε2 + (nt − 1)β2ε1

)
(since for 0 ≤ x ≤ 1

2
,
√
1− x ≥ 1− x

2
)

= O(d−z). (13)

Moreover, we have E1 = Θ
(
n
1/2
t

)
. Using Lem. 6, we also have J(xt, p

−1
t (q), β, nt) =

Θ
(
n
1/2
t d1/2

)
. Thus,

1 + E2

J(xt, p
−1
t (q), β, nt)

= Θ(d1/2). (14)

Substituting the values of nt, ε1, and ε2 into E3 yields

E3 = Θ
(
d6z
)
exp

(
−Cd1−8z

)
+ exp

(
− 2dz

(2β − 1)2

)
. (15)

Since 1 − 8z > 0 and exponential functions dominate polynomial growth, combining Eq. (13),
Eq. (14), and Eq. (15) with Eq. (12) yields

µ(xt, p
−1
t (q), β, nt)

J(xt, p
−1
t (q), β, nt)

− 1 ≤ O(d−z).

Applying similar steps using the lower bound in Lem. 5, we find

1− µ(xt, p
−1
t (q), β, nt)

J(xt, p
−1
t (q), β, nt)

≤ O(d−z).

Thus, the proof is complete.

■

Proof of Thm. 3 Since J(xt, ωt, βt, nt) is increasing with respect to nt, the optimal choice is to
take nt at its maximum allowed value:

nt =
ct

c⋆ − (c⋆ − 1)Pt(ω⋆
t )

.

Substituting this into the definition of J and applying Lem. 4, we obtain

J(xt, ωt, βt, nt) ∝
(1− (cosαt · ωt/δ)

2)(d−1)/2√
(c⋆ − (c⋆ − 1)Pt(ωt))E[ϕ̂2

t ]
.

Expanding E[ϕ̂2
t ] gives

E[ϕ̂2
t ] = β2

t (1− Pt(ωt)) + (1− βt)
2Pt(ωt).

Thus,

J(xt, ωt, βt, nt) ∝
(1− (cosαtωt/δ)

2)(d−1)/2√
(c⋆ − (c⋆ − 1)Pt(ωt))(β2

t (1− Pt(ωt)) + (1− βt)2Pt(ωt))
.

To maximize J , it suffices to minimize

β2
t (1− Pt(ωt)) + (1− βt)

2Pt(ωt).

Differentiating with respect to βt and setting the derivative to zero yields

βt = Pt(ωt).
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Substituting this optimal βt back, we find

E[ϕ̂2
t ] = Pt(ωt)(1− Pt(ωt)),

and thus the final expression to maximize is

Ĵt(ωt) =
(1− (cosαtωt/δ)

2)d−1

Pt(ωt)(1− Pt(ωt))(c⋆ − (c⋆ − 1)Pt(ωt))
.

■

Proof of Thm. 4 First, we show that cosα1 ≥ 0. Suppose for contradiction that cosα1 < 0, i.e.,

⟨x1 − x⋆,∇S(x1)⟩ < 0.

Using the definition of the directional derivative, we have

lim
h→0

S (x1 + h(x1 − x⋆))− S(x1)

h
= ⟨x1 − x⋆,∇S(x1)⟩ < 0.

Since the directional derivative is strictly negative, there exists ϵ > 0 such that for all sufficiently
small ϵ > 0,

S (x1 − ϵ(x1 − x⋆)) > S(x1).

Noting that
x1 − ϵ(x1 − x⋆) = x⋆ + (1− ϵ)(x1 − x⋆),

we can rewrite this inequality as

S (x⋆ + (1− ϵ)(x1 − x⋆)) > S(x1).

Since ϕ(x1) = 1 by assumption, and assuming ϕ remains 1 in a neighborhood where S does not
decrease, we also have

ϕ (x⋆ + (1− ϵ)(x1 − x⋆)) = 1.

Thus, for r = 1− ϵ, we find a point 0 < r < 1 such that ϕ(x⋆ + r(x1 − x⋆)) = 1, contradicting the
assumption that no such r exists. Therefore, our assumption that cosα1 < 0 must be false, and we
conclude that

cosα1 ≥ 0.

Now that we have established cosα1 ≥ 0, it follows that

E[cosα1] = E [cosα1 | cosα1 ≥ 0] .

Expanding cosα1 in terms of the vectors involved, we write

cosα1 =

〈
x1 − x⋆

∥x1 − x⋆∥2
,g1

〉
.

Thus,

E[cosα1] = E
[〈

x1 − x⋆

∥x1 − x⋆∥2
,g1

〉 ∣∣∣∣ 〈 x1 − x⋆

∥x1 − x⋆∥2
,g1

〉
≥ 0

]
.

Finally, applying the result from Eq. (9) with ωt = 0, we obtain

E
[〈

x1 − x⋆

∥x1 − x⋆∥2
,g1

〉 ∣∣∣∣ 〈 x1 − x⋆

∥x1 − x⋆∥2
,g1

〉
≥ 0

]
=

Γ
(
d
2

)
2
√
π Γ
(
d+1
2

) .
This completes the proof.

■
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C Empirical study of AS and AGREST

Here, we design two experiments to validate the effectiveness of our analysis for both AS and AGREST.
(Fig. 4)

First, we sample 100 random correctly classified images from the ImageNet dataset and run the
experiments using binary search and asymmetric search when c⋆ = 103. We observe that the average
cumulative search cost across iterations for binary search is approximately 2.5 times higher than that
of AS. This highlights the effectiveness of AS compared to vanilla search.

Second, to show that using the overshooting value obtained by AGREST leads to a probability of
making low-cost queries close to the theoretical value in Thm. 3, we again sample 100 random images
and run one iteration of AGREST using 500 queries for gradient estimation. We then compute the
empirical probability of making low-cost queries, defined as the ratio of low-cost to total (500) queries,
and compare it to the optimal probability predicted by our theoretical analysis. As shown in Fig. 4,
our analysis is close to the empirical results, especially for larger values of c⋆.

0 5 10 15 20 25
iteration t 

0.0

0.5

1.0

1.5

2.0

2.5

C
um

ul
at

iv
e 

se
ar

ch
 c

os
t

1e4

Asymmetric search
Binary search

0 20 40 60 80 100

c?

0.5

0.6

0.7

0.8

0.9

p 1
(ω

1)

Empirical

Theoretical

Figure 4: Empirical study of AS and AGREST. The left plot compares AS with vanilla search (binary
search) in terms of cumulative search cost over iterations in GeoDA when c⋆ = 103, while the right
plot shows the optimal theoretical probability of making low-cost queries (assuming local linearity of
the decision boundary) versus the empirical ratio of low-cost to total queries for different values of c⋆.
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D Implementation

Modification to GeoDA We modify the direction-based adversarial example search phase in GeoDA.
In its original implementation, GeoDA estimates the gradient and then proceeds from the original
image, taking fixed-size steps along that direction until it finds an adversarial example. However, this
process often leads to a large number of flagged queries, since many of the intermediate steps can
cross the decision boundary.

To address this issue, we change the starting point of the search. Instead of beginning at the original
image, we start from

x′′ = x⋆ + ∥x⋆ − xt∥2 ·
∇̂S(xt, ωt)

∥∇̂S(xt, ωt)∥2
.

This new starting point lies further in the direction of the estimated gradient and is designed with the
expectation that it is already adversarial—or at least closer to an adversarial example than the original
image. If x′′ is not adversarial, the algorithm continues the search in the estimated gradient direction.
This modification significantly reduces the number of flagged queries encountered during the search.

Selection of the hyperparameter m We select values for the hyperparameter m by evaluating the
performance of the corresponding attacks under different settings of m, using 20 randomly selected
correctly classified images. This evaluation is performed with c⋆ = 103 and a total query cost of
250K, as shown in Fig. 5.

Although the optimal value of m can vary with c⋆, we choose to fix m independently of c⋆. This
decision simplifies the attack process and avoids the additional computational overhead of tuning m
for each value of c⋆, while still enabling effective attack performance.
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Figure 5: Median ℓ2 distance of adversarial perturbations for varying values of m, with c⋆ = 103 and
a total query cost of 150K.

AGREST with dimension reduction As mentioned earlier, most practical attacks use a dimension
reduction matrix R ∈ Rd×d′

to perform the sampling process in a subspace of dimension d′ ≪ d,
where d is the dimension of the original space, in order to increase sample efficiency. To apply the
same subspace in the AGREST estimator, the only modifications needed compared to the original
AGREST Alg. 3 are: first, projecting each sample into the subspace; and second, using the effective
dimension d′ to compute αt. An overview of this version of AGREST is provided in Alg. 4.

Computation resources For our experiments on ResNet-50, we use NVIDIA P100 GPUs. All
other experiments, including those involving ViT and CLIP models, are conducted on NVIDIA A100
GPUs to accommodate the higher computational and memory demands of these models.
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Algorithm 4 AGREST Estimation
Inputs: Iteration t, source image x⋆, boundary point xt, dimension d, sampling subspace dimension

d′, sampling subspace matrix R, high-cost query cost c⋆, sampling radius δ, sampling batch size
b, cosine value αt, vanilla gradient estimation query budget n′

t, scheduler rate m
Outputs: Normalized approximated direction gt, next cosine value αt+1

1: nL ← 0, nH ← 0, v+ ← 0⃗, v− ← 0⃗, ĉ← 0, ω⋆ ← Overshooting (c⋆) ▷ Thm. 3
2: ωt ← ω⋆/ cosαt, ct ← n′

t(c
⋆ + 1)/2

3: while ĉ < ct do
4: B ←

{
Rui/ ∥Rui∥ where ui ∼ Uniform

(
Sd−1

)}b
i=1

▷ Dimension reduction
5: for each ui ∈ B do
6: if ϕ

(
xt + ωt

xt−x⋆

∥xt−x⋆∥2
+ δui

)
= 1 then

7: v+ ← v+ + ui, nL ← nL + 1, ĉ← ĉ+ 1
8: else
9: v− ← v− − ui, nH ← nH + 1, ĉ← ĉ+ c⋆

10: end if
11: end for
12: end while
13: p̂t ← nL/ (nL + nH)
14: gt ← (1− p̂t)v

+ + p̂tv
−, αt+1 ← Scheduler-Step (t, p̂t,m) ▷ Alg. 2

15: return gt/ ∥gt∥2 , αt+1

E Additional results for Vision Transformers (ViT)

In this section, we present comprehensive empirical evaluations that extend our analysis across varying
budget constraints and different query cost parameters c⋆. Specifically, we conduct experiments
utilizing Vision Transformer architectures (ViT-B/32 and ViT-B/16) on the ImageNet dataset.

Table 2: Median ℓ2 distance for various c⋆ values and different types of attacks for ViT-B/32 model
on ImageNet dataset.

Attack Method
c⋆ = 2.0 c⋆ = 5.0 c⋆ = 100.0 c⋆ = 1000.0 Higher Queries

Total Cost Total Cost Total Cost Total Cost Total Cost
1000 2000 5000 10000 15000 1000 2000 5000 10000 15000 1000 2000 5000 10000 15000 1000 2000 5000 10000 15000 150000 250000

SURFREE VA 9.3 6.2 3.9 2.9 2.5 14.3 9.9 5.7 4.4 3.4 70.4 71.0 34.7 21.3 18.2 69.7 71.1 70.6 68.1 68.3 5.13 16.12
VA+AS (A-SurFree) 7.8 5.0 3.6 2.4 2.1 11.4 7.3 4.6 3.1 2.5 70.0 70.1 22.8 14.5 9.7 70.1 69.9 71.5 67.3 68.5 3.68 6.35

HSJA

VA 53.7 44.8 28.7 18.3 13.9 61.6 53.2 40.0 28.1 22.8 68.4 67.2 67.5 67.9 63.1 69.9 71.1 69.3 69.4 70.2 4.21 22.46
VA+AS 53.3 41.8 25.2 18.3 13.5 62.6 50.5 38.6 24.4 18.5 69.5 68.4 69.7 58.8 56.8 68.7 69.4 70.2 68.1 68.2 3.88 18.79

VA+AGREST 18.6 9.7 4.2 2.7 2.2 36.3 17.3 7.8 4.4 3.1 69.1 71.1 73.7 37.0 35.4 68.5 72.1 69.1 70.1 69.7 2.19 11.28
VA+AS+AGREST (A-HSJA) 17.8 9.6 4.7 2.7 2.1 34.8 19.1 7.6 4.2 3.1 71.4 69.1 60.1 38.3 25.3 71.8 72.1 71.9 67.6 68.7 2.06 10.74

GEODA

VA 14.2 6.6 3.4 2.7 2.4 18.9 12.0 6.7 3.5 3.2 67.1 68.2 30.1 26.3 18.7 69.3 68.6 68.1 67.5 69.2 3.97 9.83
VA+AS 12.7 7.8 3.7 2.7 2.3 17.1 11.7 5.5 3.4 2.9 71.0 73.7 30.5 20.5 16.0 70.5 71.5 68.7 73.1 71.4 3.12 8.78

VA+AGREST 7.4 3.7 2.4 1.9 1.7 14.6 8.8 4.5 3.3 2.7 70.2 69.8 36.6 23.5 17.7 68.6 72.2 66.0 69.0 69.5 2.10 5.12
VA+AS+AGREST (A-GeoDA) 7.8 3.9 2.3 1.9 1.8 14.8 8.4 4.4 3.1 2.8 68.8 70.6 34.0 19.0 15.6 72.2 72.5 73.5 72.9 68.2 2.03 4.35

CGBA

VA 11.6 6.0 3.0 1.6 1.4 18.4 11.3 5.3 3.1 2.1 70.4 72.0 28.0 24.5 17.0 68.8 70.4 69.7 72.8 72.8 2.13 9.67
VA+AS 10.8 6.4 3.2 1.7 1.3 16.2 10.7 4.6 2.6 2.0 68.5 73.4 29.2 18.1 13.7 71.9 73.8 68.3 68.5 70.1 1.97 8.24

VA+AGREST 7.3 3.6 2.0 1.5 1.3 15.8 8.3 4.0 3.0 2.5 67.1 73.5 39.2 18.9 15.2 70.9 70.5 72.7 69.8 69.5 1.56 5.46
VA+AS+AGREST (A-CGBA) 7.6 4.1 1.9 1.5 1.2 14.4 7.7 4.2 2.9 2.5 70.2 67.2 23.9 15.9 13.4 71.9 70.4 67.3 70.0 72.7 1.42 5.61

Table 3: Median ℓ2 distance for various c⋆ values and different types of attacks for ViT-B/16 model
on ImageNet dataset.

Attack Method
c⋆ = 2.0 c⋆ = 5.0 c⋆ = 100.0 c⋆ = 1000.0

Total Cost Total Cost Total Cost Total Cost
1000 2000 5000 10000 15000 1000 2000 5000 10000 15000 1000 2000 5000 10000 15000 1000 2000 5000 10000 15000

SURFREE VA 10.7 7.1 4.2 3.0 2.3 16.6 11.0 6.8 4.4 3.6 57.6 57.1 33.3 20.7 18.6 60.0 56.0 56.8 56.8 57.6
VA+AS (A-SurFree) 8.9 6.0 3.7 2.3 2.0 14.4 8.3 4.6 3.2 2.6 58.2 58.2 27.7 15.0 10.4 58.0 54.9 54.6 56.9 58.3

HSJA

VA 37.5 29.9 17.8 10.8 7.1 49.6 40.0 26.0 18.4 13.9 57.3 56.0 55.1 52.5 49.7 56.7 58.9 59.2 57.2 58.0
VA+AS 38.1 28.6 18.5 9.6 6.8 47.8 38.5 23.9 16.5 11.0 57.4 56.6 55.0 47.4 44.5 56.6 60.9 57.9 59.2 57.4

VA+AGREST 14.5 8.0 4.0 2.3 1.7 29.4 14.6 6.0 3.8 2.7 56.7 56.9 59.6 30.5 31.6 55.9 55.3 58.2 57.4 59.0
VA+AS+AGREST (A-HSJA) 15.1 7.7 3.9 2.3 1.8 27.1 14.5 6.4 3.6 2.6 58.1 58.1 40.5 31.3 21.0 58.2 56.7 57.5 56.7 58.7

GEODA

VA 12.5 7.3 3.1 2.2 1.8 19.7 13.7 6.5 3.3 2.5 56.8 57.7 32.5 25.5 22.6 58.2 56.5 60.3 57.4 55.8
VA+AS 14.4 7.1 3.2 2.0 1.9 19.9 12.6 5.5 3.3 2.5 60.2 60.6 30.6 23.1 17.6 58.0 57.0 58.0 59.3 57.3

VA+AGREST 8.4 4.0 2.1 1.5 1.4 13.5 8.1 3.8 2.6 2.1 58.3 55.8 35.5 19.4 17.0 58.8 59.0 58.4 57.6 57.4
VA+AS+AGREST (A-GeoDA) 7.9 3.8 2.1 1.6 1.4 13.7 8.5 4.1 2.5 2.2 55.9 58.5 27.5 18.1 15.2 59.2 60.6 58.4 57.7 58.0

CGBA

VA 11.3 6.0 2.3 1.3 1.0 16.6 11.2 4.6 2.4 1.6 57.1 54.9 32.4 23.7 18.6 56.1 56.7 59.5 61.3 59.2
VA+AS 11.2 5.6 2.4 1.3 1.0 16.4 9.5 4.3 2.2 1.5 56.2 56.6 28.1 17.2 14.8 59.0 58.0 59.9 58.3 55.5

VA+AGREST 6.5 3.4 1.8 1.2 0.9 14.0 7.9 3.8 2.2 1.8 55.0 55.7 35.0 19.5 14.1 56.3 55.4 59.3 57.6 53.5
VA+AS+AGREST (A-CGBA) 7.6 3.5 1.7 1.2 1.0 12.2 7.5 3.4 2.2 1.9 58.1 60.5 21.5 16.5 12.2 58.2 58.2 55.9 58.8 57.2
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F Asymmetric Search (AS) illustration

Fig. 6 provides a visual example of the Asymmetric Search (AS) algorithm running with parameters
τ = 0.1 and c⋆ = 2. The illustration shows the iterative progression and query evaluations leading to
successful convergence near the decision boundary.

Asymmetric Search (AS) Algorithm

Parameters: τ = 0.1 (Threshold parameter)
c∗ = 2 (Cost ratio parameter)
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Figure 6: Asymmetric Search (AS) illustration.
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G Asymmetric attacks against CLIP

We evaluate the robustness of vision-language models (VLMs), such as CLIP [28], against stealthy
adversarial attacks. Our experiments cover both the zero-shot and fine-tuned versions of CLIP. We
apply our asymmetric attacks to these models and observe substantial improvements over stealthy
baselines. As shown in Fig. 7, after making 300 total queries, asymmetric methods achieve 40–60%
lower ℓ2 distortion compared to Stealthy HSJA.
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Figure 7: Performance of various asymmetric attacks compared to Stealthy HSJA on CLIP.

H Conceptual Illustration

In this section, we show the conceptual illustration of the vanilla gradient estimation and our proposed
gradient estimation AGREST.
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Figure 8: Comparison of vanilla gradient estimation and its asymmetric counterpart. Vanilla
sampling results in roughly half high-cost and half low-cost queries, whereas AGREST reduces the
frequency of high-cost queries by shifting the sampling region and weighting outcomes accordingly.
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